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ABSTRACT 

Modeling Piezoresistive Effects in Flexible Sensors 

Marianne E. Fletcher Clayton 
Department of Mechanical Engineering, BYU 

Master of Science 

This work describes a model of the piezoresistive behavior in nanocomposite sensors. 
These sensors are also called flexible sensors because the polymer matrix allows for large 
deformations without failure. The sensors have conductive nanoparticles dispersed through an 
insulative polymer matrix. The insulative polymer gaps between nanoparticles are assumed to be 
possible locations for electron tunneling. When the distance between two nanoparticles is small 
enough, electrons can tunnel from one nanoparticle to the next and ultimately through the entire 
sensor. The evolution of this gap distance with strain is important to understand the overall 
conductivity of the strain sensor. The gap evolution was modeled in two ways: (1) applying 
Poisson’s contraction to the sensor as a homogenous material, referred to as Simple Poisson’s 
Contraction (SPC) and (2) modeling the nanoparticle-polymer system with Finite Element 
Analysis (FEA). These two gap evolution models were tested in a random resistor network 
model where each polymer gap was treated as a single resistor in the network. The overall 
resistance was calculated by solving the resistor network system. The SPC approach, although 
much simpler, was sufficient for cases where various orientations of nanoparticles were used in 
the same sensor. The SPC model differed significantly from the FEA, however, in cases where 
nanoparticles had specific alignment, e.g. all nanoparticles parallel to the tensile axis. It was also 
found that the distribution used to determine initial gap sizes for the polymer gaps as well as the 
mean of that distribution significantly impacted the overall resistivity of the sensor. 

Another key part of this work was to determine if the piezoresistivity in the sensors 
follows a percolation type behavior under strain. The conductance versus strain curve showed the 
characteristic s-curve behavior of a percolative system. The conductance-strain curve was also 
compared to the effective medium and generalized effective medium equations and the latter 
(which includes percolation theory) fit the random resistor network much more closely. 
Percolation theory is, therefore, an accurate way to describe this polymer-nanoparticle 
piezoresistive system. 

Finally, the FEA and SPC models were compared against experimental data to verify 
their accuracy. There are also two design problems addressed: one to find the sensor with the 
largest gauge factor and another to determine how to remove the characteristic initial spike in 
resistivity seen in nanocomposite sensors. 

Keywords: nanocomposite sensor, percolation theory, piezoresistivity, quantum tunneling 
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1 INTRODUCTION 

Conductive Polymer Composites 

Insulative polymers can be made into conductive polymer composites by the addition of 

some kind of conductive filler. The combination of polymer and conductive filler is referred to as 

a conductive polymer composite. There are several applications for conductive polymer 

composites including electromagnetic interference shielding [1-3], neural electrodes [4], films 

for fuel cells [3, 5-7], and sensors [8-10]. The research presented here will focus on the use of 

conductive polymer composites made with nanoparticles as sensors in biomechanical 

applications. Biomechanical applications for flexible sensors include measuring range of motion 

for joints [11], pulse [12], and breathing [13]. These sensors must be flexible enough to not 

restrict motion as well as sensitive to small changes in strain.  

In order to achieve the desired flexibility, the majority of nanocomposite sensors use 

rubber-like polymers as the matrix (e.g. PDMS [14, 15], natural rubbers [13, 16]). There are 

many different conductive fillers including carbon black [14, 15, 17, 18], carbon nanotubes [17-

19], or metal nanowires [12, 20]. The sensors in this study were made of silicone rubber (Ecoflex 

or Sylgard 184) with nickel nanoparticles from Conductive Composites in Heber, UT. 

Since the matrix polymer is fundamentally an insulator, electrical conductivity across 

such materials depends upon the presence of connected networks of the conductive filler. 

Various studies have investigated the relationship between volume fraction of filler, and resultant 
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material conductivity [21-26]. As the percentage of filler increases, a threshold is crossed, after 

which the probability of a connected pathway of filler spanning the entire sample is equal to one. 

At this point, the conductivity increases rapidly as more filler is added. However, for the sensor 

applications, the volume fraction of filler is not changing; instead, we are interested in 

understanding and predicting sensor piezoresistivity – i.e. the relationship between applied strain 

and sensor conductivity, for a constant volume fraction of filler. In the literature, there are 

several theories for piezoresistive response for this type of material. These include bulk sample 

volume change, filler particle realignment, and the changes in tiny gaps between neighboring 

particles facilitating (or blocking) electron flow along conductive pathways [27-29]. Only the 

third option mentioned can explain the massive changes in conductivity witnessed for this type 

of material, with the conductivity across a given gap being controlled by quantum tunneling (as 

explained below). However, no in-depth study of the evolution of the distribution of gaps 

between particles, and resultant impact on sensor conductivity, has been undertaken.  

This paper seeks to contribute to the current state of the art in two ways: (1) To undertake 

a detailed analysis of gap evolution in a high-aspect ratio nanoparticle conductive polymer 

composite, and the resultant relationship between sensor strain and conductance; and (2) To 

determine whether the resultant piezoresistive phenomenon should be modeled in terms of 

percolative behavior, or using standard effective medium type approaches. The structural 

evolution of potential composites is modeled using a finite element approach, focused on gap 

geometry between ideal cylindrical neighboring nanoparticles. The overall sensor conductivity is 

determined using a random resistor network, for an assumed regular arrangement of such nano-

gaps. And the resultant conductivity values are compared with predictions from percolation and 

effective medium theories. 
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Sensor Modeling 

The nanocomposite sensors experience a phenomenon called piezoresistivity because of 

the combination of the insulative polymer and conductive nanoparticles. If the network were 

perfectly electrically connected, the overall material conductivity would simply relate to the 

volume fraction of filler; however, the conductivity is much lower than such a model would 

predict, and hence is dominated by the resistance between neighboring filler particles in the 

network. When the polymer gap between neighboring conductive particles is small enough, 

electrons can move from one nanoparticle to the next through the entire sensor. As the sensor 

experiences strain, the nanoparticles move in relation to each other which changes the 

distribution of gaps between neighbors, and the overall electrical response of the sensor. 

As briefly mentioned above, current research seeks to be able to predict the electrical 

behavior of the sensor (resistance) based on strain. Because the piezoresistive effects are 

dominated by the size of the polymer gap between neighboring conductive particles, modeling 

how those gaps change with strain is a key component of any predictive model. A simplified 

analysis of gap evolution with strain was previously reported by Johnson et al. [30]. This 

research will analyze and compare a much more detailed geometrical model of gaps between 

particles with the Johnson model. The previous model is computationally simpler and assumes 

that the material can be modeled as an isotropic and homogenous system; furthermore, the gap 

distribution is assumed to change using a simple Poisson’s contraction model based upon the 

direction of the shortest vector across a gap between particles. The current approach will be 

based upon Finite Element Analysis (FEA) data, where the nanoparticles are modeled as pairs of 

cylinders with the full geometrical details of their local structural arrangement taken into 

account. More details about these models are given below.  
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1.2.1 Quantum Tunneling 

As mentioned, the nano-composite sensors examined in this thesis experience large drops 

in resistance when the material is strained, indicating a mechanism that is highly sensitive to the 

evolving gap between neighboring particles; the only theory of electrical resistance between 

neighboring nanoparticles that is consistent with observed behavior is that of quantum 

mechanical tunneling. Quantum tunneling is described by quantum mechanics and explains how 

an electron can cross a potential energy barrier that would block electrical flow by classical 

theories. Each gap between two nanoparticles can be considered as a potential location for 

quantum tunneling [19, 30-36]. Equation 1 shows the tunneling resistivity across a gap between 

two nanoparticles, where 𝜌𝜌 is tunneling resistivity, ℎ is Planck’s constant, 𝑒𝑒 is the charge of an 

electron, 𝑚𝑚𝑒𝑒 is the mass of an electron, 𝜆𝜆 is barrier height, and 𝑠𝑠 is the junction gap distance [37].  

