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ABSTRACT

Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles

Jenna Elisabeth Newcomb
Department of Mechanical Engineering, BYU

Master of Science

An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of
searching a specified area than a single UAV or piloted plane. There are a variety of factors that
affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and
communication had on the swarm search performance. We used non-dimensionalization so the
results can be applied to any domain size with any type of vehicle. We found that endurance was
the most important factor. Vehicles with good endurance sensed approximately 90% to 100% of
the grid, even when other properties were lacking. If the vehicles lacked endurance, the amount of
area the vehicles could sense at a given time step became more important and 10% more of the grid
was sensed with the increase in sensed area. The maneuverability of the vehicles was measured as
the vehicles’ radii of turn compared to the search domain size. The maneuverability mattered the
most in the middle-range endurance cases. In some cases 30% more of the grid was searched with
improving vehicle maneuverability. In addition, we also examined four communication cases with
different amounts of information regarding vehicle location. We found communication increased
search performance by at least 6.3%. However, increasing the amount of information only changed
the performance by 2.3%. We also studied the impact the range of vehicle communication had on
search performance. We found that simulations benefited most from increasing the communication
range when the amount of area sensed at a given time step was small and the vehicles had good
maneuverability. We also extended the optimization to a multi-objective process with the inclu-
sion of target tracking. We analyzed how the different weightings of the objectives affected the
performance outcomes. We found that target tracking performance dramatically changes based on
the given weighting of each objective and saw an increase of approximately 52%. However, the
amount of the grid that was sensed only dropped by approximately 10%.

Keywords: trajectory optimization, UAV swarms, design optimization, communication
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CHAPTER 1. BACKGROUND

Unmanned Aerial Vehicles are increasing in popularity due to the recent improvements in

weight, cost, and operational complexity. Fig. 1.1 shows the increase in millions of dollars of the

Commercial UAV market 1.

Figure 1.1: The size of the UAV market by million of USD over one decade.

The global UAV market is estimated to have a compound annual growth rate of 17%1 and

many companies are using UAVs as means to complete tasks more efficiently. New uses include

delivery, surveillance, law enforcement, environmental studies, infrastructure, and disaster man-

agement. Because of this, new technology and research is needed to satisfy the rapidly expanding

market.

For this research, we explored aerial vehicle swarms and multi-objective missions. There

are many characteristics that can affect the performance of a large swarm. We analyzed vehicle

properties, communication, and multi-objective weighting to determine the effect each had on

swarm performance.

1https://www.grandviewresearch.com/industry-analysis/commercial-uav-market
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1.1 Mission-Based Design

We analyzed different mission parameters to determine the respective effect each has on

swarm diversity. These parameters included the endurance of the aircraft, sensing properties, ve-

hicle agility, and communication distance. We used nondimensionalization, so the results are

applicable and generalizable to a wide range of situations.

Many people have created trajectory optimization methods subject to dynamic vehicle con-

straints. Sujit and Ghose created a path optimization with vehicle endurance as a constraint [1].

They only allowed the UAVs to travel a specified amount before needing to return to refuel. Blasi,

Barbato, and Mattei used particle swarm optimization to optimize flight paths subject to specific

operational constraints including minimum turning radius, range and endurance, maximum climb-

ing rate, maximum payload capacity, and maximum and minimum speed [2].

Nigma, Bieniawsi, Kroo, and Vian account for dynamic constraints in their proposed con-

trol policy [3]. Using a 3 degree of freedom motion model, they analyzed how dynamics affected

the performance of the UAVs. Their performance metric was the cell age based on when the cell

was last explored. Their analysis showed that when using the Actual Distance Policy, where the

actual distances reflect the dynamic constraints, the maximum cell ages increased from 79 to 106.6

when increasing the turning radius from 1.67 to 5 m and increasing CLmax from 1.03 to 1.67. Al-

though Nigma, Bieniawsi, Kroo, and Vian looked into how dynamics affected search performance,

their primary motivation was to compare the Actual Distance Policy to the Euclidean Distance

Policy under dynamic constraints.

Much of the published research, including the above, sought to find a way to optimize paths

with vehicle operational constraints, whereas we wanted to know how changing these operational

properties affect search performance. In essence, we were not concerned with how to optimize

paths constrained to a certain vehicle but how to design or choose a vehicle which is optimal for

a given search mission. Our end goal was to know what operational properties affected the search

performance most significantly. Therefore, we non-dimensionalized the operational properties to

find the impact they had on mission performance. The results are generalizable and applicable to

a wide range of domains.
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1.2 Communication Effects

One question that arises when considering vehicle coordination is the amount of informa-

tion shared between vehicles. When operating simultaneously, aerial vehicles must communicate

to remain dispersed and accomplish missions. Without communication, an UAV swarm will oper-

ate inefficiently. However, noise and network connectivity interfere with vehicle communication.

In addition, the amount of information shared between swarm members increases computational

cost, which is especially detrimental to vehicles flying real-time. It is important to distinguish how

shared information alters the vehicles’ chosen paths because of the dramatic effect different types

of information can have on mission completion. In addition, some shared information may only

have a minimal effect and by eliminating this information computational costs are reduced.

Researchers have explored UAV swarm path planning and mission assignment [4–13], and

how vehicles communicate [14,15]. However, little has been done to change and analyze different

types or amounts of communication. Waharte and Rigoni compared the effect sharing data has on

a search and rescue mission through analyzing the results of different optimization methods [16].

Their goal was to minimize the time required for the UAVs to locate a target. Partially observable

Markov decision process based, potential-based, and greedy processes were used for the search

algorithms. The study concluded that the partially observable Markov decision process and look

ahead methods were the most effective when it came to reducing the time to find the target. These

results showed that the most suitable paths came from methods in which vehicles shared and used

information about predicted locations of a target. Although these methods were effective they

were computationally expensive. This study was primarily focused on the effectiveness of the

optimization methods. Some methods shared data and others did not. Since communication was

not the only varying factor, it is not known how much the communication contributed to increasing

the swarm’s performance. For part of this research, we examined how both the type and amount of

information shared between vehicles affects swarm performance.

Krieger and Billeter used a group of robots to gather food items for energy [17]. They

utilized a decentralized task distribution method based on insect swarm behavior. They performed

the experiment both with no coordination and with a simple coordination approach in which robots

could guide other members to the discovered food source. In the end, they concluded that coordi-

nated communication increased total group performance by 13%. Arkin, Balch, and Nitz showed

3



that communication can increase performance and productivity in a robotic swarm [18]. They as-

sessed task completion for two scenarios: the first with no communication, and the second with

a collective memory where robots can share and access information pertaining to the other mem-

bers. If a robot was unable to locate a goal, it used the collective memory to find a robot that had

found a goal. They measured performance by the average distance traveled by the robots. The

results showed that communication decreases the overall total distance traveled. The number of

steps decreased, showing that communication allowed more efficient behavior.

Trianni and Dorigo used common behavior strategies found in insect colonies to create

swarm algorithms [19]. They analyzed both direct and indirect communication as well as direct

interactions for a group of s-bots attempting to avoid holes in a specified area. They concluded that

using direct communication resulted in far fewer hole encounters. This study demonstrated that

for a group of robots with a common goal, communication is necessary.

These studies do focus on the effect of communication alone; however, they are all-or-

nothing approaches: the robots performed either with, or without, communication. There was no

testing to determine how much information needed to be shared. In contrast, we tested a range of

communication amounts to determine the increase in group performance. As a result, we likewise

know that communication does improve search performance and how much different amounts

improve performance. Therefore, we cannot only show the importance of information sharing, but

we can limit the information to that which is necessary. In addition, we coupled communication

with design. We ran two communication cases with different communication ranges and a no

communication case across a range of vehicle properties. As a result, we can conclude based

on the vehicle type and mission characteristics how much communication will benefit the swarm

performance.

1.3 Vehicle Diversity

Previous work has been performed with heterogeneous swarms. Modified genetic algo-

rithms, Ant-Colony, and Artificial Potential Function based strategies have been used to assign

vehicle tasks within the diversified swarms [5, 8]. Many have explored the concept of superagents

where a more sophisticated vehicle oversees and guides the actions of other swarm members [4–6].

4



In addition Howard, Parker, and Sukhatme have found that the system cost was reduced by close

to an order of magnitude by using a heterogeneous swarm.

There are different types of aerial vehicles, each with its own unique set of capabilities.

Using a non-homogeneous swarm increases the effectiveness of a searching and tracking mission

through utilization of these differing capabilities. For example, some vehicles are able to obtain a

faster flight speed. We created vehicle diversity through varying the velocities at which vehicles

can fly. We added velocity as a design variable subject to upper and lower bounds. As a result, the

optimization determines what velocity is best suited for that vehicle at that particular moment. This

enhanced performance because vehicles could decrease or increase velocity to maintain course

with a target or change velocity dependent on the location of search boundaries.
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CHAPTER 2. FORMULATION OF THE PATH OPTIMIZATION

The end goal of this research was to determine how to coordinate a group of vehicles to best

search a grid space. We analyzed how both communication and swarm properties affected mission

completion. To achieve maximum performance, it was important to have a way for vehicles to

use available information to make the best decision possible about where to travel. We created a

process in which vehicles optimize their paths based on their current location and the predicted

location of vehicles in close proximity. A high-level overview of this process is shown below. The

number of time steps of the simulation is nt , the number of vehicles is Nv, and ni is the number of

initial starting locations for each optimization.

