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ABSTRACT 

 

Understanding Community and Ecophysiology of Plant Species on the Colorado Plateau 

 

Hannah Elizabeth Yokum 

Department of Biology, BYU 

Master of Science 

 

The intensification of aridity due to anthropogenic climate change is likely to have a large 

impact on the growth and survival of plant species in the southwestern U.S. where species are 

already vulnerable to high temperatures and limited precipitation. Global climate change impacts 

plants through a rising temperature effect, CO2 effect, and land management. In order to forecast 

the impacts of global climate change, it is necessary to know the current conditions and create a 

baseline for future comparisons and to understand the factors and players that will affect what 

happens in the future. The objective of Chapter 1 is to create the very first high resolution, 

accurate, park-wide map that shows the distribution of dominant plants on the Colorado Plateau 

and serves as a baseline for future comparisons of species distribution. If we are going to forecast 

what species have already been impacted by global change or will likely be impacted in the 

future, we need to know their physiology. Chapter 2 surveys the physiology of the twelve most 

abundant non-tree species on the Colorado Plateau to help us forecast what climate change might 

do and to understand what has likely already occurred.  

 

Chapter 1. Our objective was to create an accurate species-level classification map using 

a combination of multispectral data from the World View-3 satellite and hyperspectral data from 

a handheld radiometer to compare pixel-based and object-based classification. We found that 

overall, both methods were successful in creating an accurate landscape map. Different 

functional types could be classified with fairly good accuracy in a pixel-based classification but 

to get more accurate species-level classification, object-based methods were more effective 

(0.915, kappa coefficient=0.905) than pixel-based classification (0.79, kappa coefficient=0.766). 

Although spectral reflectance values were important in classification, the addition of other 

features such as brightness, texture, number of pixels, size, shape, compactness, and asymmetry 

improved classification accuracy. 

 

Chapter 2. We sought to understand if patterns of gas exchange to changes in temperature 

and CO2 can explain why C3 shrubs are increasing, and C3 and C4 grasses are decreasing in the 

southwestern U.S. We conducted seasonal, leaf-level gas exchange surveys, and measured 

temperature response curves and A-Ci response curves of common shrub, forb, and grass species 

in perennial grassland ecosystems over the year. We found that the functional trait of being 

evergreen is increasingly more successful in climate changing conditions with warmer winter 

months. Grass species in our study did not differentiate by photosynthetic pathway; they were 

physiologically the same in all of our measurements. Increasing shrub species, Ephedra viridis 

and Coleogyne ramosissima displayed functional similarities in response to increasing 

temperature and CO2. 

 

Keywords: climate change, drylands, ecophysiology, photosynthesis, plant sensitivity, World 

View-3, l, object-based classification, pixel-based classification  
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Chapter 1:  

Plant sensitivities to temperature and CO2 contribute to competitive advantages on the Colorado 

Plateau    

Abstract 

Plant species responses to changing climate in dryland ecosystems are shaped by their 

ability to fix carbon dioxide while avoiding water loss. This tradeoff is influenced by global 

climate change, including increases in atmospheric CO2 and temperature and more variable 

precipitation patterns. We sought to understand if patterns of gas exchange to changes in 

temperature and CO2 can identify possible competitive advantages for C3 shrubs over C3 and C4 

grasses in the changing climate of the southwestern U.S. To test this, we conducted seasonal, 

leaf-level gas exchange surveys, and measured temperature response curves and A-Ci response 

curves of dominant shrub, forb, and grass species in perennial grassland ecosystems on the 

Colorado Plateau. We found that both C3 and C4 grass species were physiologically identical to 

each other and were more sensitive to changes in CO2 concentrations compared to shrubs and 

forbs. Evergreen C3 shrubs were functionally similar and were able to maintain photosynthetic 

activity throughout winter when minimum temperature requirements were met. Over the last 

fifteen years, there has been a steady increase in the number of winter days when temperatures 

are warm enough for net positive photosynthetic activity in C3 shrub species. During these winter 

months, C3 and C4 competitor grass species are senesced so shrubs have limited competition for 

resources. Grass species had higher photosynthetic rates and temperature optima, but increasing, 

evergreen C3 shrub species were consistent with wider optimum conditions. 

