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ABSTRACT

Mesoscale Modeling of Shape Memory Alloys by Kinetic
Monte Carlo-Finite Element Analysis Methods

Adam David Herron
Department of Mechanical Engineering, BYU

Master of Science

A coupled kinetic Monte Carlo – Finite Element Analysis (kMC–FEA) method is devel-
oped with a numerical implementation in the Scalable Implementation of Finite Elements at NASA 
(ScIFEN). This method is presented as a mesoscale model for Shape Memory Alloy (SMA) mate-
rial systems. The model is based on Transition State Theory and predicts the nonlinear mechanical 
behavior of the 1st order solid–solid phase transformation between Austenite and Martensite in 
SMAs. The kMC–FEA modeling method presented in this work builds upon the work of Chen 
and Schuh [1, 2]. It represents a “bottom-up” approach to materials modeling and could serve as 
a bridge for future studies that attempt to link ab initio methods with phenomenological findings 
in SMA systems. This thesis presents the derivation of the kMC–FEA model, which is then used 
to probe the various responses expected in SMAs and verify the influence of model parameters on 
simulation behavior.

In a departure from the work of Chen and Schuh, the thermodynamic derivation includes an 
elastic transformation energy term, which is found to be a significant fraction of the total transfor-
mation energy and play an important role in the evolution of a simulation. Theoretical predictions 
of the model behavior can be made from this derivation, including expected transformation stresses 
and temperatures. A convergence study is presented as verification that the new elastic energy term 
proposed in this model is a reasonable approximation. A parameter sensitivity study is also pre-
sented, showing good agreement between theoretical predictions and the results of a full-factorial 
numerical exploration of model outputs.

Model simulation demonstrates the emergence of the shape memory effect, an important 
SMA behavior not shown by Chen and Schuh, along with the expected superelastic effect and 
thermal hysteresis. Further exploration of simulated model outputs presented in this work involves 
comparison with experimental data and predicted output values obtained from a separate phe-
nomenological constitutive model. This comparison shows that the kMC–FEA method is capable 
of reproducing qualitative, but not yet quantitative, responses of real SMA material systems.

Discussion of each model parameter and its effects on the behavior of the model are pre-
sented as guidelines for future studies of SMA materials. A complete implementation of the 
method is contained in a new finite element software package (ScIFEN) that is available for future 
studies.

Keywords: kinetic Monte Carlo, Finite Element Analysis, Shape Memory Alloys, Superelastic, 
Hysteresis, Materials Modeling, ScIFEN
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CHAPTER 1. INTRODUCTION

Shape Memory Alloys (SMAs) are a useful branch of engineering materials that exhibit

large nonlinearities in their thermo-mechanical response. These nonlinearities, which include su-

perelasticity and the shape memory effect, are what give SMAs their name and the desirable prop-

erties that make them useful, but also make modeling these materials challenging.

If SMAs are to be useful for engineers and designers, their thermo-mechanical response

must be predictable in the range of conditions of their intended use. A host of phenomenological

material models have been developed to describe the response of SMAs under a limited set of

conditions. These models work well if the material is used under these conditions, but do not

allow investigators to explore material behavior outside the model’s fitted region. Other models,

based on first-principles and atomistic calculations, accurately describe the behavior of SMAs, but

are only computationally feasible at short length and time scales.

This study extends the work of Chen and Schuh [1, 2] and focuses on bridging the gap be-

tween the atomistic scale phenomena which govern SMA behavior and continuum scale modeling

techniques. In order to bridge this gap, a finite element solver is coupled with kinetic Monte Carlo

(kMC) methods to stochastically evolve the microstructural state of the model according to phase

transition probabilities

1.1 SMA Background Information

Shape Memory alloys get their name from the shape memory effect, a property which

allows them to recover a large amount of inelastic deformation upon heating [3]. SMAs also

exhibit a property known as pseudoelasticity (or superelasticity) at elevated temperatures. This

allows them to undergo a significant amount of pseudo-elastic deformation upon loading, which is

completely recovered upon unloading (see Figure 1.1).
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Figure 1.1: Used with permission from [4], this figure is an excellent illustration of the stress-
strain response of SMAs over a range of temperatures. The super-elastic effect is observed at
higher temperatures while the shape memory effect is observed at lower temperatures

Figure 1.1 shows how the nature of the stress–strain curve of a Shape Memory Alloy

changes when the temperature is changed. At high temperatures, the Austenite phase is favored

and phase transformation to Martensite is accomplish via stress induced phase transformation.

At lower temperatures, the Martensite phase becomes stable at zero stress. Thus, stress induced

transformation strain is not automatically recovered at low stress, but may be recovered completely

through the application of heat and thermally induced transformation from Martensite to Austenite.

Although the shape memory effect was first discovered in Cd-Au alloys in the early 1930’s,

investigation in earnest did not begin until 1963, when Ni-Ti alloys were discovered to exhibit the

shape memory effect near room temperature [4]. Since that time, SMAs have been a hot topic in

materials science and engineering.

The unique non-linear thermo-mechanical response of SMAs is primarily due to their re-

versible martensitic transformation. That is, they undergo a reversible, first order, solid state phase

transformation, from a highly-ordered Austenite phase to a more-disordered Martensite phase,

when subjected to a temperature shift or stress field [5]. For more detailed descriptions of this

2



transformation and why it is necessary for the shape memory effect and pseudoelasticity in SMAs,

see [6, 7].

1.2 Applications

SMAs are rapidly finding applications in a variety of fields, including:

• Aerospace: SMAs typically have a density which lies between aluminum and steel [4]. The

shape memory effect also gives some SMAs a high actuation energy density, making them

attractive candidates for lightweight aerospace actuation mechanisms like that used in the

variable area jet nozzle design [8–10].

• Vibrational Damping Structures: SMAs have the ability to dissipate a large amount of

mechanical energy through their pseudoelastic hysteresis [11, 12].

• Medical and Dental Devices: Ni-Ti, in particular, is highly biocompatible and can exhibit

its superelastic response at the temperature of the human body. This makes it useful for

applications such as orthodontics [13] and heart stents [14].

• Damage-Sensing Composites: Research performed at NASA Langley has investigated the

feasibility of using embedded SMA particles as sensors to detect fatigue crack growth in

structural composites [15–23]. Stress fields located near crack tips induce transformation of

sensory particles, which emit detectable acoustic signals – see figure 1.2.

1.3 Modeling

As stated previously, the Martensitic transformation is what governs the behavior of SMAs.

At the atomistic level, the physics governing the martensitic transformation for many SMA systems

can be accurately modeled using molecular dynamics simulation (MD) and ab initio methods [5,

24–28]. SMA transformation behavior is very sensitive to the chemical composition of the alloy

and exploration of new chemical compositions can readily be made using MD [24]. Such methods

are impractical for everyday engineering and design applications, however, because they access
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Figure 1.2: Used with permission from [17], this figure illustrates the use of SMA materials as
embedded sensors for use in smart composite structures

only very short time and length scales. Such methods are very useful for determining material

properties and behaviors which can be course-grained to predict bulk material behavior.

In contrast, traditional finite element analysis (FEA) methods are much more practical for

component-scale analysis. They operate at the continuum level, allow for rapid prototyping, it-

erative design, and optimization; but require continuum scale material models. The large non-

linearities, anisotropic character, and strong dependence on temperature, load history, and compo-

sition make SMAs difficult to characterize using traditional continuum scale FEA material models

which do not account for these factors. In response to this daunting challenge, a host of new and

interesting material models have been proposed and implemented, which capture certain aspects

of SMA behavior very well. An extensive review of many of these models is given by Cisse [3].

Of particular interest is a model developed by Lagoudas et al [7, 12, 29–35]; a thermody-

namic continuum model, fit to experimental data. It shows good agreement with experimental data

under a wide range of temperature and loading conditions for particular chemical compositions.

This model is a subject of comparison/contrast in this work.
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Recently, Chen and Schuh proposed a new SMA model, based on kinetic Monte Carlo

(kMC) methods and implemented in the Abaqus FEA solver [1, 2]. This model allows groups of

elements to transform stochastically according to transition state theory. Some major advantages

of this model are that it predicts SMA phenomena, rather than fitting for them; it tracks the local

evolution and propagation of transformation fronts; and it operates on a physical time scale. This

model framework seemed promising, since it potentially accesses longer length and time scales

than accessible using MD simulations, but also claimed not to require phenomenological fitting.

It was hoped that an extension of this model would allow for the optimization of SMA chemical

composition for use in sensory particle applications and it was to this end that we selected the

kMC–FEA model framework for adaptation.