Algorithm 1 Path Optimization
1: procedure PATH OPTIMIZATION

2: Initialize Locations
3: for i in nt do
4: for j in Nv do
5: for k in ni do
6: Optimize future location
7: end for
8: Compare objective outputs
9: Determine roll angles and velocity

10: end for
11: Propagate vehicles
12: Propagate targets
13: Share information
14: end for
15: Calculate performance
16: end procedure

We began the process with the initialization of the vehicles and grid. We set the grid area

as a square based on the user-directed domain length, L. Since searching a grid was one of the

missions our research aimed to address, we needed a way to determine if the vehicles searched all

6



sections of the grid. Thus in the domain area, we created grid points that were evenly spaced by a

distance of lc. We later used these points in the reward function. In addition, we spaced vehicles

evenly through the grid area. We set the number of vehicles equal to a perfect square so there could

be a symmetric distribution of vehicles. We set the heading angle of each vehicle to a random value

around the unit circle. See section 2.1 for more information on the initialization process.

After the initialization, we optimized each vehicle’s trajectory with ni different starting

trajectories. The trajectories consisted of nroll roll angles. We used gradient-based optimization to

determine the optimal trajectory and velocity of each vehicle based on current information from

other vehicles. In addition, we used a receding horizon controller to continuously re-plan the

vehicle path. After the path was planned, the vehicles proceeded only one step, using the first

optimized roll angle. We then re-optimized the path with new available information. See section

2.2 for more information on the optimization process. To simulate the flight of a UAV, we used a

simple coordinated turn model to predict motion based on the input roll angles and velocity. See

Sec. 2.3 for a more in-depth look at the motion model.

For the objective function used in the optimization, we summed all the grid point values

for each predicted path based on the vehicle’s predicted location. Rather than provide a constant

reward value across the point, we used a Gaussian distribution to allow the reward to vary con-

tinuously. As a result of this continuous reward, we could use gradient-based optimization. The

realized reward was the largest value obtained for each point. Later, we added target tracking to

create a multi-objective problem. The target rewards were based on the same Gaussian distribution

as the grid cell reward. Sec. 2.4 and section 2.5 give more information on the objective function.

Gradient-based optimization works well with convex problems and can be extended to non-

convex problems. If the objective function is noisy or discontinuous, a local minimum or maximum

may be found instead of the global minimum or maximum. To increase the likelihood of finding

a global maximum, we used a multistart. In other words, we used different initial guesses, ni, for

the roll angles and velocity for the optimization function. We then compared the results of the

different guesses to determine which roll angles and velocity to use. Section 2.6 discusses the

multistart more in-depth.

Since the convergence time of the optimization scales with the number of design variables,

we used a decentralized approach where we determined each vehicle’s path separately based on

7



available information. In a centralized case, we would determine every roll angle and velocity in

unison which is beneficial for swarm distribution and increasing search performance. However,

centralized approaches are extremely computationally expensive due to the large number of design

variables. As a result, we simulated the decentralized movement by allowing the optimization for

each vehicle to finish before we propagated the vehicles forward and simulated communication.

After, we simulated communication through sharing the predicted paths of the vehicles

from the previous time step. We performed calculations to determine which vehicles were within

each vehicle’s communication radius, Rc. If two vehicles were within the communication radius,

we simulated communication by sharing the predicted grid point values from the vehicles’ future

planned paths. In this way, we coordinated vehicles and adjusted the vehicles accordingly to remain

dispersed and search the grid. See section 2.7 for more detail on the communication aspect of the

algorithm.

Finally, we calculated the total performance of the grid search. The total vehicle search

performance determined at the end of the simulation is given by Eq. 2.1. It was the fraction of the

grid that was seen after the simulation was completed.

Pg =

Ng

∑
i=1

ri

rmNg
(2.1)

In this equation, ri is the ith cell’s reward, given in Eq. 2.16. The maximum reward of the grid cell

is one and is represented by rm. The number of grid cells is Ng. The cell reward is summed across

every cell then divided by rm times Ng, which is the maximum attainable reward for the entire grid.

For some simulations, we added target tracking. To calculate the performance of the target

tracking, we slightly modified the above performance equation to give the fraction of the number

of targets seen at each time step over the course of the simulation. The equation for the target track

performance is given by Eq. 2.2 below.

Pt =

T
∑

i=1

Ntsi
Nt

T
(2.2)
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The total duration of the simulation is given by T . The number of seen targets at the ith

iteration is given by Ntsi and Nt is the number of targets.

2.1 Initialization

We began the simulations with a three part initialization process. For the first part of the

process, we calculated the different vehicle parameters based on the desired endurance ratio (Er),

turning ratio (Tr), and area ratio (Ar), given in Chpt. 3. We calculated the turning radius (Rt) to be

the turning ratio times the domain length (L).

Rt = TrL (2.3)

We calculated the sensing radius (Rs) given by Eq. 2.4 below.

Rs =

√
L2Ar

Nvπ
(2.4)

Where Nv is the number of vehicles. We set the communication radius (Rc) equal to the sensing

radius.

Rc = Rs (2.5)

We calculated the stall speed (Vs) by Eq. 3.10 below.

Vs =
√

gRt tan(φ) (2.6)

Where φ is the roll angle and g is the acceleration due to gravity of 9.81 m/s. We calculated the

maximum velocity (Vmax) through the following equation discussed in Chpt. 3.

Vmax = 2Vs (2.7)

We then computed the length of each time step, t.

t =
Rs

nrollVmax
(2.8)
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Where nroll is the number of look ahead steps. This calculation comes from the Look Ahead ratio

discussed in Chpt. 3. Lastly, we calculated the total simulation time, T.

T =
ErL2

2VmaxRs
(2.9)

Where Er is the endurance ratio discussed in Chpt. 3.

For the next part of the initialization, we initialized the vehicle starting locations. As stated

previously, we set the number of vehicles equal to a perfect square. This allowed the equal distri-

bution of vehicles among the grid. We set the heading of the vehicle to a random value between 0

and 2π . The below process shows the function we used for the initialization of the vehicles.

Algorithm 2 Initialization of Vehicles

1: procedure INITIALIZE(Nv,L, lc)

2: rowvehicle←
√

Nv

3: spacing← L/(rowvehicle+1)

4: position← (Nv by 3) matrix

5: count← 1

6: for i = 1 to rowvehicle do

7: for j = 1 to rowvehicle do

8: position(count,:)← [getrandom∗2∗π, i∗ spacing, j ∗ spacing]

9: count++

10: end for

11: end for

return Position

12: end procedure

We recorded the position of each vehicle in a Nv by 3 matrix. Each row of the matrix

contained the heading (ψ), east location (pe), and north location (pn) of a vehicle. We updated

these values after each optimization.
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For the next and final part of the initialization process, we set the grid point centers. The

centers were evenly spaced by the length lc. We set the grid values to an initial value of 0, meaning

the grid points had not yet been explored. The code is shown in appendix A.1.

Algorithm 3 Initialization of Grid Points

1: procedure INITIALIZE(L, lc,Nv)

2: Nrows← L/lc

3: Ng← N2
rows

4: count← 1

5: for i = 1 to L increments of lc do

6: for j = 1 to L increments of lc do

7: gridposition(count,:)← [ j, i]

8: count++

9: end for

10: end for

11: gridvalues← Ng by Nv matrix of zeros

return gridposition, gridvalues

12: end procedure

2.2 Optimization

We used gradient-based optimization to determine the vehicles’ optimal paths through vary-

ing the vehicles’ roll angles. Upon analyzing initial testing with the multi-objective target tracking

and grid search missions, we saw some vehicle behavior that helped us reach the conclusion that

we needed to add velocity as a design variable in the optimization. The vehicles began tracking

a target and two different outcomes would occur. The first situation we saw was a vehicle would

begin tracking a target then begin a back-and-forth lawnmower-type pattern to continue to track

the target. This occurred when the target’s velocity was slower than that of the aerial vehicle. The

other scenario we witnessed was when a aerial vehicle could not keep up with a target it initially

began tracking. As a result, we added vehicle velocity to the optimization design variables. It was
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assumed that the vehicle would fly at this optimized velocity for the entire planned path at that

respective time step. See chapter 3 for more information on velocity bounds and calculations.

We created an objective function comprised of only grid searching. We also developed a

multi-objective function consisting of both grid searching and target tracking. The multi-objective

optimization problem is stated below in Eq. 2.10.

max search reward+ target reward

w.r.t φ1...φnroll , V

s.t. −φmax ≤ φ ≤ φmax

Vs ≤V ≤Vmax

(2.10)

Where Vs is the vehicle stall speed, Vmax is the vehicle’s maximum speed, and ±φmax is the bound

for the roll angles. We calculated the stall speed through Eq. 2.6 above based on the vehicle’s

turning radius (Rt), see Chpt. 3. We set the maximum speed to two times the stall speed, Eq. 2.7.

We further discuss the reward function in section 2.4 for the grid search reward and section 2.5 for

the multi-objective target tracking and grid search reward.

We began by initially using MATLAB’s function fmincon. However, to increase computa-

tional efficiency we switched to Julia and used SNOPT, which stands for Sparse Nonlinear OPTi-

mizer. The use of SNOPT was made available for Julia by the repository Snopt.jl, a Julia interface

to SNOPT, which was created by Dr. Andrew Ning and Taylor McDonnell, a PhD candidate in the

FLOW Lab1.

Developers designed Julia as a programming language built for high performance. Julia

demonstrates performance comparable to statically-typed languages but is also a flexible dynamic

language. In fact, the performance is close to languages such as C and C++ while still having the

benefits of a dynamic language2.

Researchers use SNOPT for constrained optimization. SNOPT uses sequential quadratic

programming to find the optimal solution of a linear or nonlinear function with variable bounds

1https://github.com/byuflowlab/Snopt.jl
2https://docs.julialang.org/en/v1/
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and sparse linear or nonlinear constraints. SNOPT calculates the search directions from quadratic

programming subproblems3. See appendix A.8 for the optimization function.

2.2.1 Receding Horizon Controller

Since vehicles could potentially receive new information at every time step, we used a

receding horizon controller [9–11, 13]. A receding horizon controller involves solving a con-

strained optimization problem repeatedly using future predicted costs or rewards with a moving

time horizon 4. This type of controller is beneficial for problems which continuously receive new

information.