 𝜌𝜌(𝑠𝑠) =
ℎ2

𝑒𝑒2�2𝑚𝑚𝑒𝑒𝜆𝜆
exp�

4𝜋𝜋�2𝑚𝑚𝑒𝑒𝜆𝜆
ℎ

𝑠𝑠� 1 

Barrier height (𝜆𝜆) is the electrical potential difference between the two nanoparticles and 

junction gap distance (𝑠𝑠) is the distance between the two nanoparticles. Both of these parameters 

were experimentally measured for polymer matrices using the procedure described by Koecher 

[38]. In order to determine barrier height, a conductive nano-indenter was slowly pushed through 

a thin layer of polymer on a nickel chip, and the gap plotted against resultant conductivity 

between the probe and plate; the barrier height was thus inferred. We note that this was for a 

nickel plate and a conductive diamond tip; we assume that the barrier height between to nickel 

contacts will be similar. Table 1-1 shows the values for junction gap distance used in this work 

from data collected in May 2017. 
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Table 1-1. Experimental values for barrier height of the polymers in this work. 
 The barrier height was measured using the nano-indentation 

 method described in Koecher [38]. 

Polymer Barrier Height (eV) 

Sylgard 184 0.47 

Ecoflex 0.27 

  

The average gap junction distance (𝑠𝑠) was determined with dielectric spectroscopy and 

the Cole-Cole equation as explained in Koecher [38]. The junction was modeled as a resistor and 

a capacitor in parallel. The junction gap distance can then be calculated from the characteristic 

frequency. 

In this work, the nanoparticles are assumed to be cylindrically shaped for the FEA model. 

As can be seen in Figure 1-1 of the as-manufactured nanostrands, the particles actually have a 

very branched structure.  However, before being used in the conductive composite sensors this 

network is broken into small particles, and subsequently pushed through a screen to break the 

network into even smaller nanoparticles. The branched nature of the nanoparticles may impact 

the initial range of orientations of the nanoparticles, and would certainly affect attempts at 

physically aligning the nanoparticles in manufacturing; but where the branches cross, the high 

aspect ratio means that they still behave as two long rods, locally. Hence, while the cylindrical 

assumption does not perfectly describe the overall shape of the nanoparticles, at the local level 

(in the vicinity of a given junction between neighbors) the approximation of cylindrical shape is 

expected to be sufficient.  
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Figure 1-1. Photograph of nickel nanostrands from Conductive Composites taken at 2500x [39]. 

 

  The junction gap distance (𝑠𝑠) quantifies the distance across which an electron needs to 

tunnel in order for electricity to flow across the gap; it is assumed to represents that smallest gap 

between two particles. In order for the resistivity described by Equation 1 to be used to quantify 

electrical flow, the area of particle separated by this distance is required. The models used in the 

previous works [30] and in this work assume a constant area between particles to calculate 

junction gap distance. This does not account for cases such as where nanoparticles are exactly 

parallel and the entire length of the nanoparticles would be possible for tunneling. The 

experimentally-determined 𝑠𝑠 from dielectric spectroscopy  also assumed a constant area [38], so 

any error from the value of the area is compensated somewhat in the 𝑠𝑠 determined by the model. 

1.2.2 Percolation Theory 

Conductive composites, such as those discussed here, represent a quintessential 

percolation-type system. The metal filler has conductivity several orders of magnitude higher 
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than the polymer matrix; hence overall electrical resistance through the material is dominated by 

the presence of connected paths of filler. The difference in resistivity between the nickel 

nanoparticles and the polymer gap is many orders of magnitude. The resistivity of pure nickel is 

on the order of 10−8 Ω ∙ m and the resistivity of a 1 nm gap for Ecoflex polymer (roughly the 

size of one polymer chain representing the smallest possible gap size) is on the order of 10−2 Ω ∙

m. As the volume fraction of filler increases, a critical volume fraction, 𝜙𝜙𝑐𝑐, is reached, when 

connected pathways begin to form and conductivity increases rapidly [40]. 

For the sensing material of interest to this paper, the volume fraction of filler remains 

constant, but the distribution of gap distances between particles evolves with strain, thus 

modifying the conductivity of potential pathways across the sensor. It has been hypothesized that 

the dramatic change in gap conductivity when the sample is strained is analogous to increasing 

(or decreasing) the volume fraction of conductive segments in the material, leading to a 

percolation-type behavior, with a critical strain at which conductivity increases rapidly [41]. One 

objective of this paper is to determine whether a percolation-based model reflects the actual 

behavior of the system. 

One approach to modeling the piezoresistive behavior in conductive polymer composite 

sensors is with a generalized effective media equation (GEM) [41] which modifies the effective 

media theory to include a percolation threshold and critical coefficients. If a composite is 

assumed to be composed of insulating matrix, and conductive filler phases, with perfect 

conductivity between filler particles that touch each other (i.e. no quantum tunneling gaps), then 

the GEM equation is shown in Equation 2 where 𝜙𝜙 is the volume fraction of filler, 𝜎𝜎𝑚𝑚 is the 

conductivity of the neat polymer matrix, 𝜎𝜎𝑓𝑓 is the conductivity of the filler material, 𝜎𝜎𝑏𝑏 is the 
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conductivity of the bulk material, and 𝑠𝑠 and 𝑡𝑡 are critical exponents. 𝐴𝐴 is a constant related to the 

percolation threshold, 𝜙𝜙𝑐𝑐 (see Equation 3). 

 (1 − 𝜙𝜙) �𝜎𝜎𝑚𝑚
1 𝑠𝑠⁄ − 𝜎𝜎𝑏𝑏

1 𝑠𝑠⁄ �

𝜎𝜎𝑚𝑚
1 𝑠𝑠⁄ + 𝐴𝐴𝜎𝜎𝑏𝑏

1 𝑠𝑠⁄ +
𝜙𝜙 �𝜎𝜎𝑓𝑓

1 𝑡𝑡⁄ − 𝜎𝜎𝑏𝑏
1 𝑡𝑡⁄ �

𝜎𝜎𝑓𝑓
1 𝑡𝑡⁄ + 𝐴𝐴𝜎𝜎𝑏𝑏

1 𝑡𝑡⁄ = 0 2 

 𝐴𝐴 =
1 − 𝜙𝜙𝑐𝑐
𝜙𝜙𝑐𝑐

 3 

Many conductive polymer composite models use the GEM equation [3, 10, 42-46]. 

