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ABSTRACT 

Microfabrication and Characterization of Freestanding and 
Integrated Carbon Nanotube Thin Films 

Derric Benjamin Syme 
Department of Mechanical Engineering, BYU 

Master of Science 

This work chronicles the fabrication of two unique thin films using carbon nanotubes.  
The first is a carbon film made primarily from vertically grown carbon nanotubes (CNTs) and 
rolled into lateral alignment.  The second is an insulating film created by CNTs as a scaffolding 
to create a porous silica layer.  Each topic represents a different method of utilizing CNTs for 
thin-film fabrication. 

Investigation of an entirely carbon thin film, comprised of aligned and laterally oriented 
carbon nanotubes was performed.  The thin film was strengthened by deposition of amorphous 
carbon for a total thickness of < 5 µm. This thickness is thinner than many previous films 
fabricated entirely out of carbon.  Vertically aligned CNT arrays were manually rolled into a thin 
sheet and released from the growth substrate.  Infiltration with amorphous carbon (as carbon 
coating) on the rolled CNTs was used to improve adhesion between neighboring CNTs after 
lateral alignment and to improve the mechanical integrity of the film.  Mechanical property 
characterization indicated the ability to sustain a pressure differential across the film of up to 
82.7 kPa for a suspended film of 4 mm in diameter.  Peak stress, Young’s modulus and biaxial 
modulus were obtained as a characterization of the strength of the thin film. 

Fabrication and examination of a porous silica thin film, potentially for use as an 
insulating thermal barrier, was investigated.  A vertically aligned CNT forest, created by 
chemical vapor deposition (CVD), was used as a scaffolding for the porous film.  Silicon was 
deposited on the CNT forest using low pressure CVD (LPCVD), then oxidized to remove the 
CNTs and convert the silicon to silica – a material often used for electrical or thermal 
passivation.  This fabrication method introduces hollow pores where the CNTs once occupied, 
further increasing the material’s insulating properties.  Thermal testing was performed by 
equating radiative and conductive heat transfer in a vacuum chamber and comparing the 
temperature difference between the film and a reference sample of comparable thermal 
resistance.  For films approximately 50 µm thick, the thermal conductivity was found to be 0.054 
- 0.071 W/m.K.

Keywords: carbon nanotube, thin films, silica insulation, MEMs scaffolding
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1 INTRODUCTION 

Carbon nanotubes (CNTs) possess unique physical characteristics that make them ideal for a 

wide range of potential applications and have been of particular interest to the scientific 

community since the 1980s. Individual CNTs have excellent mechanical, electrical, thermal, 

optical, and chemical properties [1-3].  The versatility of CNTs and their exceptional properties 

allow them to be integrated into a variety of macroscale assemblies, including CNT mats, fibers, 

buckypapers, composites, and thin films [4-10].  

One particularly important characteristic of the CNT is its strength.  Individual CNTs have an 

elastic modulus of 1 TPa and a tensile strength of 100 GPa, making them among the stiffest and 

strongest of materials [1].  They are 10 times stronger than industrial fibers, and have a strength-

to-weight ratio 600 times that of steel [6].  Concerning their electrical properties, they can carry a 

current density of nearly 4 x 109 A cm-2, which is 1,000 times greater than metals like copper [8].  

At 3500 W m-1 K-1, CNTs have a thermal conductivity surpassing that of diamond [2, 5].  

Finally, CNTs have an incredible length-to-diameter ratio, which make them useful for a variety 

of microelectromechanical (MEMS) devices.  CNT growth heights of several hundred micron 

are easily achievable (lengths over 0.5 m have been obtained [11]), and with a diameter of just a 

few nanometers wide, practical length-to-diameter ratios can be greater than 10,000:1, providing 

relatively large surface area with little volume [4, 12].  The utility of these thermophysical and 

geometric properties makes CNTs intriguing as a thin film material. 
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The extensive versatility of the CNT offers great potential for integration into thin film 

applications.  Broadly speaking, a thin film refers to a thin layer of material on a substrate that is 

very thick relative to the film.  Thin-films are commonly vapor deposited or grown and are often 

associated with Si processing.  Thin films are an important and rapidly growing area of MEMS 

research; carbon-based films have already proven beneficial in a number of applications.  

Favorable properties of CNTs in thin film fabrication include their large specific surface area, 

high porosity, high elasticity, low density, and, in some configurations, moderate transparency 

[12-17]. Applications of CNT films can be highly diverse. The tensile strength of CNTs makes 

them desirable for use in biosensing and biomedical fields, as the fibers can be sensitive to 

thermal, electrical, or chemical changes while also maintaining structural integrity [18-20].  The 

high electrical conductivity, due to ballistic transport of electrons within the CNT, makes them 

excellent for use in electrical systems. Due to their high porosity and specific area they have 

been used as both electrical current collectors for high-power supercapacitors and electrodes for 

energy storage and other devices [12, 21-23]. Highly flexible and transparent CNT thin films 

have been used as components in flexible solar cells or touch panels when deposited on plastics 

[13, 16]. Self-standing CNT films have been used as planar incandescent light sources that emit 

polarized radiation [17]. Additionally, the high thermal conductivity of CNTs allows for films to 

be used as efficient heat dissipaters for high-power devices [24-26].  

Methods of CNT fabrication have been developed and optimized for a wide range of CNT 

uses.  Research performed on CNTs at BYU is primarily done on vertically aligned CNTs 

(VACNTs), grown perpendicular to the base substrate using a process called thermal chemical 

vapor deposition (CVD).  Before growth, a thin layer of aluminum oxide is deposited on a silicon 

wafer to prevent Fe catalyst from diffusing into the silicon substrate and to act as a resistor to 
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surface diffusion and sintering of the catalyst at high temperatures [27].  Using photolithography, 

patterned areas with photoresist can be created upon the substrate prior to depositing a metallic 

growth catalyst. A very thin layer of Fe is then thermally evaporated on the wafer and patterned 

using a photoresist, lift-off procedure.  Patterned samples are heated in a furnace with a flowing 

gaseous carbon supply (ethylene) to initiate CNT formation.  CNTs grow only in the regions of 

catalytic material, designated by lithography.  The resulting CNT forest can be infiltrated by 

silicon, carbon, or some other material in subsequent CVD processing [28].  A film made 

primarily of CNTs will have many of the benefits listed in the preceding paragraphs.  By 

infiltrating with other materials, it is possible to create a film with additional benefits, such as 

insulation.    

Traditional insulating materials in MEMS, such as silicon oxide or silicon nitride, while 

having a much lower thermal conductivity than silicon, still have conductivities larger than 

required for many MEMs applications.  Attempts to incorporate other insulating materials, such 

as silica aerogels, into micro devices have failed to preserve the material’s low thermal 

conductivity [29]. Additionally, many insulating materials generally lack structural integrity and 

do not have a clear path for MEMs integration. 

Recent work at BYU has shown that stable, microfabricated thin layer chromatography plates 

can be created using silica-coated CNTs [30].  Using CNT templated microfabrication (CNT-M), 

the CNTs can be infiltrated with silicon using low pressure CVD (LPCVD) and then oxidized at 

high temperatures to simultaneously burn out the carbon and oxidize the silicon, leaving only a 

porous silica structure, ideal for applications requiring insulation. 

This work explores the methods and processes of fabricating two distinct CNT thin films 

using Carbon Nanotube Templated-Microfabrication.  Both projects will capitalize on the high 
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length-to-diameter ratios present in CNTs to create high aspect-ratio structures.  The first project 

is a purely-carbon, freestanding, thin film created from laterally aligned CNTs (see Chapter 2).  

This structure will use CVD to infiltrate a rolled CNT pattern with amorphous carbon to fill in 

voids and improve the films strength.  Here, the CNTs act more as a structural layer within a 

composite material.  The second project is an insulating silica film integrated into a silicon 

substrate using CNTs as a scaffolding to create a porous layer for minimizing heat transfer 

(Chapter 3).  Here, CNTs are infiltrated with silica to improve structural strength and to act as a 

highly insulating thermal barrier.  In addition to demonstrating the specific applications of the 

structures created here, this thesis will show the great potential CNTs have to be used as a 

framework for various microstructure designs.  
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2 ALIGNED AND LATERALLY ORIENTED CNT THIN FILMS 

CNT Film Introduction 

Various methods have been used to create CNT thin films. Early approaches include 

vacuum-filtering a well-dispersed CNT suspension onto a filtration membrane [31, 32]. Self-

standing CNT films have been assembled layer-by-layer and patterned by standard lithography 

into electronics as demonstrated by low power, resistive, random-access memory [14]. Hyder et 

al. used layer-by-layer assembly, consisting of repeated, sequential immersion of a substrate into 

aqueous solutions of complementary materials, to create a highly conductive CNT/polymer 

composite film [22]. The inclusion of polymer in this application was used to create a positive 

electrode for lithium ion batteries. Other work has shown that vertically aligned CNT (VACNT) 

forests can be released directly from the growth substrate by floating-catalyst CVD (FCCVD) 

[24, 33]. CNTs are capable of deforming when released from the growth substrate; however, 

FCCVD was shown to provide high packing density and structural robustness to released CNT 

films.  

The approaches to creating carbon thin films described above result in films that range 

from several hundred microns to several hundred nanometers thick. Wang et al. successfully 

reduced carbon film thickness using a microporous membrane to achieve laterally aligned CNT 

films (horizontal alignment within the plane of the thin film) from VACNT growth, and then 

compressed the membrane with a cylinder to flatten the forest into a 26 μm thick, paper-like 
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material [34]. The aligned CNTs adhered strongly to one another due to van der Waals forces, 

enabling the membrane to be released from the substrate on which they are grown using ethanol. 

Their work largely focused on the characterization of thermal and electrical properties for the 

resulting “buckypaper.”  Other buckypaper composites have been created using various methods, 

including shear-pressing [35, 36].  A comparison of the strength and modulus for comparable 

CNT and MEMs materials are shown in Table 2-1. 

