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ABSTRACT

Property Localization for Grain Boundary Diffusivity
via Inverse Problem Theory

Christian Kurniawan
Department of Mechanical Engineering, BYU

Master of Science

The structure and spatial arrangement of grain boundaries strongly affect the properties
of polycrystalline materials such as corrosion, creep, weldability, superconductivity, and diffusiv-
ity. However, constructing predictive grain boundary structure-property models is taxing, both
experimentally and computationally due to the high dimensionality of the grain boundary char-
acter space. The purpose of this work is to develop an effective method to infer grain boundary
structure-property models from measurement of the effective properties of polycrystals by utiliz-
ing the inverse problem theory. This study presents an idealized case in which structure-property
models for grain boundary diffusivity are inferred from a noisy simulation.

The method presented in this study is derived from a general mathematical expression
of inverse problem theory. The derivation of the method is carried step by step by considering
diffusivity as the property of interest. The use of the Bayesian probability approach in the inference
method makes the uncertainty quantification possible to perform. This study demonstrates how
uncertainty quantification for the inferred structure-property models is easily performed within the
idealized case framework. The method of quantifying the uncertainty is carried by utilizing the
Metropolis-Hastings algorithm and Kernel Density Estimation method.

The validation of the method is carried out by considering structure-property models with
one, three, and five degrees of freedom. Two- and three-dimensional simulated polycrystals are
used in this study to obtain the simulation data. The two-dimensional simulated polycrystals
used in this study are generated using grain growth simulation performed using a front-tracking
algorithm. The three-dimensional polycrystals used in this study are generated using Neper soft-
ware resulting in a real-like polycrystals. The structure-property models used in the validation are
picked by considering the qualitative features that reflect trends observed in literature. The infer-
ence method is performed by ignoring any knowledge about the structure-property model in the
process.

Keywords: Grain Boundary, Structure-Property Model, property localization, Grain Boundary Dif-
fusivity, inference, Inverse Problem Theory
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CHAPTER 1. INTRODUCTION

A grain boundary (GB) is the interfacial transition between two adjacent grains in a poly-

crystalline material. GBs play many important roles in material phenomena and in many cases

govern numerous properties of crystalline materials. For example, the structure and spatial ar-

rangement of GBs strongly affect the corrosion [7], creep [8], weldability [9], superconductiv-

ity [10], and diffusivity [11, 12] of polycrystalline materials. Grain boundary engineering (GBE)

demonstrates that material properties can be enhanced by controlling the population of different

GB types [7, 13–18]. Therefore, if we can have the GB structure-property model, we can apply

GBE techniques to accelerate the discovery of new materials with more desirable properties.

Efforts to develop GB structure-property models have historically relied on experiments or

atomistic calculations performed on bicrystals [6,19–21]. However, due to the high dimensionality

of the GB configuration space, measuring and/or calculating GB properties one-by-one has limited

the scope of investigations primarily to a relatively small set of highly symmetric GB types [22].

This has greatly hampered the development of GB structure-property models, and at present, such

models are few in number and are limited to incomplete portions of the five-dimensional GB

character space (e.g. the Read-Shockley model [5]). Only recently has the first GB structure-

property model over the five-dimensional GB character space been developed [23], allowing for

prediction of GB energy in FCC metals.

In contrast to bicrystals, polycrystals are easier and less expensive to manufacture and each

polycrystalline sample contains a large number of GBs. Thus, a more efficient strategy for infer-

ring GB structure-property models might be to rely on measurements of the effective properties of

polycrystals. The challenge for such an approach lies in the deconvolution of the respective con-

tributions of each GB. In essence, I propose that exchanging a small quantity of data that is highly

precise (bicrystals) for a large quantity of data that has greater uncertainty (polycrystals) may be

the key to making the problem tractable.
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Because it is the inverse of the problem of homogenization, this problem of inferring con-

stituent properties from the effective properties of a material is referred to as property localization1.

Although relatively unstudied, there are a few examples of localization problems in the literature

in which single crystal elastic constants were obtained from measurements of the elastic response

of polycrystals [31–33].

Johnson, Li, Demkowicz, and Schuh [34] have recently applied the property localization

concept to GBs to infer the parameters of a structure-property model for GB diffusivity from

synthetic idealized two-dimensional polycrystals with honeycomb geometry. In their work, the

inverse problem of GB property localization was solved by regression with an analytical ansatz

(i.e. the form of the structure-property model was known a priori). Although successful, the

requirement of an analytical ansatz is a significant limitation because for many GB properties,

including diffusivity, the functional form of the structure-property model is unknown; in fact, the

model form is precisely the information one hopes to learn by the inference effort.

In this work, I develop a new approach for GB property localization based on Bayesian

strategies employed in inverse problem theory. In addition to eliminating the requirement for an

analytical ansatz, the new method naturally facilitates uncertainty quantification for the inferred

structure-property model. To validate the new approach, I infer structure-property models for GB

diffusivity from calculations of the effective diffusivity of realistic two- and three-dimensional

polycrystals, without using a priori information about the form of the constitutive models. By en-

abling the use of simple to manufacture, data-rich polycrystals (instead of reliance on bicrystals), it

is anticipated that this new strategy will make tractable the problem of inferring structure-property

models for GBs.

In this thesis, I will describe how an inverse problem theory can be used to infer GB

structure-property models. Here, the related information and the derivation of the method will

be presented. The derivation of the method will focus on the diffusivity property. However, the

general form of the method can be used in other applications to infer the constitutive models of

numerous GB properties. The validation of the method will be carried out by considering the case

where the GB structure-property models have one, three, and five degrees of freedom. Two- and

1Term “property localization“ is used to distinguish this problem from the more frequently studied problem of
inferring the local state (e.g. the local stress tensor) from the macroscopic state (e.g. the effective stress tensor) of a
polycrystal [24–30], which I refer to as “state localization”.
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three-dimensional simulated polycrystals are used in this thesis to obtain the effective diffusivity

calculations as well as the other observable information needed. The method of quantifying the

uncertainty will also be presented here.

To describe the relevant theory and demonstrate its application for an idealized model sys-

tem, in an effort to validate the approach, the thesis is organized as follows. Chapter 2 explains the

relevant and necessary theories in the study. Chapter 3 describes the derivation of the GB property

localization method and its uncertainty quantification. Chapter 4 explains the method to validate

the inference process. Chapter 5 presents the result of the validation.

3



CHAPTER 2. BACKGROUND

Relevant information about the GBs and the property localization method will be intro-

duced in this chapter.

2.1 Grain Boundaries

Figure 2.1: Illustration of GB where it can be thought of as two dimensional planes that separate
grains in materials (left adapted from [1]; right adapted from [2]).

GBs are the interfacial transition between two touching grains/crystals which have differ-

ent crystallographic orientation [19, 35] (see Figure 2.1). Because a GB is separating two adjacent

grains, it can also be thought of as the interfacial defect which affects numerous properties of the

material. In the two-dimensional illustration of Figure 2.1, GBs can be noticed from the atomic

mismatch when the transition in crystalline orientation of two adjacent grains occurs. This mis-

match can be quantified using the misorientation of the adjacent grains and the direction of the GB

plane which can be used to characterize the GB type and will be explained further in Section 2.1.1

below.
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2.1.1 Grain Boundary Structure

Figure 2.2: Illustration of GB where disorientation of grain A and grain B is represented by
(ω,θ ,φ) and the normal of the boundary plane is represented by (α,β ); adapted from [3, 4].