However, previous research has also highlighted the fact that the resistance across the 

percolating network is not defined simply by the resistance of the filler particles [47-49]. The 

actual resistance of the filler is orders of magnitude smaller than the resistance of the nano-scale 

polymer gaps between particles; i.e. the network resistance is dominated by the quantum 

tunneling resistance across these tiny gaps. Hence a revised model is required that somehow 

accounts for the distribution of gaps rather than the volume fraction of filler. 

Several models combine percolation theory and quantum tunneling into one model [30, 

47, 48, 50, 51]. Johnson, et al. [30] combined quantum tunneling with Equation 2 by assuming 

that, for a given volume fraction of filler, there is a certain distribution of gaps between filler 

particles that can be thought of as a lattice of switches between components of the filler network. 

The number fraction of tunneling junctions in this lattice is given by 𝑄𝑄, and a critical number 

fraction of tunneling junctions (𝑄𝑄𝑐𝑐) is used in the percolation theory, rather than the filler volume 

fraction (𝜙𝜙) and critical volume fraction (𝜙𝜙𝑐𝑐). Equation 2 was used to calculate the resistivity of 

the matrix across the gap (𝜌𝜌𝑚𝑚) as a function of barrier height. 

One question that remains to be answered is whether or not the change in tunneling 

resistance with gap as the sample is strained, and the resultant overall network resistance, follows 

percolation type behavior. If the resistance change across the gaps does not follow a typical 
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percolation on/off behavior, then the behavior could be modeled with effective media theories 

instead of the GEM equation. The validity of the percolation model versus a mean field theory 

will be tested by simulating the entire resistance network; each gap will be modeled as a resistor 

and the entire network simulated as a random resistor network to find bulk resistance. 

1.2.3 Evolution of Particle Geometry 

Another important aspect of a piezoresistive model involves the change of the geometry 

between two filler particles with strain. The resistance of a particular gap has an exponential 

relationship with gap size according to Equation 3, so small changes in gap distance have a large 

impact on the overall resistance. The previous simplistic model by Johnson [30] assumed a 

random distribution of particle orientations that remained constant when the material was 

strained (i.e. the vector connecting the two closest points between a pair of neighboring particles 

did not change direction under strain);. Gap distances changed according to a Poisson contraction 

model; the gaps that aligned with the tensile direction were lengthened, while gaps in a 

perpendicular direction were shortened according to the Poisson’s ratio. Figure 1-2 shows a 

visual representation of the changes in gap distance according to orientation of the vector 

between the two closest points, relative to the tensile axis. This model will be referred to as the 

Simple Poisson’s Contraction model (or SPC) in this work.  

The SPC model would be approximately correct if the filler particles and matrix had 

similar elastic modulae, and if only small strains were assumed. However, the nickel particles are 

stiffer than the silicone matrix by several orders of magnitude, causing severe realignment of the 

particles (and affiliated gaps) under large strains. Finite element analysis (FEA) is required in 

order to better estimate the subsequent gap evolution and resultant conductivity. In addition to 

having a more complete model for evolution of particle gap with strain, another important 
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benefit of more detailed analysis is the potential to design a sensor to behave in a desired way. 

For example, a study of the relationship between initial particle alignment and resultant sensor 

behavior could motivate a sensor design with optimized particle orientation in order to achieve a 

high gauge factor, or a specific characteristic resistance. 

 

 

Figure 1-2. Visual representation of how the material changes according to Poisson’s ratio. 
Figure from Johnson [30].
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2 METHODS 

Evolution of Particle Gap Distribution from Finite Element Analysis 

2.1.1 Basic Geometry 

The finite element analysis (FEA) focuses on the geometrical evolution of two 

neighboring nanoparticles, and the subsequent modification to the gap between them with strain. 

Figure 2-1 shows a two-dimensional representation of the basic geometry used in the FEA model 

(not to scale.) The cylindrical nanoparticles are placed within a block of pure silicone. Outside of 

the silicone cell is a larger block of homogenous material that combines the properties of the 

nickel nanoparticles and silicone matrix using the law of mixtures.  

Boundary conditions were applied to the geometry of Figure 2-1 in the form of 

constraints to x-direction motion on one face, and application of a specified displacement in the 

x-direction on the opposite face as shown in Figure 2-2. The dotted line shows an example of a

set displacement. There are constraints on the left side (according to Figure 2-2) in the z-

direction as well, but the figure just shows two dimensions. 
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Figure 2-1. Two-dimensional representation of the basic geometry for FEA. The nanoparticles are 
surrounded by a small amount of silicone and then by a larger matrix of homogenous material that 
combines properties of silicone and nanoparticles. Note that figure is not to scale. 

Figure 2-2. Two-dimensional diagram of the constraints in FEA geometry. The dotted line 
represents a set displacement. 

The angle of each nanoparticle was specified with respect to the other nanoparticle and 

the tensile axis using four angles: 𝜃𝜃, 𝜙𝜙, 𝛼𝛼, 𝛽𝛽. Figure 2-3 shows a representation of how the axis 



13 

is affected by the angles and how they affect the positioning of the nanoparticles. In Figure 2-3 

the tensile direction is along the x-axis. The angles are applied to the orientation of the system as 

follows: (1) align both particles with the y-axis, one vertically above the other, with the origin 

halfway between; (2) rotate both particles about the 𝑧𝑧-axis in the right-handed sense, by angle 𝜃𝜃; 

(3) rotate the 𝑧𝑧 = 𝑧𝑧′-axis (and the two particles) about the 𝑦𝑦′-axis by 𝜙𝜙, in the right-handed 

sense; (4) rotate the bottom particle by 𝛼𝛼 about the 𝑧𝑧′′-axis, in the right-hand sense; (5) rotate the 

top particle by 𝛽𝛽 about the 𝑧𝑧′′-axis in the right-hand sense. Thus 𝜙𝜙 and 𝜃𝜃 affect the axis of the 

nanoparticles with respect to the tensile axis, and 𝛼𝛼 and 𝛽𝛽 rotate the nanoparticles within the 

coordinates defined by 𝜙𝜙 and 𝜃𝜃. 

Initial gap sizes of 2, 3.25, 4.5, and 5.75nm were used. In an actual sensor, the 

nanoparticles appear to be pushed together somehow by the manufacturing process or attraction 

to each other so that they polymer gaps between nanoparticles are very small. Without the 

nanoparticles being pushed together in some way, the gaps would be much larger. Hence, the 

thin layer of resin pushing back controls the distance between the particles. A layer of polymer 

that is one molecule thick would be approximately 1nm [30]. If both nanoparticles had an 1nm 

thick adsorbed layer, the total gap would be 2nm. Therefore, 2nm is assumed to be the smallest 

possible gap. Gaps below 2nm also have resistances close to the range of typical conductive 

materials (about 10-4 Ω ∙ m) according to Equation 1 and gaps up to 5.75nm were chosen to show 

that even larger initial gaps with resistivities that are in the range of insulative materials (about 

106 Ω ∙ m) can decrease to the conductive range with strain. These five distances were used as 

bins where any initial gap distance could be assigned and change in gap distance with strain 

calculated. Any gaps smaller than 2nm were assigned to the 2nm bin and any gaps larger than 