Table 2-1.  Tensile strength and Young’s Modulus for CNT and MEMs materials. 

Material Tensile Strength 
(GPa) 

Young's Modulus 
(GPa) 

CNT Film [35] 9.6 130 
CNT Composite [36] 0.3 15 

Carbon Nanotubes [3, 37, 38] 11 - 100 270 - 1000 
Silicon [39-41] 1 - 7 50 - 190 

This work demonstrates the creation of an entirely carbon thin film, comprised of aligned 

CNTs and strengthened by amorphous carbon, that are thin (< 5 μm) for use in x-ray applications 

where thickness can diminish signal strength.  Similar work has been performed using polymer 

as a binder for the composite material [42]. The approach in this work is to create vertically 

grown CNT arrays that are rolled into a thin sheet to increase film strength in tension.  We 

incorporate the use of a carbon coating on the rolled CNTs (or infiltration) to improve adherence 

between neighboring CNTs after lateral alignment and to improve the mechanical integrity of the 

film.  We focus on mechanical property characterization in this study to indicate the ability to 
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sustain a pressure differential across the film.  In the sections that follow, we describe the 

fabrication methods, report pressure differentials measured across the carbon thin film, and 

provide mechanical characterization of the thin films including tensile strength testing and 

surface roughness.   

CNT Film Fabrication 

2.2.1 Fabrication 

Fabrication of the carbon thin film was designed to achieve multiple layers of overlapping 

CNTs.  Unpatterned CNT forests were resistant to the flattening and aligning roller process.  To 

create thin films with aligned fibers, CNT growth was patterned into rows (i.e. lanes, Figure 2-1) 

that would overlap when flattened.  These lanes were then rolled in a direction perpendicular to 

the lane so as to achieve a thin film. Catalyst patterning and subsequent CNT growth followed 

established lift-off and high temperature growth processes [20, 43-46]. A 40 nm layer of alumina 

(Al2O3) was deposited on Si wafers using electron beam evaporation to provide a barrier to 

diffusion of Fe, and to act as a resistor to surface diffusion and sintering of the catalyst during the 

high temperature CNT growth [27].  Positive photoresist (AZ 3330, Integrated Micro Materials) 

was spun on the wafer at 2750 rpm for 60 s and then soft baked at 110°C for 60 s. The 

photoresist was patterned using lithography to selectively grow CNTs in rows on the wafer 

surface. Photoresist was exposed to a 350 W mercury bulb for 8 seconds and then baked at 

110 °C for another 60 s before agitating in 300 Metal Ion Free developer (Integrated Micro 

Materials) for approximately 60 s. Patterned wafers were rinsed with deionized water and dried 

with N2.  
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As a catalyst for CNT growth, 4 nm of Fe was deposited on the patterned photoresist using 

a thermal evaporator. Lift-off of the photoresist was performed by sonicating the wafer in N-

Methyl-2-pyrrolidone (NMP) for 30 min (or longer, as needed) and then rinsed with acetone and 

isopropyl alcohol (IPA) to remove all photoresist. The lithographically defined Fe pattern 

consists of 10 µm wide lanes with 50 µm spacing (60 µm pitch). CNT growth height of these 

lanes is such that they span several gaps between neighboring lanes after rolling so as to create a 

film thickness comprised of several layers. These Fe lanes are connected by 5 µm wide 

horizontal rows, spaced every 250 µm and staggered from lane to lane (Figure 2-1).  These thin, 

horizontal connections between rows of CNTs provide stability during CNT growth to achieve 

uniform vertical alignment across the wafer. To protect the patterned Fe catalyst, photoresist was 

spun on and soft baked at 110 °C before cutting to approximately a 2 cm2 die using a Disco 

DAD-320 dicing saw. The photoresist was stripped with acetone and IPA, leaving only the 

exposed, patterned Fe.  

(a) (b) 

Figure 2-1.  (a) Lithographically patterned and vertically grown CNTs with connecting ribs to 
maintain vertical alignment. (b) Long-range order of the lanes of CNTs before rolling. 
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CNT growth was performed as follows.  Diced samples were placed on a quartz boat in a 

Lindberg/Blue M Tube Furnace for CNT growth. While flowing hydrogen (H2), the furnace was 

heated to 750 °C. Multi-walled CNTs were grown by flowing ethylene (C2H4) and H2 for 

approximately 3 minutes at approximately 340 and 310 sccm, respectively, resulting in CNT 

growth heights of 180-200 µm. Growth heights were selected in order to span the gap to the base 

of the neighboring CNT lane and achieve significant overlap when the lanes are rolled. After 3 

minutes, the C2H4 and H2 were turned off and argon (Ar) was allowed to flow in order to purge 

the chamber for 1 min at the growth temperature.  Subsequently, the furnace was turned off to 

allow the Ar to cool the sample.  Vertically grown CNT patterns are shown in Figure 2-1.  

(a) (b) 

Figure 2-2.  (a) Placement of the die with vertically grown CNTs among wafer pieces and 
lubrication with IPA. (b) Rolling of the CNTs to achieve lateral alignment with a Teflon roller. 

In order to create a robust carbon thin film with aligned nanofibers, vertically grown CNTs 

were rolled to achieve a thin CNT sheet. Sample die were placed on a smooth surface with 

additional Si wafer pieces of the same thickness positioned on the sides of the sample to provide 
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an even rolling surface (Figure 2-2a). IPA was used to wet the CNTs and minimize CNT 

adhesion to the roller. Wetting was performed by flowing IPA in the direction of the desired 

lateral alignment and perpendicular to the 10 µm wide CNT lanes. A 0.5 in diameter Teflon 

cylinder was used to slowly roll the CNTs flat (Figure 2-2b).  Rolled die were allowed to dry in 

ambient air. The schematic of Figure 2-3a illustrates the rolled, overlapping lanes of CNTs.   

To decrease spacing between neighboring CNTs and improve adhesion between rolled 

lanes of CNTs, the rolled structure was coated/infiltrated with amorphous carbon. With the 

rolled, carbon thin film still attached to the substrate, it was placed in a furnace and heated to 

900 °C in inert, flowing Ar until the process temperature was reached.  At temperature, C2H4 and 

H2 were again allowed to flow over the substrate at approximately 340 and 400 sccm, 

respectively, for 3 min and then purged and cooled with Ar, as before.  The increased H2 flow 

rate reduces the internal stresses of the film.  Without this flowrate increase for H2, the internal 

stress caused the film to curl dramatically before releasing from the substrate.  Three minutes 

was sufficient time for the entire film to become infiltrated.   

Following carbon infiltration, samples were released from the Si substrate by submerging 

in a potassium hydroxide (KOH) solution at room temperature, 30% by weight.  The film 

generally released in <12 hours. Completed films were carefully removed from the KOH bath by 

placing the released film back on the Si substrate, placing the sample and substrate in a DI water 

bath, and then removing the sample from the DI bath with fine-mesh netting and tweezers to dry 

in ambient air.   
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Figure 2-3.  (a) Schematic of the laterally aligned CNT film after rolling. (b) Top-down and (c) 
side-view images of the film showing ridges formed from overlapping lanes. Top-down views of 
the ridges (d) before and (e) after infiltration with amorphous carbon. (f) Image of ridge and 
overall thickness of the carbon infiltrated film indicating regions of < 5 μm in thickness.  

2.2.2 Sample Characteristics 

Fabricated samples were inspected with scanning electron microscopy (SEM) to 

characterize dimensions and feature structure. Figure 2-3b and c are top-down and side-view 

images of a completed thin film and show the ridges formed from overlapping lanes. The ridge 

from one lane overlaps the CNTs from neighboring lanes, as the growth height is longer than the 

spacing between lanes. These ridges before and after infiltration with amorphous carbon are 

shown in detail in Figure 2-3d and e, respectively.  The addition of the amorphous carbon 

provides additional binding between neighboring CNTs and reinforces the structure. A side-view 
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of the overlapping region after carbon infiltration is shown in Figure 2-3f. Here the thickness of 

the film is observed to be 4-5 μm towards the end of the overlapping regions and approximately 

2 μm thick where there is no overlap.  This 2 μm thickness is a significant reduction relative to 

multiple layers of lithographically defined 10 μm wide lanes.    

Carbon infiltration provides significant benefits for film integrity and handling. Figure 2-4 

illustrates a CNT thin film after rolling, with and without carbon infiltration. While both films 

remain delicate, the carbon infiltration increases film rigidity, decreases film waviness during the 

wet-handling stages and improves seating on the washer for drying and subsequent testing.  

 

 

 

Figure 2-4.  Carbon non-infiltrated and infiltrated samples placed on a washer after release from 
the Si substrate, with reduced film waviness indicating a more robust structure after carbon 
infiltration.   
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CNT Film Analysis Methods 

2.3.1 Surface Roughness 

The surface texture and roughness are important characteristics to consider because they 

can affect optical properties [47] and the ability of the film to be integrated into MEMS devices; 

a smooth surface is often a prerequisite base for many microstructures.  A ZETA-20 3D optical 

profilometer was used to analyze surface characteristics and roughness.  Among the 

measurements taken were the arithmetic mean (Sa), root mean square height (Sq), maximum 

peak and valley heights (Sp and Sv, respectively), distance between maximum peak and valley 

heights (Spv), skewness (Ssk), and kurtosis (Sku).   

The arithmetic mean height (Sa) is the absolute value of the difference between the mean 

plane of the surface and the height of each point on the surface, given in equation (2-1), 

𝑆𝑆𝑆𝑆 =  
1
𝑛𝑛
� |
𝑛𝑛

𝑍𝑍(𝑥𝑥, 𝑦𝑦)|𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 (2-1) 

where n is each point on the surface and Z is the height at that point.  The root mean square 

height (Sq) is the standard deviation of heights, given by equation (2-2). 