The structure of a GB can be characterized by its five degrees of freedom to describe [36].

There are two common methods describing these five degrees of freedom to characterize GB crys-

tallography as explained by Olmsted [37]. This study will use two parameters to describe the

normal of the boundary plane (α,β ); while the grain disorientation will be described using two

parameters to represent the rotation axis (θ ,φ) and another parameter to represent the rotation to

bring the grains in perfect matching ω [3, 4, 23] (see Figure 2.2).

2.1.2 Grain Boundary Structure-Property Model

The function that relates the GB structure to its properties is commonly referred to as

GB structure-property model. One of the earliest studies of GB structure-property models was

conducted by Read and Shockley [5] which approximate GB energy by treating it as an array

of dislocations. The model presented in [5], commonly known as the Read-Shockley model, is

5



Figure 2.3: Comparison of the Read-Shockley model and the actual value energy of silicon ferrite.
The dashed line is the function of Equation (2.1) and the dots are the actual data. The picture is
directly taken from [5].

the function of dislocation energy and GB disorientation angle (EGB = f (ω,E⊥)). The model is

commonly written as:

E = E0ω(A− lnω) (2.1)

where ω is the disorientation angle of the neighboring grains and A is a parameter that depends

on the GB plane which commonly is assumed to be constant. The model is commonly used with

only one degree of freedom (ω) in the calculation and is only accurate for small values of ω (see

Figure 2.3).

A study conducted by Olmsted [6] observed that GBs with the same disorientation angle

can have substantially different energies as shown in Figure 2.4. This result led to the conclusion

that disorientation angle alone is insufficient to determine the GB energy. By interpolating the data

presented by [6], Bulatov, Reed, and Kumar successfully represent the energy of GB in a function

of its complete five degrees of freedom [23], referred to as the BRK-energy model in this study.

6



Figure 2.4: Computed GB energy of Ni plotted against the disorientation angle between two grain
(left) and Σ (right). The picture is taken from [6].

The current study is interested in inferring the constitutive model for GB diffusivity from

the effective diffusivity of the polycrystals. To validate the inference method, a modified version

of the BRK-energy model will be utilized because no general structure-property models for GB

diffusivity currently exist, which will be explained further in Chapter 4.

2.2 Homogenization

The asymptotic method of homogenization is one rigorous averaging method in applied

math which is commonly referred to as homogenization theory [38, 39]. The theory gives the

macroscopic properties of materials, which contain two or more finely mixed substances (com-

monly known as composite materials), by viewing a composite material as a homogeneous mate-

rial and considering its microscopic structure [40]. This theory has always been recognized as a

powerful method to relate, as well as obtain, the effective properties of macroscopic materials with

its structure-property model of heterogeneous microscopic substances [41–43].

Here, the method can also be applied to polycrystals because, in essence, a polycrystal is

a solid macroscopic material containing two or more microscopic crystals/grains. Moreover, the

effective properties of a material depend on its microstructural properties and spatial arrangement

[44] and can be expressed as:

D̄ = H(M,D) (2.2)

7



D̄ is the effective property of the material (i.e. effective diffusivity in current study) and H is

a homogenization relation containing microstructural information (M) and a structure-property

model (D).

One early homogenization relation of diffusivity was proposed by Hart [45] in 1957. The

Hart‘s model assumes that all GBs in polycrystals have the same value of diffusivity (in reality,

each GB has different diffusivity measurement). Effective Medium Theory (EMT) [11,46,47] and

percolation theory (percolation scaling laws) [48–53] are common homogenization relations that

consider different diffusivity values for each GB. However, EMT is only accurate for the small

range of GB diffusivity (GB low diffusivity contrast) and percolation theory only captures GB

high diffusivity contrast. To capture both GB low and high contrast diffusivity, Chen and Schuh

[11] applied the General Effective Medium (GEM) equation, developed by McLachlan [54, 55],

which combine element of both EMT and percolation theory as a homogenization relation for GB

diffusivity. The method, however, is challenging to be used to predict the effective diffusivity of

general microstructures.

In this thesis, I utilize a more recent homogenization relation for GB diffusivity proposed

by Johnson, Lund, and Critchfield [56] that considers the full spectrum of GB type; can be used

with continuous and discrete constitutive models for GB diffusivity; and relatively easy to be used

to predict the effective diffusivity of general microstructures. The method is utilizing the spectral

graph theory (SGT) and will be called the SGT-method in this thesis. Using the SGT-method the

effective diffusivity of the grain boundary network (GBN) can be calculated as [56]:

D̄SGT (D ,M) =
L
A

(
∑
k>1

λ
−1
k (uk(a)−uk(b))

2

)−1

(2.3)

where D̄SGT is the effective diffusivity predicted using the SGT-method; M abstractly represents

the relevant microstructural information (i.e. the character and arrangement of the GBs in the

present application); D is a function that abstractly represents the GB diffusivity structure-property

model; L and A are the length and cross-sectional area of the polycrystal, respectively; λk is the k-

th eigenvalue of the diffusivity-weighted GBN Laplacian matrix (L ), which encodes the topology

of the GBN and the diffusivity of each GB; uk(a) and uk(b) are the a-th and b-th elements of

8



the k-th eigenvector of L , where a and b are the indices of the diffusivity source and sink nodes

respectively.

2.3 Property Localization

There are two common ways to employ Equation (2.2): (1) to predict a material property

where the microstructural information and the local property model are known; (2) to design a

material by solving for the microstructural information which need to be commensurate to the

desired material property (the structure-property model is assure to be known). However, Equa-

tion (2.2) can also be used to infer a structure-property model when the effective property and

the microstructural information are known. As the inverse of the homogenization relation, this

approach of inferring constituent properties from the effective properties of a material is called

property localization in this thesis. More specifically, the approach of inferring the constitutive

model for GB property from the effective property of polycrystals will be referred to as GB prop-

erty localization.

The GB property localization method was proposed by Johnson, Li, Demkowicz, and

Schuh [34]. The property localization method presented by [34] was applied in an idealized two-

dimensional honeycomb lattice. The diffusivity was assigned to GBs based on their disorientation

utilizing the binary (low- and high-angle) method to define GBs type. The GEM was used as the

homogenization relation, where the constitutive model for GB diffusivity was assumed to be a

piecewise constant function of low- and high-angle diffusivity. In that prior work, GB property

localization was performed by utilizing the least-squares function to obtain the parameters of the

assumed structure-property model for GB diffusivity. As has also been mentioned, one major lim-

itation of this method is that the form of GB structure-property model needs to be known a priori

while for many GB properties, including diffusivity, the functional form of the structure-property

model is the information one hopes to learn by the inference effort.

The goal of this study is to develop a new GB property localization method to infer the

structure-property model for GB diffusivity from the effective diffusivity of polycrystals as a func-

tion of its all five crystallographic degrees of freedom without an ansatz for the model form.

The property localization method presented in this thesis is applied to realistic two- and three-

dimensional simulated polycrystals and the method to generate the polycrystals will be explained

9



further in Section 4.1. As has been explained in Section 2.2, this study employs the SGT-method

as the homogenization relation relating the GB diffusivity and the effective diffusivity of the poly-

crystals. Further discussion of the development of the property localization and the validation of

the method will be presented in Chapters 3 and 4.
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CHAPTER 3. METHOD

Here I give a brief introduction to relevant aspects of inverse problem theory and then

demonstrate its application to the problem of GB property localization. Additionally, the method

to quantify the uncertainty of the inference is also presented here.