5.75nm were assigned to the 5.75nm bin. 
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Figure 2-3. Representation of the angles used in FEA. 𝜃𝜃 and 𝜙𝜙 define the coordinate axes of the 
fibers with respect to the tensile axes as shown in the figure. The angles 𝛼𝛼 and 𝛽𝛽 are then the 
rotations of individual nanoparticles about 𝑧𝑧′′ in the right-hand sense. 
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2.1.2 Model Details 

Finite element analysis for this work was done in ANSYS 17.2. The simulated 

nanoparticles were each cylinders with a radius of 50 nm and 1000 nm long. As stated earlier, 

although the physical character of the nanoparticles is branched, their high aspect ratio means 

that any effects of particle curvature are generally at a distance, and the assumption of local 

linearity should be sufficient. The modeled dimensions were chosen to be within typical values 

for the radius and aspect ratios. Typical radii range from 25-250nm and aspect ratios of NiNs 

range from 5-50 [52]. The silicone region had a side length 1200nm and the homogenous 

material was a block of 3600 nm side length (see Figure 2-1). All sub-volumes used element type 

SOLID187. The properties used in the FEA model for each of the materials are listed in Table 

2-1. The density and Poisson’s ratio for the homogenous material assumed a volume fraction of 

0.54% filler to simulate the behavior of the rest of the sensor. 

 

Table 2-1. Material properties used in FEA for the three different materials in Figure 2-1. 

Material Young’s Modulus 
(GPa or kg/nm2) 

Density 
(kg/nm3) 

Poisson’s Ratio 
(nm/nm) 

Nickel 
Nanoparticles 207 8.91e-12 0.31 

Silicone 1.5e-3 1.29e-21 0.45 

Homogenous 
Material 0.57 1.33e-21 0.449 

 

The mesh for all volumes used tetrahedral elements. The mesh of the nanoparticles 

divided each cylinder into sections that were about 33 nm in length. The silicone block was 

divided into elements comprised of 8nm segments and the homogenous block was divided into 



16 

10nm segments. These element sizes were chosen after a sensitivity analysis to ensure that the 

FEA model converged on a consistent prediction of behavior for the system. 

2.1.3 Change in Gap Distance 

The information required by the random resistor model to calculate sensor resistivity is 

the minimum gap between neighboring nanostrands. The output of the FEA program is the 

position of each of the nodes at each strain interval. The gap distance between the particles is 

calculated by finding the smallest distance between any node on the first nanoparticle and any 

node on the second nanoparticle. 

In order to interpolate the FEA data, the results of minimum gap vs strain were fitted to 

curves. The gaps that decreased with strain followed an approximately exponential decay; hence 

an exponential curve was fit to the data, with an assumed asymptote. The initial gap between the 

particles is governed by the presence of an adsorbed layer of silicone on the nickel; hence it was 

assumed that the minimum distance between particles was defined by the thickness of a single 

polymer molecule (assumed to be approximately 1nm [30, 53].) For gaps that increased with 

strain, the nature of the initial increase had a significant impact on the change in junction 

resistance; but the impact dropped of rapidly since the tunneling resistance increases 

exponentially with gap distance (see Equation 1). Therefore, the characteristics of the fitting 

curve were only significant at small gap increases; gaps that increased 3nm beyond the initial 

gap size had negligible conductance compared to the initial conductance . Hence, the fit used in 

this work was an inverse exponential function with an asymptote of 3nm greater than the initial 

gap distance. Figure 2-4 shows an example of the shapes of the exponential curves used to fit the 

FEA data. The dots represent the actual data from the FEA simulation and the lines are the 

exponential fits. The dotted line is FEA data from a gap with 3.25nm initial size with orientation 
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(0,0,0,0) for (𝜃𝜃, 𝜙𝜙, 𝛼𝛼, 𝛽𝛽). The dotted line approaches an asymptote of 1nm. The dotted line is 

FEA data from a gap with initial size of 3.25nm and an orientation of (0,0,60,90) for (𝜃𝜃, 𝜙𝜙, 𝛼𝛼, 𝛽𝛽). 

The dotted line approaches an asymptote of 6.25nm – 3nm bigger than the initial gap size. 

 

 

Figure 2-4. Example curve fits of FEA data for gap size versus strain. The dashed line is for a 
gap with an initial distance of 3.25nm and nanoparticle orientations of (0,0,0,0) for (𝜃𝜃, 𝜙𝜙, 𝛼𝛼, 𝛽𝛽). 
The dotted line is a gap with an initial distance of 3.25nm and nanoparticle orientations of 
(0,0,60,90) for (𝜃𝜃, 𝜙𝜙, 𝛼𝛼, 𝛽𝛽).  

 

The curve fit of the FEA data also allowed extrapolation of gap size calculation to larger 

values of strain, beyond those considered by the model. The data from the FEA model covered a 

range of 0-25% strain. Beyond 25% strain, convergence was sometimes very slow, due to the 

nonlinear nature of the problem. Furthermore, the resistance model was generally not very 

sensitive to small errors in gap determination at higher strain values, due to the asymptotic nature 

of the gap evolution curves. The typical range of the sensors is between 0-30% for 

biomechanical applications; hence, the assumed maximum strain for most purposes in this paper 

is 30%, a relatively small extrapolation beyond the model calculations. The extrapolation also 
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seems reasonable because there are physical limits on the range of the gap even at high values of 

strain, i.e. the absorbed layer thickness of the polymer being the lower constraint and material 

flexibility being the upper constraint. 

 

 Random Resistor Network 

The accuracy of the analytical model (using GEM with the SPC or FEA gap orientation 

model) was determined by creating a random resistor network. Each resistor represents a gap 

between two nanoparticles. The nodes between resistors represent the nanoparticles themselves, 

but because the resistance of the nickel is so small compared to the resistance of the polymer 

only the resistance of the gap is considered in the resistor network. Figure 2-5 shows a 

representation of the resistor network in two dimensions, although a three-dimensionally version 

was actually used. The resistors are attached to a voltage source on one side and to ground on the 

other. 

 

 

Figure 2-5. Two-dimensional example of a resistor network. The actual random resistor network 
model used a similar geometry but in three dimensions. 
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The geometry of the random resistor network in three dimensions is a cubic lattice. The 

junction gaps in a sensor will not have the same cubic configuration, but it is reasonable to 

assume that that because of the aspect ratio of the nanoparticles, each is probably connected to at 

least several other particles just as each node is connected to others in the lattice. 

The value of the resistance between each node comes from quantum tunneling theory. 

The gap distance was used as the junction gap distance (𝑠𝑠) in Equation 1 to calculate the 

resistivity of the gap. With increasing strain, the value of the gap distance (and hence the 

resistivity) changes according to FEA or SPC gap orientation models. Then the resistance (𝑅𝑅) is 

calculated from resistivity (𝜌𝜌) by using the gap distance for the length (𝑠𝑠) and the surface area 

(𝐴𝐴) of the tunneling junction (Equation 4). 