 

Key-words: A-Ci curves, climate change, cold desert, dryland, ecophysiology, photosynthesis, 

temperature response curves 
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Introduction  

 

Plant species responses to changing climate in dryland ecosystems is shaped by their 

ability to fix carbon dioxide while avoiding water loss (Amthor 1995; Blumenthal et al. 2016). 

This tradeoff is influenced by climate change, including increases in atmospheric CO2 and 

temperature and more variable precipitation patterns in the southwestern United States 

(Easterling et al. 2000; Sun et al. 2007; Diffenbaugh et al. 2005; Christensen et al. 2007). These 

abiotic changes affect the ability of plants to capture carbon efficiently, (Shaw et al. 1998; 

Sheffield and Wood 2008b, a; Christensen et al. 2007) especially in regions where species are 

already vulnerable to high temperatures and limited precipitation (Karl et al. 2009). 

Understanding species sensitivities to climate change will allow more accurate comparisons of 

plant species vulnerabilities and projections of shifts in community density, distribution, and 

diversity (Shaw et al. 1998; Adler 2008; Algar et al. 2009; Sheppard & Stanley 2014; Fay et al. 

2015).  

Photosynthesis is the primary physiological process that drives plant growth and 

influences many other plant processes. It is also strongly affected by changing abiotic conditions, 

such as rising temperature and atmospheric CO2 concentration, making it an ideal indicator of 

the effect of climate on plant species (Yin & Struik 2009). Plant photosynthetic capacity has 

been shown to strongly correlate with growth rates and contribute to competitive advantages 

making it a useful proxy for plant success under future climate scenarios (Lusk & Del Pozo 

2002; Lusk et al. 2003). Photosynthetic responses to CO2 concentration and temperature indicate 

biochemical function (limitations in the availability of the enzyme Rubisco or substrate RUBP) 

and stomatal regulation, and are therefore important for understanding biological changes in the 

plant (Davies 1998; Sharkey et al. 2007; Momen 2015; Sigut et al. 2015; Song et al. 2016). 
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Elevated atmospheric CO2 concentration can stimulate plant photosynthesis, increase light 

efficiency, improve plant-water use efficiency, reduce stomatal conductance and transpiration, 

increase the transfer of C from plants to soil, and inhibit plant respiration (Idso et al. 1993; 

Callaway et al. 1994; Gunderson and Wullschleger 1994; Jackson et al. 1994; Amthor 1995; 

Polley et al. 2013). Elevated CO2 concentrations might also bring about no changes in plant 

photosynthesis if individuals assimilate to the changes. Both CO2 concentration and 

photosynthetic rate are highly dependent on leaf temperature. Researchers have found that 

climate warming can either stimulate (Apple et al. 2000; Huxman et al. 1998; Liang et 

al. 2013; Niu et al. 2008a), constrain (Jochum et al. 2007; Xu & Zhou 2005), or bring about no 

noticeable change (Newingham et al. 2014) in plant photosynthetic rates. Tolerance to high 

temperatures and a higher temperature optima indicate species better equipped for ecosystem 

warming (Ghouil et al. 2003; Heskel et al. 2016). Tolerance for a wide range of temperature 

optima allows the plant to perform at peak, or near peak, photosynthesis rates over a larger range 

of temperatures. Increases in temperature have been shown to reduce the rate of photosynthesis 

and density in the landscape in one shrub species while benefiting another shrub species (Shaw 

et al. 1998). 

Plant seasonal gas exchange measurements and response curves for changing CO2 and 

temperature are effective ways to use photosynthetic rates to characterize species-specific 

sensitivities to climate change (Ainsworth et al. 2003; Wullschleger et al. 2002; Dawson et al. 