3.1 Inverse Problem Theory

Inverse problem theory is a method of inferring model parameters (m) that characterize a

system using the results of some measurements/observations of the system (d) [57–61]. In a given

system, m = {m1,m2, . . .} is a set containing the independent parameters and d = {d1,d2, . . .} is

a set containing the dependent parameters, both of which we may only hope to know with some

imperfect degree of certainty. Tarantola1 proposed that our state of information (what we know

about d and m) can be described by a probability density function (PDF), called the a posteriori

state of information, σ(d,m), which is equal to the conjunction of the a priori state of information,

ρ(d,m), and the theoretical state of information, Θ(d,m) [57]. The a priori state of information is

what we know before ever making any observations and may represent some known physical con-

straints. The theoretical state of information encodes correlations between m and d resulting from

a homogenization or other physical theory and corresponding uncertainty. Using the Kolmogorov

axioms, Tarantola and Valette showed that the a posteriori state of information is given by [58]:

σ(d,m) = k
ρ(d,m)Θ(d,m)

µ(d,m)
(3.1)

Here, k is a normalization constant, and µ(d,m) is the homogenous state of information, which is

the PDF that assigns a probability to each region of the parameter space that is equal to the volume

1It is worth noting that a useful alternative Bayesian formulation of inverse problems exists, as described by [60,61],
which results in a conditional a posteriori density σ(m |d). We have chosen to follow the approach introduced by
Tarantola [57], which results in the joint a posteriori density σ(d,m) and avoids the, perhaps rare, mathematical
singularity that can exist in σ(m |d) for events with vanishing probability (Borel’s paradox).
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of that region [59]. In the present context, Equation (2.3) represents the forward problem. Thus, the

observed effective diffusivity (D̄obs) is a dependent parameter and {D ,M} are independent param-

eters. As will be described in Section 3.2, GB property localization typically leverages information

from multiple samples, so that we have M = {M1,M2, ...,MN} and D̄obs = {D̄obs
1 , D̄obs

2 , ..., D̄obs
N }.

Ignoring the normalization constant, we can then rewrite Equation (3.1) as:

σ(D̄obs,{D ,M}) ∝
ρ(D̄obs,{D ,M})Θ(D̄obs,{D ,M})

µ(D̄obs,{D ,M})
(3.2)

The resolution of the inverse problem consists in identifying the structure-property model,

D , that is most probable given our observations of D̄obs and M. This is accomplished by integrating

Equation (3.2) to compute the a posteriori state of information over the space of independent

parameters:

σ({D ,M}) =
∫

σ(D̄obs,{D ,M})d(D̄obs) (3.3)

The evaluation of this integral is facilitated by considering relevant simplifications. Because the

a priori information about M and D is not obtained from measurements of D̄obs, their states of

information are independent [57], which implies that:

ρ(D̄obs,{D ,M}) = ρ(D̄obs)ρ ({D ,M}) (3.4)

µ(D̄obs,{D ,M}) = µ(D̄obs)µ ({D ,M}) (3.5)

It should be noted here that ρ(D̄obs) and ρ ({D ,M}) are distinct functions. Conventional notation

would include subscripts to distinguish them, such as ρD̄obs(D̄obs) and ρ{D ,M} ({D ,M}), respec-

tively. However, in the present case this becomes quite burdensome and difficult to read, so, for

simplicity of notation, I omit the subscripts. I make explicit clarifications anywhere that context

alone is insufficient to identify a particular function unambiguously.

I assume that Equation (2.3), as the physical theory relating the independent and depen-

dent parameters, is at most mildly non-linear. Combining this assumption with the Kolmogorov

definition for conditional probability [62], and taking the homogenous probability of the indepen-
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dent parameters as their marginal probability, Θ(D̄obs,{D ,M}) can be written, according to the

treatment of Tarantola and Vallete [57, 58], as:

Θ(D̄obs,{D ,M}) = θ

(
D̄obs | {D ,M}

)
µ ({D ,M}) (3.6)

Substituting Equations (3.2) and (3.4)–(3.6) into Equation (3.3), we obtain:

σ ({D ,M}) ∝ ρ ({D ,M})
∫

ρ(D̄obs)θ
(
D̄obs | {D ,M}

)
µ(D̄obs)

d(D̄obs) (3.7)

Because the manifold that D̄obs inhabits is a linear space, using the definition of homoge-

nous probability distribution presented by Mosegaard and Tarantola [59], I conclude that µ(D̄obs)

is constant. I also make the simplifying approximation that any uncertainty in Equation (2.3) is

negligible, which implies that θ
(
D̄obs | {D ,M}

)
= δ (D̄obs− D̄SGT(D ,M)). Under these condi-

tions, the integration operation in Equation (3.7) results in:

σ({D ,M}) ∝ ρ ({D ,M})ρ

(
D̄SGT(D ,M)

)
(3.8)

The last term, ρ
(
D̄SGT(D ,M)

)
= ρD̄obs

(
D̄SGT(D ,M)

)
, is a likelihood function, which quantifies

how well the model explains the data. In other words, ρ
(
D̄SGT(D ,M)

)
quantifies how well the

independent parameters explain the dependent parameters. Thus, the a posteriori state of informa-

tion about the independent parameters is proportional to the product of the likelihood function and

the a priori state of information about the independent parameters.

3.2 GB Property Localization

In this section, I describe how GB property localization is done in general, and then how

the inverse problem theory discussed in the previous section may be applied in this context. GB

property localization [34] consists of first characterizing the microstructures of a set of polycrys-

tals, e.g., via Electron Back-Scatter Diffraction (EBSD). The resulting microstructural information

is denoted M = {M1,M2, ...,MN}, where Mi describes the i-th microstructure. Measurements are

then performed to determine the relevant effective property of each polycrystal. In the present case

I am interested in the effective diffusivity, D̄obs = {D̄obs
1 , D̄obs

2 , ..., D̄obs
N }. The relevant homogeniza-
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tion relation, Equation (2.3), is then inverted to determine the unknown structure-property model,

D .

Here, I propose the use of inverse problem theory to perform the homogenization inversion

step to solve for the unknown structure-property model. With M and D̄obs obtained via measure-

ment, I solve for the unknown structure-property model for GB diffusivity (D) by determining,

among all possible models, the one that maximizes the a posteriori probability density σ({D ,M}).

I wish to do this without an ansatz for the model form, so that both the form and any model pa-

rameters are dictated by the observed data. As will be described below, I accomplish this by first

discretizing the domain of D , then describing the a priori state of information by appropriate

PDFs, and finally, solving an optimization problem with Equation (3.8) as the objective function

to infer the value of the diffusivity structure-property model in each bin, thus obtaining a discrete

approximation to D .

Because I wish to infer the structure-property model without a priori knowledge of its

form, I discretize the GB character space so that D will be approximated as a piecewise-constant

function with unknown parameters D= {D1,D2, ...,DJ}, where D j is the diffusivity of a GB whose

crystallographic character inhabits the j-th bin and J is the total number of bins. The only a priori

information about the model parameters that I consider is that the diffusivity is everywhere non-

negative (i.e. I assume that no spinodal-type phase transformation is occurring). The a priori

information about D can then be represented as a Heaviside step function:

ρ(D) =

1, D j ≥ 0,∀ j ∈ [1,J]

0, otherwise
(3.9)

Because I am using simulated polycrystals, my a priori knowledge of each microstructure

is exact. Consequently, I utilize an indicator function to represent the a priori state of information

about M:

ρ(M) =

1, Mi = Mact
i ,∀ i ∈ [1,N]

0, otherwise
(3.10)
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where Mact
i is the actual state of the i-th microstructure. If experimental samples were considered,

their characterization would be inexact and the indicator function would be replaced with a dis-

tribution whose dispersion encoded the uncertainty resulting from the characterization procedure.