In the present work, we extend the methods of Chen and Schuh mainly through a re-

derivation of the relevant thermodynamics, a re-implementation of their model in the Scalable

Implementation of Finite Elements at NASA (ScIFEN) FEA code, model exploration, demonstra-

tion of the emergent shape memory effect, a parameter sensitivity analysis, and comparison with

experimental data and fitted phenomenological predictions made using the Lagoudas model. Since

kMC–FEA methods are still very new to SMA modeling, this work is mainly an exploration of the

coupled kMC–FEA modeling framework as a useful tool for studying SMA material systems. It

highlights some of the advantages and limitations of the framework. It may also shed new light on

SMA systems and may serve as a useful starting point for future SMA modeling efforts
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CHAPTER 2. METHODS

In this chapter, the kinetic Monte Carlo–Finite Element Analysis (kMC–FEA) method is

developed. A summary of the relevant thermodynamics and kinetics is given and an implementa-

tion of the kMC algorithm is presented. Theoretical predictions of model behavior are made based

on thermodynamic and kinetic reasoning. Methods for a parametric study are given to show how

comparison is made between theoretically predicted outputs and simulated results. Methods are

also outlined for comparison of model results with experimental data and with predictions made

by a commonly used phenomenological constitutive model.

2.1 kMC–FEA Model Development

The kinetic Monte Carlo – Finite Element Analysis model consists of a finite element solver

coupled with a kMC algorithm. The kMC algorithm controls the evolution of the model by im-

posing an eigenstrain on stochastically selected elements to mimic phase transformation in that

region. In short, the kMC algorithm takes the stress and phase state of the model as input and

calculates local rates of transformation within the mesh based on material energetics and thermo-

dynamic principles. The output for the kMC algorithm is then the duration of the elapsed time for

that event to occur, as well as a list of which integration points to transform and the phase/variant

to which they will transform. A corresponding eigenstrain, dependent upon the current and future

phase/variant, is then applied to the transforming points.

This type of model is based on transition state theory and assumes that small regions (trans-

formation zones) in an elastic solid have inelastic transformation kinetics based on an Arrhenius

law. Such a model was proposed by Argon and Bulatov [36], explored and developed for amor-

phous metal systems by Homer and Schuh [37] and further applied to phase transformation of

Shape Memory Alloy systems by Chen and Schuh [1,2], of which this work is a further extension.
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2.1.1 Energetics

The Austenite-Martensite phase transformation which underlies the pseudoelastic Effect

and shape memory effect in SMA material systems can be modeled as a transformation of discrete

regions of volume Ω0. The rate at which these regions activate (or transform between phases) is

predicted by transition state theory according to the following rate equation:

ω = ν0 exp−EtΩ0

kT
(2.1)

where ν0 is the attempt frequency (assumed to be on the order of the Debye frequency), k is the

Boltzmann constant, and T is the absolute temperature. Et is the transformation energy barrier

(Note: all energy and entropy values considered here are per-unit-volume values).

Additional modeling may be warranted to characterize the barrier for specific material sys-

tems, but for the purposes of this generic SMA model, we assume that the activated (or transition)

state has Gibbs energy equal to the average of the pre- and post-transformation Gibbs energies plus

a constant:

G‡ =
1
2
(G1 +G2)+E f r (2.2)

The constant E f r is theoretically positive for both forward and reverse transformation and

represents the additional kinetic energy required to overcome the energy barrier at the transition

state. It could also include the additional potential energy of the transition configuration, any

frictional energy or energy dissipated via plasticity in the material. Further discussion of this

parameter is given in section 4.1.2.

The transformation rate kinetics are governed by the transformation energy barrier Et ,

which is simply the difference between the current Gibbs energy (G1) and the Gibbs energy of

the transition state (G‡). An illustration of this concept is shown in Figure 2.1, which represents

the Gibbs energy as a function of the extent of transformation. The activation energy is the differ-

ence in Gibbs energy between the current configuration and the transition state.
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Figure 2.1: The Gibbs free energy as a function of the extent of transformation from an initial to
final transformation states. Gibbs energies are given in energy-per-unit volume.

Et = G‡−G1

=
1
2
(G1 +G2)+E f r−G1

=
1
2

∆G1→2 +E f r

(2.3)

Like Chen and Schuh, we consider the difference in Gibbs Energy between two phases to

be a combination of the differences in their chemical potential, elastic energy, free surface energy

and interface energies:

∆G = ∆Gch +∆Gel +∆Gs f +∆Gi (2.4)

Like Chen and Schuh, we linearize the chemical potential (see Figure 2.2) by assuming

that the heat capacity is constant and consistent between phases near the equilibrium temperature

(T0), such that the transformation enthalpy ∆H ≈ ∆H0 and entropy ∆S≈ ∆S0 are also constant, the

change in chemical potential reduces to:

8



Figure 2.2: The chemical potential, linearized at the equilibrium temperature, as a function of
temperature. The slope of the chemical potential is the entropy, which we assume is constant for
this study

∆Gch =−∆S0(T −T0) (2.5)

Unlike Chen and Schuh, we estimate the comlete elastic energy of transformation. The

elastic energy of a transforming inclusion ∆Gel is formulated by Eshelby [38]. For an elliptical or

ellipsoidal elastic inclusion undergoing a uniform transformation strain ε tr in the presence of an

applied stress field σA, the elastic energy has a closed form solution:

∆Gel =−1
2

σ
I
ε

tr−σ
A
ε

tr (2.6)

The inclusion stress σ I is uniformly distributed throughout an ellipsoidal inclusion and can be

readily calculated via the material stiffness, transformation strain, and the appropriate Eshelby ten-

sor. For transformation strains of equivalent magnitude but differing strain directions, transforming

in an isotropic material, the quantity−1
2σ Iε tr is a positive constant, which we will denote EI . This

lets us rewrite equation 2.6 as:

9



∆Gel = EI−σ
A
ε

tr (2.7)

Also in departure from the method of Chen and Schuh, the surface and interface energies

have been neglected in this study. Combining equations 2.4, 2.5, and 2.7 yields:

Et =−
1
2

∆S0(T −T0)−
1
2

σ
A
ε

tr +
1
2

EI +E f r (2.8)

Care should be taken when applying equation 2.8 that the correct values are used for ∆S0, and ε tr,

as they are dependent upon the initial and final phase or variant.

2.1.2 Kinetic Monte Carlo Algorithm

A modified rejection-free kMC algorithm is employed to stochastically select transforma-

tion events and update the simulation time step. The algorithm proceeds according to the following

steps:

1. Local stresses are solved using finite element methods.

2. A transformation energy Et is calculated for each of the MxN possible transformation events

according to equation 2.8. Each event represents one of the N transformation zones in the

model transforming to one of the M other allowed phases/variants. Each transformation

energy is then used to calculate a corresponding transformation rate according to equation

2.1. Transformation rates are capped at the attempt frequency ν0.

3. The total transformation rate is computed as the sum of these transformation rates: ωtot =

∑
NxM
i=1 ωi and a random number ξ1 ∼ u(0,1] is generated and to determine the internal (kMC)

time step:

∆tint =−
ln(ξ1)

ωtot
(2.9)

4. If ∆tint ≤ ∆text , the internal (kMC) timestep is used and the algorithm proceeds to step 5.

Else if ∆tint > ∆text , the external (FEA) timestep is used, no transformation occurs on this

iteration, and the algorithm proceeds to step 7.
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∆t = min{∆tint ,∆text} (2.10)

5. A second random number ξ2 ∼ u(0,1] is generated and used to select the transformation

event to activate, with each event’s probability of being selected being proportional to its

transformation rate ωi.

6. The selected transformation is imposed by updating the phase/variant and eigenstrain state

of the selected transformation zone’s integration points.

7. The simulation time is incremented by the time step selected in step 4, the loading conditions

σ(t), ε(t), or T (t) are updated, and the steps are repeated from step 1 until termination

conditions are met.

2.1.3 Finite Element Coupling

Step 1 of the rejection-free kMC algorithm involves solving for local stresses via finite

element methods. This is important since the local stress environment is a strong function of both

the global (time dependent) loading conditions and neighboring transformation strains (see Figure

2.4). Some important considerations need to be made when implementing the finite element model.

The Eshelby inclusion energy calculation, used in determining the transformation energy

of each transformation zone, assumes the transforming region to be an elliptical (or ellipsoidal for

the 3-dimensional case) inclusion, surrounded by an infinite matrix. Energies calculated for shapes

varying much from elliptical and non-infinite mediums can introduce substantial error [39]. To

this end, and due to the discrete, non-elliptical nature of typical finite elements, mesh refinement

techniques were employed to approximate elliptical transformation zones. No attempt is made in

this study to correct for the non-infinite nature of the surrounding medium or the potential non-

uniform stiffness of surrounding medium.

The inclusion transformation energy (EI) can be computed using γ0 and the Eshelby tensor.

For this study, we use a 2-Dimensional finite element model with in-plane transformation strains.

EI for this geometry can be approximated as:
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EI =
Eyγ2

0
4(1−ν2)

(2.11)

where Ey is the average elastic modulus between the Austenite and Martensite phases. Some error

is introduced during this approximation, since the Austenite and Martensite phases do not have the

same stiffness and the inclusions do not transform in an infinite matrix. Further discussion on this

point is presented in Chapter 4.4.