2004; Sheppard & Stanley, 2014; Song et al. 2016). Comparisons between instantaneous 

measures of leaf gas exchange across different CO2 concentrations and temperature indicate how 

short term responses of leaf-level performance relate to more integrated responses to climate 

change (Shaw et al. 1998; Romero & Botia 2005; Wullschleger et al. 2002; Song et al. 2016). 
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Analysis of A-Ci curves, the response of net photosynthesis (A) to varying intercellular CO2 

concentrations (Ci), has been used to distinguish between diffusional and biochemical limitations 

to photosynthesis (Ainsworth et al. 2003; Hu et al. 2010). Maximum velocity of carboxylation of 

Rubisco (Vcmax) and maximum electron transport rate (Jmax) have been shown to increase with 

warmer temperatures and indicate differences in nitrogen and phosphorus availability making 

them an important measure of sensitivity (Walker et al. 2014). Temperature response curves 

indicate short-term changes in photosynthetic rate with increasing temperature. They can be used 

to determine ideal temperature ranges for growth and photosynthesis of species as well as 

functional groups (Ziska 2001; Ghouil et al. 2003). Increases in photosynthetic rate in elevated 

CO2 and temperature conditions is well documented for both C3 and C4 species (Bowes 1993; 

Gunderson and Wullschleger 1994; Amthor 1995; Drake et al. 1997; Herrick and Thomas 1998; 

Pataki et al. 1998; Wand et al. 1999; Wullschleger et al. 2002; Ainsworth et al. 2003; Sholtis et 

al. 2004; Warren et al. 2015; Duffy & Chown 2016). Based on the carboxylation kinetics of the 

C3 pathway, C3 species have been shown to have an increase in assimilation rates in high CO2 

conditions relative to C4 species (Valerio et al. 2013; Cunniff et al. 2016; Sage and Khoshravesh 

2016). C4 species have been shown to respond more favorably to increased temperatures, still 

respond to increasing CO2, and be more resilient to environmental stress compared to C3 species 

(Pearcy & Ehleringer 1984; Wand et al. 1999; Wang et al. 2012; Tooth and Leishman 2013; 

Valerio et al. 2013; Cunniff et al. 2016; Duffy & Chown 2016; Hao et al. 2017). Seasonal gas 

exchange measurements identify important seasons for growth, the number of days over winter 

when plants are photosynthetically active, seasons that are most influenced by climate change in 

the region, and the species that benefit from the changing conditions. We expect warmer winter 

months, predicted in climate change projections, to benefit shrubs only if they are 
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photosynthetically active during winter months. Monitoring species sensitivities to changing 

abiotic conditions can identify instances of plant stress and acclimation. We use these parameters 

to determine how abiotic factors associated with climate change are influencing photosynthesis 

rates in plants and if there are traits in common between different groups of species. 

The Colorado Plateau is an ideal place to evaluate plant sensitivity to environmental 

seasonality because there are large seasonal changes in temperature, a clear directional change in 

climate, and several key species that have been shown to vary in their responsiveness to climate 

change. Previous studies from the region have found that species with a C4 photosynthetic 

pathway benefit in changing climate conditions (Munson et al. 2011a; Duffy & Chown 2016). In 

the case of shrubs however, C3 shrubs, not C4 shrubs, were more are resistant to drought (Hoover 

et al. 2015). Another study found that, when faced with a 35% drought press, C4 grasses were 

sensitive to drought across all measured variables, and the C3 shrubs had little to no response to 

drought conditions (Hoover et al. 2017). Over a twenty-year period, a common C3 shrub species 

found in perennial grasslands, Ephedra viridis, showed some increase in its canopy cover with 

increasing mean annual temperature, while C3 grasses showed sharp declines. This suggests that 

plant sensitivity to temperature is potentially a predictor of decline for perennial grasses and 

increase of some C3 shrubs, however with only two of the eight sites showing that relationship, 

there is a need for more data (Munson et al. 2011a). Either indirectly through competitor decline 

or through actual benefits from lack of sensitivity to temperature, E. viridis, and possibly other 

C3 shrubs, may be positively influenced by rising temperatures. While studies have looked at the 

increase or decrease of species densities due to changing climate variables, fewer studies have 

considered leaf-level sensitivities as indicators of those changes.  
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We sought to test if patterns of gas exchange and the sensitivity of photosynthesis to 

temperature and CO2 may be related to patterns of C3 shrub expansion and reductions in C3 and 