To implement the receding horizon controller, we optimized a vehicle’s full path out to its

sensing radius. However, we only directed the vehicle to proceed one step before re-optimizing

out to the sensing radius again with the new information received from vehicles within its commu-

nication radius.

2.2.2 Automatic Differentiation

We used forward mode automatic differentiation through the use of the Julia package For-

wardDiff. We implemented this package to calculate the gradients of the reward functions dis-

cussed in Sec. 2.4 and 2.5. We considered using the Julia package ReverseDiff to use reverse

mode automatic differentiation. Typically, reverse mode differentiation is more computationally

efficient when the number of outputs is less than the number of inputs. However, the documen-

tation stated that ”ForwardDiff is often faster than ReverseDiff for lower dimensional gradients”

when the input dimension length is less than 1005.

Automatic differentiation utilizes the fact that any computer function is a sequence of prim-

itive functions. Each of these primitive functions’ derivatives can be taken relatively easily. Auto-

matic differentiation uses the chain rule on the primitive functions to calculate the total derivative

of the more complex function. Forward and Reverse differentiation are based on how the chain

rule is applied. Forward differentiation involves sequentially solving derivatives of operations in

3https://web.stanford.edu/group/SOL/snopt.htm
4https://web.stanford.edu/ boyd/papers/code gen rhc.html
5https://github.com/JuliaDiff/ReverseDiff.jl
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terms of their parent functions6. See the following example. Given Eq. 2.11 below, we desire to

find the derivative of the following function.

f (x,y) = x+ cos(y)sin(x) (2.11)

To take the derivative of this function we proceed as follows. First, we simplify the calculations to

a series of primative operations.

w1 = x

w2 = y

w3 = sin(x)

w4 = cos(y)

w5 = w4 ∗w3

w6 = w1 +w5

We then take the derivative of each of these nodes with respect to some variable, t.

dw1

dt
=

dx
dt

dw2

dt
=

dy
dt

dw3

dt
=

d
dt

sinw1 = cosw1 ∗
dw1

dt

dw4

dt
=

d
dt

cosw2 =−sinw2 ∗
dw2

dt

dw5

dt
=

d
dt
(w4w3) = w4 ∗

dw3

dt
+w3 ∗

dw4

dt

dw6

dt
=

d
dt
(w1 +w5) =

dw1

dt
+

dw5

dt

To calculate the derivative of the function with respect to x, we can plug in t = x. We can initialize

dw1/dt equal to 1 and dw2/dt equal to 0. These are called the seed values. By choosing these

6http://www.columbia.edu/ ahd2125/post/2015/12/5/
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seeds, dw6/dt will calculate the value of the derivative with respect to the x value. Vice versa, we

can plug t = y to get the derivative with respect to y.

This is the process used for a specific function. The process is made automatic through

using a set of rules to translate a set of expressions into a program to calculate the derivatives.

For forward-mode differentiation, the order of the program is preserved and the derivative of the

expressions are evaluated sequentially from the first expression onwards 7.

2.3 Vehicle Motion Model

We modeled the UAVs as point masses using a simple coordinated-turn approach. The

turning radius is given by Eq. 2.12. To simplify analysis, we assumed the sideslip angle, β , is zero

and that there was no wind. Therefore, the equation for the change in yaw, ψ̇ , is given by Eq. 2.13.

The inertial north and east position of the vehicle are then given by Eq. 2.14 and 2.15 respectively.

Rt =
V 2

g cosγ

g tanφ
(2.12)

ψ̇ =
g

Vcr
tanφ (2.13)

ṗn =Vcr cosψ (2.14)

ṗe =Vcr sinψ (2.15)

Where Vg is the velocity of the vehicle with respect to the ground, γ is the flight path angle,

φ is the roll angle in examination, and Vcr is the cruise velocity. See appendix A.2 for the motion

model function.

2.4 Search Reward

We used the roll angles and velocity of the vehicles as the design variables used in the op-

timization. The reward function used Julia’s DifferentialEquations.jl package 8 to solve equations

7https://rufflewind.com/2016-12-30/reverse-mode-automatic-differentiation
8https://docs.juliadiffeq.org/latest/
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2.13, 2.14, and 2.15 for the heading angle, north position, and east position after each roll angle for

the current vehicle. We then calculated the distance from the vehicle’s entire planned path to every

grid center. After tabulating these distances, we recorded the minimum distance to each reward

point from the vehicle over the entire path.

The grid points contained an associated reward value, ri, which began at a minimum value

of 0. A value of 0 meant the point had not yet been seen and vehicles should have proceeded to

that location to increase the point’s value. Rather than provide a constant reward value across the

cell, we used a Gaussian distribution to allow the reward to vary continuously and permit the use

of gradient-based optimization. Fig. 2.1 shows the value associated with the distance between a

vehicle and a grid center. The realized reward was the largest value obtained in each cell. See Eq.

2.16 for how we updated the grid value of the ith cell.

ri = e−
d2
i

2σ2 (2.16)

The distance between a vehicle and the ith reward point is given by di . We set the value of σ to the

vehicle’s sensing radius divided by three because we wanted most of the reward contained within

the sensing radius. In addition, the cell reward increased significantly as the vehicle approached

that cell’s center. We assigned a reward array to every vehicle that contained a reward value for

each grid point. This reward array only reflected the movement of the current vehicle unless

communication was simulated with another vehicle. We only updated the reward for a specific

grid point if the vehicle came closer than it had previously. Thus, we compared the new Gaussian

grid values to the previous values for that respective vehicle. If a grid point received a higher

reward based on the vehicle’s path, we updated the grid point’s value. If this was not the case, we

maintained the old point’s value. We summed the maximum value for all grid points among all

vehicles for the final reward.

The total reward for the jth iteration for a specific vehicle is calculated as:

J j =
Ng

∑
i=1

ri, j (2.17)

The number of grid cells is represented as Ng and ri represents the reward of the ith cell resulting

from the potential flight path. See appendix A.3 for the reward function code.
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Figure 2.1: The reward distribution as a function of the distance, di compared to the sensing radius,
Rs.

2.5 Target Tracking

We combined searching a grid space and finding and tracking a target to create multi-

mission level objectives. We initialized five targets to begin at predetermined locations and random

orientations within the grid. We initialized the heading angle of each vehicle to any angle from 0 to

2π . The locations were set so one target began in the middle of the grid and the other four were in

each corner of the grid, positioned one third of the domain length away from the closest boundary.

In addition, we initialized the targets with an initial velocity of 10 m/s. The initialization code is

shown in appendix A.5. Initially, we began with the vehicles beginning in random locations and

with random velocities. However, this gave too much variability in the results for the pareto front,

discussed in Chpt. 6. At each time step, we changed the targets’ headings by a small random value.

We calculated the new locations by using the respective target velocities and new heading angles.

ψti, j = ψti−1, j + rand(1)
π

6
− π

12
(2.18)

Tei, j = Tei−1, j + tVt j cos(ψti, j) (2.19)

T ni, j = T ni−1, j + tVt j sin(ψti, j) (2.20)

We used eq. 2.18 to calculate the new target heading angle, ψti, j , for the ith iteration and jth

target. We calculated the new heading angle as the previous step’s heading angle plus a random
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Figure 2.2: The targets began in evenly-spaced locations with random headings. The target loca-
tions are represented by the read circles with heading directions shown by the attached red quivers.

number between 0 and 30 degrees minus 15 degrees. This enabled the new heading to vary from

the previous heading by a value of plus or minus 15 degrees. We calculated the new east location,

Tei, j, of the jth target for the ith iteration from eq. 2.19. We calculated the new north location,

T ni, j, of the jth target for the ith iteration from eq. 2.20. In the above equations, t is the time step,

Vt j is the velocity of the jth target, and ψti, j is the current heading angle of that target. Appendix

A.6 shows the function used to update the locations of the targets.

We used a multi-objective reward where we computed the target reward similarly to the grid

search reward. The optimization used each roll angle, φ and the vehicle’s velocity, V , to determine

the ending location of the vehicle after each time step from equations 2.13, 2.14, and 2.15. We then

calculated the distance from each of these points to each target. We used the minimum distance

along the entire path to each target to calculate the reward from the Gaussian distribution given

by Fig 2.1 and eq. 2.16. We then summed the values from this Gaussian distribution for all five

targets for the final target reward. Reward was only given if a target was within a vehicle’s sensing

radius to simulate that the vehicles did not know the locations of the targets.

We varied the weighting of the target reward to determine the change in performance of

both the grid search and target track missions with the different weightings. The reward was

normalized by the maximum attainable reward. Thus, the total reward for the jth iteration from
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the kth vehicle is:

J j,k =
Wg ∑

Ng
i=1 ri, j +Wt ∑

Nt
i=1 rti

WgNgrm +WtNtrm
(2.21)

The number of grid cells is represented as Ng and ri, j represents the predicted reward of the ith

grid cell for the jth iteration. The number of targets is given by Nt and rti is the predicted reward

that vehicle receives from the position relative to the ith target. Wt is the weighting we used for the

target track mission and Wg is the weighting we used for the grid search mission. The maximum

attainable reward for each grid point and target is represented as rm and was equal to 1.0. We

assumed the vehicles did not know the locations of the targets until a target entered the vehicle’s

sensing radius. See appendix A.7 for the updated reward function. Fig. 2.3 displays the mission of

vehicles both tracking targets and searching a grid area.