𝑆𝑆𝑆𝑆 =  �
1
𝑛𝑛
� |
𝑛𝑛

𝑍𝑍2(𝑥𝑥,𝑦𝑦)|𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 
(2-2) 

Sp and Sv are the maximum peak and maximum valley heights, calculated as the absolute 

values of the maximum peak and valley heights relative to the mean height, respectively. Spv is 

the distance between the max peak and max valley (Sp + Sv).  

Skewness (Ssk) is a measure of how symmetrical the peaks and valleys are around the 

mean plane; equation (2-3) for b = 3.  An Ssk of 0 indicates symmetry, while a value greater than 
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0 indicates that the height distribution is skewed above the mean plane, and a value less than 0 

indicates a height distribution skewed below the mean plane, as seen in Figure 2-5a.  Finally, the 

kurtosis (Sku) is a measure of the sharpness of the profile; equation (2-3) for b = 4.  An Sku of 3 

indicates a normal height distribution, with rounded and sharp peaks equally likely.  An Sku less 

than 3 indicates a height distribution skewed above the mean plane (rounded peaks) while an Sku 

above 3 means the peaks are sharp or spiky, as seen in Figure 2-5b.   

𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏 = 3)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏 = 4)� =  

1
𝑆𝑆𝑆𝑆𝑏𝑏  � 

1
𝑛𝑛
� |
𝑛𝑛

𝑍𝑍𝑏𝑏(𝑥𝑥,𝑦𝑦)|𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦� 
(2-3) 

 

 
(a) 

 

 
(b) 

Figure 2-5.  Skewness and kurtosis of a film’s roughness. (a) The skewness (Ssk) represents the 
bias of the height distribution and the degree of symmetry about the mean plane.  Values larger 
than zero indicate a distribution skewed above the mean plane and the predominance of peaks, 
while skewness below the mean plane (a prevalence of valleys) is indicated by values below 
zero.   (b) The kurtosis (Sku) measures the roughness profile’s sharpness.  Values above 3 
indicate a spiked height distribution, while values below 3 indicate broader height distributions.   
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2.3.2 Tensile Testing 

To characterize the mechanical properties of the CNT films, tensile testing was performed.  

Tensile testing is a common and straight-forward method used to extract material properties and 

mechanical behavior of materials, as it can directly extract a film’s behavior under load [48].  

From tensile testing, the ultimate tensile strength and Young’s modulus can be obtained.  This 

data, combined with the results provided from pressure testing (applying a differential pressure 

across the film), can then be used to estimate Poisson’s ratio of the material.   

Researchers have used tensile testing to characterize free-standing thin films.  Ruud et al. 

used tensile testing to find Young's modulus, Poisson's ratio, and the yield stress of Cu, Ag, and 

Ni films approximately 2 µm thick, with gauge sections of 10 mm by 3.3 mm [49].  Tensile 

testing samples in this work were prepared on Si die cut to the same gauge dimensions as Ruud 

et al.  To investigate the potential isotropy of the material, two sample orientations were 

developed; one orientation in which the CNT patterns were grown parallel to the gauge length, 

and another grown perpendicular (see Figure 2-6). Dog-bone-shaped specimens are commonly 

used to provide a better gripping area, reduced slippage, and to prevent high stresses at the 

gripping locations that might affect test results.  However, due to the constraints associated with 

sample size and thickness, as well as limits in the fabrication method used to prepare the thin 

films, a simple rectangular sample shape was selected [49].  

Tensile testing (Instron 3342) was performed with a 1 lb JR S-Beam load cell. The upper 

end of each film was first attached to masking tape for handling purposes and then securely 

fastened between the tensile testing grips (covered in masking tape to improve gripping) and 

installed vertically in the Instron machine.  The free end of the film was then mechanically 

lowered and secured into the mouth of the matching padded grips below it.  Care was taken to 



  16  

correctly align the fragile structures and several repeat measurements were taken to establish 

mean values.  

 

 

Figure 2-6.  Tensile tests are performed in two film orientations; the films are placed in tension in 
a direction parallel with the rolled CNT fiber, or pulled perpendicular to the rolled CNT fiber.  

 

After being secured, the films were pulled, until failure, at a rate of 5 μm per second with 

time, extension, and tension recorded throughout the test.  The strain of the film was not directly 

measured with the Instron tests, as traditional methods of strain measurement are incompatible 

with the small size of thin films.  Instead, strain was determined by dividing the measured 

extension of the Instron by the length of the film before elongation.  From this data, and 

assuming there was no slippage, a stress-strain curve was generated and Young’s modulus 

calculated.   
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2.3.3 Pressure Testing 

Pressure testing was performed to quantify the ability of the carbon thin films to withstand 

a pressure differential across the film, and to determine the tensile strength and modulus of the 

material.  Fabricated thin films were glued with M-Bond 610 strain gage adhesive to a 4 mm ID 

circular washer to allow for easy handling and positioning for testing (see also Figure 2-4).  The 

sample was mounted over a 3 mm egress passage in a small pressure chamber with a viewport to 

monitor film deflection and failure (Figure 2-7).  

Figure 2-7.  Schematic of the test setup for pressure testing used to indicate the differential 
pressure that could be sustained across the carbon thin films. 

During pressure testing, the differential pressure to the film was applied in discrete steps 

with the bulge profile measured at each step with a Keyence LK-H052 laser displacement sensor. 

The sensor scanned a line across the film to measure the height change in the film at each 
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pressure.  After each scan, the pressure was incrementally increased and the scanning process 

was repeated.  Laser position, pressure, and gas flow were all recorded.  The gas flow was used 

to determine if there were leaks in the film and to identify bursting conditions.  A large drop in 

pressure with a corresponding increase in flow rate, along with an accompanying audible sound 

and visual confirmation, were used to identify the bursting condition. 

The stress and strain of the material at each pressure step can be obtained with equations 

(2-4) and (2-5), taken from Vlassak using the measured displacement of the film [50-52].  By 

assuming the pressurized film takes the shape of a spherical cap and that both the stress and the 

strain are equi-biaxial, the relationship between pressure and deflection can be obtained for linear 

elastic membranes.  The film deformation under pressure was fit with a 2nd order polynomial 

from the measured bulge profile data.  The radius of the fitted circle can be used to calculate the 

stress (σ) in the film,   

𝜎𝜎 =  
𝑃𝑃 ∙ 𝑅𝑅𝑐𝑐

2𝑡𝑡   
 (2-4) 

where 𝑃𝑃 is pressure, 𝑅𝑅𝑐𝑐 is the radius of the fitted circle, and 𝑡𝑡 is the thickness of the composite.  

Similarly, the strain of the film can be calculated as below, 

𝜀𝜀 =  
sin−1 �𝑟𝑟0𝑅𝑅𝑐𝑐

� −  𝑟𝑟0𝑅𝑅𝑐𝑐
𝑟𝑟0
𝑅𝑅𝑐𝑐

 
(2-5) 

where ε is the strain and 𝑟𝑟0 is the inner radius of the washers (𝑟𝑟0 = 2 mm). 

Using equations (2-4) and (2-5), a stress vs strain plot was obtained with the slope of this 

curve yielding the biaxial modulus (Y).  Young's modulus (E) is related to the biaxial modulus 

by equation (2-6). 
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E = Y(1-𝜈𝜈) (2-6) 

where ν is Poisson’s ratio.  Young’s modulus was acquired with traditional tensile testing 

(section 2.3.2) and Poisson’s ratio was then estimated using this equation.   

CNT Film Results 

2.4.1 Surface Roughness Results 

Results from optical profilometer scans for the top surface of the carbon thin film are 

shown in Figure 2-9.  Top and bottom surfaces of the material were uniquely different as 

indicated by the roughness parameters in Table 2-2.  Figure 2-9a shows the top surface, near the 

center of the rolled film, with a dramatic change in height along the line scan representing 

transition from row to row of rolled CNTs.  The vertical lines observed in the SEM inset indicate 

overlapping rows of CNTs.  From the film’s thinnest point, the thickness increases by as much as 

3 µm as the CNT rows overlap.   

Figure 2-9b depicts a similar cross-plane profilometer scan over the final row of rolled 

CNTs at the edge of the film.  This final row of CNTs (a solitary, uncompounded layer) is among 

the thinnest sections of the film.  The film is approximately 1 µm thick in this region and 

increases to 3 µm with the additional neighboring row layered on top of it.  SEM images indicate 

that the film thickness remains below approximately 5 µm, considerably thinner than the original 

CNT lane width of 10 µm.  A profilometer scan normal to the direction of rolling is shown in 

Figure 2-9c.  This orientation includes the horizontal bridging structures connecting neighboring 

CNT lanes, incorporated to facilitate vertical growth of the lanes across the entire surface.  In 
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these regions where the bridging structures are rolled and collapse, the height variation increases 

approximately 3 µm with little variation in film thickness between the horizontal bridges. 

The bottom surface of the thin film has none of the step changes associated with the top 

surface.  Instead, it appears as simply a smooth sheet of amorphous carbon.  A side-by-side 

comparison of the top and bottom surface can be seen below in Figure 2-8a and b, respectively.  

The darker regions shown in Figure 2-8b indicate where the iron pattern was originally present to 

grow the CNTs.   

 

  

(a) (b) 

Figure 2-8.  (a) Top and (b) bottom surface regions where roughness measurements and 
profilometer scans were performed. The top, rougher surface of the film shows three stacked 
rows and a collapsed CNT bridge.  The smoother, bottom side of the film, shows remnants of the 
iron pattern for growth.   