We have hitherto referred abstractly to M as containing some information about the state of the

microstructure. This is because for property localization in general, different properties of interest

may depend on the character/state of different microstructural features (e.g. composition, phase

fractions, phase morphology, crystallographic texture). The details about what information is con-

tained in M and how it is represented are therefore problem specific, but the methods presented

here are quite general. For the present problem, M contains the character and arrangement of the

GBs in the microstructure, as explicitly given by the GBN Laplacian, L .

The independence of D and M implies that their joint distribution is given by:

ρ ({D,M}) = ρ(D)ρ(M) (3.11)

Finally, for each polycrystal, I represent the likelihood function by a Gaussian-like PDF:

ρ

(
D̄SGT(D,Mi)

)
∝ exp

(
−
(
D̄obs

i − D̄SGT(D,Mi)
)2

2s2
i

)
(3.12)

where, si characterizes the measurement uncertainty of D̄obs
i . Considering all of the microstructures

together we have, again because of independence, the joint distribution

ρ

(
D̄SGT(D,M)

)
∝ exp

(
−

N

∑
i=1

(
D̄obs

i − D̄SGT(D,Mi)
)2

2s2
i

)
(3.13)

This implies that when a model (D) is considered that minimizes the difference between D̄obs and

D̄SGT(D,M), the likelihood will be maximized and such a model would best explain the observed

data.

Substituting Equations (3.11) and (3.13) into Equation (3.8), we obtain for the a posteriori

state of information for the independent parameters:
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σ ({D,M}) ∝


exp

(
−

N

∑
i=1

(
D̄obs

i − D̄SGT(D,Mi)
)2

2s2
i

)
, M = Mact,D≥ 0

0, otherwise

(3.14)

With an expression for the a posteriori state of information in hand we are now in a position

to perform the inversion of the homogenization equation to infer a discrete approximation to D .

This is accomplished by maximizing σ ({D,M}), with the D j as the design variables:

argmax
D

σ ({D,M}) (3.15)

To facilitate the optimization process, I make two adjustments to the problem. First, because GB

diffusivities can span many orders of magnitude, I rescale the optimization problem logarithmi-

cally. Second, to improve convergence of the optimization algorithms we employ, I smooth out

σ ({D,M}) by conservativelly approximating si ≈ s ≡ max(si). Applying these two adjustments,

our optimization problem becomes:

argmax
log(D)

exp

(
−

N

∑
i=1

1
2s2

(
D̄obs

i − D̄SGT(D,Mi)
)2
)

subject to M = Mact

D≥ 0

(3.16)

I have observed σ ({D,M}) to be nearly flat everywhere except in a small region close to the

optimum, making convergence challenging. To address this, I perform the optimization in two

stages. In the first pass, I maximize log [σ ({D,M})] to get close to the region containing the

optimum. Then, in the second pass, I finish the optimization process by maximizing σ ({D,M}).

For the first pass, I use MATLAB’s fmincon() function [63]. For the second pass, I employ the

Nelder-Mead Simplex algorithm [64], as implemented in the fminsearcbnd() function written by

John D’Erico [65].

Solution of Equation (3.16) allows us to infer the unknown structure-property model for

GB diffusivity without knowing the form of the model a priori. Additionally, because the a pos-
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teriori information is represented by a probability density function, it is possible to quantify the

uncertainty of the inference [60, 61], as will be explained further in Section 3.3.

3.3 Uncertainty Quantification

In addition to inferring the structure-property model that is most probable given the ob-

served data, it is also desirable to quantify how much uncertainty exists in our inferred result

(see [60, 61]). In technical terms, I seek to quantify the dispersion in the a posteriori state of in-

formation about the independent parameters, σ ({D,M}), resulting from the combined influence

of the dispersion in all of the underlying models of the a priori states of information (including

limitations due to measurement resolution). Here I make these ideas concrete and describe how I

calculate the uncertainty before presenting the inference results, together with their corresponding

uncertainty.

Figure 3.1: Illustration of the uncertainty quantification method. (a) Contour plot of σ ({D,M})
with the marginal densities for each dimension shown as dotted lines. (b) The corresponding
structure-property model (D), discretized into two bins.
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Let us consider a simple example in which the domain of the structure-property model (D)

is discretized into only two bins (see Figure 3.1b). For this example, the domain of σ ({D,M})

is two dimensional, so we can directly visualize it as the contour plot shown in Figure 3.1a. Each

point in the space shown in Figure 3.1a represents a different candidate structure-property model,

whose coordinates are the elements of D and provide the values of the structure-property model in

each bin. The color of the contour plot represents the value of σ ({D,M}), which represents the

probability (density) that any structure-property model is consistent with the observed data, taking

into account relevant uncertainties. Thus the model associated with the peak in Figure 3.1a is the

one that is most consistent with the observed data. The marginal density in each dimension (shown

as dotted black lines in Figure 3.1a) provides a measure of the uncertainty of the inferred value

in the corresponding bin. From the marginal distributions, confidence intervals can be calculated,

and these are used in our graphical representations of uncertainty.

Accurate inference of D requires the use of more than two bins and because the dimension-

ality of the problem is equal to the number of bins employed, which may be large, calculation of

the marginal distributions requires some care. Estimation of the marginal densities from uniform

sampling of σ ({D,M}) is straightforward, but computationally expensive for high dimensional

problems. Consequently, I employ the following procedure. I first sample the space around the op-

timum model using the Metropolis-Hastings algorithm (as implemented in the mhsample() func-

tion in MATLAB [63]), with σ ({D,M}) as the target distribution. Then, the marginal densities

are estimated from the resulting samples via the linear diffusion based Kernel Density Estimation

(KDE) method of Botev, Grotowski, and Kroese [66] (see [67] for a MATLAB implementation).

With the estimated marginal density in each bin, I can then calculate the confidence interval for the

inferred value of each D j.
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CHAPTER 4. VALIDATION

As has been mentioned, GB Property Localization consists of first characterizing the mi-

crostructures of a set of polycrystals, determining the relevant effective property of each polycrys-

tal, and finally inferring the unknown structure-property model. Because no general structure-

property models for GB diffusivity currently exist, the validation of the method developed in this

thesis is done in a hypothetical case as follows. First, the two- and three-dimensional synthetic

polycrystals are generated using the method in Section 4.1. Then, for each microstructure, the ef-

fective diffusivity is calculated using the SGT method where the GB diffusivity value in the GBN

is assigned using a hypothetical constitutive model as will be explained further in Section 4.2. And

finally, validation of the inference method then consists of comparing the “actual“ constitutive

model (assign in Section 4.2) with the inference result.

4.1 Microstructures Generation

Figure 4.1: Example of a two-dimensional polycrystal template used in this study. Colors indicate
crystallographic orientation, as shown in the accompanying inverse pole figure (IPF) color legend.
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In an effort to validate the method, two- and three-dimensional polycrystals are generated.