A convergence study is performed, similar to that performed by Homer and Schuh [37],

comparing the elastic strain energy observed in a finite element mesh undergoing an inclusion

transformation in its interior and the energy predicted for an ideal ellipsoidal inclusion of equal

volume using the Eshelby equations. For this study, a small spherical inclusion, composed of a

variable number of 10-node tetrahedral elements, is subjected to a predefined martensitic transfor-

mation eigenstrain in ScIFEN. Comparison is made between the elastic energy change reported by

the finite element solver and theoretical predictions for an inclusion given by the Eshelby equations

multiplied by the inclusion volume. Since the Eshelby inclusion energy is reported as a per-unit-

volume quantity, scaling it by the inclusion volume normalizes these values for direct comparison.

The number of elements is then varied through mesh refinement techniques and the comparison is

repeated.

As expected, the difference in predicted elastic strain energy between the two methods

drops dramatically as the mesh refinement increases and more elements are used to approximate

the ellipsoid. It is concluded that approximately 27 quadratic tetrahedral elements were sufficient

to bring the energy calculation within approximately 5 percent error (see Figure 2.3), which was

deemed suitable for this study. Using a larger number of elements could bring the relative error in

transformation energy down an additional order of magnitude, but would come at high computa-

tional cost.

2.2 Implementation details

To highlight the capability of the kMC–FEA model framework in producing superelas-

tic hysteresis, temperature hysteresis, and the shape memory effect, model parameters are cho-

sen in well-behaved regions of the parameter space which produce clean output stress–strain and
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Figure 2.3: Results of the convergence study, showing the absolute relative error between the theo-
retical elastic strain energy for a transforming inclusion, predicted by Eshelby, and the numerically
simulated elastic strain energy of an inclusion, modeled in ScIFEN.

Table 2.1: Nominal parameters used for kMC-FEA model simulations illustrating the superelastic
stress hysteresis (see Figure 3.1 ) and temperature hysteresis (see Figure 3.2).

Variable Value Units
∆S0 -0.1155 MPa/K

γ0 0.0165 -
Ey 27500 MPa
ν 0.3 -

EI 2.1243 MPa
E f r 0.1217 MPa
Ω0 1e-25 m3

TM 212 K
TA 253 K
T 303 K

∆text 0.001 ps
ν0 1.0831e2 T Hz

temperature–strain curves. Parameters used for the superelastic stress hysteresis and temperature

hysteresis simulations are given in Table 2.1.
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Figure 2.4: Illustration showing (A) the transforming phase (Blue = Austenite & Red = Martensite)
and (B) the transformation rate. Note that the rate of transformation zones is affected by the
transformation of its neighbors (Red elements have high transformation rates)

The finite element mesh, used frequently throughout this study, is shown visually in Figure

2.4. It contains a total of 1593 8-node hexahedral (Hex8) elements throughout the model. Only

the gauge section, which is shaded clearly in Figure2.4(B) is allowed to transform from Austenite

to Martensite. This gauge section has 1367 Hex8 elements, each divided into 8 integration points,

for a total of 10936 separate transformable integration points. These transformable integration

points are course-meshed into circular transformation zones of radius 2.5, for a total of 82 inde-

pendent transformation zones. Figure 2.4(A) shows three individual transformation zones which

have transformed to the Martensite phase (Red).

SMA material systems typically have a variety of crystallographic orientations of Marten-

site (or Martensite variants) to which the highly symmetric Austenite phase can transform [6]. For

simplicity and to maintain material generality, we only consider one variant of Martensite in this

work.

To ensure that transformation zones are approximately elliptical/ellipsoidal, a separate

mesh of transformation zones, composed of the individual integration points within the finite ele-

ment mesh is constructed. For 2-dimensional model, a hexagonal mesh is used. For 3-dimensional

14



models, a mesh of truncated octahedra is used. This ensures that transformation zones are approx-

imately elliptical/ellipsoidal and that the mesh volume is completely tessellated.

The kMC algorithm is implemented directly into the source code for the “Scalable Imple-

mentation of Finite Elements at NASA” (ScIFEN), a new massively parallel finite element analysis

software package being developed by a group at the NASA Langley Research Center [40]. Col-

laboration with this group has given us access to the source code, which is under export control.

Having access to the FEA source code is a great advantage for this type of model implementation,

since eigenstrains need to be imposed within transformation zones, a behavior which is challenging

to implement in other FEA solvers. An example input script for the kMC–FEA ScIFEN imple-

mentation is included in Appendix B

2.2.1 Theoretical Transformation Points

In order to predict the behavior of the kMC–FEA model and to compare that behavior

to experimental data and other SMA models, it is desirable to have predictions for the critical

stresses and temperatures that induce phase transformation. This model has the potential initiate

transformation under a number of circumstances. When the whole model is in the Austenite phase,

it can begin transforming to Martensite due to an increase in stress (at τ = τMS) or a decrease in

Temperature (at T = TMS). Likewise, the model begins transforming from Martensite to Austenite

with decreasing stress (at τ = τAS or increasing temperature (at T = TAS). The difference between

these stresses represents the stress hysteresis (∆τH) at constant temperature or the temperature

hysteresis (∆TH) at constant stress.

Thermodynamic principles would suggest that the material will begin transformation when

the Gibbs energy of transformation is zero:

∆G =−1
2

∆S0(T −T0)−
1
2

σ
A
ε

tr +
1
2

EI +E f r = 0 (2.12)

Substituting the appropriate transformation stress (σA = τMS, τAS, or τ), temperature (T = TMS,

TAS, or T), entropy (−∆S0 or ∆S0) and direction of transformation strain (ε tr = γ0 or −γ0) depend-

ing upon whether the model is transforming to Martensite or Austenite, then solving for the various

critical stresses and temperatures yields:
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τMS =
1
γ0

{
−∆S0(T −T0)+EI +2E f r

}
(2.13)

τAS =
1
γ0

{
−∆S0(T −T0)−EI−2E f r

}
(2.14)

TMS = T0−
1

∆S0

{
τγ0−EI−2E f r

}
(2.15)

TAS = T0 +
1

∆S0

{
−τγ0−EI−2E f r

}
(2.16)

Making the theoretical stress and temperature hysteresis values:

∆τH = τMS− τAS

∆τH =
2
γ0

{
EI +2E f r

} (2.17)

∆TH = TAS−TMS

∆TH =− 2
∆S0

{
EI +2E f r

} (2.18)

2.3 Experimental and Computational Comparison

Comparison is made with the output of this new kMC–FEA model, experimental data,

and the output of a calibrated model, developed by Lagoudas et al. [29, 32, 33]. Experimental

data was obtained by [33] standard uniaxial dogbone tensile testing according to ASTM standard

[41]. Parameters for the Lagoudas model were fit to this experimental superelastic stress hysteresis

data, and are shown in Table 1 of [33]. These parameters were also used to estimate appropriate

parameters for the kMC–FEA model, which are listed in Table 2.2.

Despite their similarity, some effort is required to translate the model parameters used in the

Lagoudas model to suitable parameters for use in the kMC–FEA model as the variable parameters
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Table 2.2: kMC-FEA Model Parameters for Model Comparison Simulation

Variable Value Units
∆S0 -0.3727 MPa/K

γ0 0.0515
Ey 26.4e3 MPa
ν 0.33

EI 26.2710 MPa
E f r -26.00 MPa
Ω0 1e-24 m3

TM 236.70 K
TA 267.35 K
T 298.15 K

∆text 0.005 ps
ν0 1.0831e2 T Hz

differ. For instance, the temperature parameters TA and TM required for the kMC–FEA model

could be translated as the average of [TAS,TAF ] and [TMS,TMF ] respectively. Some parameters are

the same, as in Hmin = γ0.

The parameters CM and CA in the Lagoudas model represent the derivative of the forward

and reverse transformation stresses with respect to temperature. Hence:

CM(T −TM)−CA(T −TA) = ∆τH =
2
γ0
(EI +2E f r)

E f r =
γ0

4

(
CM(T −TM)−CA(T −TA)

)
− 1

2
EI (2.19)

τ0 =
1
2
(τMS + τAS) =

1
2

(
CA(T −TA)+CM(T −TM)

)
substitution from Equations 2.13 & 2.14 allows for estimating ∆S0:

∆S0 =
−γ0

2(T −T0)

(
CA(T −TA)+CM(T −TM)

)
(2.20)

A qualitative comparison is made between experimental data, the output of the kMC–FEA

simulation, and the output of a fitted phenomenological model. The simulation is that of a supere-
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lastic stress–strain hysteresis curve, similar to the superelastic simulation shown in Figure 3.1, but

with experimentally estimated values for the input parameters. Most notably, a much higher strain

value is used in this simulation (5.15% vs. 1.65%). The results of this comparative study are given

in section 3.3 and further discussion is given in section 4.2.
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CHAPTER 3. RESULTS

The general behavior of the kMC–FEA model is described in the context of three non-

deterministic, emergent behaviors: 1). superelastic stress hysteresis, 2). temperature hysteresis,

and 3). the shape memory effect. A parameter study is presented, showing the tendency of the

model output to change predictably with perturbation to the input parameters. Finally, a compar-

ison is made between the output of the kMC–FEA model, experimentally obtained data, and a

commonly used phenomenological model, fitted to the experimental data.