 𝑅𝑅 =
𝜌𝜌 𝑠𝑠
𝐴𝐴

 
4 

 

The surface area available for electron tunneling depends on how much of the 

nanoparticles are overlapping. If the nanoparticles are parallel, electrons can tunnel along the 

entire length of the nanoparticles, but at other orientations there is a much smaller available for 

possible tunneling. This area was calculated by approximating each nanoparticle as a rectangle 

using the length (1000nm) and half of the radius (25nm). The entire diameter of a cylinder would 

not be available surface area for electron transfer at the same time, so a value of half of the radius 

was used to approximate the spherical effect. The distance of half of the radius was used as a 

simple approximation to account for differing amounts of overlap depending on close the 

nanoparticles are to each other. The area was calculated for each nanoparticle orientation based 

on the 𝛼𝛼 and 𝛽𝛽 angles (see Figure 2-3). If the nanoparticles were perpendicular to each other, the 

area was calculated as the smallest possible area (i.e. a square with 25nm sides); if the 

nanoparticles were parallel to each other the area was the largest possible area (i.e. a 1000nm by 
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25nm rectangle). Other angles were assigned between the maximum and minimum areas using a 

linear relationship. Figure 2-6 shows examples of the area for electron transfer for different 

nanoparticle orientations. The white rectangles are the nanoparticles and the darker area is the 

surface area for electron tunneling. 

 

 

Figure 2-6. Examples of the area available for electron tunneling for different values of 𝛼𝛼 and 𝛽𝛽. 
The white rectangles are the nanoparticles and the darker areas are where the nanoparticles 
overlap and could allow electrons to tunnel. 

 

Using the calculated areas as described previously, the resistivities calculated from the 

tunneling equation (Equation 2) can be converted to resistances to be used in the random resistor 

network model. The random resistor network model calculates an overall resistance for the entire 

sensor as a whole. This resistance was then converted back into resistivity using the dimensions 

of a single nanoparticle – 1000nm in length and 50nm radius. The dimensions of the entire 

sensor were estimated by multiplying the dimensions of a single nanoparticle by the number of 

nanoparticles in the network. It was assumed that approximately half of the nanoparticles were 

aligned with the tensile axis and about half perpendicular to the tensile axis. Converting 

resistance into resistivity ultimately allowed for a better comparison with experimental data 

explained later in this work.



21 

3 RESULTS AND DISCUSSION 

Comparison of Gap Orientation Models (FEA and SPC) 

3.1.1 Orientation 

The first thing to be analyzed in this paper is the accuracy of the prediction of gap 

evolution with strain using the Simple Poisson’s Contraction model (SPC) compared with the 

more detailed FEA approach. Various geometrical distributions of filler particles were 

investigated, and the evolution of the gaps between the particles was predicted by SPC, and 

compared with results from the detailed FEA. The related change in resistance was then modeled 

for both cases, using the random network model. The difference in behavior predicted by the two 

models was investigated by exploring a range of geometries, including variations of: (1) 

orientation or angles between nanoparticles and with respect to the tensile axis; and (2) initial 

gap size distribution. For the purposes of this discussion, the data from FEA is assumed to be 

correct and the simplified SPC model is compared with the FEA yardstick. The overall resistance 

of the material was tracked with increased strain, with particular focus on whether resistance was 

predicted to increase or decrease.  

For the initial comparison of the models with differing nanoparticle orientations, the 

initial gap distribution was a random distribution with values evenly distributed between 3-7nm. 

The nanoparticles were assigned angles randomly distributed on a sphere for the orientation with 
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respect to the tensile axis (𝜃𝜃 and 𝜙𝜙), and also for the rotation of each nanoparticle (𝛼𝛼 and 𝛽𝛽). See 

Figure 2-3 for a detailed explanation of the angles. In this case, SPC predicted a change in 

resistance comparable in magnitude and slope to FEA. As seen in Figure 3-1, both gap 

orientation models predicted that resistance would decrease with strain, matching typical 

experimental results of the sensors. While there are discrepancies in the actual resistivity values, 

the trends are similar. This suggests that SPC may sufficient for modeling the conductive 

behavior of such materials, if only rough trends are required, when the particles are randomly 

oriented. 

 

 

Figure 3-1. Resistivity versus strain for FEA and SPC. The angles for this test were randomly 
selected on a sphere and the same angles and initial gap sizes were used for both FEA and SPC. 

 

The second example of potential nanoparticle geometry examined the case where particle 

orientations were restricted to a certain range. Using angles only within a certain range is 

representative of aligning the nanoparticles within the sensor during the manufacturing process. 
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The rotations of the nanoparticles (𝛼𝛼 and 𝛽𝛽 in Figure 2-3), which are represented in FEA but not 

in SPC, appeared to have a significant impact on overall resistivity. One specific case where SPC 

differed from FEA occurred when all nanoparticles were perpendicular to the tensile direction, 

i.e. 𝜃𝜃 equal to 0° and 𝜙𝜙 equal to 90°±15° (see Figure 2-3). SPC predicted that all gaps would 

increase, causing the overall resistance to increase with strain. In FEA, most of the orientations 

had gap sizes that increased with strain, however, distributions of orientations where 𝛼𝛼 and 𝛽𝛽 

were between 60-90° had gaps that decreased with strain causing the overall resistivity to 

decrease with strain (see Figure 3-2). Even small numbers of gaps that decrease in resistivity can 

have a big impact on overall resistivity. 

 

 

Figure 3-2. Resistance versus strain for FEA and SPC where angles are restricted to within 15° 
of the tensile axis and 𝛼𝛼 and 𝛽𝛽 in FEA are between 60-90°. SPC predicts a different trend 
between strain and resistance than FEA in this case but is similar in all other cases. 
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In order to understand more specifically which orientations of particles behaved 

differently in the FEA vs the SPC models, the azimuthal (𝜃𝜃) angle (see Figure 2-3) was varied 

for a particular strain (10% tensile strain), with all gaps set to the same initial value (5nm). 

Figure 3-3 and Figure 3-4 show how the distance between nanoparticles (or gap size) changes 

with strain, for different angles (i.e. particle alignments with the tensile axis). The angles 𝜃𝜃 and 

𝜙𝜙 were combined into a single angle to match the variables defined in the SPC model [30]. The 

variance in the boxplot for the FEA data comes from the variations of the additional angles 

defined in the FEA data, i.e. the rotation of each of the nanoparticles or 𝛼𝛼 and 𝛽𝛽; since the SPC 

model does not include these additional variables, there is no variance in the predicted result 

from this model. In each box of the boxplot, the middle line represents the median and the top 

and bottom lines represent the 75th and 25th percentiles, respectively. Outliers are shown by the 

red crosses. The difference between FEA and SPC is more pronounced at larger initial gap 

distances, leading to the selection of the relatively large initial gap size of 5nm for this 

comparison. 

Because of the nature of the tunneling phenomenon (Equation 2), the smaller gaps 

correlate with large changes in resistance. When gaps are smaller than 2-3nm, the resistivity 

drops dramatically and the gap can conduct electricity. With the SPC model (Figure 3-4), there 

are no gaps that reach this range after 10% strain; the most significant decrease is a change in 

gap from 5nm to 4.75nm when the orientation is 90° from the tensile axis. On the other hand, the 

FEA data (Figure 3-3) predicts that some gaps at every orientation come close to the 2-3nm 

(highly conductive) range. Although it is mostly outliers in the boxplot that become conductive, 

even having a small number of conductive gaps has a large impact on overall resistivity. 
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Figure 3-3. Boxplot showing final gap size (at 10% strain) versus angle between nanoparticles 
for data from FEA. 