The two-dimensional polycrystalline microstructures are generated using the method of [56]. Each

microstructure is the result of an isotropic grain growth simulation performed using a front-tracking

algorithm [68] (code written by Jeremy Mason1). Each simulation was initialized with a Voronoi

microstructure constructed from randomly generated uniformly distributed seeds and resulting in

1000 cells (i.e. grain precursors). The simulations allowed the microstructure to evolve under mean

curvature flow until about 100 grains remain. Then grain orientations are assigned according to the

simulated annealing procedure described in [56] which ensures that the generated polycrystals span

the space of possible triple-junction fractions2 in order to encourage diversity of the GBN structure

in the resulting set of microstructures. An example microstructure generated by this procedure is

shown in Figure 4.1. A pool of 1771 polycrystals was generated, from which representatives were

randomly selected during the inference process.

Figure 4.2: Example of a three-dimensional polycrystal template used in this study with crystallo-
graphic orientation is represented using IPF coloring.

1The code implements the method established by [68], and is available at http://web.boun.edu.tr/jeremy.
mason/documents/FTGG2_v1_0.zip.

2Triple junction fractions, J0,J1,J2, and J3, represent the population of GB triple junctions coordinated by 0,1,2,
or 3 “special” GBs, respectively. Further discussion about triple junction fractions can be found in [69–74].
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I generated a pool of 2000 three-dimensional polycrystals in coined geometry using Neper

software version 3.0.2 [75–78] (see Figure 4.2), from which representatives were also randomly

selected during the inference process. Each polycrytal is constructed using the grain growth al-

gorithm (-morpho gg) available in neper -T module [76, 78] where I set the simulation to stop

when there are 50 grains left (-n 50). -oricrysym cubic and -domain "cylinder(0.1,1)"

options are used to create polycrystals with cubic crystal symmetry in coined shape geometry. In

order to use the SGT method to calculate the effective diffusivity of the polycrystals, -dim 2 and

-mesh2dalgo fron options from neper -M module are used to mesh the GBs of the polycrys-

tals using frontal meshing algorithm resulting in a nearly orthogonal triangular mesh. The grain

orientations are then assigned from uniformly distributed random orientations.

4.2 Obtaining Effective Diffusivity

The next step is to obtain the effective diffusivity data. To do this, I calculated the effective

diffusivity for each polycrystal using Equation (2.3). For our synthetic microstructures, Equa-

tion (2.3) is exact. However, in practical applications, one would employ digital representations of

microstructures acquired from, e.g., EBSD measurements, and property measurement techniques

with finite resolution. To simulate uncertainties that would arise from the approximate nature of

such digital representations as well as resolution limitations and measurement uncertainty, I add

Gaussian noise3, ε ∼ N
[
0,
(
19%

(
D̄SGT))2

]
, such that the observed effective diffusivity (D̄obs) is

given by:

D̄obs = D̄SGT + ε (4.1)

In this present case, si in Equation (3.14) is equal to the standard deviation of the noise I introduced

(i.e. 19%D̄SGT(D,Mi)). Because I assume that I have only D̄obs data, I estimate the value of si by

taking 19%
(
D̄obs

i
)

as the value of si.

With both D̄obs and M being measured, the unknown in Equation (2.3) is the structure-

property model, D , which we seek to infer using the tools of inverse problem theory. For the

purposes of validation, I assign GB diffusivities using a hypothetical constitutive model. Because
3The value of the standard deviation here is similar to that observed for effective diffusivity measurements of

solution annealed 465 stainless steel reported by [79].
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no general structure-property models for GB diffusivity currently exist4, I employ the function

developed by Bulatov, Reed, and Kumar to describe GB energy [23], but I map it to the range of

realistic values of GB diffusivity as described later; I will refer to this as the BRK model. With

GB diffusivities assigned, I then calculate the effective diffusivity using the procedure already de-

scribed, including the introduction of noise. During the inference process, I ignore any knowledge

of the assigned constitutive model and consider only M and D̄obs as the input variables.

4.3 Inferring and Validating

I considered one-, three-, and five-dimensional constitutive models to validate the infer-

ence method. In the first case, I considered two-dimensional microstructures in which the crys-

tallographic orientations of all grains shared a common 〈100〉 axis and all GBs were of 〈100〉 tilt

character where the GB plane is ignored so that D was a one-dimensional function of ω . I refer

to this as the one degree-of-freedom (1DOF) case. In the second case, I considered more general

two-dimensional microstructures with arbitrary crystallographic orientations resulting in arbitrary

disorientations, but I again ignored the influence of the GB plane so that D was a three-dimensional

function of the angle (ω) and axis (θ ,φ) of the disorientation. I refer to this as the three degree-

of-freedom (3DOF) case. For the final case, I considered three-dimensional microstructures with

arbitrary disorientation and GB plane so that D was a five-dimensional function of the disorienta-

tion angle (ω), rotation axis (θ ,φ), and the normal of the GB plane (α,β ). I refer to this as the

five degree-of-freedom (5DOF) case.

To validate the method, I first characterized the simulated polycrystals to obtain the mi-

crostructural information (M). Then, I obtained the observed effective diffusivity D̄obs of the

polycrystals by means of the method presented in Section 4.2. I then employed the proposed GB

property localization method to infer D without considering any prior information about the true

underlying structure-property model. Validation of the inference method was then carried out by

comparing the true constitutive model with the inference result. To aid with convergence of the

stochastic optimization, I performed the localization process 50 times for each constitutive model

and kept the result with the highest value of σ ({D,M}). For each inference attempt, M was com-

4In the absence of a measured structure-property model, computational studies have typically employed a binary
step-function [11, 34], though there are some examples of continuous functions [80].

22



posed of 100 randomly selected microstructures from the respective pools of 1771 two-dimensional

or 2000 three-dimensional simulated polycrystals.
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CHAPTER 5. RESULTS AND DISCUSSION

5.1 Validation Results

Here I present the inference results first before discussing the important aspects of it. The

results will be presented case by case to make a clear comparison, starting with the 1DOF case.

5.1.1 1 DOF Validation Results

As mentioned previously, the discretization produces a piecewise-constant approximation

to D , which I will denote D̂ . In the 1DOF case, we have:

D̂(ω) =



D1, 0 < ω ≤ b1

D2, b1 < ω ≤ b2

. .

. .

. .

DJ, bJ−1 < ω ≤ bJ

(5.1)

where, D j is the diffusivity of the j-th bin; J is the total number of bins; and b j is the upper limit

of the j-th bin. I employed a uniform discretization with 4.5◦ resolution so that b j = (4.5 j)◦. I

considered two different constitutive models for the 1DOF validation tests.

The first 1DOF constitutive model, as mentioned previously, was a modified version of the

BRK model [23], which I linearly scaled and shifted to the range of realistic values of GB diffusiv-

ity for aluminum. Specifically, this transformation resulted in a model for which the minimum and

maximum GB diffusivities were equal to those employed in [81], which were extracted from the

atomistic calculations of [82]. The second 1DOF test employed the following analytical model:
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D(ω) = Dhigh exp

((
log
(

Dlow

Dhigh

))((
4ω

π

)
−1
)4
)

(5.2)

which is similar in form to results from experimental and computational surveys of diffusivity

for 〈100〉 tilt GBs [82, 83]. In Equation (5.2), Dlow and Dhigh are the minimum and maximum

diffusivities respectively, the values of which were the same as those employed in the 1DOF BRK

model.

There are several things to note about the constitutive models employed here. First, there is

no existing structure-property model to predict GB diffusivity as a function of GB crystallography.