 

Top and bottom surfaces were analyzed with the profilometer to determine surface 

roughness, seen in Table 2-2.  The region of the bottom surface used for roughness calculations 

was a 70 µm x 90 µm area representative of the entire surface.  This was the largest possible area  
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Figure 2-9.  Profilometer scans indicating height variations on the top surface of the film for: (a) 
a region with three layers CNT lanes near the center of the rolled film; (b) a region near the edge 
of the film where only one or two layers of CNT lanes are present; (c) a region near the center of 
the rolled film where the horizontal bridging structures have collapsed.  
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for the aperture used. For the top surface, we analyzed a 50 µm x 50 µm region between the 

overlapping row, excluding the ridges.  For the bottom surface, the arithmetic mean height is 

0.05 µm, compared to a much rougher 0.86 µm for the top, and a root mean square height of 0.06 

and 1.09 µm, respectively.  Additionally, the variance in height along the top surface of the film 

is much greater than that observed for the bottom (Spvtop = 6.39 µm versus Spvbot 0.73 µm).  

For the bottom surface, the skewness is -0.13, which indicates that the height distribution is not 

quite normal, but is skewed a little above the mean plane (there are more valley features than 

peaks).  However, the kurtosis is high at 4.40, which means despite the slight predominance of 

valley features, the peaks that are present are generally sharp.  With a skewness and kurtosis of 

0.95 and 3.75, respectively, the top surface is skewed more strongly below the mean plane 

(indicating more peaks than valleys) but with peaks that are less spiky than the bottom surface.   

 

Table 2-2.  Surface roughness measurements for the top and bottom sides of a thin film.  The 
bottom side is the surface attached to the substrate during growth and is considerably  

more smooth, while the top surface is exposed during fabrication. 

Variable Roughness Parameter 
Top 

(Rough) 
Bottom 

(Smooth) 
Sa Arithmetic Mean Height (µm) 0.86 0.05 
Sq Root Mean Square Height (µm) 1.09 0.06 
Sp Maximum Peak Height (µm) 4.57 0.43 
Sv Maximum Valley Height (µm) 1.81 0.3 

Spv Peak-to-Valley Roughness (µm) 6.39 0.73 
Ssk Skewness 0.95 -0.13 
Sku Kurtosis 3.75 4.40 
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2.4.2 Tensile Testing Results 

Tensile test results were acquired for 15 samples pulled in the aligned direction of the 

CNTs (8 samples) and in the transverse direction (7 samples; see also Figure 2-6).  Variation in 

the results for a given orientation was observed, likely due to the manual fabrication and rolling 

of each film.  However, the shape of each stress-strain curve was predominantly similar to the 

sample case shown in Figure 2-10.  Stress was obtained using the load cell measurements and the 

film’s cross-sectional area (3.3 mm by 3 µm).  A 3 µm measurement was used as profilometer 

and SEM measurements indicated this was the film thickness in the thinnest region and, 

therefore, most likely the failure point.  The film exhibits nonlinear behavior for much of the test. 

This is believed to be due to the fibrous, partially aligned nature of the material.  As the film is 

pulled, tangled CNTs likely begin to stretch apart and experience increasing tension at different 

rates until they can be stretched no further.  After the initial stretching, the stress-strain curve 

then becomes more linear, typically when the film was pulled past 70% of the max film stress.  

To consistently capture the slope of the linear region and the Young’s modulus of the material, 

the linear region was determined to be where the film had experienced between 80% and 90% of 

the maximum tensile stress, as indicated by the red segment in Figure 2-10.  This approach was 

applied to films with CNTs aligned parallel to the direction of tension as well as those aligned 

perpendicularly and is intended to avoid the “toe region,” which is the initial non-linear 

relationship of the stress-strain curve found in fibrous materials, caused by fibers getting 

straightened and stretched [53, 54].   
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Figure 2-10.  Sample stress-strain curve of a thin film under tension.  The red segment was used 
as the linear region for determining the elastic modulus and is the stress captured between 80% 
and 90% of the max peak stress.   

Results for all tensile tests on the thin films are shown in Table 2-3 below.  The average 

peak stress for the films with nanotubes aligned parallel to the direction of tension (14.5 MPa) 

was observed to be greater than the films aligned perpendicularly (6.04 MPa).  This was 

anticipated, as carbon nanotubes are strongest in tension.  Despite the disparity in peak stress, the 

difference in the average modulus of elasticity for the two directions of tension was only 

approximately 15% (1402.7 MPa for aligned fibers and 1195.7 MPa for perpendicular).  This 

similarity in the average modulus for the two orientations indicates (1) that although the film 

may not be perfectly isotropic, use of the biaxial modulus as an approximate calculation is 

appropriate and (2) the mechanical properties may be driven by the infiltration material and not 

by the CNTs.  Though the standard deviation is large, this is not unexpected with fragile thin 

films and manual testing processes. 
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Table 2-3.  Tensile test results for films with tension oriented both parallel and perpendicular 
(Figure 2-6) to the rolled CNTs.  Peak stress is the stress at failure. 

Orientation Sample # Peak Stress 
(MPa) 

E 
(MPa) 

Avg. Peak 
Stress 
(MPa) 

[StDev] 

Avg. E 
(MPa) 

[StDev] 

Aligned 

1 5.86 424.6 

14.5  
[10.42] 

1402.7 
[1079.30] 

2 12.84 1074.7 
3 15.73 2796.6 
4 38.77 3294.9 
5 17.66 1869.3 
6 6.32 224.8 
7 3.38 367.6 
8 15.1 1168.9 

Perpendicular 

1 9.63 815 

6.04  
[2.73] 

1195.7 
[1004.1] 

2 8.67 650.8 
3 4.03 1245.7 
4 8.57 3507.4 
5 2.17 875.5 
6 3.44 115.9 
7 5.78 1159.6 

2.4.3 Pressure Testing Results 

As described previously, films glued to 4 mm ID washers were placed under differential 

pressure until burst occurred.  Bursting was confirmed by several methods.  When the films 

burst, there was an auditory signal (a discernable “pop” sound) followed by the sound of 

increased gas flow in the test apparatus. The film failure was confirmed visually, as a camera 

mounted to the apparatus was used to record a picture at the start of each pressure step, capturing 

when the films burst. Figure 2-11 shows sequential images of a film bursting between pressure 

steps at 31 kPa (4.5 psi) and 32.75 kPa (4.75 psi). Finally, failure was also experimentally 

measured as the gas flow rate was recorded concurrent with incrementing pressure.  When a film 
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bursts, a sudden increase in flow and a concurrent drop in differential pressure indicate that the 

film has failed, as seen in Figure 2-12.  

 

 

  

(a) (b) 

Figure 2-11.  Before (a) and after (b) a sample burst event at the transition from 31 kPa to 32.75 
kPa.   

 

Figure 2-12.  Pressure and flow rate for a film that burst at 67.2 kPa.  Pressure was increased in 
quarter psi (1.72 kPa) steps until bursting, indicated by the surge seen in the nitrogen flow rate.   
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A bulge height profile measurement was taken with a laser at each pressure increment.  

Using the last measurement before bursting, a 2nd-order polynomial can be fit to the cluster of 

height data points to approximate the bulge shape.  A 95% confidence interval is also plotted, as 

seen in Figure 2-13a.  Using the maximum deflection before burst and the 95% confidence 

interval for each successful pressure test, we obtained an average maximum deflection just 

before burst of 182.8 µm for 16 films (see Figure 2-13b).  

 

  

(a) (b) 

Figure 2-13.  (a) Deflection profile for a film just prior to burst at 68.9 kPa with a 2nd order 
polynomial fit and a 95% confidence interval of the deflection. (b) Maximum deflection just 
before burst based on the polynomial fit for 16 films with the 95% confidence interval included 
as error bars.  The dashed line represents the average maximum deflection for the 16 films at 
182.8 µm.   

 

With a known washer inner radius of 2 mm, a circle can be superimposed using 3 data 

points – the max height, and 2 mm to either side of the origin.  The radius of the circle can be 
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used with equations (2-4) through (2-6) to determine the stress and strain in the film at each 

pressure step.  Plotting the stress-strain relationship, the slope obtained from these calculations 

yields the biaxial modulus (Figure 2-14).   

 

   

Figure 2-14.  Stress vs strain calculated from pressure test data for a film that burst at 82.7 kPa.  
The slope of the line fitted to the stress-stain curve represents the biaxial modulus. 

 

The biaxial modulus was used to relate Young’s modulus to Poisson’s ratio for isotropic 

materials.  The alignment of CNTs within the film may suggest anisotropic behavior. Tensile 

tests additionally indicated a somewhat anisotropic nature, but with a difference of only 15% in 

Young’s modulus (section Error! Reference source not found.). However, the biaxial modulus 

may still be used to indicate the approximate behavior for Poisson’s ratio using the average 
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Young’s Modulus, especially if the infiltration of amorphous carbon is driving the mechanical 

properties. 

 Table 2-4 shows the biaxial modulus obtained for each pressure test, as well as the 

average among the tests (26.0 GPa). Due to the manual nature of the film production, the spread 

from these tests is large, with a standard deviation of 23.5 GPa. The resulting Poisson’s ratio 

from the average biaxial modulus and Young’s modulus is 0.95 (Eq. 6). Though this value for 

Poisson’s ratio is large, CNT structures can have unusual Poisson’s ratios, including negative 

ratios and values as large as 4.2 [55-58]. 

Table 2-4. Burst pressure, biaxial modulus, stress, and strain for each pressure test at failure with 
results organized by increasing burst pressure. 