 

 

Figure 3-4. Change in gap size at 10% strain versus angle between nanoparticles for SPC. 
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Figure 3-3 and Figure 3-4 show that the rotations of nanoparticles (𝛼𝛼 and 𝛽𝛽) are 

important variables to include the full behavior of nanoparticles in order for a model to be 

accurate. When the particles are randomly oriented, the SPC representation may be incorrect for 

specific orientations, but the error averages out, resulting in approximately trends of resistivity vs 

strain (Figure 3-1); but for aligned particles the error is magnified (Figure 3-2). 

3.1.2 Initial Gap Distribution 

Another comparison between FEA and SPC tested the impact of different initial gap 

distributions on the overall resistivity evolution with strain. The different distributions tested 

were: uniform random, normal, delta, and Weibull. Johnson [31] used a Weibull distribution for 

his model using SPC, noting that others have used Weibull distributions to represent particle size 

distribution. Figure 3-5 shows the impact of size distribution on overall sensor resistivity. The 

angles of the nanoparticles in Figure 3-5 were again randomly distributed across a sphere. The 

impact was so significant that the data is best represented on a log scale for resistivity. All 

distributions used a mean of 5nm and a standard deviation (where applicable) of 0.67nm. The 

selected standard deviation ensured that almost all gaps (99.7%) were within 2nm of the mean. 

The same initial gap distribution and sizes were used for both plots, so the initial 

resistivities start at the same values. While both the FEA and SPC show downward trends in 

resistivity, the resistivity decreases more sharply with strain with FEA. The sharper decrease in 

FEA makes sense because the FEA data predicts more gaps decreasing to a conductive range 

even at larger initial gap distances. When there are more individual resistivities in the random 

resistor network that are within a conductive range it will decrease the overall resistivity. 
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 (a) (b) 
Figure 3-5. Evidence of the impact of varying initial gap size distributions in (a) FEA data and 
(b) SPC. Note that both graphs are semi-logarithmic plots with the y-axis on a log scale. 

 

Figure 3-6 shows another comparison using FEA data where the means of each of the 

distributions was altered so that the initial resistivity was the same. The mean of the delta 

distribution was kept the same as in Figure 3-5 (3.0nm) and the means of the other distributions 

were changed to match initial resistivity. The means used were: 4.5nm for the uniform random 

distribution, 4.0nm for the normal distribution, 3.0nm for the delta distribution, and 3.4nm for 

the Weibull distribution. All of the distributions follow the same trend (resistivity decreases with 

strain) but the shapes are different as well as the magnitude of the change in resistivity with 

strain. Figure 3-6 emphasizes the different responses to strain for the different distributions, even 

if each initial gap size distribution starts with the same initial resistivity. It seems clear that the 

initial gap size distribution used in the random resistor network has a significant impact on the 

resistivity versus strain behavior. 
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Figure 3-6. The means of the distributions were altered to start at the same initial resistivity. All 
distributions predict that resistivity decreases with strain, but there are major differences between 
different distributions. The means used were 4.5nm for uniform random, 4.0nm for normal, 3.0 
nm for delta, and 3.4nm for Weibull. 

 

The trends in the overall resistivities with strain for the different initial gap distributions 

correlates with what fraction of the initial gaps are small (i.e. around 2-3 nm). Figure 3-7 shows 

probability density functions for each of the distributions. The uniform random distribution has 

the highest number of initial gaps within the highly conductive 2-3nm range, so the overall 

resistivity is lower than any other distribution in Figure 3-5. Conversely, the delta function 

assigns none of the initial gaps to be in this 2-3nm range, and hence the overall resistivity is 

orders of magnitude higher than the other distributions. 

 



29 

 

Figure 3-7. Probability density functions of the distributions used in Figure 3-5. 

 

The value of the mean for a given distribution also has a large impact on resistivity. 

Figure 3-8 shows how resistivity changes for different values of initial mean gap. All initial gap 

size distributions in Figure 3-8 use normal distributions with a standard deviation of 0.67nm. 

Again, the graphs have log scales for resistivity. 

 

 
 (a) (b) 

Figure 3-8. Impact of changing the mean in a normal distribution for (a) FEA and (b) SPC. 
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In summary, both the initial gap size distribution and the mean of that distribution 

significantly impact how the resistivity changes with strain. The differences between different 

mean gaps, and different types of distribution, can cause changes in resistivity of several orders 

of magnitude. The initial gap distributions that assign more gaps to the highly conductive range 

(smaller than about 2-3nm) have lower initial resistivities. Similarly, the smaller the value of the 

mean of the distribution, the more gaps are closer to the conductive range and the lower the 

initial resistivity. The sensitivity of resistivity to initial gap and particle orientation distribution 

suggests the potential to select variables for optimal response in a given sensor application. 

 Percolation Theory 

The percolative behavior of this material with respect to volume fraction of filler has 

been well-established. As a critical volume fraction (the percolation threshold) of filler is 

reached, the conductivity increases rapidly as conductive pathways are formed across the sample. 

One could think about this in terms of an initial empty network spanning the polymer sample. As 

the volume fraction of filler increases, more connections in the network are ‘switched on’ by the 

presence of the filler. Eventually, enough connections are formed that a continuous pathway 

spans the sample, and conductivity starts to rise significantly. 

Similarly, for the strained sample, the hypothetical empty network represents the gaps 

between the particles. As gaps close under Poisson contraction, the conductivity increases 

exponential, according to the quantum tunneling model. It has been hypothesized that this 

behavior results in a percolation type behavior – i.e. at a certain strain, the number of ‘closed’ 

gaps (gaps that are small enough to result in high conductivity – i.e. in the range of 2-3nm or 

less) reaches a critical fraction, and conductive paths form, rapidly increasing conductivity. If the 
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system follows percolation type behavior, there should be the typical s-curve for the conductance 

increase with strain. 

Figure 3-9 and Figure 3-10 show how conductance is affected by gap size and strain. 

These plots should show the typical s-curve if percolation behavior plays a prominent role. Gaps 

were considered ‘conductive’ with a distance of 2nm or smaller for these figures. Both figures 

used the random resistor network with angles randomly distributed along a sphere and a uniform 

random distribution for the initial gap size with values between 2-7nm. The strain was between 

0-0.3, which is a typical range of use for the conductive polymer sensors. As expected for a 

percolation-governed system, the conductance increases significantly once the fraction of gaps 

within the conductive range passes a certain critical value (see Figure 3-9).  Although the 

fraction of conductive gaps does not increase beyond 10 percent, the conductivity rises from 

almost zero to nearly 15 Siemens. It is also important to note that there is a clear s-curve in 

Figure 3-9 which leads to percolation being an important part to describe this phenomenon. 

Figure 3-10 shows conductance versus strain for two different random variations of the 

same model. The plot on the left shows a slight s-curve starting at almost zero strain which 

suggests that the behavior follows percolation theory. However, the plot on the right does not 

show a clear s-curve. Figure 3-10 shows two examples of random orientations in the random 

resistor network model. While neither curve is a strong s-curve, it still does not rule out 

percolation theory as a necessary piece to describe the behavior of nanocomposite sensors. 
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Figure 3-9. Conductance versus the fraction of gaps with a distance less than 2nm. The 
conductance increases as more gaps become conductive, as expected. 