Consequently, the models I have employed are not intended to be quantitatively accurate descrip-

tions of actual GB diffusion processes, rather I have chosen models that possess qualitative features

(e.g. the existence of singularities, diffusivity values that vary over many orders of magnitude) that

reflect trends observed in the literature, in order to assess how well such features can be captured

by the localization technique. Second, for the 1DOF case, the grain orientations assigned to the

simulated polycrystal share a common 〈100〉 rotation axis orthogonal to the sample surface, mak-

ing all of the GBs 〈100〉 tilts. The first model I employed for D(ω) is constructed by evaluating

the full five degree-of-freedom BRK model over the one-dimensional submanifold corresponding

to 〈100〉 symmetric tilt GBs. The data that inspired the second 1DOF model were also for 〈100〉

symmetric tilt GBs. Although all of the GBs in the 1DOF simulated microstructures are strictly

〈100〉 tilts, they are not actually all symmetric tilts, and, to make the model one-dimensional, I

have ignored the GB plane altogether. Because I have ignored the GB plane, the domain of the

disorientation angle is symmetric about 45◦. Again, fidelity to the crystallography of the origi-

nal data that inspired the models was not the objective. Rather, regardless of their origin, I have

selected/constructed models whose forms exhibit relevant features.

The localization results for both models, together with the quantified uncertainty, can be

seen in Figure 5.1, where the green line is the model we attempted to infer (and which was ignored

during the inference process). The red line represents the piece-wise constant inference, which

is the most probable model given the observations. The gray area represents the 95% confidence

interval, which is my chosen metric to represent the uncertainty. Finally, the histogram shows

the disorientation angle distribution across all of the microstructures employed in the inference.
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Figure 5.1: Comparison between the inferred model and the true model for (a) the 1DOF BRK
function and (b) the exponential function of Equation (5.2), together with quantified inference
uncertainty. The disorientation angle distribution across all of the employed microstructures is
shown in histogram form above each plot.

Note that with 100 randomly selected microstructures all of the bins contain a multiplicity of

observations. Even with the coarse binning, and piece-wise constant representation, the results

show very good agreement with the true models in both cases. In particular, we can note that the

localization inference successfully captured the singularity in the 1DOF BRK model (Figure 5.1a).

A quantitative discussion of the inference accuracy is presented later. Figure 5.1b confirms that

the method is also successful when the constitutive model spans many orders of magnitude. The

uncertainty in this test appears smaller, due to the logarithmic scale of Figure 5.1b, but it is actually

similar in magnitude to the uncertainty in Figure 5.1a.

5.1.2 3 DOF Validation Result

For the 3DOF case, the GB property localization approach was validated against another

modified version of the BRK-energy function. In this case, instead of evaluating the BRK model
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Figure 5.2: (a) Comparison between the true (left) and the inferred (right) 3DOF GB diffusivity
structure-property model, displayed in the Rodriguez space parameterization of the disorientation
FZ. (b) The magnitude of the 95% confidence interval for the inference in each bin (a measure of
the uncertainty in the inference). Interior lines define the boundaries of the tetrahedral bins. To
facilitate visualization of the uncertainty in the interior of the FZ, the tetrahedral bins are slightly
reduced in size in (b).

along a submanifold, a three-dimensional constitutive model was constructed by integrating over

the degrees of freedom corresponding to the GB plane:

D(ω,θ ,φ) ∝

∫ 2π

0

∫ π

2

0
BRK(ω,θ ,φ ,α,β )sinα dα dβ (5.3)

In this 3DOF GB structure-property model, the diffusivity is a function of the disorientation angle

(ω) and axis (θ ,φ). Discretization of the disorientation FZ was carried out using the volumetric

meshing capabilities of the Neper software package [75–78] with the Rodriguez space parameter-

ization of the disorientation FZ supplied as the domain. The -mesh3dalgo netg:gmne meshing

option was employed, which resulted in bins of approximately equal volume (see Figure 5.2).

Figure 5.2a shows the results of the localization inference applied to the 3DOF model,

using a total of 33 bins. Figure 5.2b shows the uncertainty of the inference as represented by the

magnitude of the 95% confidence interval for each bin, which, we note, are similar in magnitude to

the uncertainty in the 1DOF case. The 3DOF case shows that with a relatively coarse discretization,

the GB property localization approach gives a satisfactory approximation to the constitutive model

(see Figure 5.2a), though this is admittedly problem specific and is likely to depend on how smooth

the underlying constitutive model is. This case is a nice test to confirm that the localization method
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can be applied to a higher dimensional model before applying it to infer a structure-property model

for GB diffusivity with all five degrees of freedom.

5.1.3 5 DOF Validation Result

The 5DOF validation utilized the BRK model with all five degrees of freedom [23], which

I linearly scaled and shifted to the range of GB diffusivity for aluminum employed in [81]. Dis-

cretization of the disorientation FZ was carried out using the same method used in 3DOF case

into 19 bins. Each point in the disorientation FZ possesses a hemisphere space of the GB plane

FZ. I discretized the GB plane FZ by generating approximately uniformly spaced points on the

hemisphere using the GridSphere() function written by Kurt Von Laven [84] using 10 bins. The

product space of the disorientation FZ (19 bins) and GB plane FZ (10 bins) contained in total 190

bins over five-dimensional space. For this test, I was considering the case where I introduced ε = 0

noise to Equation (4.1).

Figure 5.3 shows the results of the localization inference applied to the 5DOF model. The

big circles are the stereographic projections of the hemisphere space which corresponds to a spe-

cific points in the disorientation FZ space as shown by the label on top of each hemisphere. The

color of the hemisphere surface represents the diffusivity value calculated using the true constitu-

tive model. The small circular markers are the center of each bin in the hemisphere space with the

color representing the diffusivity value calculated using the inferred constitutive model. The result

shows that the GB property localization approach gives a satisfactory approximation to the true

constitutive model at most of the regions in the 5DOF domain. However, there are some regions

with noticeable error even with no observation noise (see Figure 5.3). A further analysis will be

discussed in Section 5.2 to determine the accuracy of the GB property localization approach in

5DOF case. Although visually there are still some regions whth imperfect inference, the result is

still encouraging because the approach gives a satisfactory approximation at most of the regions.

Figure 5.4 shows the magnitude of the 95% confidence interval for the inference. It is

notable that the magnitude of the uncertainty is still similar to the uncertainty in the 1DOF and

3DOF cases.

28



Fi
gu

re
5.

3:
C

om
pa

ri
so

n
be

tw
ee

n
th

e
tr

ue
an

d
th

e
in

fe
rr

ed
5D

O
F

G
B

di
ff

us
iv

ity
st

ru
ct

ur
e-

pr
op

er
ty

m
od

el
.

E
ac

h
bi

g
ci

rc
le

is
th

e
st

er
e-

og
ra

ph
ic

pr
oj

ec
tio

n
of

th
e

he
m

is
ph

er
e

(G
B

pl
an

e
FZ

)
co

rr
es

po
nd

in
g

to
th

e
ce

nt
er

of
th

e
bi

n
in

th
e

di
so

ri
en

ta
tio

n
FZ

,d
is

pl
ay

ed
in

th
e

R
od

ri
gu

ez
sp

ac
e,

w
hi

ch
is

sp
ec

ifi
ed

by
th

e
nu

m
be

ri
ng

of
th

e
po

in
t.