3.1 kMC-FEA Model Behavior

3.1.1 Superelastic Stress Hysteresis

Figure 3.1 illustrates the results of a dog-bone tensile simulation using the kMC-FEA model

with the parameters indicated in Table 2.1. The figure includes both the stress–strain curve and

snapshots of the simulation cell at various points indicated on the curve. The simulation consists

of a tensile sample undergoing a single loading cycle at a temperature above the Austenite Finish

temperature.

As illustrated in Figure 3.1, the simulation begins at point (1), unstrained and unstressed, in

the Austenite phase. The top grip section of the sample is held fixed and a displacement boundary

condition, applied at the bottom grip section, imposes a constant strain rate on the sample, deform-

ing it elastically between points (1) and (2). At point (2), the sample appears to reach a critical

stress level (σMS) at which point Martensite nucleates and begins to grow in the Austenite sample,

halting the increase in stress through transformation strain accommodation.

The Martensite usually nucleates and grows in a band structure, angled diagonally from the

tensile axis. Point (3) is the point at which approximately 50% of the sample has transformed to

Martensite. When the simulation reaches point (4) at a slightly higher apparent stress level (σMF ),
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Figure 3.1: Top: Stress–Strain plot, showing the bulk behavior of the kMC-FEA model when
pulled in tension at superelastic temperatures. Note the clear hysteresis between forward stress
during loading and reverse stress during unloading. Bottom: Snapshots of the transformation
process from the kMC-FEA model simulation, showing the propagation of phase fronts. Red
elements represent Martensite phase while blue elements represent Austenite phase
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the sample has completely transformed to Martensite and further loading between points (4) and

(5) is elastic deformation of the Martensite phase.

Once loading reaches its maximum stress and strain at point (5), the loading rate is reversed

and unloading begins. Strain is recovered elastically between points (5) and (6). The critical stress

(σAS) at point (6) is the stress at which Austenite begins to grow back out of the Martensite. During

reverse transformation Austenite grows out of the Martensite in the opposite direction through the

sample, consuming the transformed Martensite elements from the outside of the sample inward.

Little change in the stress magnitude occurs as the simulation passes through the 50%

Austenite mark at point (7), until the apparent critical stress (σAF ) at point (8) is reached. At this

point, the model has completely returned to the Austenite phase and strain recovery is elastic again

between points (8) and (1).

The simulation represented in Figure 3.1 is representative of the general features of this

kind of dogbone tensile cycle simulation, which uses the kMC-FEA material model. It should be

noted that the output stress magnitudes (σMS, σMF , σAS, and σAF ) and the shape of the stress–

strain curve are not model parameters, but rather are emergent from the simulation, measured from

the output of the model. Although the model is non-deterministic, the theoretical calculations

presented in Equations 2.13–2.18 actually are a fair predictor of the model behavior in this region

of the parameter space. Deviations from theoretically predicted behavior are attributed to effects

not accounted for in the thermodynamics, such as meshing, stress concentration points, etc. Further

discussion of this presented in sections 3.2 and 4.4

3.1.2 Temperature Hysteresis

Figure 3.2 illustrates the results of a thermal loading simulation. In this case, the free end

of the dogbone is unconstrained in the tensile direction and allowed to expand freely as the model

transforms from Austenite to Martensite and then back to Austenite due to temperature cycling.

At point (1), the simulation begins in the Austenite phase at a temperature above the

Austenite Finish temperature (TAF ). The sample is then ”quenched” by dropping the simula-

tion temperature at a constant rate over time. When the model reaches point (2), the temperature

has reached an apparent critical temperature (TMS), at which point the transformation rate is high

enough that transformation to Martensite begins. The sample continues to transform until point
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Figure 3.2: Temperature–Strain plot, showing the output of a thermal cycling simulation using the
kMC-FEA material model with one unconstrained boundary condition. Note the clear temperature
hysteresis which occurs between forward and reverse thermal transformation

(3), when it has completely transformed to Martensite. The observed temperature we measure at

point (3) is termed the Martensite Finish temperature (TMF ).

The simulation continues to cool until it reaches the minimum temperature at point (4)

and then the thermal loading rate reverses. The sample temperature rises to point (5), when it

begins transforming from Martensite back to Austenite and we measure the observed Austenite

Start temperature (TAS). The sample has completely transformed to Austenite at point (6) and the

Austenite Finish temperature (TAF ) is recorded. Then the temperature is raised to its original value

and the cycle is completed.

Similar to the critical stresses measured from the output of the stress hysteresis cycle simu-

lation, the four critical temperatures measured during thermal cycling (TMS, TMF , TAS, and TAF ) are

emergent from the stochastic simulation rather than given as input parameters. They are strongly

related to the model input parameters TA and TM, but are also affected by simulation conditions,

such as loading rate and the presence of candidate nucleation sites in the finite element model.
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It should be noted that no Martensite twinning or self-accommodating microstructure pat-

terns develop in this temperature cycling process due to the fact that, in the model simulations

presented in this work, only a single Martensite variant is allowed to transform from the Austenite.

The model is capable of allowing any number of Martensite variants, but for simplicity’s sake, only

a single variant is included in this study. It is expected that self-accommodation would occur if

multiple variants were included.

3.1.3 Shape Memory Effect

When a tensile simulation, like that used to show stress hysteresis in Figure 3.1, is per-

formed at a temperature below the Austenite Finish temperature (TAF ), the shape memory effect is

observed. The shape memory effect is a property exhibited by SMAs wherein permanent transfor-

mation strain is retained after unloading, but then recovered by subsequent heating of the material

above the Austenite Finish temperature, as illustrated in Figure 1.1.

A simulation of the shape memory effect is presented in Figure 3.3. A tensile simulation is

performed, starting with no strain at point (1). A monotonically increasing stress load is applied at

the free end of the model between points (1) and (4). Transformation from Austenite to Martensite

begins at point (2) and full transformation to Martensite occurs at point (3). At point (4) loading

reverses, monotonically decreasing from the peak loading stress and back to zero applied stress at

point (5).

At point (5), the tensile loading cycle has completed. The model has relaxed elastically

and is now in an unstressed state. Note that a significant amount of retained transformation strain

remains at point (5), as the material is still completely in the Martensite phase.

Between point (5) and point (1) the fixed end is left unconstrained and simulation tem-

perature is raised steadily from its initial value to a value above the Austenite Finish temperature

(TAF ). As the temperature is raised, the Martensite is transformed gradually to Austenite and the

transformation strain is completely recovered by point (1).

Demonstration of the shape memory effect is an important extension of the work of Chen

and Schuh [1,2] and validation of the kMC–FEA method in general. The fact that the shape mem-

ory effect emerges from the model by simply lowering the simulation temperature is good evidence

that the model is capturing at least part of the physical nature of the material transformation system.
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Figure 3.3: Stress–Strain plot illustrating the shape memory effect. The stress–strain curve is the
result of a tensile simulation performed below the Austenite Finish temperature. Strains produced
by transformation are relieved by increasing the temperature above the Austenite Finish temper-
ature at point (5), inducing reverse transformation and causing the material to ”remember” its
original shape and fully recover the transformation strain.

3.2 kMC-FEA Parameter Study

Whereas we seek to understand the predictive value of the kMC–FEA model and whereas

the predictions made by the theoretical predictions derived in Chapter 2 differ from those observed

in the model output, a parameter study is performed to characterize the general relationships be-

tween input, expected output, and measured output of the model in a small, well-behaved region

of the parameter space.

The nominal point chosen from the parameter space is shown in Table 3.1. Using this

nominal point as a baseline center point, superelastic tensile simulations, like the one shown in

Figure 3.1 are run, varying 4 independent parameters at 3 different levels with a full factorial

design of experiment, for a total of 34 = 81 full tensile simulation cycles. Level values for the

parameter study are given in Table 3.2
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Table 3.1: Nominal parameter values used in the parameter study

Variable Value Units
∆S0 -0.1875 MPa/K

γ0 0.015 -
Ey 36e3 MPa
ν 0.33 -

E f r 0.7388 MPa
Ω0 1e-25 m3

TM 240.0 K
TA 280.0 K
T 300.0 K

∆text 0.001 ps
ν0 1.0831e2 T Hz

Table 3.2: Parameter study input parameter level values

Input Units Low Mid High
T K 290 300 310

∆S0 MPa/K -0.1775 -0.1875 -0.1975
E f r MPa] 0.6388 0.7388 0.8388
γ0 - 0.0140 0.0150 0.0160

From the simulations, the model stresses and strains are recorded, along with 5 model

output values: (τMS, τMF , τAS, τAF , ∆τH). These are the same critical stress values identified at

points (2), (4), (6), & (8) in Figure 3.1 These output values are successfully fit to a 4 dimensional

hyperplane of the input space with an R2 value of 0.9641 to effectively calculate a gradient across

the input/output space at this point. To compare these results to those predicted in Section 2.2.1

a theoretically predicted gradient can also be calculated by differentiating Equations 2.13 – 2.17

with respect to the four varied input values of T , ∆S0 , E f r, and γ0. These differentials are defined

in Appendix A.