Sample 
Number 

Biaxial 
Modulus 
(GPa) 

Pressure            
(kPa) 

Stress       
(MPa) Strain 

1 7.38 10.34 22.84 0.004 
2 0.22 15.51 12.36 0.040 
3 0.15 18.96 13.54 0.049 
4 15.52 22.41 37.47 0.007 
5 12.10 27.58 56.57 0.004 
6 2.62 32.75 44.38 0.012 
7 9.07 36.2 34.46 0.006 
8 7.95 37.92 18.76 0.086 
9 2.80 39.64 24.59 0.062 

10 29.65 53.43 93.44 0.006 
11 21.33 58.61 93.57 0.008 
12 21.43 62.05 83.59 0.010 
13 31.98 68.95 106.76 0.008 
14 76.42 72.39 169.68 0.003 
15 154.98 70.67 180.60 0.003 
16 22.07 82.74 89.91 0.004 

Average 
[StDev] 

26.0                  
[39.2] 

44.4         
[22.8] 

67.7                  
[52.7] 

0.020         
[0.025] 
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CNT Film Discussion 

Just as carbon fiber materials have altered the landscape for a broad range of macroscopic 

structural applications, carbon nanotube structures have the potential to significantly improve the 

performance of microelectomechanical systems.  Strength and durability is a highly sought-after 

trait for MEMS structures and devices.  For the infiltrated carbon thin films created in this work, 

an average peak stress of 6.04 MPa was achieved in tension perpendicular to the rolled direction 

of the nanotubes, and 14.5 MPa parallel to the rolled CNTs.  Though the average peak stress 

values are considerably weaker than the recorded 63 GPa tensile strength of individual CNT 

fibers [3], the strength of the film is sufficient to allow for handling and application in MEMs 

devices. Additional pressure testing revealed an average burst pressure of 44.4 kPa, with a max 

of 82.7 kPa, and an average biaxial modulus of 26.0 GPa.  For reference, films that were 

fabricated the same way and then infiltrated with polymer forming a composite film had a 

strength times thickness of 242 N/m [59].  At approximately 6 µm, the resulting tensile strength 

for the CNT/polymer composite was 40.3 MPa, producing a stronger film as would be expected 

using polymer as a constituent instead of amorphous carbon.   

Possible reasons for the reduction in strength relative to a single CNT are varied and 

unsurprising.  The length of the individual fibers before being rolled was approximately 250 µm.  

When rolled laterally to create a 1 cm long film, the length of one of these fibers makes up only 

about 2.5% of the length of the sample.  The mechanisms holding the film together are fiber 

entanglement, van der Walls forces, and carbon infiltration with amorphous carbon – all 

comparatively weak relative to the strength of the individual CNT fiber [60].  This weakness is 
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compounded due to the manual nature of the film’s fabrication and testing, and the difficulty in 

detecting microdefects in the films – especially in tensile testing, where mounting films and 

aligning the direction of tension is paramount. Nevertheless, an entirely carbon sheet that 

provides transparency to some wavelengths of electromagnetic radiation remains attractive. 

Many MEMS applications require smooth surfaces for optimal performance, often for 

optical or structural necessity.  One side of the films created in this work is particularly smooth, 

with an arithmetic mean height and root mean square height of less than 0.06 µm, which opens 

the potential for subsequent microfabrication processing and use in MEMs or optical device 

applications requiring smooth surfaces.  Profilometer scans confirmed a film thickness of 3 to 5 

µm, and significantly different roughness scales for the top and bottom surfaces.  The smoothest 

portion of the top (rougher) surface measured an arithmetic mean height of 0.86 µm and a root 

mean square height of 1.09 µm, though step height changes on the order of 1-3 µm were 

observed due to the overlapping layers.   

Although a fibrous alignment of nanotubes may be indicative of anisotropic behavior, the 

porous nature of the film presents opportunities for infiltration of a secondary material to create a 

composite film.  In this work, the carbon infiltration and Van der Waals forces may be the 

primary contributors for film integrity resulting in only a 15% difference observed in average 

Young’s Modulus for both directions of tensile testing (1402.7 MPa parallel, 1195.7 MPa 

perpendicular).  A similar work to integrate a polymer as a binder for a composite material has 

been published in a separate work [42].   
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CNT Film Conclusions 

We have demonstrated a fabrication method for dense, aligned, CNT thin films on the 

order of 5 µm thick that is robust enough to physically handle without damage.  A maximum 

peak stress of 38.77 MPa was measured in tension (aligned parallel to the rolled CNTs), with an 

average peak stress of 14.5 MPa and modulus of elasticity of 1402.7 MPa.  For pressure testing, 

films could withstand a maximum differential pressure of 82.7 kPa (average of 44.4 kPa) before 

failure.  The lower side of the film is particularly smooth, with an arithmetic mean height of just 

0.05 µm, which opens possibilities for use in optical devices and other MEMs applications 

requiring smooth surfaces.  As it is a film made from a base of nanotube fibers, it is expected that 

the material is not isotropic and would favor the direction of the fiber alignment, but our 

measurements indicate that the Young’s modulus is in relative agreement for perpendicular and 

parallel alignments within approximately 15%.  Variability inherent in manual processing of 

nanoscale features is a likely contributor to the large standard deviations observed in the 

measurements.  With further exploration and experimentation, the film has potential for 

integration into a variety of MEMs devices. 
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3 THERMALLY INSULATING POROUS SILICA THIN FILM 

Porous Silica Insulating Films Introduction 

Single-walled carbon nanotubes (CNTs) are single-atom thick tubes of carbon with many 

incredible material properties.  They have become a widely researched topic since the early 

1990s [61] and have found their way into a variety of theoretical and practical applications.  

More recently, CNTS have become an invaluable material for use in many 

microeletromechanical systems (MEMS) due to their excellent mechanical, electrical, thermal, 

optical, chemical properties [1, 2, 62].  By using photolithographic methods, a vertically grown 

“forest” can be patterned into a desired shape or configuration.  Using patterned carbon 

nanotubes as a scaffold, additional materials can be coated on or infiltrated into the forest, 

reinforcing the structure, in a process called carbon nanotube templated microfabrication (CNT-

M) [28, 30, 63, 64].  The conditions and duration of an infiltration procedure can be controlled to 

result in highly dense or highly porous regions.   

CNT-M has tremendous potential in creating insulating materials for MEMS sensors and 

provide either thermal or electrical isolation, including for gas chromatography (GC).  GC is a 

technique used in analytical chemistry to separate and analyze volatile compounds and has been 

used in a wide range of fields, including forensic science; industrial, food, and environmental 

safety; biomedical research; and space exploration [65-67].  The premise of GC is to introduce a 

gas sample through a long channel to a detector at the exit, where constituents can be detected in 
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discrete separation bands at the channel exit.  A major drawback of GC is the long column 

lengths necessary to achieve high-resolution separations making a MEMS-fabricated GC system 

impractical.  However, by controlling the column thermal gradient, high-resolution separations 

can be achieved in shorter column lengths [68, 69].  Thermal gradient GC (TGGC) systems 

capable of high-resolution detection are possible assuming the necessary thermal gradients can 

be achieved.  To date, micro-columns have been created in etched Si with thin film resistors as a 

heat source to initiate compound separation, with a small thermal conductivity detector for 

analysis [70, 71].  However, Si has a thermal conductivity that causes significant axial diffusion 

in the column as well as thermal cross-talk, which would significantly limit the ability of TGGC 

[72, 73].  A highly porous, low-conductivity material, like an aerogel, would increase the ability 

of a TGGC device to achieve high-resolution separation.  Aerogels are lightweight, synthetic 

materials that can be fabricated from a variety of chemical compounds, including silica (SiO2) 

[74], but attempts to incorporate them into small-scale sensors have failed to preserve the 

aerogel’s low thermal conductivity [29]; furthermore, they generally lack structural integrity and 

do not have a clear path for integration into sensors. However, microfabricated thin layer 

chromatography plates can be created using silica-coated CNTs to improve insulation and 

maintain structural stability [30].   

This work will explore the capabilities of CNTs as a framework for high-aspect-ratio 

MEMS fabrication by producing porous silica, insulating-thin-film for use as a thermal barrier in 

MEMS sensors and similar applications.  CNT-M affords the method to create insulating thin 

films that can be integrated into MEMS/NEMS sensor architectures by infiltrating CNT forests 

with low pressure CVD (LPCVD) deposition of Si and then oxidizing at high temperatures to 

simultaneously burn out the carbon and oxidize the silicon. The result is a porous silica structure, 
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similar to an aerogel.  This work explores the structurally stable, insulating thin-films created 

using CNTs scaffolds to achieve a porous insulating material and seeks to quantify the in-plane 

thermal conductivity using the concept of thermal resistance.  

Porous Silica Fabrication and Testing Methods 

3.2.1 Porous Silica Film Fabrication 

 The porous silica film is produced following the CNT-M procedure shown in Figure 3-1 

with CNTs infiltrated using LPCVD.  Although silicon, silicon oxide, and silicon nitride have all 

been investigated for use in infiltrating the CNT structure, silicon oxide has the lowest thermal 

conductivity.  Additionally, it has the lowest coefficient of thermal expansion, so any large 

temperature changes experienced by silica structures are less likely to see major deformation.   

The CNTs were grown, as in section 2.2.1, through a standard CVD process, flowing 

ethylene over a 4 nm iron catalyst on a silicon wafer separated by a 40 nm alumina diffusion 

layer (Figure 3-1a).  The CNT forest used to form the silicon scaffolding was grown un-patterned 

and without undergoing any photolithographic process.  In a 2.54 cm OD tube furnace, they were 

brought to 750°C while flowing 310 sccm of hydrogen (H2) over them.  At temperature, and 

while still flowing H2, 340 sccm of ethylene (C2H4) was introduced for 50 seconds, growing 

CNTs 40 to 60 µm tall (50 µm average).  After growth, the hydrogen and ethylene were turned 

off and Argon was flowed over the samples for 1 minute to allow the film to settle, and then the 

furnace was turned off while the Ar continued to cool the CNT forest.  Once grown, CNTs were 

treated with ozone to improve silicon deposition [75].  Gas phase ozonation oxidizes the CNTs, 

which primes and increases the number of nucleation sites on the tubes and facilitates conformal 
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growth of silica along the CNT.  To ozonate the CNTs, the O3 gaseous reagent is simply passed 

over the forest with an Atlas 30 Ozone Generator (Absolute Ozone, Edmonton, Alberta) at an O2 

flow rate of 6.7 x 10-6 m3/s with the current set at 45%, producing approximately 4.4 g/h of 

ozone.  CNT samples were put into a 2.54 cm OD fused silica tube, purged for 1 min with 

oxygen, then exposed to the ozone flow for 45 minutes, before finally being purged again with 1 

min of oxygen and then removed.   