T
he

co
lo

ro
ft

he
he

m
is

ph
er

e
re

pr
es

en
ts

th
e

tr
ue

di
ff

us
iv

ity
va

lu
e

an
d

th
e

sm
al

lc
ir

cu
la

rm
ar

ke
rs

in
di

ca
te

th
e

in
fe

rr
ed

di
ff

us
iv

ity
va

lu
e

in
ea

ch
bi

n
us

in
g

th
e

sa
m

e
co

lo
rs

ca
le

.

29



Fi
gu

re
5.

4:
Pl

ot
s

of
th

e
95

%
co

nfi
de

nc
e

in
te

rv
al

’s
m

ag
ni

tu
de

fo
rt

he
in

fe
re

nc
e

in
ea

ch
bi

n
(a

m
ea

su
re

of
th

e
un

ce
rt

ai
nt

y
in

th
e

in
fe

re
nc

e)
sh

ow
n

as
th

e
co

lo
ro

ft
he

he
m

is
ph

er
e

w
ith

ac
co

m
pa

ny
in

g
co

lo
rm

ap
.

30



5.2 Discussion

The results just described demonstrate that the inverse problem theory approach to GB

property localization can successfully infer a discrete approximation to an unknown structure-

property model without the need for an ansatz of its analytical form.

5.2.1 Inference Accuracy

To quantify the accuracy of the inference results, I calculated the average integrated relative

error between the inferred model and the true model. Because the GB diffusivity structure-property

models span orders of magnitude, care must be taken when computing differences. For example, a

deviation of one might be very small in a region where a function is on the order of 102, but could

be very large in another region where that function is on the order of 10−2. To address this issue, I

calculate the error on a logarithmic scale:

average integrated relative error =

∫ ∣∣∣∣∣∣
log
(
D̂(ΩΩΩ,D)

)
− log(D(ΩΩΩ))

log(D(ΩΩΩ))

∣∣∣∣∣∣dΩΩΩ

∫
dΩΩΩ

(5.4)

where ΩΩΩ = {ω} in the 1DOF case, ΩΩΩ = {ω,θ ,φ} in the 3DOF case, and ΩΩΩ = {ω,θ ,φ α,β} in the

5DOF case; the domain as well as the differential volume element are chosen appropriately. The

average integrated relative error describes the average error (across the entire domain) that would

be expected from a prediction made using the inference result. The integration of Equation (5.4)

for 1DOF cases is carried out numerically using the trapezoidal rule. For the 3DOF and 5DOF

cases Monte-Carlo integration is employed [85].

The results of the average integrated relative error for each of the models are presented in

Table 5.1. With a high frequency of observations in every bin, the value of σ ({D,M}) for the most

probable model was large and the error was quite low, even for the 3DOF case, which has a more

coarse discretization than the 1DOF case. The results also show that in the 5DOF case the error is

not unreasonably high, however, it is admittedly higher. There are two possible explanations for

this phenomenon that I want to discuss. One, the GB character distribution (GBCD) might affect
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Table 5.1: Average integrated relative error of the inferred models.

Model Average Integrated Relative Error (%)

1DOF BRK 0.9937
1DOF Exponential (Equation (5.2)) 9.6063

3DOF 0.9271
5DOF 2.5003

the accuracy of the inference and will be discussed further in Section 5.2.2. Two, the discretiza-

tion resolution and number of microstructures used for each inference process also influence the

accuracy of the inference as will be discussed in Section 5.2.3.

5.2.2 Influence of GBCD

Figure 5.5: The GBCD for the 5DOF case across all of the employed polycrystals to obtain infer-
ence result displayed in Figure 5.3.

As has been mentioned, the average integrated relative error is low (see Table 5.1) when

the frequency of observations in every bin is high. However, in other 1DOF and 3DOF tests, I

observed that if bins with little to no data exist, then the optimal value of σ ({D,M}) was smaller

and the error of the inferred model was larger. To inspect this factor in 5DOF case, I plot the

frequency of GB segments in each bin (see Figure 5.5). From Figure 5.5, we can see that the GB

distribution is highly not uniform with little data in some of the bins. However, there is no evidence

that the accuracy can be increased by using more uniform GBCD and further inspection about this

influence need to be performed in the future.
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5.2.3 Influence of Discretization Resolution and Number of Microstructures

Figure 5.6: Comparison of the average integrated relative error of the inference using different
numbers of bins and microstructures. In this comparison, we used the 1DOF BRK model. The
color-scale is clipped at 5% so that the region of interest, which has low error, is visible; however,
higher errors were observed when the number of bins was extremely small.

To investigate the influence of discretization resolution, bin frequency, and their interaction,

I performed localization for the 1DOF BRK model using different numbers of bins and microstruc-

tures. As can be seen in Figure 5.6, the finer the resolution of the discretization (i.e. the more bins

that were employed) the lower the error in the inference. However, there also appears to be a

number of bins above which the reduction of the relative error is not significant (approximately 10

for large numbers of microstructures). Consistent with intuition, the use of more microstructures

also leads to improved inference, likely due to a higher frequency of observations in every bin (and

avoiding empty bins). However, I again observe a saturation point above a certain number of mi-

crostructures (100 in the present case, which is the reason that 100 microstructures were used in the

results of Section 5.1), where there is little to no added benefit. Although not overly burdensome

for a computational endeavor, 100 microstructures could constitute a significant experimental ef-

fort. It is, therefore, worth noting that even for small numbers of microstructures accurate inference

is possible. For example, with 20 microstructures and 15 bins, the average integrated relative error

for the inferred 1DOF BRK model was about 1.08%.
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The investigation to the 1DOF BRK model above confirms the possibility to obtain a better

inference in 5DOF case using a finer discretization and/or more microstructures. However, using

finer resolution might introduce a couple problems: (1) using finer resolution (more number of

bins) is also increase the possibility of bin with little to no data to existing which can lower the

accuracy of the inference; (2) using finer resolution makes σ ({D,M}) exist in higher dimensional

space that also increases the computational cost.

The other option to increase the accuracy of the inference is by using more microstruc-

tures. Using more microstructures, however, makes the computational cost more expensive than

my currently available resources. Thus, an alternative route is needed. Here, for the 5DOF case,

I parallelized the inference process by dividing the 2000 samples into pools of 100 polycrystals.

The inference process was then performed for each pool of polycrystals before combining the re-

sult using the KDE method [66] (see [67] for a MATLAB implementation). The KDE method used

to obtain the diffusivity value in each bin which has the highest density; I call this approach as the

KDE approach.

To make the KDE approach clearer, let us consider a 1DOF example in which the domain

of the structure-property model is discretized into five bins (see Figure 5.7. Doing inference pro-

cess multiple times with different set of polycrystals, each inference process gives an approximate

constitutive model displayed as the colored lines in Figure 5.7 (lines with the same color belongs

to the same model). Using the KDE method, I can then estimate the marginal density of the results

in each bin (the dashed black lines in Figure 5.7). The diffusivity values in each bin which has the

highest density are then picked (the black lines in Figure 5.7). This collection of the diffusivity

values in each bin become an inferred constitutive model which can be compared to the ”actual”

model (the dashed gray line in Figure 5.7).