C4 grasses in the southwestern U.S. To test this, we investigated leaf-level ecophysiological 

variation and response curves among common shrub, forb, and grass species in perennial 

grassland ecosystems on the Colorado Plateau. By investigating biophysical and biochemical 

trait variations in species, we are attempting to understand the mechanisms underlying why some 

species respond positively to climate change and other do not. The three objectives of this 

research are to: 1) Use seasonal gas exchange measurements of photosynthetic CO2 uptake and 

climate analyses to identify varying photosynthetic rates throughout the year and seasonal 

maxima; 2) Use temperature and CO2 response curves to identify differences in biochemical and 

biophysical limitations among plant species; and 3) Use these biochemical and biophysical traits 

to group species based on similarities and compare whether increasing and decreasing species 

respond similarly to changing abiotic conditions.  

 

Methods 

 

Site Description 

 

This study took place on the Colorado Plateau, just outside the Needles District of 

Canyonlands National Park (Figure 1). Measurements were taken at the USGS Extreme Drought 

in Grassland Experiment (EDGE) site in the vicinity of other related research (Munson et al. 

2011a; Hoover et al. 2017). The site was chosen to maintain consistency across several studies 

investigating changes in plant species composition in the landscape. The site is categorized as a 

low elevation, deep, sandy soil perennial grassland dominated by Coleogyne ramosissima 

(Schwinning et al. 2008). Common species sampled at the site include both native and non-
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native grass, forb, and shrub species in four plant functional types (C3 grasses, C4 grasses, C3 

forbs and C3 shrubs) (see Table 1). The species we measured included seven forbs, four shrubs, 

and four grasses. We had 12 C3 species and three C4 species. Among our species, there were six 

annual and nine perennial species. 15-year monthly averages in temperature at our site showed 

yearly variation ranging between 4° and 36° C over the course of the year with July as the 

warmest month and January as the coolest.  2016 temperatures over the year followed the trends 

from the 15-year monthly averages except for warmer early summer temperatures in June and 

warmer early winter temperatures in October and November. In June, the driest month, 

precipitation averages 8 mm and in August to October averages are 30 to 33 mm (Figure 2). The 

trend for precipitation in 2016 varied from the trends of the 15-year monthly averages. Instead, 

June 2016 had 0.7 mm precipitation and 39 mm in July and August (see Figure 2) indicating 

warmer summer months, drier early summer months, and later precipitation in the year as 

climate models have predicted. 

 

Figure 1 

Map of the Canyonlands National Park area with our study site located just outside the Needles District. 

Measurements were taken at the USGS Extreme Drought in Grassland Experiment (EDGE) site (pictured as the 

yellow triangle) where other USGS studies (Munson et al. 2011 and Hoover et al. 2017) have taken place. 
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Study Design 

 

 To assess species-level differential sensitivities to rising temperature and CO2 

concentrations, we measured leaf-level gas exchange rates for 15 common species over the 

course of the year. Temperature response curves and A-Ci curves allow us to track changes in 

photosynthetic rates, biochemical parameters such as Vcmax, Jmax, biophysical parameters such as 

stomatal regulation, and temperature optima as abiotic conditions change. Because plant 

sensitivity to changing abiotic conditions depends on seasonality, all measurements were taken 

six times over the course of a water year (December 2015, February, April, May, June, and 

September 2016). Sampling campaigns were chosen to represent different seasons with an extra 

two during the spring and summer months when plants are most active. Leaf-gas exchange 

measurements were taken using a LI-6400XT (LI-COR Inc., Lincoln, NE, USA) portable 

photosynthesis system with a standard leaf chamber and a fluorometer head for a consistent light 

source. Plants were sampled during the hours of 1000 and 1500 MDT over two days for each 

sampling campaign. Sampled individuals from the landscape were randomly chosen each time 

by setting up a transect, randomly generating a number, walking that transect, and sampling the 

closest individual. Individuals were sampled with a southern exposure to ensure full sunlight and 

plant activity before taking our measurements. We selected the youngest full expanded leaves to 

allow for a consistent leaf choice across our samples and branches, leaves or stems were chosen 

that were representative of the whole plant status. We sampled during days that had no 

precipitation and minimal variability in meteorological conditions across sampling time.  