Figure 2.3: The vehicles both searched the grid and tracked targets. Note: one of the targets went
out of bounds and is not pictured

2.6 Multistart

Additionally, because gradient based optimization can get stuck in local maximums or min-

imums, to increase the chances of finding the global maximum we used a multistart. To determine

how many different starting locations were needed we performed a convergence study, iteratively

increasing the number of initial guesses. The initial guesses were composed of the roll angles. We

set all angles of each guess to the same value. We evenly spaced the values of the guesses between
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the bounds of the roll angles. See the below pseudocode included in algorithm 4. The number of

guesses is given by ng. The number of roll angles we used in the optimization is given by nroll . It

Algorithm 4 Multistart
1: procedure MULTISTART

2: spacing← 60
ng−1

3: guesses← (ng by nroll)
4: guesses[1, :]←−30π

180
5: for i in 2 to ng do
6: guesses[i, :]←−30+ spacing(i−1)π

180
7: end for
8: end procedure

was surprising to see the number of multistarts had little effect on performance. The performance

plateaued and stayed relatively constant after three initial guesses. Therefore, for the simulations

we used three initial starting guesses with all roll angles of the respective guess set to either -30, 0,

or 30 degrees.

2.7 Data Sharing

After all optimizations were completed, we performed calculations to determine which

vehicles would communicate with one another. This communication was based on if the location

of a vehicle was within the specified sensing radius, Rs, of another vehicle. We created a three

dimensional matrix, M. If the jth vehicle was within the specified communication radius of the

kth vehicle we assumed perfect communication would occur. If this was the case, we updated all

of the i rows in the jth column of the kth dimension of matrix M to that of the grid cells from the

predicted path of the jth vehicle. See the below piecewise defined function for clarification.

Mi, j,k

rpi, j d j,k < Rc

ri,k d j,k ≥ Rc

(2.22)

If the distance between the jth and kth vehicle, d j,k, was smaller than the specified commu-

nication radius, Rc, communication would occur. If this was the case, the ith row of the jth column

20



of the kth dimension of the M matrix was equal to the predicted ith grid value of the jth vehicle,

rpi, j . If the distance was larger than the communication radius, the ith row of the jth column of the

kth dimension of the M matrix was equal to the actual ith grid value of the kth vehicle, ri,k. Note

that only the vehicle’s predicted path was communicated and not any of the vehicle’s past path

information. We used this M matrix in the next path optimization. We then used the maximum

grid values achieved across all rows in the kth dimension as the grid values for the kth vehicle’s

optimization. See algorithm 5 below for psuedocode and appendix A.4 for the actual code used.

Algorithm 5 Vehicles’ sharing grid values
1: procedure COMMUNICATION

2: for k in Nv do
3: for j in Nv do
4: if

√
(pe j − pek)

2 +(pn j − pnk)
2 < Rc then

5: M[:, j,k]← rp[:, j].
6: else
7: M[:, j,k]← r[:,k].
8: end if
9: end for

10: end for
11: end procedure
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CHAPTER 3. NONDIMENSIONALIZATION OF VEHICLE AND SEARCH AREA
PROPERTIES

3.1 Non-dimensionalization

Since search missions vary by size, duration, and number and type of vehicles, we wanted to

find the relationships between vehicle properties and search performance. In addition, determining

the effect of a single mission parameter on search performance can be difficult to find because

the performance also depends on other parameters. Because of this, we non-dimensionalized the

properties and analyzed how the search performance, given by Eq. 2.1, changed with varying the

non-dimensional numbers. This generalized the results and gave us insight into which parameters

are critical as opposed to parameters that may not have an effect on performance and can be relaxed.

The properties included turning radius, communication radius, sensing radius, maximum velocity,

stall speed, time step, flight time, number of vehicles, acceleration due to gravity, domain length,

and grid cell length. We had seven main non-dimensional parameters.

3.1.1 Endurance Ratio

The first parameter we define is the endurance ratio and is shown below.

Er =
VmaxT 2Rs

L2 (3.1)

where

T = ntt (3.2)

Where nt is the total number of time steps the vehicles fly throughout the simulation and t is the

length of one time step. The maximum velocity is given by Vmax, the sensing radius is Rs, and

the domain length is L. This ratio gives the amount of times a vehicle can cross the domain to

the amount of times required to sense the entire grid with a given sensing radius if traveling in a
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straight lawnmower-type pattern. The maximum distance a vehicle can travel is given in Eq. 3.3.

VmaxT (3.3)

Dividing this value by the length of the domain, L, gives the number of times the vehicle can fly

across the domain length. This is modeled by Eq. 3.4 below and show in Fig. 3.1.

VmaxT
L

(3.4)

Figure 3.1: A depiction of the parameter in Eq. 3.4. How far a vehicle can travel based on its
endurance (T ) and maximum velocity (Vmax) compared to domain size (L).

We then divide this number by the number of times it takes for a vehicle to travel back and

forth across the domain to see all the grid. This was based on the ratio of the domain length to the

sensing diameter. This number is given by Eq. 3.5. Figure 3.2 gives a depiction of this parameter.

L
2Rs

(3.5)
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Figure 3.2: A depiction of the parameter in Eq. 3.5. How many times a vehicle needs to travel
back and forth across the domain to sense all of the grid based on the sensing radius, Rs

Vehicles flying for a longer duration can potentially search more of the grid and see un-

explored areas. The ratio demonstrates how suitable the endurance of an aircraft is based on the

sensing properties for a particular domain size. Therefore, vehicles searching large domain sizes

with poor sensing properties will require a high endurance. To test a wide range of ratios we ranged

the endurance ratio from 0.025 to 1.0. A value of 1.0 meant that a vehicle could potentially sense

all of the grid based on the endurance and sensing properties. A value of 0.025 meant a vehicle

could only sense 2.5% of the entire grid throughout the duration of the flight.

3.1.2 Area Ratio

The following parameter is the area ratio and is defined as:

Ar =
NvR2

s π

L2 (3.6)

This gives the ratio between the amount of area sensed by all vehicles, Nv, to the total area of the

domain. For the analysis we varied this parameter from 0.2 to 1.0. A graphic of the parameter is

shown in Fig. 3.3 below.
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Figure 3.3: A depiction of the parameter in Eq. 3.6. How much of the grid the vehicles can sense
at a single time step. The blue circles represents the numerator of Eq. 3.6.

3.1.3 Look Ahead Ratio

If we set a vehicle’s event horizon further than the sensing radius, there would be insuffi-

cient information to plan to this distance. On the other hand, if we had the vehicles planning to a

distance less than the sensing radius we would not be utilizing all possible information, possibly

resulting in less optimal path optimizations. Therefore, the look ahead ratio gives the fraction of

the sensing radius distance to how far the vehicle can plan.

Lr =
Rs

Vmaxtnroll
(3.7)

We defined the look ahead ratio as the sensing radius, Rs divided by the maximum velocity, Vmax,

times the duration of one time step, t, and the number of planned roll angles or look ahead steps,

nroll . This look ahead ratio should be equal to one, enabling vehicles to plan out to what they can

sense.
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Figure 3.4: A depiction of the parameter in Eq. 3.7. Each section labeled Vmt represents a different
roll angle step. In this figure, the vehicle planned a path going east. The look ahead ratio compares
the length of the sensing radius (Rs) to the length of the planned path (nrollVmaxt).

3.1.4 Communication Ratio

The next parameter we used is the communication ratio and is defined as:

Cr =
Rc

Rs
(3.8)

It shows how far the vehicles can communicate compared to what the vehicles can sense. We

kept this value constant at a value of 1 for the non-dimensional properties study. This allowed us

to examine the other vehicle properties. However, we do vary this ratio between 1 and 2 for the

communication studies.

3.1.5 Turning Ratio

The next parameter we used is the turning ratio and is defined as:

Tr =
2Rt

L
(3.9)

It is a ratio of the vehicle’s turning radius, Rt , to the domain size, L. It represented how many

completed turns a vehicle could make within the domain space. The turning radius is defined in
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Eq. 3.10.

Rt =
V 2

s
g tanφ

(3.10)

A graphic of this parameter is shown in Fig. 3.5. To determine the effect the turning ratio

had on vehicle performance, we varied Eq. 3.9 from 0.05 to 0.45 to test a wide range of turning

radii by changing Vs, the stall speed. A turning ratio of 0.05 allowed 20 turns to be completed in

the domain while a turning ratio of 0.45 allowed around 2 completed turns. This range allowed us

to see the full effect turning ratio had on search performance.

Figure 3.5: A depiction of the parameter in Eq. 3.9. How many times a vehicle can turn with a
specified turn radius (Rt) within the domain size (L).

3.1.6 Velocity Ratio

We created the velocity ratio to keep the ratio of the maximum velocity, Vmax to the stall

speed, Vs, consistent when varying other parameters. The velocity ratio is defined in eq. 3.11.

Vr =
Vmax

Vs
(3.11)

We kept this ratio at a constant value of two for all simulations. Thus, the maximum speed, Vmax,

was always twice the amount of the stall speed, Vs.
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3.1.7 Misc.

The parameter:
lc
L

(3.12)

represents the length of a grid cell to the length of the domain size. This parameter was not

physically meaningful and was only an artifact of the discretization. Therefore, we kept it constant

across the different studies.

There were seven non-dimensional numbers we created from the parameters used in the

simulations. For simplicity, we included table 3.1 below to show the four non-dimensional ratios

we discuss in the results section below.

Table 3.1: Non-dimensional parameters studied

Endurance Ratio Area Ratio Turning Ratio Communication Ratio
VmT 2Rs

L2
NvR2

s π

L2
2Rt
L

Rc
Rs

3.2 Results

There were seven primary non-dimensional parameters of interest. We kept the communi-

cation ratio constant at a value of 1, look ahead ratio constant at a value of 5, and velocity ratio

constant at a value of 2 to reduce the number of necessary optimizations. We also kept the length of

a grid cell to the length of the domain size constant. Therefore, we varied three parameters across

a range of combinations and multistarts. We ran simulations across five different area ratios, five

different endurance ratios, and five different turning ratios. This resulted in a total of 375 total

simulations. Figs. 3.6, 3.7, and 3.8 all use the same data gathered from these optimizations. The

only difference between the plots is what ratio is used on the x-axis and what parameter is changed

from plot to plot.

Each plot in Fig. 3.6 shows the performance verses area ratio. Each line represents a

different endurance ratio and each plot is plotted at a different turning ratio. We can see from

these figures that changing the area ratio actually does not have a large impact on performance.