 

 

Figure 3-10. Conductance versus strain on a log plot. If this resistor network system follows 
percolative behavior, these graphs should show an s-curve. The plot on the left shows slight s-
curve behavior around 0 strain, but not enough to conclude that percolation theory is necessary. 

 

In order to further evaluate the relevance of percolation theory in the electrical behavior 

of the sensors, the resistivity-strain behavior of the random resistor network was compared to the 

generalized effective medium (GEM) equation (see Equation 2) and the effective medium (EM) 

equation. The EM equation removes the percolation theory parts of the GEM, as shown in 
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Equation 5, where 𝜙𝜙 is the volume fraction of filler, 𝜎𝜎𝑚𝑚 is the conductivity of the neat polymer 

matrix, 𝜎𝜎𝑓𝑓 is the conductivity of the filler material, 𝜎𝜎𝑏𝑏 is the conductivity of the bulk material, 

and 𝑛𝑛 is the dimensionality (3D for the sensor material).  

 
(1 − 𝜙𝜙)

(𝜎𝜎𝑚𝑚 − 𝜎𝜎𝑏𝑏)
𝜎𝜎𝑚𝑚 + (𝑛𝑛 − 1)𝜎𝜎𝑏𝑏

+ 𝜙𝜙
�𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑏𝑏�

𝜎𝜎𝑓𝑓 + (𝑛𝑛 − 1)𝜎𝜎𝑏𝑏
= 0 

5 

 

Figure 3-11 shows the random resistor network (RRN) compared to the GEM and EM. 

The random resistor network in this figure used a delta function for the initial gap distribution 

with a value of 3nm. The values for variables in the GEM/EM equations were taken from 

Johnson [21] or fit with a least squares approach and are shown in Table 3-1. Figure 3-11 shows 

that the GEM equation fits much more closely to the RRN than the EM equation. This suggests 

that the piezoresistive effects in the RRN that are not fully captured by simply using the EM 

equation and confirms that the conductance-strain relationship does follow percolation type 

behavior. 

 

Table 3-1. Values for the generalized effective medium (GEM) and 
 effective medium (EM) equations used in Figure 3-11. See 

 Equation 2 for GEM and Equation 5 for EM. 

Variable Value Source 

𝝈𝝈𝒎𝒎 1.11e-8 Least Squares Fit 

𝝈𝝈𝒇𝒇 2.72e2 [21] 

𝒔𝒔 10.37 [21] 

𝒕𝒕 1.72 [21] 

𝝓𝝓𝒄𝒄 0.0045 [21] 
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Figure 3-11. Resistivity-strain curves for the random resistor network (RRN) compared to the 
generalized effective medium (GEM) equation with percolation and the effective medium (EM) 
equation without percolation theory. 

 

 Experimental Verification 

The random resistor network (RRN) was validated by comparing the model to resistivity 

data of an actual nanocomposite sensor. The sensor tested was made of Sylgard 184 with 15% 

nickel nanoparticles by volume and the resistivity was measured for values of strain between 0 

and 60 percent. The dots in Figure 3-12 show the experimental data and the lines show the RRN 

model using FEA and SPC. The overall shape of the RRN model changes significantly ased on 

the parameters input to the model and the random arrangement of resistances within the network. 

Even when running the same parameters for nanoparticle angles and initial gap size distribution, 

the overall shape of the resistivity-strain curve will vary because different resistors end up in 

different locations. The curve in Figure 3-12 also used a cut-off for the minimum gap distance as 

1nm rather than 2nm for the RRN model as well as using a linear extrapolation for the FEA data 
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rather than the exponential fit described previously. The FEA curve in Figure 3-12 represents a 

best fit with the smallest square error for the RRN model with FEA when compared with the 

experimental data. The RRN model with SPC is shown as a comparison using the same 

parameters including the number of resistors, angles assigned, and initial gap size distribution. 

Figure 3-12 used angles for nanoparticle orientation that were randomly distributed along 

a sphere in the RRN. In Figure 3-12, the distribution for initial gap sizes was a Weibull 

distribution with a scaling parameter of 3.5nm and a shape parameter of 12.36 (the same value 

used in Johnson [30]). The mean for the Weibull distribution seems reasonable because it puts 

initial gap sizes between 1.5nm and 4.2nm. Having one molecule of polymer between two 

nanoparticles would be 1nm, but there are most likely some gaps that have more than just one 

molecule between the two nanoparticles. The range of gap sizes with this Weibull distribution 

seems representative of what could actually happen with polymer gaps between nanoparticles. 

 

 

Figure 3-12. Resistivity-strain comparison between experimental data and the random resistor 
network (RRN) for the best fit. The RRN used angles for nanoparticle orientation randomly 
distributed along a sphere and a Weibull distribution with a mean of 3.5nm for the initial gap size 
distribution and a shape parameter of 12.36 (see [30]). 
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Figure 3-12 compares the performance of the FEA-based gap evolution model with the 

SPC model for a real sensor. For both models, the alignment and gap distribution was allowed to 

vary in order to line up with the real data. But only the FEA model was able to find a 

nanoparticle arrangement that resulted in a close match between predicted and actual resistivity.  

As noted previously (see Figure 3-3 and Figure 3-4), the FEA model predicts larger decreases in 

gap size for a few junctions, even when the relatively large starting gap of 5nm is chosen; the 

SPC model predicts a much more homogeneous change in gap size. 

 Design Problem – Gauge Factor 

As shown earlier, the orientation of nanoparticles can have a significant impact on 

resistivity change with strain. From a design perspective, it would be helpful to know, then, what 

the best orientation of nanoparticles would be to get the greatest gauge factor, or change in 

resistivity for a certain change in strain. The orientations tested were (1) random selection of 

rotations (defined by θ and φ) on the sphere, (2) selecting initial nanoparticle axes (𝑦𝑦’’ in Figure 

2-3) within ±15° of parallel to the tensile axis, (3) selecting initial nanoparticle axes within ±45° 

from the tensile axis, and (4) selecting initial nanoparticle axes within ±15° of perpendicular to 

the tensile axis. Within these orientation definitions, varying angles for the rotations of 

individual nanoparticles (defined by α and β) were also assumed, viz. random rotations, rotations 

between 0-30°, or rotations between 60-90°.  
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Figure 3-13. Resistivity vs strain for random rotations described by 𝜃𝜃 and 𝜙𝜙, but 𝛼𝛼 and 𝛽𝛽 lie 
between 0-30o (the particles are aligned relative to each other). 

 

The highest gauge factor, and largest change in resistivity, came from using all possible 

orientations for the nanoparticle axes (θ  and φ randomly distributed along a sphere) but 

restricting the rotations of the nanoparticles to between 0-30° (i.e. by aligning the nanoparticles 

relative to each other, but not relative to the global frame). Allowing 𝛼𝛼 and 𝛽𝛽 to be any possible 

values (rather than the range between 0-30°) decreased the gauge factor by 0.5-1. The gauge 

factor for the example in Figure 3-13 is 3. 