 

 

 

Figure 3-1.  a) Vertically aligned CNTs (VACNTs) grown using lithographically patterned 
catalyst.  b) Uniform Si infiltration of the CNT forest using LPCVD.  c) Oxidation in an oxygen-
rich furnace, burning away the CNTs and leaving a d) porous silica nanotube structure. 
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After CNTs were grown to the desired height and ozone treated, they were coated in 

silicon through a LPCVD method.  Silicon deposition occurs in a high-temperature, low-pressure 

furnace (Figure 3-1b).  The CNT samples were placed in a sealed furnace tube and are vacuum 

pumped down to 2x10-4 Torr.  Once this pressure is reached, the remaining air in the furnace is 

purged from the tube by flowing nitrogen for 30 s.  The purging of air prevents the combustion 

of CNTs that would occur at high temperatures.  The nitrogen flowrate is then slowly reduced 

and then held constant as the pressure returns to 2x10-4 Torr.  The furnace is then heated to 

535 °C and the N2 is turned off and replaced with the same flowrate of silane (H₄Si) for 15 

minutes, keeping pressure at 200 mTorr.  The silane is then turned off and the temperature is 

reduced to room temperature.  When the temperature drops below 150 °C, the system is flushed 

with N2 for one min.  The vacuum pump can be turned off and N2 can be introduced into the 

system until the pressure exceeds 500 mTorr, at which point the nitrogen can be turned off and 

the furnace tube seal can be broken to reintroduce atmosphere.   

At this stage, the CNTs have been conformally coated with silicon.  To burnout the carbon 

and convert the silicon to an insulating silicon dioxide, the films are placed in a furnace and 

heated to 850 °C in ambient air for 2 minutes, allowing the Si to oxidize (Figure 3-1c).  When 

the samples are allowed to cool, the porous silica thin films are complete and can be used for 

testing.  Samples of approximately a 1 – 4 cm2 area were used for testing. 

3.2.2 Density and Surface Roughness 

The density of the porous silica film was determined by removing completed samples from 

the substrate and weighing its mass.  The film was removed by scraping the surface to remove 

the silica, which was made easy by the brittle nature of the material.  The volume of the film was 
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determined from the base area of the growth substrate and the measured height of the film.  

Dividing the mass of the film by its volume, the density of the porous silica films was obtained. 

Surface roughness is an important feature for MEMs devices.  A smooth SiO2 structure can 

enable subsequent microfabrication steps for the creation and patterning of other microstructures. 

To measure the surface roughness, a Zeta Instruments 20 optical profilometer was used to image 

and analyze the surface features of several SiO2 films (see also section 2.3.1).  Optical 

profilometers can be used to create a 3D composite image of a sample, which can be analyzed 

with software to acquire a range of metrological data.   

The optical profilometer takes initial measurements much like a normal microscope.  There 

are various objective lenses that can be used to optically focus on the film surface, depending on 

the desired magnification and resolution.  When focus is achieved, the profilometer creates a 

composite image from a series of scans in a range of focal lengths and then uses software to 

calculate various measurements.  Using a large objective lens (100x), the optical profilometer 

was used to measure the surface roughness of the SiO2 thin film.   

3.2.3 Thermal Characterization 

As a governing parameter in the conduction of thermal energy, the thermal conductivity of 

the porous oxide thin-film was measured.  One-dimensional heat transfer was established and the 

thermal resistance across the thin-film was determined with the aid of a reference measurement.  

The layers of material present in the test condition and the associated thermal resistance for each 

layer is shown in Figure 3-3 (with the thermal resistance associated with the porous silica film 

highlighted in blue, Figure 3-3d).   
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To heat the silicon substrate to steady state and establish 1D heat transfer, samples were 

placed on a 5.1 x 2.5 x 1.3 cm copper block to act as a large, isothermal substrate that was heated 

by an attached thin-film heater.  Four T-type thermocouples were placed in the copper block 0.64 

cm from each side edge, and 1.52 and 0.64 cm from the top surface, embedded half way into the 

block to ensure isothermal conditions in the copper.  Thermal insulating foam encased the sides 

and bottom of the copper block and heater to reduce heat loss and further ensure isothermal 

conditions, as seen in Figure 3-2.  Test samples were placed on top of the isothermal copper 

block and heated via conduction.   

 

 

Figure 3-2.  A heating element heats an insulated copper block equipped with four 
thermocouples.  Samples with porous silica films can be compared directly to control samples 
without the porous silica film to determine the thermal conductivity of the insulating film.    

 

During testing, a reference sample and one or more test samples were placed on a heated 

copper substrate, painted black in regions where the test samples were not located (Figure 3-3).  

The black paint (emissivity = 0.97, Krylon Ultra Flat Black) enabled use of an IR camera (FLIR 

SC6103) to measure surface temperatures.  The top of each test sample (or reference or 
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benchmark sample) was also painted black in the same manner in order to determine the 

temperature difference across test samples (∆Ttest) during heating with the infrared temperature 

measurement.  Each film was sprayed twice by hand with a smooth, even pass.  Each pass lasted 

approximately 0.5 s over the 1 cm length of film.  Control and benchmark samples were prepared 

in the same way.  The surface temperature for each test was determined using an average over 

the area of the sample top surface.   

Each test configuration (Figure 3-3a-c) was placed in a vacuum chamber (measuring 70 cm 

in diameter and 76.2 cm in length) and pumped down to a pressure of <4x10-5 Torr in order to 

neglect convective heat transfer from the surface [76].  The IR camera was located exterior to the 

vacuum chamber with a direct line of sight to the sample surfaces through a 7.5 cm diameter 

sapphire window.  The window had a band transmissivity of 0.81 – 0.85 for source temperatures 

between 323 K and 423 K in the spectral band of 3 – 5 µm, corresponding the wavelength range 

of measurement by the IR camera [77]. 

For thin samples (test and reference samples of thickness <600 µm), heat loss from the 

sides of the samples was neglected, resulting in 1D conduction heat transfer through the sample 

thickness.  The thermal resistances in the stack are identified by each layer comprising the 

sample (Figure 3-3), namely: Si substrate (RSi), alumina diffusion barrier (Ral), Fe catalyst (RFe), 

porous silica (Rps) and the black paint (Rp).  The conduction resistance for these layers can each 

be calculated using R = L/kA, assuming 1D, steady state conduction and constant properties 

(where L is the thickness, k is the thermal conductivity, and A is the area of each layer).  An 

additional contact resistance (Rc) is present and includes the thermal grease used for good 

contact between substrate and sample. 
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Figure 3-3.  (a) Schematic of reference conditions used to determine the thermal resistance of all 
layers except the porous silica film.  (b) Schematic of test condition used to determine the 
thermal resistance of the porous silica film.  (c) Schematic of benchmark condition using a 
material of known thermal conductivity (G10) to confirm the measurement method.  (d) 
Resistance network for the material stack for the test condition, including the porous silica film.  

 

The reference test, which excludes the resistance associated with the porous silica film, can 

be used to determine a composite resistance associated with all other layers and the contact 

resistance combined, creating Rcomp, equation (3-1). 

𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑆𝑆𝑆𝑆 + 𝑅𝑅𝑎𝑎𝑎𝑎 + 𝑅𝑅𝐹𝐹𝐹𝐹 + 𝑅𝑅𝐶𝐶 (3-1) 
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This composite resistance can be determined by measuring the temperature difference across the 

reference sample (∆Tref) and calculating the radiative heat rate leaving the surface of the 

reference sample, as given in equation (3-2).   

𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 =
𝛥𝛥𝑇𝑇𝑟𝑟𝐹𝐹𝑟𝑟
𝑅𝑅𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶

 
(3-2) 

This heat rate (qcomp) is equivalent to the net radiative heat transfer rate shown in equation (3-3) 

since the heated surfaces are small relative to the isothermal vacuum chamber (Tsurr = 296.15 K), 

as measured by a thermocouple placed on the aluminum chamber wall  [78]. 

𝑆𝑆𝑟𝑟𝑎𝑎𝑟𝑟 = 𝜀𝜀𝜎𝜎𝜀𝜀(𝑇𝑇𝑡𝑡4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟4 ) (3-3) 

With qcomp and ∆Tref obtained, the composite resistance is readily calculated and used to 

determine the resistance to heat transfer across the layers of material in the test condition 

excluding the resistance associated with the porous silica film.   

A similar measurement as that outlined above for the reference condition is performed 

simultaneously for test surfaces that include a porous silica film, introducing an additional layer 

of resistance.  With Rcomp known from measurements associated with the reference condition, the 

rate of radiative heat loss (calculated using a new surface temperature T1 for the test condition) 

can be equated to the measured ∆Ttest divided by the sum of the composite resistance and the 

resistance associated with the porous silica film, yielding equation (3-4). 

𝜀𝜀𝜎𝜎𝜀𝜀(𝑇𝑇𝑡𝑡 
4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟4 ) =

𝛥𝛥𝑇𝑇𝑡𝑡𝐹𝐹𝑠𝑠𝑡𝑡
𝑅𝑅𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑅𝑅𝐶𝐶𝑠𝑠

=
𝛥𝛥𝑇𝑇𝑡𝑡𝐹𝐹𝑠𝑠𝑡𝑡

𝐿𝐿𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶
𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝜀𝜀

+
𝐿𝐿𝐶𝐶𝑠𝑠
𝑆𝑆𝐶𝐶𝑠𝑠𝜀𝜀

 (3-4) 
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The only unknown in equation (3-4) above is the through-plane thermal conductivity of the 

porous silica film (kps), which can now be obtained by inserting the known expression for the 

thermal conductivity of the composite, yielding equation (3-5). 