 

 

 



9 

 

 

 

Table 1 Species measured in the study  

Common Colorado Plateau species in our study area and their accompanying life form, photosynthetic pathway, and 

duration. Photosynthetic rates, temperature response curves, and A-Ci response curves were measured for each of 

these species throughout the year when they were photosynthetically active.  

 

Climate Data 

 

Climate data were collected from two sources to combine short- and long-term climate 

data. Short-term, site-specific data were measured from an on-site, USGS-managed weather 

station (EDGE_MET) located near the entrance to the Needles District of Canyonlands National 

Park on the Colorado Plateau (38.19130°, -109.746206°). Relative humidity and temperature 

measurements were recorded using Campbell Scientific CS215 probe. Precipitation was recorded 

using the Texas Electronic TE525MM rain gage. Soil moisture was measured using 30 cm water 

content reflectometer probes (CS650, Campbell Scientific, Logan, UT, USA) inserted 

horizontally at three depths: shallow (10 cm), intermediate (20 cm), and deep (40 cm). Long-

term temperature and precipitation data were taken from the Climate Analyzer site using 

Common Name Scientific Name Lifeform Pathway Duration

Indian Rice Grass Achnatherum hymenoides Grass C3 Perennial

Mat Amaranth Amaranthus blitoides Forb C3 Annual

Crescent Milkvetch Astragalus amphioxys Forb C3 Annual

Blue Grama Bouteloua gracilis Grass C4 Perennial

Lambsquarters Chenopodium album Forb C3 Annual

Rabbitbrush Chrysothamnus viscidiflorus Shrub C3 Perennial

Blackbrush Coleogyne ramosissima Shrub C3 Perennial

Mormon Tea Ephedra viridis Shrub C3 Perennial

Bottlebrush Eriogonum inflatum Forb C3 Perennial

Needle and Thread Hesperostipa comata Grass C3 Perennial 

Flatspine Stickseed Lappula occidentalis Forb C3 Annual

Common Pepperweed Lepidium densiflorum var. ramosum Forb C3 Annual 

James' Galleta Pleuraphis jamesii Grass C4 Perennial

Scarlet Globemallow Sphaeralcea coccinea Forb C3 Perennial

Streptanthella Mustard Streptanthella longirostris Forb C3 Annual
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National Weather Service data (COOP data, climateanalyzer.org) for the Needles District 

Visitor’s Center weather station (Station ID: 421168) located across from the Visitor’s Center 

just within park boundaries (38.167°, -109.759°). These data were used because they contained 

daily measurements for precipitation, maximum temperature, and minimum temperature for 

different sites in Canyonlands since 1965. Weather stations are 1.62 km (1 mile) apart. 

 

Photosynthetic Gas Exchange Measurements  

 

Leaf-level Photosynthesis Point Measurements 

 

Leaf-level photosynthesis measurements were taken using the AutoProgram feature of 

the LI-6400XT machine set to sample at 5-s intervals for 2-6 minutes (depending on stability) 

with the following settings: light intensity was maintained at 2000 µmol m−2 s−1, CO2 

concentration was at 400 µmol m−2 s−1, and temperature and relative humidity were at ambient 

levels. Photosynthesis was calculated for each leaf by using an AutoGoldy script objective 

selection algorithm to choose a 30-second period where variability and slope were minimized. 

This reduced the likelihood of human error when choosing a stable time to stop the 

measurement. We measured species that were present and photosynthetically active at our site. 

Each measurement campaign, we took 15-20 point measurements for each species. 

Given the unique plant structure of each species, we standardized the measurement 

location for placing the gas exchange between the fourth and fifth node on branches of E. viridis, 

15 cm from the top of a straight branch of C. ramosissima, and on the middle of the leaf of the 

youngest fully emerged leaf for the grasses. For samples that did not cover the area of the LI-

6400XT cuvette head, we clipped samples and measured surface area using ImageJ (IMAGEJ 

1.48v, National Institutes of Health, Bethesda, MD, USA) and recalculated leaf area values on 
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the LI-6400XT machine. 