Furthermore, upon analyzing Fig. 3.6, we see that when vehicles have a high endurance, increasing

the area ratio actually decreases performance. This is because the endurance ratio gives how many

times the vehicles can cross the domain to how many domain crosses are needed based on the
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Figure 3.6: Each figure shows the performance verses area ratio. Each line represents a different
endurance ratio and each different plot corresponds to a different turning ratio.

vehicles’ sensing properties. Upon analyzing the endurance ratio in Eq. 3.1, we see that when

there is a smaller area ratio, a vehicle needs to have more endurance to still see the same amount of

area. As a result, the vehicles have more opportunity to search more of the grid area. In addition,

since the grid point values are based on a Gaussian distribution, less value is given to points on the

edge of the vehicles’ sensing radii and more value is given to grid points closer to the location of

the vehicle. Thus, vehicles are able to get closer to grid points when they travel longer and thus

increase reward.

There is little improvement from increasing the endurance ratio from 0.3 to 1.0 when the

turning ratio is 0.05, as shown in Fig. 3.6a. This means that performance plateaus and does not
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improve. From analyzing all three plots in Fig. 3.6, we see that as the turning ratio increases,

meaning the vehicles lack agility, the endurance ratio becomes more important at high endurance

ratios. We can see as the turning ratio increases, the gaps between the endurance ratios of 0.3

and 1.0 enlarge. However, at the endurance ratio of 0.025, the performance values stay relatively

constant among the plots with increasing the turning ratio. We further discuss the endurance ratio

trends and provide figures with the endurance ratio on the x-axis in Fig. 3.7.
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Figure 3.7: Each figure shows the performance verses endurance ratio. Each line represents a
different turning ratio and each different plot corresponds to a different area ratio.

In Fig. 3.7 the performance is plotted across the endurance ratio where the lines are plotted

at different turning ratios. Each plot has a different area ratio. From Fig. 3.7, we see that the

endurance ratio has a large impact on the performance. Increasing the endurance ratio from 0.025
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to 1.0 increases the amount of sensed domain by as much as 60% for select cases. In addition,

vehicles can perform well at any area ratio with good endurance. Similar to the results from Fig.

3.6, it can been seen from Fig. 3.7 that the turning ratio alters the mission performance outcome.

Figs. 3.7b and 3.7c demonstrate that vehicle agility is important for good performance even if

the vehicles can sense a large area of the grid. Fig. 3.7 shows at any area ratio, the vehicles can

coordinate and search 100% of the grid if the turning ratio and endurance ratios are high. Thus, it

seems the endurance ratio and turning ratio are more important than the area ratio.

In addition, each plot shows that the performance plateaus after a certain endurance ratio

and performance does not further improve. For low turning ratios, this plateau happens sooner, as

shown by the red line in each figure. As we analyze the different figures, we also see the general

slope of the lines from each figure decreasing as the area ratio increases. This is because the

performance starts higher at a small endurance ratio with a large area ratio. Thus, the performance

rate of change is smaller with a higher area ratio. Also, there is a steep increase in performance

from changing the endurance ratio from 0.025 to 0.1 with all area ratios. The rate of change of the

performance then decreases past this point.

When vehicles lack endurance, it appears that the amount of area the vehicles can sense is

more important than their agility. When the endurance ratio is 0.025, the performance improves

by approximately 7% from increasing the area ratio from 0.2 to 1.0. This makes sense because if

vehicles are unable to travel very far, it is more important for the vehicles to sense a large amount

of the grid with their limited movement.

In Fig. 3.8, the performance ratio is plotted across the turning ratio with each line corre-

sponding to a different area ratio. Each figure has a different endurance ratio. Note that the lower

the turning ratio, the better the vehicle’s agility. From Fig. 4.2a there is little improvement for

decreasing the turning ratio. However, the area ratio improves the performance. As shown from

the previous plots, to overcome poor endurance the vehicles need to sense a large portion of the

grid.

The other two plots, Figs. 4.2b and 4.2c, show the turning ratio has an effect on perfor-

mance. The endurance ratio of 1 shows a small change in performance. This shows that when the

endurance is high, the agility matters less. In addition, as stated previously, vehicles that sense less

area at higher endurance ratios perform better. The reason was previously explained. In addition,
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Figure 3.8: Each figure shows the performance verses turning ratio. Each line represents a different
area ratio and each different plot corresponds to a different endurance ratio.

Fig. 4.2b shows that at a high turning ratio, the area ratio becomes more important. Thus, when

vehicles lack agility and have low endurance, sensing a larger area of the grid is more important.

3.3 Applying Results to Different Swarm

For the results obtained in section 3.2, we used 49 vehicles, 900 cells, a domain length of

1500, a grid spacing of 50, and 5 look ahead steps. See table 3.2 below.

The plots given in Figs. 3.6, 3.7, and 3.8, use the above parameters. However, you can

use these plots to estimate the search performance for different domain areas and vehicle types.

For example, let’s suppose that the swarm now uses a domain size of 1000 meters instead of 1500

32



meters. Using the nondimensional parameters given earlier, we can calculate new values for the

needed parameters to achieve the same levels of performance. For our simulations we had:

lc
L
=

50
1500

= 0.0333

To keep this value constant with the new domain length of 1000, the following calculations

are performed.

0.033 =
lc

1000

Thus,

lc = 33.33

Now, we will just use one plot as an example for the rest of the calculations. The same

process can be repeated with any of the points on the plots. Let’s assume that we know the new

swarm are agile but are unable to sense a large portion of the grid. If we wanted to search 80% of

the grid we can use Fig. 3.7a. From the plot, to achieve a performance of at least 80% with good

agility (turning ratio of 0.05) and poor sensing properties (area ratio of 0.2), an endurance ratio of

at least 0.1 is needed. Note that this is only the process we used to calculate the mission parameters.

These individual parameters can be set to any number and calculated in any order as long as the

previously discussed non-dimensional parameters stay constant. For example, there could be a

different stall speed but the other values would need to change to keep the nondimensional values

constant. To calculate the necessary swarm properties based on the number of vehicles and domain

size, the following calculations are made. Using Eq. 3.6, we calculate the sensing radius the

vehicles would require.

0.2 =
NvR2

s π

L2

Rs =

√
0.2L2

Nvπ

Rs =

√
0.2(1000)2

49π

Rs = 36.04m
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In addition, since we kept the communication ratio, Eq. 3.8 equal to 1, we have the communication

radius equal to the sensing radius.

Rc = 36.04m

The turning radius is calculated from the turning ratio of 0.05 and domain length of 1000.0m.

Rt =
0.05(1000.0)

2

Rt = 25.0m

Then, the stall speed is calculated through Eq. 3.10.

Vs =
√

gRt tan(φ)

Vs =

√
9.81(25) tan(

π

6
)

Vs =

√
9.81(25) tan(

π

6
)

Vs = 11.90m/s

Now, using Eq. 3.11, we can calculate the maximum velocity.

Vmax = 2Vs

Vmax = 23.80m/s

After, we can use the look ahead ratio, given by Eq. 3.7 to calculate the new time step.

Lr =
Rs

Vmtnroll

t =
Rs

VmLrnroll

t =
36.04

23.8(1)(5)

t = 0.30s
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Finally, we calculate the total duration of the simulation through using the Endurance Ratio in Eq.

3.1.

Er =
VmT 2Rs

L2

T =
ErL2

Vm2Rs

T =
(.1)10002

23.8(2)(36.04)

T = 58.29s

Thus, using these plots with a different domain size results in the need to change other parameters.

Table 3.2 gives the different parameters needed to search 80% of the area with a turning ratio of

0.05, endurance ratio of 0.1, and area ratio of 0.02 for both a domain size of 1000 m and 1500 m.

Table 3.2: Parameter values used for cases with different domain lengths to achieve the same
search performance

L lc nroll t Rt Vs Vm T Rs

1500 50.0 5 0.25 37.5 14.57 29.15 107.09 54.07

1000 33.333 5 0.30 25.0 11.9 23.8 58.29 36.04

35



CHAPTER 4. COMMUNICATION EFFECTS

4.1 Varying Amount of Communication

To test how the amount of information shared affected performance, we developed four

communication cases in our original Matlab simulation: a decentralized no communication case,

a decentralized case in which current and past locations were shared, and both a decentralized and

centralized case where the current, past, and future locations were shared. In the centralized case

the path of all vehicles were optimized in unison. In the decentralized cases each vehicle opti-

mized its own path based on available information. For these cases, we assumed there was perfect

communication and every vehicle instantaneously communicated with the other vehicles. In addi-

tion, a linear time-based decay was added. We subtracted a value of 0.01 from every grid reward

point at each time step. As a result, cells would require continuous surveillance. We averaged the

performance metric in Eq. 2.1 across all time steps to determine how the vehicles performed at

searching throughout the entire simulation. Since the performance was averaged over the entire

search mission and there was a time-based decay, the performance values were significantly lower

than the non-dimensional results. We kept the vehicle properties constant among all four cases

so the only factor that was changing from case to case was the amount of communication. The

performance of all cases is provided in Table 4.1. Since the difference between communication

strategies is difficult to see in static plots, we provided a video that shows the trajectories of all

four communication cases: https://youtu.be/GkR6KVicwPI

For the no communication case, we optimized each vehicle’s path as if it was the only

vehicle performing the mission. For each vehicle’s optimization, we set the grid to replicate only

what each respective vehicle sensed. We only changed the grid cell values based on the location of

each individual vehicle. Vehicles primarily proceeded in a straight line except when approaching a

grid boundary. Since the vehicles did not communicate, each vehicle did not know which cells were

previously explored. In addition, since the domain was large compared to the vehicles’ sensing
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radius, the potential reward was only decreased when a vehicle approached a grid boundary. As

a result, the vehicles did not come close to the edge, so reward could be maximized without the

search radius being outside of the domain. In addition, there was vehicle clustering with some cells

not being searched at all.