Predictions made using equations A.1 – A.12 are compared side-by side with tensile sim-

ulation outputs from the parameter study in Table 3.3. This table shows that with few exceptions,

the output measured from parameter study simulation runs is quite consistent with theoretically

predicted values. Most notably, the partial derivatives of the forward and reverse transformation

stresses are very consistent with theoretically predicted values in both magnitude and direction.
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Table 3.3: Parameter Study Results – Theoretical predictions and simulation measurement values
for the outputs of the superelastic hysteresis parameter study with relative error reported. The top

row contains the nominal values for the output variables and the bottom four rows contain
comparison of the gradient values with respect to each of the 4 design parameters.

τMS τAS ∆τH
Theoretical Measured Error Theoretical Measured Error Theoretical Measured Error

Value 750.00 730.71 3% 250.00 389.40 56% 500.01 341.31 32%
∂

∂T 12.50 12.51 0% 12.50 13.25 6% 0.00 -0.73 -
∂

∂∆S0
-2666.67 -2597.00 3% -2666.67 -2807.00 5% 0.00 210.00 -

∂

∂E f r
133.33 137.08 3% -133.33 -130.34 2% 266.67 267.42 0%

∂

∂γ0
-29800.57 -31538.00 6% -36866.10 -31249.00 15% 7065.53 -289.00 104%

Although the stochastic nature of the kMC–FEA model makes a priori model behavior

predictions challenging, this parameter study shows that local regions of the parameter space may

have a fairly predictable output space. This suggests that, with some effort, model outputs could

be optimized to fit experimental data. Further discussion of the parameter sensitivity is discussed

in section 4.1.2.

3.3 Model Comparison

The results of the comparison between the kMC–FEA model, the Lagoudas model, and

experimental stress-strain data, as described in section 2.3, are illustrated in Figure 3.4.

The experiment and both models start unstressed and load elastically before beginning

transformation to the Martensite phase. The experiment begins transformation at a little over 400

MPa and slightly decreases its stress after nucleation before transforming at nearly constant stress

until full transformation is complete. The Lagoudas model fits this forward transformation process

nearly exactly, with the exception of missing the slight decrease in stress, right after the nucleation

point. The uncalibrated kMC–FEA model seems to overshoot the forward transformation stress

and reaches a much higher stress value than the experimental data does before beginning to trans-

form to Martensite. After initial nucleation, the stress drops to a more stable level of approximately

700 MPa (around 4% total strain). The forward transformation stress also contains a significant

amount of noise in the kMC–FEA model prediction.
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Figure 3.4: Comparison of the output from the uncalibrated kMC–FEA simulation output with
experimental data and the calibrated Lagoudas 2012 SMA model

The experimental data and each model reach full transformation and load elastically in the

Martensite phase, with both models fitting the experimental elastic loading data nearly exactly.

Upon unloading, the sample begins to transform back to Austenite. Like at the forward

nucleation stress, the Lagoudas model predicts an abrupt change from elastic unloading to trans-

formation at constant stress. The kMC–FEA model actually appears to more closely match the

qualitative behavior of the experimental sample during this transition, because the transition from

elastic unloading to phase transformation is more gradual in both the experimental data and in the

kMC–FEA model prediction.

After this brief transition region, the Lagoudas model again fits the experimental data very

closely in an almost constant-stress reverse transformation. The kMC–FEA model predicts an

average stress at nearly the same value, but again with a significant amount of noise. Reverse

transformation continues until the sample and each model have completely transformed back to

their initial Austenite phase, recovering 100% of their transformation strain. The load cycle is

completed when the experiment and each model unload elastically (and nearly identically), back

to their original unstrained state.
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The hysteresis stress predicted by the kMC–FEA method is about twice the magnitude as

that shown in experiment and predicted by the Lagoudas model.

Overall, the Lagoudas model fits the experimental data very well, with slight deviations at

the critical stresses. The kMC–FEA model does a fair job of matching the general behavior of the

material and the character of the transition points. It does predict a very high forward stress value,

and has a lot of noise. Discussion of the noisy transformation process is given in section 4.2.1.

The kMC–FEA model output also appears to be quite different from experiment and the Lagoudas

model during forward transformation. Note the large spike in elastic strain prior to transformation.

Further discussion about the stress overshoot is given in section 4.2.2.

In its current state, a systematic optimization technique it not employed to fit the kMC–

FEA model to experimental data due to project time and computational constraints. The results

of such a data fitting scheme would undoubtedly be illustrative. However, to explore each new

set of model parameters, a complete kMC–FEA simulation needs to be performed. This can take

minutes, hours, or days to run on a personal workstation, depending on the size of the model and

the parameter values. Future work, focusing on further validation of this model, should probably

include such a numerical fitting operation, with a discussion of how/where it drives the relevant

thermodynamic parameters and what the significance of that would be. Altering the software to

run in parallel on a high-performance computing platform could significantly reduce the simulation

time, making a parameter fitting routine more feasible.

A few additional simulations were performed, attempting to bring the outputs of the kMC–

FEA model into closer agreement with experimental data. Some important observations can be

made about the results. Increasing the mesh refinement reduces the stress noise during forward

and reverse transformation. Significant hardening can be seen at the end of forward and reverse

transformation on larger models with more refined meshes. This may be a mixed effect represent-

ing model sensitivity to the attempt frequency and the total number of transformation zones, but

further investigation would be required to isolate these effects. Additionally, simulations contain-

ing a larger number of elements and transformation zones require more time to complete.
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CHAPTER 4. DISCUSSION

4.1 kMC–FEA Model Behavior

As indicated in Figs. 5-7, the kMC-FEA model captures the basic behaviors of SMAs.

Interestingly, the hysteretic features of the model are emergent from the simple model that the

material transforms in small regions according to transition state theory, and knowledge of the

energetics of the process. Here we discuss these emergent properties of the kMC–FEA model and

their significance, followed by a discussion regarding individual model parameters and their effect

on model outputs.

4.1.1 Emergent Hysteresis

The most notable result of this study is the emergence of superelastic stress and temperature

hysteresis, as well as the shape memory effect at lower temperatures. The superelastic stress and

temperature hysteresis are not surprising, given Chen’s earlier work illustrating these behaviors

[1, 2]. To our knowledge, the shape memory effect has not been previously demonstrated using

kMC methods, but naturally follows from this model when the temperature operates below TAF .

In a stress hysteresis loop, like that shown in Figure 3.1, the stress of forward transformation

from Austenite to Martensite exceeds the stress of reverse transformation back from Martensite to

Austenite. This is characteristic of superelastic shape memory alloys, and any SMA model should

exhibit this property. The kMC–FEA model framework does not, however, enforce this hysteretic

behavior. Rather, the stress hysteresis emerges when reasonable values for the transformation

energy/entropy are used as parameter inputs. Hence, rather than prescribing superelastic stress

hysteresis, the kMC–FEA model predicts superelasticity as the natural outcome of such conditions.

Similarly, temperature hysteresis, like that shown in Figure 3.2, is also predicted as an emergent

behavior of the kMC–FEA model.
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The shape memory effect, as illustrated in Figure 3.3, is predicted by the kMC–FEA model

under similar conditions to those used to produce superelastic hysteresis. Shape memory behavior

is achieved by simply lowering the temperature of the simulation below the Austenite Finish tem-

perature. Residual strain, generate through stress-induced transformation, is maintained through a

lack of complete reverse transformation, but then completely recovered through thermally induced

transformation. Simple demonstration of the shape memory effect with changing temperature is a

good indication of the qualitative validity of such a model at predicting the physical nature of the

material system.

4.1.2 Parameter Sensitivity

A major focus of this work has been to implement and explore a relatively new type of

stochastic material model. For the kMC–FEA model to be useful, an understanding of the param-

eters and how they affect the model output is very important. Showing that the model responds

predictably according to theory in at least one part of the parameter space was the primary accom-

plishment of the parameter study documented in section 3.2. The following section is a discussion

of the individual model parameters and their influence on model behavior, as observed in the Pa-

rameter study and other simulations.

The transformation strain (ε tr or γ0 in single shear variant models) is the strain induced by

transformation from Austenite to a variant of Martensite. This parameter governs the total extent

to which the model can stretch due to transformation. It also plays a large role in determining the

transformation energy and transformation rate, since the elastic inclusion energy (EI) is a large

portion of the total transformation energy and is a strong function of the transformation strain

(EI ∝ γ2
0 ).

The stiffness and Poisson’s ratio (Ey & ν) of the material have the usual mechanical effects

seen in the elastic portions of the stress-strain response. They also affect the transformation kinetics

because they contribute directly to the elastic inclusion energy (EI).

The transformation entropy (∆S0) plays a large role in determining the character of the

transformation in that it determines the degree to which changes in temperature affect the transfor-

mation energy. Increasing the magnitude of ∆S0 tends to shift the stress-strain hysteresis loop to

higher stresses. Increasing the magnitude of ∆S0 also tends to reduce the magnitude of the temper-
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ature hysteresis and the degree to which the apparent equilibrium temperature shifts when stress is

applied during thermal cycling.