𝑆𝑆𝐶𝐶𝑠𝑠 =
𝐿𝐿𝐶𝐶𝑠𝑠

𝛥𝛥𝑇𝑇𝑡𝑡𝐹𝐹𝑠𝑠𝑡𝑡
𝜀𝜀𝜎𝜎(𝑇𝑇𝑡𝑡 

4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟4 )−
𝛥𝛥𝑇𝑇𝑟𝑟𝐹𝐹𝑟𝑟

𝜀𝜀𝜎𝜎�𝑇𝑇𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 
4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟4 �

 
(3-5) 

Tt and Tcomp are the top surface temperatures, read from the thermal camera, of the porous silica 

and the reference composite sample, respectively. 

The copper block substrate temperature was increased by increasing the power dissipation 

in the thin-film heater using wire leads passing through a vacuum feedthrough until a desired 

temperature is reached.  Each test was allowed to reach steady state behavior, defined as less 

than a 0.5 deg K temperature change in the copper block over 10 min.  Repeat testing at several 

copper block temperatures was performed, with steady behavior reached for each condition.  

Testing in this manner allowed thermal conductivity measurement of the porous silica film over 

a range of temperatures.  Higher copper block temperatures resulted in larger ∆Ttest values and 

greater confidence in the temperature differences measured. 

In order to verify the measurement approach for obtaining thermal conductivity, 

benchmark samples of Garolite fiberglass laminate (G10, McMaster-Carr) were cut from sheets 

of thickness 0.79, 1.59, and 3.18 mm.  The 0.79 cm thick samples were used for the reference 

condition measurement with the 1.59 and 3.18 mm samples used as test condition samples 

following the approach outlined above for determining thermal conductivity for the porous silica 

film (Figure 3-3c).  This approach of using both a thinner reference condition and a thicker test 

condition with G10, again allowed us to eliminate the requirement of obtaining an accurate 
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contact resistance measurement.  In this manner, the thermal conductivity for G10 could be 

determined and compared with a published thermal conductivity value, thereby validating the 

measurement approach.  Density and thermal conductivity of materials are summarized in  

Table 3-2. 

Porous Silica Testing Results 

3.3.1 Density and Surface Roughness Results 

Measurements of density indicated that the porous silica film composition is similar to that 

of insulating silica aerogel.  The volume for a 2 x 2 cm film grown to 15 µm tall film is 0.006 

cm3.  A typical sample of this kind weighed 0.9 mg, resulting in a density of 0.15 g/cm3.  For 

comparison, the density of silica aerogel can range from 0.001 to 0.7 g/cm3 [79].  The low 

density of the film is expected due its porous nature and is similar to aerogels; both are porous, 

silica-based insulators.  The Si deposition successfully infiltrated the entire depth of the CNT 

forest, but the deposition was observed to be somewhat thicker at the top of the CNTs than at the 

base, as seen in Figure 3-1.  The silica tubes, though thinner and sparser at the base of the film, 

remain intact and connected to the Si substrate.  The thicker deposition rate at the top of the film 

appears to provide a smoother top surface. 

The optical profilometer is a convenient tool to confirm the height of the thermal barrier 

film.  Film height is shown in Figure 3-4, determined by measuring the height disparity between 

the substrate (revealed by scraping a small segment of the film) and film top surface.  The film 

thickness is approximately 55 µm, which is approximately the same height as the CNT forest the 

film was formed from.   
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Figure 3-4.  Profilometer scan of the top surface of a porous silica film indicating film height 
starting from an exposed region of the substrate and transitioning to the top of the film.  Film 
thickness is approximately 55 µm. 

The surface roughness of the porous silica film was determined using an optical 

profilometer interrogating an area of 70 µm x 90 (the largest available aperture area), 

representative of the entire top surface.  Measurements that were taken include arithmetic mean 

(Sa), root mean square height (Sq), maximum peak and valley heights (Sp and Sv, respectively), 

distance between maximum peak and valley heights (Spv), skewness (Ssk), and kurtosis (Sku), 

as described in section 2.3.1.  The results of the surface scans can be found in Table 3-1.  The 

average arithmetic mean roughness (Sa) and root mean square roughness (Sq) of four tested 

films was 1.04 and 1.33 µm, respectively.  Maximum peak height and valley height (Sp and Sv) 

are 4.93 µm and 5.62 µm, respectively, with a peak-to-valley roughness (Spv) of 10.55 µm.  The 

skewness (Ssk) and kurtosis (Sku) of the top surface of the film was -0.08 and 3.67.  A skewness 

of 0 indicates the average height of the peaks and valleys are equal, or symmetric.  The film is 

relatively symmetric about the top plane, as indicated by the low skewness value.  The porous 
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silica film is generally skewed evenly on average.  A kurtosis value greater than 3 denotes that 

the surface peaks are more spikey than round; tested films indicate an Sku of 3.67.   

Table 3-1.  Surface roughness measurements for the top surface of the silica porous film, as 
measured by optical profilometer with a 100x magnification lens. 

Sample # Sa (µm) Sq (µm) Sp (µm) Sv (µm) Spv (µm) Ssk Sku 
Sample 1 1.25 1.66 5.02 8.97 13.98 -0.85 4.95
Sample 2 1.12 1.42 5.68 4.64 10.32 0.02 3.20 
Sample 3 0.97 1.22 5.09 5.00 10.09 0.27 3.22 
Sample 4 0.80 1.01 3.94 3.88 7.81 0.23 3.32 
Average 1.04 1.33 4.93 5.62 10.55 -0.08 3.67

3.3.2 Benchmark Test 

Benchmark testing with G10 samples, using a thinner G10 sample as a reference condition, 

was used to ensure the measurement method provided correct results.  Figure 3-5 indicates the 

measured thermal conductivity for two G10 samples of different thickness.  The average thermal 

conductivity over the range of temperatures measured is 0.31 and 0.25 W m-1 K-1 for the 1.59 and 

3.18 mm thick samples, respectively.  Published values of the thermal conductivity for G10 are 

around 0.29 W m-1 K-1 [80].  Using this value as the correct thermal conductivity value, the 

current measurement approach for the two thicknesses provided results with an error of 7% and 

14%.  While additional refinements could be made to the measurement method, the good 

agreement between the measured and published thermal conductivity for G10, yields confidence 

in using the measurement method for obtaining reasonable thermal conductivity values for the 

porous silica films. 
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(a) 

   
(b) 

Figure 3-5.  (a) Sample IR image of the benchmark testing indicating a cooler top surface 
temperature for a thicker G10 sample, corresponding to a higher sample resistance associated 
with increasing thickness. (b) Measured thermal conductivity for two benchmark samples (1.59 
and 3.18 mm thick) obtained using the left sample (0.79 mm thick) as the reference condition at 
several copper substrate temperatures. 
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3.3.3 Porous Silica Thermal Conductivity 

Thermal characterization of the porous silica films indicated a through-film thermal 

conductivity similar to silica aerogel.  A representative thermal camera image with two reference 

samples and two porous silica samples placed on the copper substrate is shown in Figure 3-6.   

Figure 3-6.  Sample temperature measurements for the experimental setup as observed through a 
sapphire viewing window.  Samples labeled as PS1/PS2 and REF1/REF2 indicate samples with 
and without the porous silica film, respectively.   

 As the copper substrate increases in temperature, the porous silica and the control 

substrate sample also increase in temperature.  However, the top surface of the insulating porous 

silica films increases slower than reference samples, as expected.  The difference in temperature 

between a sample porous silica film and reference (∆Ttest - ∆Tref), and the difference between a 
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sample porous silica film and copper substrate (∆Ttest), are shown in  Figure 3-7.  The 

temperature difference between samples with a porous silica film and reference samples (∆Ttest - 

∆Tref) becomes greater as the copper substrate temperature increases, but the increase appears 

linear, indicating a relatively constant thermal conductivity for the porous silica over the 

temperature range measured. 

Based on the temperature measurements, including that reported in  Figure 3-7a, the 

thermal conductivity of the porous silica films were determined using equation (3-5).  Thermal 

conductivity for two porous silica films are shown in  Figure 3-7b (PS1/PS2), obtained using two 

reference samples (REF1/REF2).  The resulting four measurements obtained from a combination 

of different samples and references vary ≲15% relative to the mean at a given substrate 

temperature with a mean of 0.062 W/m.K over the range of 378 – 422 K.  The thermal 

conductivity of the porous silica films seems to increase only slightly with increasing copper 

substrate temperature over the range of temperatures tested with a max spread of 0.054 – 0.071 

over all measurements.   

To contrast these values with relevant substances, Table 3-2 shows a comparison of 

density and thermal conductivities for several related materials, including silica aerogel, bulk 

silicon, and bulk silico dioxide.  These results indicate that the thermal conductivity obtained for 

the porous silica thin films created and characterized using the methods proposed here are 

consistent with silica aerogels, while also offering a method for successful integration on a 

silicon platform. 
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(a) 

 
(b) 

 Figure 3-7.  (a) Temperature difference between a sample porous silica film and reference (∆Ttest 
- ∆Tref) and between a sample porous silica film and copper substrate (∆Ttest); both indicating a 
relatively linear increase.  (b) Thermal conductivity results of two porous silica films (PS1/PS2) 
when compared to two separate control samples (REF1/REF2).  A condition of “PS1 (REF1)” 
indicates a result for porous silica film 1 (PS1) relative to reference sample 1 (REF1).  
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Table 3-2.  Density and thermal conductivity of several comparable or constituent materials for 
the porous silica [79, 81], and the porous silica itself. 