In the second case, it was assumed that there was perfect communication of the vehicles’

past and current locations within their sensing radius. For each optimization, we optimized the

vehicles’ paths based on grid values that reflected the motion of every other vehicle. We used a

decentralized approach in which vehicles optimized paths based on the previous step of all other

vehicles to replicate the behavior of the simultaneous movement of vehicles. The vehicles re-

mained more dispersed, however, there was still vehicle clustering where vehicles searched the

same cell.

In the third case, in addition to the communication of the current and past location, vehicles

also communicated where they were planning on traveling. Each vehicle optimized based on grid

values that were reflective of each vehicle’s future planned path. For this case, we also used

decentralized path planning. Again, we optimized each path based on the planned path from the

previous time step of all other vehicles. This case had the most equal distribution of vehicles out

of the decentralized cases.

In the final case case, a centralized approach was used where we used one function to opti-

mize the path of all vehicles. Thus, this case represented in-sync decision making. This approach

was very costly compared to the other cases. The centralized approach took approximately two

and a half days to complete whereas the decentralized took approximately two hours. However,

in the centralized case vehicles remained dispersed and never searched the same cell at the same

time. However, Table 4.1 shows only a 1.7% increase from the decentralized to centralized case.

Table 4.1: Performance percentages of different communication cases

No Communication Current Location Full Decentralized Full Centralized

35.9% 42.2% 44.5% 46.2%
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Sharing only the vehicles’ current locations improved performance by 6.3%. The type of

communication varied performance by 2.3% and the centralized case improved performance by

1.7%. This shows that any type of communication improves performance. However, the type of

communication has less impact on the search performance. In addition, this shows centralized

communication is, for the most part, not worth the large increase in computational cost.

4.2 The Effect of Swarm Properties on Importance of Communication

In addition, we ran the full communication case and the no communication case across a

range of endurance ratios at two separate area ratios and turning ratios to determine when commu-

nication mattered the most. We only examined the lower end of these ratios because we inferred

that communication would matter most when vehicles are unable to travel far or see the majority

of the grid. Thus, vehicles would need to communicate to maximize the amount of seen grid space.

In addition, we used both a communication ratio, given in Eq. 3.8, of 1 and 2. We performed these

cases without the time decay and performance was the amount of the grid that was seen, given by

Eq. 2.1. Below are the plots showing the performance results across endurance ratios from 0.025

to 1.0. We set the area ratio as 0.1 and 0.3 and the turning ratio was 0.025, 0.05, and 0.15.

The plots displayed in Fig. 4.1 show that when the turning ratio is small, communication is

more important. This is because the vehicles are able to adjust their course more quickly and thus

adapt to the incoming information from other vehicles. In contrast, when vehicles posses a high

turning ratio, they are unable to alter the paths because of lack of agility. Thereby, the vehicles

cannot make the necessary course adjustments to benefit from the sharing of information.

The plots from Fig. 4.2 show the performance verses endurance ratio at an area ratio of

0.3 and turning ratios of 0.025, 0.05, and 0.15. Similarly to the previous plots, when we set the

turning ratio to a lower value, there was an increase in performance when communication was

used in the swarm. However, there is a smaller difference in performance between the different

communication cases at this larger area ratio. Thus, we can conclude that when vehicles have a

limited range of sight, communication is more important. When there was a larger turning ratio of

0.15, there seems again to be no improvement for adding communication, which was previously

discussed.
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Figure 4.1: Each figure shows the performance verses endurance ratio for communication ratios of
1 and 2 and no communication. Each plot is a different turning ratio. The area ratio is 0.1.
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Figure 4.2: Each figure shows the performance verses endurance ratio for communication ratios of
1 and 2 and no communication. Each plot is a different turning ratio. The area ratio is 0.3.
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CHAPTER 5. MULTI-OBJECTIVE PARETO FRONT

We created a Pareto front to find the trade-offs between the grid search performance and the

target track performance. The reward function we used for the multi-mission objectives is given

by Eq. 2.21. The weightings we used for the Pareto front plot are shown in table 5.1 below.

Table 5.1: The weighting of grid and target searching for the multi-objective reward

Wg 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.75 0.5 0.25 0.0

Wt 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 9.25 9.5 9.75 1.0

We added additional points between the target weighting of 0.9 and 1.0 and the grid weight-

ing of 0.1 and 0.0. This was because there was a large shift in the performance values when Wg

was assigned to 0.0 and Wt was assigned to 1.0. We ran each weighting for multiple simulations

with the targets beginning with random heading angles and using a random new heading direction

for each time step. For every simulation, the targets began in the same initial location. We set

each target’s velocity to 10m/s since performance showed a large degree of variation based on the

velocity of the targets. See Fig. 5.1 for the starting location orientation of the vehicles and targets.

The total number of simulation runs for each weighting varied from 6 to 11 based on the amount

of variation with each weighting combination. The Pareto front is shown in Fig. 5.2 below.

We obtained these results by using 5 targets. We expect results would change based on the

number of targets and the velocities of the targets, but the general trend would remain constant.

From the plot, we can see that increasing the target weighting dramatically alters the target perfor-

mance. Target tracking performance increased by approximately 52% when adjusting the weight

from 0.0 to 1.0. On the other hand, the grid performance shows little change until Wg decreased

to 0.0. Even then, the performance only dropped by approximately 10%. This is because even
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Figure 5.1: Initial starting locations of the UAVs and targets.
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Figure 5.2: Pareto front showing the trade-offs between the weighting of target search and grid
search. The labels give the ratio of the target search weighting to the grid search weighting.

when the vehicles are tracking the targets, they are still seeing and searching the grid. In addition,

vehicles could only sense targets within their sensing radius. As a result, all vehicles that were not

close to a target continued to search the grid, even if this reward was small. These results suggest

to have good performance in both areas we should set Wt , the target weighting, to a large value and

set Wg, the grid weighting, to a small value.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We sought to find how different types of communication and vehicle parameters affected

the search performance for a swarm of UAVs and to create an efficient optimization process for

multi-objective missions. Unlike other research which compares different optimization algorithms,

we analyzed communication alone. Additionally, unlike previous research, we did not set the

vehicle properties as constraints, but we varied these properties to determine the trends in search

performance for different properties. We used non-dimensionalization so our results could be

applied to a variety of scenarios. We also explored extending the grid search reward function to a

multi-objective reward with the inclusion of target tracking.

These results convey that for maximum performance it is desirable to have a high endurance

and low turning and area ratios. However, if the simulation has a high turning ratio, high perfor-

mance can still be achieved if the endurance ratio ratio is sufficiently large. We determined that

even if vehicles could only make approximately two turns within the domain length, 97% of the

area could be seen by using a vehicle with good endurance. However, when a vehicle has poor

endurance, having a larger area ratio is more important and can increase performance by approxi-

mately 7%. Although having a larger area ratio helped, vehicles with poor endurance ratios lacked

good performance. This suggests that ensuring a vehicle’s endurance is well-suited for the domain

is especially vital. A poor area ratio and turning ratio can be overcome, but poor endurance al-

ways resulted in a lacking search performance. Thus, endurance matters much more than the other

parameters.

The communication study showed that when vehicles communicated the current location

and past history, performance improved by 6.3%. When vehicles communicated the planned fu-

ture location as well, performance improved by 8.6%. When we used a centralized method in

which vehicles used an in-sync decision making process, performance increased by 10.3% and the
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optimizations were computationally expensive. This was only a 1.7% increased beyond the de-

centralized future location case. Therefore, for the majority of search missions this small increase

in performance is not worth the large computational cost. In addition, ranging the communication

studies across a range of parameters with no time decay showed communication mattered most at

low area ratios and turning ratios. Specifically, when we set the area ratio to 0.1, the turning ratio

to 0.025, and the endurance ratio to 0.075, performance improved by approximately 23% from the

no communication case to the communication case with a communication ratio of 2. This suggests

that communication is most important when vehicles have limited vision of a search space. In addi-

tion, good agility is necessary to quickly make adjustments to a planned path. Communication had

less of an impact for higher area ratios and higher turning ratios. In addition, communication did

not matter for very low endurance ratios because vehicles could not travel far enough to encounter

another vehicle.

6.2 Future Work

We only analyzed the effect of four of the non-dimensional parameters. Future work would

analyze further with the other non-dimensional numbers and see how performance changes with

the variation of these parameters. This would be difficult because we already varied parameters

across three dimensions and it would be challenging to show the results from a higher-dimension

parameter variation study.

Little work has been performed regarding high density search swarms. In the future, opti-

mization methods should be explored with swarms consisting of hundreds to thousands of vehicles.

This presents many challenges involving the large number of trajectory optimizations. Efficient

methods would need to be devised to coordinate this many vehicles while trying to minimize the

large computational cost. We used this optimization algorithm with 400 vehicles for 16 time steps.

With 28 CPUs the wall time was several hours. Therefore we feel this algorithm is suitable for high

density swarms. However, further research is necessary because this simulation was a demonstra-

tion of scaling the number vehicles. In actuality, a real case study using this scaling would have a

larger domain area. We did not continue to run simulations with this large number of vehicles.
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Figure 6.1: Image displaying 400 vehicles searching a small area.

In addition, search missions can benefit from heterogeneous swarms. Adding diverse vehi-

cles to a swarm can increase search performance by capitalizing on the different vehicle strengths.

Diverse fixed wing vehicles such as vehicles with different velocities, turning radii, or sensing radii

can be added to see how performance changes. Furthermore, the swarm could benefit from the use

of quadrotor UAVs which have different properties and characteristics from fixed wing UAVs.

This would thereby increase overall swarm capabilities. However, adding diverse vehicles would

require the use of mission allocation methods to assign missions based on a variety of factors.

In addition, trajectory optimization algorithms should be tested with real-time flight trials.