The transformation volume (Ω0) is of great physical significance and deserves more in-

depth study than has been performed here. It is probably one parameter that could be determined

experimentally by measuring the physical volume of the smallest regions that transform. For the

purpose of this study, values of Ω0 were selected after examining literature [42] and observing the

behavior of kMC–FEA model simulations, though the selection is still somewhat arbitrary. With

regards to model sensitivity to this parameter, it can be seen that increasing the transformation

volume tends to reduce the stochastic effects of the model and make transformation occur more

predictably. As shown in Equation 2.1, the transformation volume (along with the Boltzmann con-

stant and the simulation temperature), determine to what extent different energy transformation

events can occur. A very large transformation volume ensures that only the lowest energy transfor-

mation events occur, whereas a small transformation volume (or very high temperature) increase

the relative probability of a wide range of higher energy events.

The transformation temperatures (TA & TM) obviously directly influence the temperatures

at which the model transforms when under no applied stress loading. Increasing either parameter

tends to decrease the apparent equilibrium stress for a given operating temperature and increas-

ing the difference between the two (TA− TM) tends to increase the magnitude of the stress and

temperature hysteresis.

The attempt frequency (ν0) represents the maximum transformation rate for a given trans-

formation zone. When the calculated activation energy of transformation drops to 0 or below,

transformation zones transform at this rate. For this work, the attempt frequency was set to be ap-

proximately the Deybe frequency for the material. Experience working with this parameter showed

that the model output is highly sensitive to this parameter in conjunction with the loading rate and

the external time step parameter (∆text).

These three parameters (ν0, ∆text , and the loading rate) must be tuned well if good model

behavior is desired. If the attempt frequency is set too high compared with the loading rate, the

simulation comes to a pseudo-equilibrium in which the phases flips forward and backward at high

rates and no hysteresis can occur (hysteresis is inherently a non-equilibrium process). However, if

the attempt frequency is too low compared with the simulation loading rate, the loading essentially
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outruns the phase transformation front, increasing the apparent transformation stress and making

the model transform somewhat randomly, rather than through phase front propagation. Having a

very high attempt frequency also tends to greatly increase the total time a simulation takes to run.

This is due to the fact that increasing the attempt frequency generally increases the probability that

any event will occur and shortens the internal time step (∆int). This, in turn, increases the total

number of time steps and FEA calls required to complete the simulation. This problem is greatly

accentuated when the loading rate is low and the model spends many kMC steps transforming

back and forth between metastable configurations at a high rate. Chen refers to this as ”phase

flipping” [1] and suggests a remedy for reducing its effect which is not implemented in this model.

The maximum external time step (∆text) governs the maximum amount of time that can

occur between simulation time step. This is the time step which is prescribed by the kinetic Monte

Carlo algorithm if the total calculated transformation rate is too low to predict a transformation

event within this length of time. This parameter also must be tuned carefully to produce good

model results since setting the value too low will prevent transformation from occurring at all and

setting it too high may cause the simulation to overshoot critical transformation events. Although

(∆text) is not a physical material parameter, it nonetheless can have a significant effect on the

model behavior. Further investigation of this parameter, its relation to the physics of the model,

and a systematic approach to selecting an appropriate value for simulation are warranted for future

study.

The least well-understood parameter is the so-called frictional energy (E f r). It mainly

serves as a fitting parameter at this point, since it is used to account for the unknown energy

contributions to the barrier between phase states. It also serves to account for other energies which

are not otherwise accounted for in this model – specifically the surface and interfacial energies –

which it does poorly, since it is given as a constant in the model and does not include information

about neighboring transformation regions, local free surfaces, etc. If other energies were accounted

for separately, it might be possible to estimate E f r by investigating the nature of the transformation

at the atomic scale using density functional theory (such as in the work of [43]) or other means of

investigating the transition state, but such investigation would require considerable effort.
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4.2 Comparison with Experiment

Although not a perfect fit, the kMC–FEA model does capture some significant features of

experimentally observed transformation. For instance, the average reverse transformation stress

predicted by the kMC–FEA method is very comparable to the experimentally observed value.

Additionally, it can be observed that the initiation of reverse transformation is more gradual than

that of the abrupt transformation nucleation observed at the beginning of forward transformation.

The kMC–FEA model predictions appear consistent with this experimental trend, whereas the

Lagoudas phenomenological model does not seem to capture this smooth transition.

The forward transformation predictions made by the kMC–FEA model leave much to be

desired in the way of experimental comparison, as they seem to be much too high. This may be

an artifact of the finite element mesh, the initial conditions, or a lack of accounting for a crucial

transformation energy neglected by the model. further discussion of the noisy nature of the trans-

formation is given below in sections 4.2.1 and 4.2.2. Contrast this transformation with the behavior

of the model simulations shown in Figures 3.1, 3.2, and 3.3 for superelastic hysteresis, thermal hys-

teresis, and the shape memory effect. The nature of these simulations is much smoother and more

predictable. Obviously, the parameter inputs have a great deal of influence over the general nature

of the model output which is not yet fully understood. It may be that high strain transformations,

like those in the experimental comparison simulation, require a more accurate estimate the of inclu-

sion energy (see discussion of EI in section 4.4), since the inclusion energy becomes the dominant

transformation energy contribution at this point.

4.2.1 Noisy Transformations

The predictions made by the kMC–FEA model for forward and reverse transformation pro-

cesses observed during experimental comparison contained a lot of noise. This noise may be due

to the small size of the finite element model used in simulation. The noise may also be attributed

partially to the fact that the transformation strain (γ0) for this comparison is much higher than the

transformation strain used in other simulations, like those shown in Figures 3.1 – 3.3 (5.15% strain

compared with 1.65% and 1.5%). This also dramatically increases the elastic inclusion energy (EI)
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and may be a significant factor in causing the behavior of the kMC–FEA model to be so erratic

during transformation.

In an effort to reduce the amount of time required to obtain numerical output from sim-

ulations, and thus increase the number of experimental simulations performed during this study,

the transformation volume used in the present study is a relatively large fraction of the total finite

element volume. As such, a single transformation event has the ability to significantly impact the

total stress–strain response of a simulation. This is especially apparent when large transformation

strains, like those used in the simulation comparing the kMC–FEA model output with experimen-

tal data and the output of the fitted Lagoudas model are used. We hypothesize that performing

comparable simulations with a larger, finer-meshed finite element model would greatly reduce the

noise in the transformation stress. A limited number of simulations performed with more finely

meshed finite element models seems to support this hypothesis.

4.2.2 Transformation Stress Overshoot

During forward transformation (from Austenite to Martensite), the kMC–FEA model tends

to overshoot the transformation stress in a manner qualitatively similar to yield a point phenomenon

during stress–strain loading. This is also sometimes observed, to a more limited degree, in exper-

iments. A similar overshoot on the forward transformation of the transformation temperature is

observed in the temperature–strain domain when thermal loading is applied during kMC–FEA

simulation.

We postulate that this is due to the pristine nature of the finite element model (or experi-

mental sample) before transformation nucleates. Due to the lack of inhomogeneity, surface energy,

crystalline disorder, defects, etc. the strain energy required for homogeneous phase nucleation is

higher than that required for phase front propagation. We believe this is not observed during reverse

transformation because a disordered phase boundary already exists at the fringes of the FEA model

where transformation is prohibited, providing heterogeneous nucleation sites. This is supported by

the fact that reverse transformation initiates at these edges and that reverse transformation stresses

more closely match experimental values.

Stresses predicted by this model may also be artificially high due to a lack of any other

plasticity mechanism. Because only a single Martensite variant and no dislocation-based plasticity
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mechanisms are functioning within this model framework, transformation stresses are not relieved

via these mechanisms as they would be in experiment.

4.3 kMC–FEA Model Uses and Potential

The wide range of behaviors which the kMC–FEA model framework is capable of pre-

dicting highlight the power of of this relatively simple model. The kMC–FEA modeling approach

is a more fundamental, “bottom up” approach to materials modeling and may help bridge the

gap between first principles models, like Molecular Dynamics Simulation and Density Functional

Theory, and higher-level phenomenological models or experimental observations.

With transformation energy and entropy values as inputs, this type of modeling technique

has the ability to predict material behavior unknown a priori to the user. Similar to other, more ba-

sic first principles models, this kind of model may be used to perform numerical exploration of the

parameter space, changing energy and entropy values, along with loading parameters, and observ-

ing novel outputs. Such numerical exploration may have the potential to lead to future, unforeseen

discoveries in SMA science and engineering. Discovery and design of unique and desirable model

outputs through combinations of model inputs may give helpful guidance to materials scientists

and engineers for ways to improve state-of-the art SMA materials.

In its current state, the kMC–FEA model framework is not practical for use as a commercial

method for design and engineering analysis, but should be used primarily in scientific investiga-

tions for the near future. One of the model’s primary limitations is computational efficiency. What

the model gains in predicting novel behavior, it pays for through the necessity of computing the full

partition function and FEA solution at each kMC iteration. This makes the method relatively slow

for any but the smallest of finite element meshes and the shortest of simulation times, compared

with more time–efficient phenomenological methods like that of Lagoudas et al [7, 29, 32].