Employing the KDE approach explained above, I performed the inference for the same

problem as presented in Section 5.1.3 and obtained the result displayed in Figure 5.8. The result in

Figure 5.8 shows that the KDE approach of GB property localization gives a satisfactory approx-

imation to the constitutive model. The average integrated relative error for this result, calculated

using Equation (5.4), is about 0.25%. With the encouraging result in the 5DOF case without noise,

I tested the approach for the 5DOF case where I introduced ε ∼ N
[
0,
(
0.5%

(
D̄SGT))2

]
noise to

Equation (4.1) (see Figure 5.9 for the inference result). The results of this case also show a satis-
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Figure 5.7: Illustration of the KDE approach. The figure shows the 1DOF case where the domain
is discretized into five bins. The colored lines are the approximate constitutive models obtained
from the inference processes with different set of polycrystals (each model is indicated by the same
line’s color). The dashed black line at each bin is the estimated density distribution. The black lines
are the model from the optimum density. The dashed gray line is the actual model.

factory approximation to the constitutive model with the average integrated relative error close to

0.69%. However, since manufacturing 2000 polycrystals can be burdensome and the application of

the KDE approach to the problem with more realistic observation noise is still unknown, a different

approach or a further inspection of the use of KDE approach is needed in the future study.

5.2.4 Limitations of the Piece-wise Constant Function

Utilizing a piece-wise constant function for D̂ may introduce accuracy problems in the re-

gion of the model where the slope is large. For example, in the 1DOF cases, for the bin where

ω = [0◦,4.5◦], D̂ predicts a constant value of diffusivity while the actual value of the diffusivity

spans orders of magnitude. To evaluate the impact of using a piece-wise constant function, I cal-

culated the average integrated relative error in each bin for both 1DOF models, with the bin limits

serving as the integration limits in Equation (5.4). To highlight which region of the models have

small vs. large gradient, I plotted both models on a linear scale and calculated the approximate
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Figure 5.10: The average integrated relative error in each bin for (a) the 1DOF BRK model case
and (b) 1DOF exponential function of Equation (5.2). In contrast to Figure 5.1, both models are
plotted on a linear scale to clearly highlight which regions have small vs. large gradients with the
blue lines indicate the approximate gradient of the functions.

gradient numerically (shown as the blue lines in Figure 5.10). Figure 5.10 shows that the percent

error of the inferred model is relatively larger in regions where the gradient is larger, as expected.

Similarly, in Table 5.1, the higher error in the inference of the 1DOF exponential model (Equa-

tion (5.2)) also reflects this limitation of the piece-wise constant version of D̂ , as Equation (5.2)

exhibits a broader region (about 12◦ to 35◦) with relatively high gradient compared to the BRK

model (about 0◦ to 10◦). Consequently, I suggest that a piece-wise linear (or other low-order poly-

nomial) form of D̂ may increase the fidelity of the inference while remaining largely agnostic to

the underlying model to be inferred (which was the original purpose for employing the piece-wise

linear form).

5.2.5 Singularity

As mentioned previously, the models that I selected/constructed were intended to help eval-

uate how well certain qualitative features that we might expect in a real GB diffusivity structure-
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property model could be captured by the property localization method. To verify how well the

localization approach captures the singularity in the 1DOF BRK model, I calculated the average

integrated relative error for the bin that contained the singularity. Figure 5.1 and Figure 5.10 show

that even though the bin containing the cusp had nearly the fewest observations, it had the lowest

error (0.0891%) and one of the lowest levels of uncertainty, even in the presence of observation

noise. Rather than being challenging to infer, my observations suggest that the localization ap-

proach may be particularly well-suited to inferring structure-property models containing cusps.

This is encouraging news since real GB structure-property models are expected to exhibit these

features.
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CHAPTER 6. CONCLUSION

In this work, I developed a Bayesian approach to GB property localization to infer a consti-

tutive (structure-property) model for GB properties from measurements of the effective properties

of polycrystals without a priori knowledge of the form of the model, in the presence of observa-

tion noise (i.e. measurement uncertainty). The inference is done by approximating the constitutive

model in a form of piece-wise constant function and then calculate the probability of the proposed

model to be consistent with the observed effective properties using a PDF derived in this thesis.

The derivation of the PDF that is specific for GB diffusivity was presented from the general form

of the inverse problem theory by considering some idealized assumptions. However, because the

derivation presented was quite general by using the Bayesian approach, the method should be

modifiable to meet different conditions and assumptions including, e.g., the application for other

properties of interest. The inferred model is the proposed model that has the highest probability

to be consistent with the observed effective diffusivity. Here, I also presented an adjustment to the

optimization process to compensate the nature of the PDF which can be challenging to converge.

The nature of the method which utilize the Bayesian probability approach makes the un-

certainty quantification possible to perform. I demonstrated how uncertainty quantification for

the inferred structure-property models is easily performed within the idealized case framework by

utilizing the Metropolis-Hastings algorithm and KDE method.

I tested the method for 1DOF, 3DOF, and 5DOF cases, calculated the average integrated

relative error of the inference (see Table 5.1), and demonstrated how uncertainty quantification for

the inference result may be included in the method. The validation in 1DOF and 3DOF cases were

performed by considering a pool of 1771 two-dimensional simulated polycrystals which generated

using a method that encourage the diversity of GBN structure. Using randomly picked 100 poly-

crystals from this pool and considering the BRK function as the test model, I observed satisfactory

inference accuracy, even using a relatively coarse discretization and in the presence of observation
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noise, with average integrated relative error less than 1%. The validation in 1DOF BRK case also

indicated that the inference method may be well-suited to capture the singularity possessed by the

test model with the bin containing the cusp exhibiting among the lowest average integrated relative

error (0.0891%) and uncertainty. However, the average integrated relative error of the inferred

model with the exponential function (Equation (5.2)) as the test model was relatively higher. From

the inspection of the correlation between the gradient of the model and the error, presented in this

thesis, I conclude that the relatively higher error in 1DOF exponential case could be caused by the

limitation of the piece-wise constant function as the form for D̂ .

The validation in 5DOF case was performed by considering a pool of 2000 three-dimensional

simulated polycyrstals generated using Neper software version 3.0.2 [75–78]. Using randomly

picked 100 polycyrstals from this pool and considering the BRK function as the test model, I

observed that the inference result still has noticeable error, even when no observation noise was

introduced. The lower accuracy in this case could be caused by the GBCD which was not uniform

enough compare to the 1DOF and 3DOF cases. However, further inspection about this influence

need to be performed in the future. Another possible explanation to the lower accuracy in this

case is the influence of the discretization resolution and the number of microstrcutures used in

the inference process. However, because the computational cost become prohibitive when more

microstructures are used to increase the accuracy of the inference, I proposed a method to paral-

lelize the localization inference into pools and use KDE method to combine the inference results

and estimate the model, I called as the KDE approach. Using the KDE approach for 5DOF case

with total of 2000 polycrystals, I observed satisfactory inference accuracy with average integrated

relative error close to 0.3%. However, since manufacturing 2000 polycrystals can be burdensome

and the application of the KDE approach to the problem with more realistic observation noise is

still unknown, a different approach or a further inspection of the use of KDE approach is needed

in the future study.

In this study a GB localization method was developed and validated by considering hypo-

thetical constitutive models for GB diffusivity. The validation result implies that the method might

be a more efficient strategy for inferring GB structure-property models. Diffusivity is an obvious

application, but the property localization inference method presented here should also be applicable

to other properties of interest for which a suitable homogenization relation is available. However,
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the refinement of the 5DOF case and consideration of the application to experimental/simulation

data to infer actual unknown structure-property models are still needed. Further improvements to

the approach may also include refinement of the form employed for D̂ (e.g. piece-wise linear).
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