This would require uploading the code to an embedded processor to be flown on fixed wing UAVs.

While hundreds of vehicles may not be practical, several vehicles can be used to test this algo-

rithm. However, a collision avoidance constraint should be applied to prevent the loss of expensive

hardware.
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APPENDIX A. CODE

A.1 Grid Initialization

1 f u n c t i o n i n i t i a l i z e g r i d ( n V e h i c l e s , NorthBoundary , Eas tBoundary , g r i d s p a c i n g )

2

3 # i n i t i a l i z e s t a r t i n g l o c a t i o n s o f t h e v e h i c l e s

4 rowVeh ic l e = s q r t ( n V e h i c l e s )

5 v e h i c l e S p a c i n g = Eas tBoundary / ( rowVeh ic l e + 1)

6 v e h i c l e P o s i t i o n = Sha redAr ray { F l o a t 6 4 } ( n V e h i c l e s , 3 )

7 c o u n t = 1

8

9 f o r i = 1 : rowVeh ic l e

10 f o r j = 1 : rowVeh ic l e

11

12 v e h i c l e P o s i t i o n [ count , : ] = [ r and ( 1 ) *2* p i i * v e h i c l e S p a c i n g j *

v e h i c l e S p a c i n g ]

13 c o u n t = c o u n t + 1

14 end

15 end

16

17 # i n i t i a l i z e g r i d

18 c o u n t = 1

19 g r i d p o i n t = Array { F l o a t 6 4 } ( undef , 9 0 0 , 2 )

20 f o r x = g r i d s p a c i n g / 2 : g r i d s p a c i n g : Eas tBoundary

21 f o r y = g r i d s p a c i n g / 2 : g r i d s p a c i n g : Nor thBoundary

22 g r i d p o i n t [ count , : ] = [ y x ]

23 c o u n t = c o u n t + 1

24 end

25 end

26
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27 # i n i t i a l i z e g r i d v a l u e s

28 n P s u e d o T a r g e t s = count−1

29 g r i d v a l u e = Sha redAr ray { F l o a t 6 4 } ( n P su e d oT a r ge t s , n V e h i c l e s )

30 g r i d v a l u e . = 0

31 re turn v e h i c l e P o s i t i o n , g r i d p o i n t , g r i d v a l u e

32 end # i n i t i a l i z e g r i d

Listing A.1: Initialization of grid and vehicle locations

A.2 Coordinated Turn Model

1

2 f u n c t i o n g e t l o c a t i o n ( dy , y , p , t )

3 r o l l = p [ 1 ]

4 g = p [ 2 ]

5 V = p [ 3 ]

6 dy [ 1 ] = g /V* t a n ( r o l l ) #yaw

7 dy [ 2 ] = V* s i n ( y [ 1 ] ) # e a s t p o s i t i o n

8 dy [ 3 ] = V* cos ( y [ 1 ] ) # n o r t h p o s i t i o n

9 end

Listing A.2: Equations of motions used in conjunction with ODE solver

A.3 Reward Function

1 f u n c t i o n c a l c r e w a r d ( o p t i m i z e v a l u e s , p a r a m s i n t , p a r a m s f l o a t , e n d l o c a t i o n ,

g r i d v a l u e s , g r i d c e n t e r s )

2 # unpack v e c t o r s and i n i t i a l i z e

3

4 R = e l t y p e ( o p t i m i z e v a l u e s )

5 n R o l l = p a r a m s i n t [ 1 ]

6 n V e h i c l e s = p a r a m s i n t [ 2 ]

7 n C e l l s = p a r a m s i n t [ 3 ]

8 t = p a r a m s f l o a t [ 3 ]

9 r a d i u s = p a r a m s f l o a t [ 1 ]

10 g = p a r a m s f l o a t [ 2 ]

11 v e h i c l e E a s t = Array {R} ( undef , 1 , n R o l l )

12 v e h i c l e N o r t h = Array {R} ( undef , 1 , n R o l l )
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13 y0 = Array {R} ( undef , 3 )

14 y0 . = e n d l o c a t i o n

15

16

17 # g e t l o c a t i o n o f v e h i c l e s a f t e r each r o l l a n g l e

18 f o r i = 1 : n R o l l

19

20 params = [ o p t i m i z e v a l u e s [ i ] , g , o p t i m i z e v a l u e s [ end ] ]

21 t s p a n = ( 0 . 0 , t )

22 prob = D i f f e r e n t i a l E q u a t i o n s . ODEProblem ( g e t l o c a t i o n , y0 , t s p a n , params )

23 s o l = D i f f e r e n t i a l E q u a t i o n s . s o l v e ( prob , s a v e e v e r y s t e p = f a l s e )

24 y0= s o l ( t )

25 v e h i c l e E a s t [ i ]= y0 [ 2 ]

26 v e h i c l e N o r t h [ i ] = y0 [ 3 ]

27

28 end

29

30 e n d l o c a t i o n = [ y0 [ 1 ] y0 [ 2 ] y0 [ 3 ] ] ;

31 # c r e a t e v e c t o r o f v e h i c l e l o c a t i o n s t o d e t e r m i n e d i s t a n c e s t o a l l g r i d

32 # c e n t e r s u s i n g m a t r i x math

33 E a s t V e h i c l e = r e p e a t ( v e h i c l e E a s t , n C e l l s , 1 )

34 N o r t h V e h i c l e = r e p e a t ( v e h i c l e N o r t h , n C e l l s , 1 )

35 N o r t h c e n t e r s = r e p e a t ( g r i d c e n t e r s [ : , 1 ] , 1 , n R o l l )

36 E a s t c e n t e r s = r e p e a t ( g r i d c e n t e r s [ : , 2 ] , 1 , n R o l l )

37

38 # c a l c u l a t e d i s t a n c e t o each g r i d c e n t e r

39 c e n t e r d i s t a n c e = s q r t . ( ( N or th Ve h i c l e−N o r t h c e n t e r s ) . ˆ 2 + ( E a s t V e h i c l e−

E a s t c e n t e r s ) . ˆ 2 )

40 # C a l c u l a t e s m a l l e s t d i s t a n c e from p a t h t o each g r i d c e n t e r

41 d i s t a n c e , = f i n d m i n ( c e n t e r d i s t a n c e , dims =2)

42 # Use g a u s s i a n d i s t r i b u t i o n t o c a l c u l a t e new g r i d v a l u e

43 g a u s s i a n = exp . ( − ( d i s t a n c e ) . ˆ 2 / ( 2 * ( r a d i u s / 3 ) ˆ 2 ) )

44

45 # u p d a t e g r i d v a l u e s

46 u p d a t e l o c a t i o n = g a u s s i a n .> g r i d v a l u e s

47 g r i d v a l u e s = g r i d v a l u e s−u p d a t e l o c a t i o n . * g r i d v a l u e s + u p d a t e l o c a t i o n . * g a u s s i a n
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48 c o s t = sum ( g r i d v a l u e s ) / 900

49 re turn c o s t , g r i d v a l u e s , e n d l o c a t i o n

50 end # c a l c r e w a r d

Listing A.3: Julia reward function

A.4 Data Sharing

1 f o r k = 1 : n V e h i c l e s

2 f o r j = 1 : n V e h i c l e s

3

4 # C a l c u l a t e how c l o s e t h e two v e h i c l e s a r e

5 r a d d i s t a n c e = s q r t ( ( v e h i c l e P o s i t i o n [ k ,2]− v e h i c l e P o s i t i o n [ j , 2 ] ) ˆ2 +

( v e h i c l e P o s i t i o n [ k ,3]− v e h i c l e P o s i t i o n [ j , 3 ] ) ˆ 2 )

6

7 # The j t h v e h i c l e s h a r e s i t s g r i d v a l u e s i f w i t h i n communica t ion

r a d i u s

8 i f r a d d i s t a n c e <commrad && k != j

9 O [ : , j , k ] = l o o k a h e a d [ : , j ]

10 # I f n o t w i t h i n communica t ion r a d i u s , u p d a t e t h a t column t o be k t h

v e h i c l e ’ s g r i d v a l u e s

11 e l s e

12 O [ : , j , k ] = g r i d v a l u e s [ : , k ]

13 end

14 end

15

16 # Use h i g h e s t p e r c e i v e d g r i d v a l u e s from s h a r e d d a t a and v e h i c l e ’ s own

p r e d i c t i o n

17 o p t i m i z e v a l s [ : , k ] = max (O [ : , : , k ] , dims = 2)

18 end

Listing A.4: If vehicles entered the communication radius, they would share their grid values. The

highest value for each grid cell shared with the vehicle would be the grid value the vehicle received

for the next optimization.