4.4 Model Improvements

This model could be improved through measuring/fixing of some of its key parameters.

For instance, the fundamental transformation volume Ω0 and the attempt frequency ν0 play a

key role in the kinetics of the model and thus affect the output of the model. Values for these
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parameters were chosen somewhat arbitrarily for this study after surveying a range of values and

picking values that produced favorable output. Further systematic numerical investigation of these

parameters and their expected values would greatly benefit the future use of this model and similar

models to come.

Significant improvement could be made in the estimation of the elastic inclusion energy

(EI), which may currently have significant error associated with free surface effects, non-uniform

matrix stiffness effects, and effects due to the unequal stiffness of Austenite and Martensite phases.

Although solutions to the Eshelby inclusion problem do exist for isolated inclusions transforming

in a matrix of a different stiffness, due to the complex nature of these solutions and the fact that

the simulation conditions would also not match these other idealized conditions, more simplified

methods are used in this study.

Chen and Schuh [1, 2] chose to neglect this elastic inclusion energy in their model. In

section 6.2 of [2] Chen proposes several methods for estimating the energy, but states that it is

computationally limiting to obtain accurate enough predictions via these methods. More accurate

and computationally efficient methods for estimating the increase in elastic potential energy due to

transformation eigenstrain may exist, but are left for future study.

Further improvement could be made by implementing multiple available Martensite vari-

ants (or collections of variants) available for transformation. Although 3-Dimensional models and

multiple Martensite variants were beyond the scope of the present work, future models which

include more complex geometry and a more complete selection of Martensite variants could be

highly informative.
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CHAPTER 5. CONCLUSIONS

In this work, we implement a kinetic Monte Carlo – Finite Element Analysis method that

models the material behavior of shape memory alloys in ScIFEN. The model, an extension of

the model presented by Chen and Schuh [1,2], takes material properties and loading parameters as

inputs and predicts the mechanical response of SMA materials to stress and/or thermal loading. We

use the output of this model implementation to provide scientific insights, beyond those given by

Chen and Schuh, into the behavior of SMA materials and the character of the kMC–FEA modeling

framework in a number of ways:

• We provide an estimate for the elastic energy of transformation by applying the Eshelby

inclusion problem to SMA transformation zones, show how the elastic energy is a significant

portion of the total energy of SMA transformation, and derive theoretical expressions for how

it relates to the behavioral output of the kMC–FEA model.

• We demonstrate the shape memory effect, predicted but not demonstrated by Chen and

Schuh [1], alongside with the superelastic effect and thermal hysteresis, which emerge from

the kMC–FEA model under the expected conditions for shape memory behavior to occur

in SMAs. The relative ease with which these behaviors emerge from the model, given pre-

dictable changes in the loading patterns, speaks to the effectiveness of this modeling frame-

work at describing the underlying mechanisms governing the alloy transformation.

• We verify the theoretically predicted behavior of the kMC–FEA model through a full-factorial

numerical exploration of a limited region the parameter space. This study shows good agree-

ment between theoretical predictions and numerical outputs. It also demonstrates that the

model can be used to reasonably predict SMA behavior in previously unsampled regions

of the parameter space. This predictive power may prove useful for future SMA research,
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aimed at optimizing SMA composition for targeted use cases, such as embedded sensory

particle research.

• We provide valuable insight into the model parameters, discussing each parameter and its

contribution to the overall model behavior. This discussion may be invaluable for future

work in tailoring SMA material composition for desired mechanical behavior. For instance,

exploration of the frictional energy parameter E f r reveals that increasing the the energy

barrier to transformation has a strong propensity to increase the stress hysteresis and thermal

hysteresis during loading. If a larger hysteresis is desired for SMA component functionality,

methods should be sought to increase this barrier to transformation. This could potentially

include doping the chemical composition of the alloy with a trace concentration of some

soluble element to partially inhibit transformation.

• We provide a qualitative comparison of the kMC–FEA model framework with experimental

results and predictions made by the phenomenological Lagoudas model [32]. We demon-

strate that, given energy terms and a small amount of model fitting, a kMC–FEA model can

loosely reproduce experimentally observed SMA tensile behavior. Further exploration and

model refinement would be required to enable the kMC–FEA model to make high-fidelity

quantitative predictions about component-scale SMA responses. For instance, the kMC–

FEA model is still highly sensitive to some parameters such as the maximum time step

(∆text), the kMC attempt frequency (ν0), and FEA mesh properties.

5.1 Statement of Personal Contribution

I made the following contributions to this project:

• Using the Eshelby inclusion equations, I derived the expression for the 2-Dimensional elas-

tic energy of transformation given in equation 2.11. I found this helpful since it provided

a concise way to include the elastic energy in the transformation rate calculation analyti-

cally in a way that revealed the contributions of the material stiffness, Poisson ratio, and

transformation strain to the total elastic energy.
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• To verify that the elastic energy calculation I derived matched the elastic energy predicted

by the finite element software, I designed and executed the convergence study depicted in

Figure 2.3. This also helped me make future judgment about sufficient mesh refinement for

future simulations.

• While trying to predict and interpret the output of this new modeling scheme, I decided that

it would be helpful to have a good approximation for the critical transformation stresses and

temperatures. This would allow me to design more effective simulations, explore model be-

haviors, and would serve as a first step toward fitting simulation behavior to experimentally

observed phenomena. To this end, I used the model kinetics and thermodynamic princi-

ples as a basis to derive equations (2.13 – 2.18) which predict transformation stresses and

temperatures.

• To verify that the predictive equations I derived actually represented the behavior of the

model in simulation, I designed and executed the parameter study documented in section

3.2. Although the project had other pressing issues, I felt this verification was an important

part of the model development.

• Further exploration by comparison with experiments and the Lagoudas model predictions

required that appropriate kMC–FEA model parameters be selected such that the simulation

output would match the expected behavior. I devised the method of output fitting docu-

mented in section 2.3, which gives a systematic way to translate the Lagoudas model param-

eters into compatible kMC–FEA parameters

• Software implementation: I performed a significant portion of the necessary C++ and Python

source code development for implementing the kMC–FEA model in ScIFEN. This included:

– I used the existing orthotropic elastic material model class provided with the ScIFEN

software package as a pattern to implement a new orthotropic elastic material model

class with the capability of changing its stiffness and eigenstrain based on variable

phase configuration and crystallographic orientation.

– I used existing methods as a pattern to implement new methods for passing unique

SMA material parameters from input scripts to the kMC–FEA solver. I Also used
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existing output methods as a pattern to implement methods for exporting new model

outputs to readable output files.

– Because the Eshelby inclusion problem requires transformation zones to be ellipical

(or ellipsoidal), I devised and implemented a routine which dynamically creates and

tracks a super-mesh of transformation zones within the finite element mesh, composed

of approximately ellipical (or ellipsoidal) groups of existing model integration points.

This provided a highly versatile and robust meshing procedure that precluded the need

to create a new finite element type specifically for this model. It also allows the user to

run kMC–FEA procedures on existing meshes.

Notable contributions made by others:

• The kMC–FEA model framework for SMA materials was developed by Chen and Schuh

• Eric Homer provided much expertise and advice regarding the implementation of kMC–FEA

methods. His guidance and feedback was essential throughout the research process

• Vesselin Yamakov provided insights into the relevant thermodynamics of the problem

• Collaborators at the NASA Langley Research Center developed the ScIFEN implicit finite

element solver. They made the source code available and also responded quickly and help-

fully to questions about altering the code.

• James Warner implemented variable time step FEA computation in ScIFEN

• Geoffrey Bomarito developed the Skeleton of the kMC algorithm in ScIFEN, allowing for

eigenstrain enforcement and transformation bookkeeping

• Jake Hochhalter implemented a lot of the input/output routines which make simulation and

data visualization possible. Jake also helped secure funding for the research

• Darren Hartl provided the experimental data and Lagoudas 2012 model prediction data.
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APPENDIX A. PARTIAL DERIVATIVES OF CRITICAL STRESSES

∂τMS

∂T
=
−∆S0

γ0
(A.1)

∂τMS

∂∆S0
=
−(T −T0)

γ0
(A.2)

∂τMS

∂E f r
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2
γ0
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∂τMS
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(
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)
+

1
γ)

∂EI

∂γ0
(A.4)
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∆S0

γ0
(A.5)

∂τAS
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T −T0

γ0
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−2
γ0
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− 1

γ)

∂EI

∂γ0
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∂∆τH

∂T
= 0 (A.9)

∂∆τH

∂∆S0
= 0 (A.10)
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∂∆τH

∂E f r
=

4
γ0

(A.11)

∂∆τH

∂γ0
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−2
γ2

0
(EI +2E f r)+

2
γ0

∂EI

∂γ0
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APPENDIX B. EXAMPLE KMC–FEA SCIFEN INPUT SCRIPT

#!/usr/bin/python

import h5py

from scifenpy.sierrahdf5 import Sierra as SH5

model_length = 60.0

eps1 = -0.01

eps2 = 0.06

KMC_T = 500.0 #[K]