Material Density  
(g/cm3) 

Thermal Conductivity 
(W/m.K) 

Air 0.001 0.024 
G10 1.800 0.290 
Silicon 2.329 150.0 
Silicon Dioxide 2.196 1.400 
Silica Aerogel 0.001 - 0.700 0.004 - 0.030 
Porous Silica 0.150 0.054 - 0.071 

 

 

 To better understand these results, the uncertainty in the measured thermal conductivity 

was also calculated.  To calculate uncertainty, the partial derivative of each variable in equation 

(3-5) and the associated uncertainty of that variable were used, as in equation (3-6). 
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(3-6) 

The uncertainty of the thickness of the film was observed to be about 10% of the total film 

thickness based on SEM measurements and scratch tests with the optical profilometer.  

Emissivity uncertainty is taken to be the uncertainty of the intrinsic emissivity reflectometer 

measurement (±0.006).  The uncertainty of Tsurr is the uncertainty of a T-type thermocouple (±1 

K), while the uncertainty of the remaining temperature readings, all taken by thermal camera, 

was obtained from manufacturer specifications indicating a 2% variation in the temperature 

value [77].  Using these values, the total uncertainty of the porous silica conductivity is 0.32 
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W/m∙K, dominated primarily by the uncertainty in thermal camera temperature readings.  At a 

maximum measured conductivity of 0.071 W/m∙K, the uncertainty range becomes 0 to 0.391 

W/m∙K, which is large but still well below the conductivity of bulk silicon dioxide, 1.4 W/m∙K. 

Alternatively, because equation (3-5) is interested more in the relative temperature of the 

porous silica and reference sample rather than the absolute temperature, and since we can assume 

any error in thermal camera temperature measurements will work in the same direction for both 

the silica and reference samples, we can treat ΔTtest and ΔTref as single variable and can use 

equation (3-7) to calculate uncertainty instead.   
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(3-7) 

Using the same uncertainty values as before, and using the 2% camera measurement uncertainty 

for ∆Tref and ∆Ttest, the total uncertainty becomes 0.0075 W/m∙K.  With this uncertainty, the 

conductivity range of 0.054-0.071 W/m∙K becomes 0.047-0.079 W/m∙K. 

Porous Silica Discussion 

Density measurements taken were from a 2 x 2 cm film grown to 15 µm tall film.  Though 

this is shorter than most of our porous silica samples, the silicon LPCVD deposition rate was 

observed to be relatively conformal.  The silicon deposition thickness is similar near the top and 

bottom of the film, with a somewhat thicker deposition near the top.  It is likely that the 15 µm 

tall film will have a somewhat thicker LPCVD Si deposition, and may have a denser film than 

the 50 µm tall porous silica films used for thermal conductivity testing.  However, 0.15 g/cm3 is 
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likely a reasonable approximation with any density variation due to film height still within the 

range of other silica aerogels (0.001 to 0.7 g/cm3).  As the current porous silica films and other 

aerogels are both made from the same material with comparable density, the similarities in 

thermal conductivity observed are expected.   

Prior to using G10 as a benchmark test, an attempt was made at using stainless steel to 

validate the thermal conductivity test.  These tests failed for several reasons.  First, thicker 

samples of stainless steel were used than our other benchmark tests.  For these tests to be 

effective, thermal bleeding out of the sides of the samples must be small, so the height of the film 

must be small relative to its square.  The larger issue, however, was that the thermal conductivity 

of steel was much larger than G10.  Because the samples were so conductive, temperature 

differences for different variations in thickness were hard to measure at the relatively low-

temperature testing conditions used.  This problem was resolved using less conductive G10.   

In addition to the complications in benchmark testing, there were early obstacles getting 

consistent readings from the porous silica films.  That was deemed to be from poor thermal 

contact between the copper substrate and the test samples.  The films were originally placed 

loosely on the top of the block, held in place only by the weight of its own mass.  The addition of 

thermal vacuum grease between the two materials alleviated this issue by promoting consistent 

thermal contact throughout the interface surfaces. 

Thermal conductivity experiments were performed in a vacuum.  It is worth considering 

how the film would react in atmosphere, theoretically.  The thermal conductivity of the film in a 

vacuum is approximately 0.06 W/m∙K, while the conductivity of air is 0.024 W/m∙K [82].  So 

adding air may lower the films average thermal conductivity, assuming air infiltrates the cavities 

of the film.  However, due to the Knudsen effect, the overall thermal conductivity may be even 
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further reduced [83].  The Knudsen effect occurs when a materials pore diameter is less than the 

mean free path of the gas molecules.  Instead of colliding with other gas molecules, the 

molecules will instead collide ballistically with the pore walls.  In air, this occurs in pores of 

diameter 40 nm and smaller, and can reduce the thermal conductivity to less than 0.004 W/m∙K.  

Regions of the film certainly fall within this requirement, and the diameter of individual silica 

nanotubes has been measured by SEM to be as small as 6 nm in diameter, well below the 

threshold required for the Knudsen effect to occur.   

The surface roughness of the porous silica was found to be 1.04 µm.  Generally, the 

smoother a surface is, the more useful it is for integration into other MEMs applications.  One 

possible mechanism for reducing the resulting surface roughness may be to spray CNTs on top 

of the vertically grown CNTs.  Loose CNTs can be sonicated in a solvent and then sprayed using 

an airbrush to achieve this condition, changing the top plane from a surface of relatively rough 

vertically aligned CNTs to a surface made from smoother, horizontally aligned CNTs.  The 

porous silica fabrication method can then continue unaltered to create a film with a smoother top 

surface [84].  Alternatively, Plasma Enhanced CVD (PECVD) can be used after LPCVD 

infiltration to cap the top surface of the film.  While LPCVD infiltrates the whole CNT forest 

conformally and through to the bottom of the forest, PECVD coats CNTs thicker at the top of the 

fiber and caps off the top surface, potentially creating a smoother top surface [85]. 

Porous Silica Conclusion 

This work reports on a testing method to determine the thermal conductivity of thin films 

with low conductivities and used to quantify the thermal conductivity of a porous silica film 

created using CNTs as a scaffold.  The porous silica film may offer great potential in the realm 
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of MEMs structures as it has excellent thermally insulating properties, with a thermal 

conductivity of approximately 0.062 W/m∙K in the range of 378 – 422 K.  This thermal 

conductivity value is in the range of other silica aerogels and somewhat higher than air, but 

significantly lower than Si and bulk SiO2.  The material, as a porous film, also has a very low 

density of 0.15 g/cm3.  The film is also relatively smooth and flat, with an average arithmetic 

mean of 1.04 µm and a skewness of -0.08.   

The conclusion of this work presents several opportunities for further exploration.  To fully 

take advantage of the benefits of this new porous silica film, additional work may be done to 

examine the effect of film height and silica thickness over a potentially broader range of 

temperatures.  Mechanical testing would reveal film strength for potential integration into 

MEMs.  These films can be patterned with photolithography or by ion etching to make channels 

or other useful shapes, for use in gas chromatography systems or other MEMs devices and offers 

a method to minimize thermal crosstalk in MEMS structures without suspending structures.   
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4 CONCLUSION 

We have demonstrated fabrication methods to create a freestanding, aligned carbon 

nanotube thin film.  Additionally, we have utilized CNT templated microfabrication to create 

porous silica insulating thin film integrated into the base silicon substrate.  Patterning CNTs with 

photolithography can create unique films and microstructures for use in a variety of applications. 

Furthermore, we have shown how effective CNTs can be as a scaffolding to create intricate and 

versatile microstructures when infiltrated with the appropriate material.  These films have further 

potential for integration into MEMs devices and applications.   

The carbon thin films have potential for use in portable x-ray technology.  Handheld x-ray 

devices emit rays from an x-ray tube, kept under vacuum, for analysis.  For improved resolution, 

the x-rays cannot be hindered by thick physical barriers.  This requires a thin-film that will allow 

x-rays to pass through to the detector under vacuum, while also being strong enough to maintain

the pressure differential present.  Beryllium films are commonly used for x-ray windows, but they 

are expensive and toxic.  A carbon thin film, reinforced by CNTs would be a strong, inexpensive 

alternative to current window technology.   

We created a CNT carbon thin film less than 5 µm thick using a rolled CNT pattern as a 

structural base and then infiltrating voids in the mat with amorphous carbon.  This film held nearly 

one atmosphere of pressure, so with an underlying support or grid structure, it may be sufficient 

to hold the pressure necessary to hold an x-ray detector under pressure.  Additionally, unrecorded 
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tests showed these films shared a similar x-ray transmissivity profile to beryllium films, making 

them viable replacements.  Further use of the film can be made by adding additional material with 

desired properties.  Boyer et al. hot-pressed polymer into the film to create smooth, thin CNT 

composite sheets [42].  Using different infiltrating materials, new types of thin films with a CNT 

substructure can be created. 

The porous silica material has great potential in all MEMs applications requiring insulating 

material.  The porous silica exhibits excellent thermal insulation. Insulation is an essential 

component for many electrical systems, and can be hard to realize for many MEMs devices.  A 

robust, well-insulating film can immediately improve the performance of many electrical 

mechanisms.  The CNT forest used as a scaffolding can be patterned to create more intricate 

insulating structures, channels, and geometries, or the silica material can be etched away using 

methods like focus ion beam milling, allowing both bottom-up and top-down design.  Surface 

roughness of the film can be further increased by utilizing sprayed CNTs and/or non-conformal 

PECVD to cap the top surface.  We have showed that these films would make an excellent thermal 

barrier to make thermal gradient gas chromatography possible.  The barrier can prevent thermal 

bleeding across the top surface, and patterned porous silica can be used to create insulated channels 

for gas chromatography. 

As with the carbon thin films, the porous silica films demonstrate the ability for CNTs to 

be used as a structural template for microstructure fabrication.  Also like the carbon films, porous 

silica films can be infiltrated with different materials besides silicon, opening interesting 

possibilities in material creation.  This work has demonstrated the viability of using CNTs as a 

scaffolding for various microstructures.  These applications open a wide range of possibilities for 

microscale architecture, and in creating designs, shapes, forms, and structures that were previously 
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impractical or otherwise impossible, to create increasingly smaller microelectromechanical 

systems. 
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