 Design Problem – Initial Rise in Resistivity 

One phenomenon that happens in the silicone-nickel nanoparticle sensors studied in related work 

[54] is an initial rise in resistance at small values of strain. Figure 3-14 shows a curve with the 

characteristic initial rise in resistivity using the RRN model with FEA. The curve in Figure 3-14 

used angles for nanoparticle orientation randomly distributed along a sphere and a Weibull 

distribution for initial gap sizes with a scaling parameter of 7nm and a shaping parameter of 
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12.36. The initial spike in resistivity happened with other ranges for the orientation of 

nanoparticles such as nanoparticles axes within ±45° or ±15°of the tensile axis. The spike 

happened regardless of the initial gap distribution or mean used, although using a large value for 

the mean value of initial gap caused the initial resistance rise to be more pronounced. It is also 

important to note that not every resistivity-strain curve from the RRN model shows the initial 

rise in resistivity. Most of the figures used in this work were chosen because they did not show 

the initial spike in resistivity, although seeing the spike in resistivity was more frequent in results 

than not.  

 

 

Figure 3-14. A resistivity-strain curve that shows the characteristic initial increase in resistivity 
seen in experimental data from sensors. This curve used a Weibull distribution with a scaling 
parameter of 7nm and a shaping parameter of 12.36. 

 

While it is a good sign that the RRN model with FEA can replicate the initial increase in 

resistivity, it would be better to find a way to get rid of this effect. Different ranges of angles 

between nanoparticles were tested to attempt to find a particular range that would eliminate the 
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initial rise in resistance. When 𝛼𝛼 and 𝛽𝛽 were restricted to be within 0-30°, 𝜃𝜃 restricted within 

±15° of the tensile axis, and 𝜙𝜙 within ±15° of 90° (see Figure 2-3), the initial spike in resistivity 

disappeared. Figure 3-15 shows an example of one curve with the described restriction in angles.  

 

 

Figure 3-15. Resistivity-strain curve where angles between nanoparticles are restricted to 0-30° 
for 𝛼𝛼 and 𝛽𝛽, ±15° of parallel to the tensile axis for 𝜃𝜃, and between 75-90° for 𝜙𝜙. The initial spike 
in resistance was eliminated when the angles were restricted to the ranges described. 

 

The fact that these angle restrictions eliminated the initial increase in resistivity makes 

sense since all gaps between nanoparticles at these orientations should decrease with strain 

according to Poisson’s contraction (see Figure 2-3). Hence, it seems that if there were a way to 

restrict the angles between nanoparticles to a particular range of desired values that it would be 

possible to remove the unwanted initial spike in resistivity at small values of strain. 
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4 SUMMARY AND CONCLUSION 

The electrical behavior under strain for a nanocomposite sensor was modeled using a 

random resistor network where the resistance of each polymer gap between two nanoparticles 

was found using quantum tunneling. The two questions that this model sought to answer were: 

(1) Does a simple Poisson contraction model of the evolution of the gap between nanoparticles

adequately capture the physical behavior in order to accurately predict the resistance-strain 

relationship of the overall sensor, or is a more complex model required? and (2) Is the 

piezoresistivity in the sensor best modeled with percolation theory or is a standard effective 

medium type approach sufficient? 

In order to analyze the evolution of the gap between nanoparticles, two models were 

compared: Finite Element Analysis (FEA) and Simple Poisson’s Contraction (SPC). The FEA 

data modeled each nanoparticle as a cylinder in a silicone matrix. While the cylindrical 

assumption may not be totally physically accurate, the high aspect ratio of the particles means 

that any effects from particle curvature are at a distance. There may also be effects from the 

branched nature of the nanoparticles, but these branching effects would show up in terms of 

relative alignment of the neighboring nanoparticles. SPC assumed that the nanoparticles and 

matrix could be modeled as a homogenous material and applied Poisson’s contraction to predict 

gap change with global strain. Despite the simpler approach, SPC proved to be effective at 

capturing the general strain-resistivity behavior for a typical case where particles were randomly 
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oriented. In more specialized cases (e.g. aligning nanoparticles), SPC diverges significant from 

actual behavior modeled using FEA; for example, SPC predicts that the overall resistivity would 

increase in various scenarios where FEA shows that it actually decreases. The difference 

between SPC and FEA stems from the fact that SPC only considers the orientation of the shortest 

vector between the particles (given by θ and φ ), without considering the relative orientations of 

the particles (with respect to the tensile direction, for example). FEA demonstrates that a subset 

of gaps decreases with strain for a range of θ and φ orientations, when the SPC would only 

predict gap increase for many of these cases. Overall FEA predicts that gaps become 

‘conductive’ (i.e. decrease to around 2nm) from larger initial gap sizes and for a broader number 

of orientations, compared with SPC.  

FEA provided interesting insight into the behavior of nanoparticles at specific 

orientations with respect to each other and the tensile axis. FEA showed that at large values of 

initial gap distance for certain orientations of nanoparticles, the polymer gap will decrease 

enough for the gap to be conductive (less than about 2nm). The evolution of gap distances with 

strain from SPC showed a much more subtle change in gap with strain. The mean value of the 

initial gap distribution impacts the initial value of the overall resistivity. A lower value for the 

mean assigns more initial gaps closer to the conductive region which decreases the overall 

resistivity. The nature of the initial distribution influences the shape of the resistivity-strain 

curve, as well as the initial value for resistivity. The order from least to greatest initial resistivity 

for different distributions was uniform random, normal, Weibull, delta. The differences in initial 

resistivity between different distributions directly relates to the number of gaps that start in the 

conductive region. Because the overall resistivity is so sensitive to the initial gap distribution, the 

ability to empirically determine the general distribution of initial gap sizes would greatly 
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enhance the accuracy of the model. There are obviously difficulties with this idea, such as the 

nano-size scale. Given that it would be a huge effort to extract nano-scale measurement of gap 

across a large number of junctions (if it were even possible), the more accurate FEA / RRN 

model may allow the distribution to be inferred by comparing actual behavior to modeled 

behavior. 

 The detailed understanding of how orientation affects gap size available with FEA 

makes it possible to design a sensor with desired characteristics. The highest gauge factor can be 

achieved by using all possible orientations for nanoparticles, i.e. angles randomly distributed 

along a sphere. The initial increase in resistivity seen in real sensors seen in real sensors can be 

removed by assuming particle geometry where 𝛼𝛼 and 𝛽𝛽 were restricted to be within 0-30°, 𝜃𝜃 

restricted within ±15° of the tensile axis, and 𝜙𝜙 within ±15° of 90°. This range of orientation for 

the nanoparticles should have all gaps decrease according to Poisson’s contraction, so it follows 

that the overall resistivity would decrease. 

Another question answered by this study related to whether the material response of the 

sensor followed percolation theory. The conductance-strain relationship showed a characteristic 

s-curve expected in percolative system. There was also an s-curve when plotting conductance 

versus the fraction of conductive gaps. Finally, the generalized effective medium equation 

(GEM) was found to fit the random resistor network much more closely than the effective 

medium equation. From these findings, it can be concluded that the system does follow a 

percolation response, and, therefore, modeling the piezoresistivity with percolation theory 

accurately models the material response.  
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