T1 = KMC_T

T2 = KMC_T

max_dt = 0.01 #[ps]

num_steps = 100

tf = 1.0

KMC_a = 2.5 # [m] Transformation Zone radius

KMC_nu_0 = 1.0831e2 # [THz] Attempt frequency

KMC_Omega_0 = 1e-25 # [m^3] Transformation Volume

KMC_A = 280.0 # [K] Austenite Temperature

KMC_M = 240.0 # [K] Martensite Temperature

KMC_k = k = 1.381e-29 # [MPa*m^3/K] Boltzmann’s Constant

KMC_H = 0.0515 # Maximum transformation strain magnitude

KMC_Delta_S = -0.35 # [MPa/K] Stress Influence Coefficient

KMC_E_fr = 4.2 # [MPa] Frictional Energy Barrier

KMC_E_fr_inter = 0 # [MPa] Inter-variant Energy Barrier
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KMC_EA = 44200

KMC_EM = 26400

KMC_Ey = 0.5*(KMC_EA + KMC_EM)

KMC_nu = 0.33

KMC_E_I = 0.25*KMC_Ey * KMC_H * KMC_H / (1 - KMC_nu*KMC_nu)

with open(’Results.txt’, ’a+’) as f:

f.write(’Temperature\t%e\n’% KMC_T +\

’Delta_S_0\t%e\n’ % KMC_Delta_S +\

’E_friction\t%e\n’ % KMC_E_fr +\

’Omega_0\t\t%e\n’ % KMC_Omega_0 +\

’KMC_a\t\t%e\n’ % KMC_a +\

’nu_0\t\t%e\n’ % KMC_nu_0 +\

’KMC_k\t\t%e\n’ % KMC_k +\

’KMC_H\t\t%e\n’ % KMC_H +\

’max_dt\t\t%e\n’ % max_dt +\

’Load_Rate\t%e\n’ % ((sigma2-sigma1)/(0.5*tf)) +\

’E_I\t\t%e\n’ % KMC_E_I )

with h5py.File(’input.h5’, ’w’, libver=’latest’) as h5:

SH5.title(h5.id, ’2D_dogbone Model’)

# materials

E_A = KMC_EA #[MPa]

E_M = KMC_EM #[MPa]

nu = KMC_nu

G_A = E_A/(2*(1+nu))

G_M = E_M/(2*(1+nu))

m = SH5.property_specification_for_material(h5.id, ’KMC_Mat’, 2e-4)
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SH5.parameters_for_model_sma(m, E_A, E_A, E_A,

nu, nu, nu,

G_A, G_A, G_A,

E_M, E_M, E_M,

nu, nu, nu,

G_M, G_M, G_M,

phi1=0, Phi=0, phi2=0,

phase=0)

# sections

s = SH5.solid_section(h5.id, ’section1’, ’DEFAULT’, ’FULL’)

# finite element models

m = SH5.finite_element_model(h5.id, ’2D_dogbone’, ’scifen.h5m’, ’MOAB’)

p = SH5.parameters_for_block(m, ’ElementBlock1’,

[’e_ALL_ELEM’, ],

’KMC_Mat’,

’section1’)

SH5.active_for_procedure(p, ’PROC1’, [’time_block_1’])

# output scheduler

o = SH5.output_scheduler(h5.id, ’schedule1’, 0, tf)

SH5.at_step_increment(o, 0, 1)

# procedure

proc = SH5.scifei_procedure(h5.id, ’PROC1’)

tc = SH5.time_control(proc, tf)

tsb = SH5.time_stepping_block(tc, ’time_block_1’, 0.0)

SH5.parameters_for_scifei_region(tsb, ’region1’, time_increment=tf/num_steps)

# region
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reg = SH5.scifei_region(proc, ’region1’, ’2D_dogbone’)

# Boundary Conditions

fdy = SH5.fixed_displacement(reg, components=(’XYZ’))

SH5.node_set(fdy, [’n_XMIN_GRIPS’])

SH5.active_periods(fdy, [’time_block_1’])

fdy = SH5.fixed_displacement(reg, components=(’YZ’))

SH5.node_set(fdy, [’n_XMAX_GRIPS’])

SH5.active_periods(fdy, [’time_block_1’])

fdy = SH5.fixed_displacement(reg, components=(’Z’))

SH5.node_set(fdy, [’n_ZMIN’])

SH5.active_periods(fdy, [’time_block_1’])

# functions

SH5.definition_for_function(h5.id, ’KMC_ACTIVE’, ’PIECEWISE LINEAR’,

[(0,1),(1*tf,1)])

SH5.definition_for_function(h5.id, ’KMC_a’, ’PIECEWISE LINEAR’,

[(0,KMC_a),(1,KMC_a)])

SH5.definition_for_function(h5.id, ’KMC_nu_0’, ’PIECEWISE LINEAR’,

[(0,KMC_nu_0),(1,KMC_nu_0)])

SH5.definition_for_function(h5.id, ’KMC_Omega_0’, ’PIECEWISE LINEAR’,

[(0,KMC_Omega_0),(1,KMC_Omega_0)])

SH5.definition_for_function(h5.id, ’KMC_A’, ’PIECEWISE LINEAR’,

[(0,KMC_A),(1,KMC_A)])

SH5.definition_for_function(h5.id, ’KMC_M’, ’PIECEWISE LINEAR’,

[(0,KMC_M),(1,KMC_M)])

SH5.definition_for_function(h5.id, ’KMC_k’, ’PIECEWISE LINEAR’,

[(0,KMC_k),(1,KMC_k)])

SH5.definition_for_function(h5.id, ’KMC_H’, ’PIECEWISE LINEAR’,

[(0,KMC_H),(1,KMC_H)])
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SH5.definition_for_function(h5.id, ’KMC_Delta_S’, ’PIECEWISE LINEAR’,

[(0,KMC_Delta_S),(1,KMC_Delta_S)])

SH5.definition_for_function(h5.id, ’KMC_E_fr’, ’PIECEWISE LINEAR’,

[(0,KMC_E_fr),(1,KMC_E_fr)])

SH5.definition_for_function(h5.id, ’KMC_E_fr_inter’, ’PIECEWISE LINEAR’,

[(0,KMC_E_fr_inter),(1,KMC_E_fr_inter)])

SH5.definition_for_function(h5.id, ’KMC_E_I’, ’PIECEWISE LINEAR’,

[(0,KMC_E_I),(1,KMC_E_I)])

SH5.definition_for_function(h5.id, ’KMC_E_A’, ’PIECEWISE LINEAR’,

[(0,E_A),(1,E_A)])

SH5.definition_for_function(h5.id, ’KMC_E_M’, ’PIECEWISE LINEAR’,

[(0,E_M),(1,E_M)])

SH5.definition_for_function(h5.id, ’KMC_nu’, ’PIECEWISE LINEAR’,

[(0,nu),(1,nu)])

SH5.definition_for_function(h5.id, ’MAX_dt’, ’PIECEWISE LINEAR’,

[(0,max_dt),(1,max_dt)])

SH5.definition_for_function(h5.id, ’TEMPERATURE’, ’PIECEWISE LINEAR’,

[(0*tf,T1), (0.75*tf,T1), (1.0*tf,T2)])

SH5.definition_for_function(h5.id, ’stress_cycle’, ’PIECEWISE LINEAR’,[(0*tf,

0.0), (0.00001*tf, sigma1), (0.5*tf, sigma2), (1*tf, sigma1)])

SH5.definition_for_function(h5.id, ’strain_cycle’, ’PIECEWISE LINEAR’,

[(0*tf,0.0), (0.001*tf,eps1), (0.5*tf,eps2), (1*tf, eps1)])

SH5.define_direction(h5.id, ’unit_x’, [1, 0, 0])

# Apply Prescribed displacement

pd = SH5.prescribed_displacement(reg, ’strain_cycle’, component=’X’,

scale_factor=model_length)

SH5.node_set(pd, [’n_XMAX_GRIPS’, ])

SH5.active_periods(pd, [’time_block_1’])

# Solver
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sln = SH5.solver(reg,’PETSC’)

SH5.set_petsc_option(sln, ’ksp_type’, ’preonly’)

SH5.set_petsc_option(sln, ’pc_type’, ’lu’)

SH5.set_petsc_option(sln, ’pc_factor_mat_solver_package’, ’mumps’)

ro = SH5.results_output(reg, ’2D_dogbone OUTPUT’, ’2D_dogbone.out.h5m’,

title=’2D_dogbone’, #steps_per_file=1,

exposed_surface=True, scheduler_name=’schedule1’)

SH5.node_variables(ro, ’displacement’, ’u’)

SH5.node_variables(ro, ’reaction’, ’rf’)

SH5.node_variables(ro, ’phase’, ’phase’)

SH5.node_variables(ro, ’rate’, ’rate’)

SH5.element_variables(ro, ’phase’, dbase_variable_name=’phase’)

SH5.element_variables(ro, ’rate’, dbase_variable_name=’rate’)

SH5.element_variables(ro, ’stress’, ’stress’)

SH5.element_variables(ro, ’strain’, ’strain’)

# Input file error checking

from scifenpy import Region

r = Region("input.h5")

ipass = r.check()

print ipass
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