A.5 Initialization of Targets
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1 f u n c t i o n i n i t i a l i z e t a r g ( n t a r g s , nor thbound , eas tbound , n v e h i c l e s )

2

3 # S e t s t a r t i n g l o c a t i o n and o r i e n t a t i o n o f t a r g e t s

4 t a r g P o s i t i o n = [ r and ( 1 ) *2* p i e a s t b o u n d / 3 n o r t h b o u n d / 3 ;

5 r and ( 1 ) *2* p i e a s t b o u n d / 3 2* n o r t h b o u n d / 3 ;

6 r and ( 1 ) *2* p i e a s t b o u n d / 2 n o r t h b o u n d / 2 ;

7 r and ( 1 ) *2* p i 2* e a s t b o u n d / 3 n o r t h b o u n d / 3 ;

8 r and ( 1 ) *2* p i 2* e a s t b o u n d / 3 2* n o r t h b o u n d / 3

9 ]

10

11 # S e t s t a r t i n g v e l o c i t i e s o f t a r g e t s

12 v e l o c i t y = Array { F l o a t 6 4 } ( undef , 1 , n t a r g s )

13 v e l o c i t y [ : ] . = 1 0 . 0

14 t a r g v a l u e s = Sha redAr ray { F l o a t 6 4 } ( n t a r g s , n v e h i c l e s )

15 re turn t a r g P o s i t i o n , v e l o c i t y , t a r g v a l u e s

16

17 end

Listing A.5: Initialization of initial target locations, orientations, and velocities

A.6 Propagation of Targets

1 f u n c t i o n p r o p o g a t e t a r g s ( n t a r g e t s , t a r g P o s i t i o n , v e l o c i t y , t i m e s t e p )

2

3 # P r o p o g a t e t a r g e t p o s i t i i o n based on v e l o c i t y and h e a d i n g

4 t a r g P o s i t i o n [ : , 1 ] . = t a r g P o s i t i o n [ : , 1 ] . + rand ( n t a r g e t s ) * p i / 6 .− p i / 1 2

5 t a r g P o s i t i o n [ : , 3 ] = t a r g P o s i t i o n [ : , 3 ] . + ( t i m e s t e p * v e l o c i t y . * ( s i n . (

t a r g P o s i t i o n [ : , 1 ] ) ) ’ ) ’

6 t a r g P o s i t i o n [ : , 2 ] = t a r g P o s i t i o n [ : , 2 ] . + ( t i m e s t e p * v e l o c i t y . * ( cos . (

t a r g P o s i t i o n [ : , 1 ] ) ) ’ ) ’

7 re turn t a r g P o s i t i o n

8 end

Listing A.6: Propagate targets forward in time based on velocities and heading angles

A.7 Combined target tracking and grid search function
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1 f u n c t i o n c a l c r e w a r d ( o p t i m i z e v a l u e s , p a r a m s i n t , p a r a m s f l o a t , e n d l o c a t i o n ,

g r i d v a l u e s , g r i d c e n t e r s , t a r g p o s i t i o n , t a r g v a l u e s , n t a r g s , weight , g r i d w e i g h t )

2 # unpack v e c t o r s and i n i t i a l i z e

3

4 R = e l t y p e ( o p t i m i z e v a l u e s )

5 n R o l l = p a r a m s i n t [ 1 ]

6 n V e h i c l e s = p a r a m s i n t [ 2 ]

7 n C e l l s = p a r a m s i n t [ 3 ]

8 t = p a r a m s f l o a t [ 3 ]

9 r a d i u s = p a r a m s f l o a t [ 1 ]

10 g = p a r a m s f l o a t [ 2 ]

11 v e h i c l e E a s t = Array {R} ( undef , 1 , n R o l l )

12 v e h i c l e N o r t h = Array {R} ( undef , 1 , n R o l l )

13 y0 = Array {R} ( undef , 3 )

14 y0 . = e n d l o c a t i o n

15

16 # g e t l o c a t i o n o f v e h i c l e s a f t e r each r o l l a n g l e

17 f o r i = 1 : n R o l l

18

19 params = [ o p t i m i z e v a l u e s [ i ] , g , o p t i m i z e v a l u e s [ end ] ]

20 t s p a n = ( 0 . 0 , t )

21 prob = D i f f e r e n t i a l E q u a t i o n s . ODEProblem ( g e t l o c a t i o n , y0 , t s p a n , params )

22 s o l = D i f f e r e n t i a l E q u a t i o n s . s o l v e ( prob , s a v e e v e r y s t e p = f a l s e )

23 y0= s o l ( t )

24 v e h i c l e E a s t [ i ]= y0 [ 2 ]

25 v e h i c l e N o r t h [ i ] = y0 [ 3 ]

26

27 end

28 e n d l o c a t i o n = [ y0 [ 1 ] y0 [ 2 ] y0 [ 3 ] ] ;

29

30 # c r e a t e v e c t o r o f v e h i c l e l o c a t i o n s t o d e t e r m i n e d i s t a n c e s t o a l l g r i d

31 # c e n t e r s u s i n g m a t r i x math

32 E a s t V e h i c l e = r e p e a t ( v e h i c l e E a s t , n C e l l s , 1 )

33 N o r t h V e h i c l e = r e p e a t ( v e h i c l e N o r t h , n C e l l s , 1 )

34 N o r t h c e n t e r s = r e p e a t ( g r i d c e n t e r s [ : , 1 ] , 1 , n R o l l )

35 E a s t c e n t e r s = r e p e a t ( g r i d c e n t e r s [ : , 2 ] , 1 , n R o l l )
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36 E a s t V e h i c l e t a r g = r e p e a t ( v e h i c l e E a s t , n t a r g s , 1 )

37 N o r t h V e h i c l e t a r g = r e p e a t ( v e h i c l e N o r t h , n t a r g s , 1 )

38 v e h i c l e t a r g n o r t h = r e p e a t ( t a r g p o s i t i o n [ : , 3 ] , 1 , n R o l l )

39 v e h i c l e t a r g e a s t = r e p e a t ( t a r g p o s i t i o n [ : , 2 ] , 1 , n R o l l )

40

41 # c a l c u l a t e d i s t a n c e t o each t a r g e t

42 t a r g d i s t a n c e = s q r t . ( ( v e h i c l e t a r g n o r t h −N o r t h V e h i c l e t a r g ) . ˆ 2 + ( v e h i c l e t a r g e a s t

−E a s t V e h i c l e t a r g ) . ˆ 2 )

43

44 # c a l c u l a t e s m a l l e s t d i s t a n c e froom p a t h t o each t a r g e t

45 m i n t a r g d i s , = f i n d m i n ( t a r g d i s t a n c e , dims =2)

46

47 # use g a u s s i a n t o c a l c u l a t e t a r g e t v a l u e s

48 t a r g g a u s s i a n = exp . ( − ( m i n t a r g d i s ) . ˆ 2 / ( 2 * ( r a d i u s / 3 ) ˆ 2 ) )

49

50 # c a l c u l a t e d i s t a n c e t o each g r i d c e n t e r

51 c e n t e r d i s t a n c e = s q r t . ( ( N or th Ve h i c l e−N o r t h c e n t e r s ) . ˆ 2 + ( E a s t V e h i c l e−

E a s t c e n t e r s ) . ˆ 2 )

52

53 # c a l c u l a t e s m a l l e s t d i s t a n c e from p a t h t o each g r i d c e n t e r

54 d i s t a n c e , = f i n d m i n ( c e n t e r d i s t a n c e , dims =2)

55

56 # use g a u s s i a n d i s t r i b u t i o n t o c a l c u l a t e new g r i d v a l u e

57 g a u s s i a n = exp . ( − ( d i s t a n c e ) . ˆ 2 / ( 2 * ( r a d i u s / 3 ) ˆ 2 ) )

58

59 # u p d a t e g r i d and t a r g e t v a l u e s

60 u p d a t e l o c a t i o n = g a u s s i a n .> g r i d v a l u e s

61 u p d a t e t a r g = t a r g g a u s s i a n .> t a r g v a l u e s

62 t a r g r e w a r d = t a r g v a l u e s − t a r g v a l u e s . * u p d a t e t a r g + u p d a t e t a r g . * t a r g g a u s s i a n

63 g r i d v a l u e s = g r i d v a l u e s−u p d a t e l o c a t i o n . * g r i d v a l u e s + u p d a t e l o c a t i o n . * g a u s s i a n

64 g r i d c o s t = sum ( g r i d v a l u e s )

65 t a r g c o s t = sum ( t a r g r e w a r d )

66

67 # c a l c u l a t e t h e f i n a l c o s t based on t h e w e i g h t i n g s

68 f i n a l c o s t = ( g r i d w e i g h t * g r i d c o s t + w e i gh t * t a r g c o s t ) / ( g r i d w e i g h t *900+ w e ig h t *5)

69 re turn f i n a l c o s t , g r i d v a l u e s , e n d l o c a t i o n , t a r g r e w a r d , g r i d c o s t
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70 end # c a l c r e w a r d

Listing A.7: Combined reward function with target tracking and grid search

A.8 Optimization Function

1 f u n c t i o n opt imizeswarm ( x0 , lb , ub , p a r a m s i n t , p a r a m s f l o a t , E n d l o c a t i o n , g r i d v a l u e s ,

g r i d c e n t e r s )

2

3 # F u n c t i o n t o be o p t i m i z e d wi th c o n s t r a i n t s

4 f u n c t i o n ob j c on ( x )

5

6 # C a l l c a l c r e w a r d as t h e o b j e c t i v e

7 f u n c t i o n r eward ( x )

8 obj , , = c a l c r e w a r d ( x , p a r a m s i n t , p a r a m s f l o a t , E n d l o c a t i o n ,

g r i d v a l u e s , g r i d c e n t e r s )

9 # We want t o maximize t h e reward so n e g a t e o b j e c t i v e f o r t h e

m i n i m i z e r s n o p t

10 re turn −o b j

11 end

12 f = reward ( x )

13 # c a l l f o r w a r d d i f f t o c a l c u l a t e g r a d i e n t s

14 dfdx = F o r w a r d D i f f . g r a d i e n t ( reward , x )

15 # r e t u r n empty a r r a y s as c o n s t r a i n t s

16 c = Array { F l o a t 6 4 , 1} ( undef , 0 )

17 dcdx = Array { F l o a t 6 4 , 1} ( undef , 0 )

18 f a i l = f a l s e

19 re turn f , c , dfdx , dcdx , f a i l

20 end

21 o p t i o n s = D i c t { S t r i n g , Any } ( )

22 o p t i o n s [ ” Major o p t i m a l i t y t o l e r a n c e ” ] = 1e−6

23 o p t i o n s [ ” D e r i v a t i v e o p t i o n ” ] = 1

24 o p t i o n s [ ” V e r i f y l e v e l ” ] = 1

25 # C a l l s n o p t

26 xopt , f o p t = s n o p t ( objcon , x0 , lb , ub , o p t i o n s )

27 re turn xopt , f o p t
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28 end

Listing A.8: If vehicles entered the communication radius, they would share their grid values. The

highest value for each grid cell shared with the vehicle would be the grid value the vehicle received

for the next optimization.
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