 

A-Ci Response Curves 

 

The A-Ci response curves were measured using the AutoProgram feature of the LI-

6400XT machine. The same light intensity, humidity, and temperature settings used in the point 

measurements were used for the A-Ci curves. CO2 levels were set to change from 400, 300, 200, 

100, 50, 400, 600, and 800 ppm. The time spent at each step depended on the machine’s internal 

stability. For each sampling campaign, we measured five individual plant’s A-Ci response curves 

per species. A-Ci response curves were graphed and the carboxylation efficiency of the ribulose-

1,5-biphosphate carboxylase/oxygenase (Rubisco) enzyme (Jmax), the rate of electrons supplied 

by the electron transport chain (Vcmax), mesophyll conductance (gm), and the ratio between the 

two (J/Vcmax) were calculated using protocol from Ethier and Livingston (2004). A-Ci curves that 

were included had R2 values above 0.90. There were 1-3 curves per measurement campaign that 

we excluded from the analysis because of low R2 values. Low R2 values were due to sampling 

errors in the field such as batteries dying mid-measurement and insufficient time for stabilization 

before moving to the next step in the AutoProgram. 

 

Temperature Response Curves 

 

Temperature response curves settings were manually created using the AutoProgram 

feature of the LI-6400XT machine. Measurements were taken during the same time of day (1000 

and 1500 MDT) but the starting temperature of the response curve varied according to the 

ambient temperature at the time the measurements was taken. This is due to cooling and heating 

abilities of the Li-COR. The machine can only hypothetically change the internal temperature 
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around +/- 6º C degrees (https://www.licor.com/env/products/photosynthesis/LI-

6400XT/specs.html), but in practice, cooling the machine had a much smaller range (about 2º C). 

So the starting temperature for the temperature response curves was 2º C less than ambient 

temperature when measurements were taken. For winter months, temperature response curves 

began at around 12° C to 17° C for leaf temperatures. During the summer months, temperatures 

varied from 24° C to 30° C. Each step in the AutoProgram increased the temperature by 2° C and 

the time at each stage was controlled by internal stability measurements.  

 

Statistical analyses 

 

To determine whether measured gas exchange parameters (A, Vcmax, Jmax, J/Vcmax, gm, 

WUE) varied over the course of the year and across different species, we ran an ANOVA (aov) 

to examine responses of A, Vcmax, Jmax, and J/Vcmax, gm, and WUE against our fixed effects 

(season, species, photosynthetic pathway (C3, C4), duration (annual, perennial), and lifeform 

(shrub, grass, forb)). We did not do a repeated measures ANOVA because for each sampling 

campaign, we selected new individuals to measure. We used season as an interaction term so we 

could compare the ecophysiological parameters as a factor of species and season (A ~ Species * 

Season). Data met the assumptions of normality so they were not transformed. When we checked 

for multicollinearity, we found that season and precipitation were strongly correlated. Season 

carried more weight in the analyses, so we opted to include season instead of precipitation. 

Pairwise comparisons were performed using t-tests with pooled standard deviations and a 

Bonferroni correction. For temperature response, we ran a linear regression model between 

temperature and photosynthesis for all the species taken together and for species individually 

over the sampled months. The models were graphed in R and curves were fitted using locally 
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weighted scatterplot smoothing (LOESS smoothing). To determine if all species had the same 

shape of temperature response, we used the Regression Wizard tool in Dynamic Curve Fitting 

model in Sigma Plot (Sigma Plot 10) to model temperature response over different curves. The 

final analyses we ran was a Discriminant Analysis of Principle Components (DAPC) weighted 

our measured variables (Vcmax, Jmax, and J/Vcmax, gm, WUE, volumetric water content, season, 

functional type, duration, and lifeform) according to their importance and clustered species 

together according to the similarity of their responses. These variables were used to construct 

linear combinations of the original variables which have the largest between-group variance and 

the smallest-within group variance. We created six dimensions based on ten measured 

parameters. We retained eleven principal components, six clusters, and six discriminant 

functions. Based on the similarity of parameters, species were oriented on two axes for the 

DAPC to show clusters. The final step was to run model selection to determine the most 

influential parameters behind photosynthesis measurements and what combination best fit our 

data. We used the same parameters listed above for the DAPC with photosynthetic rate as the 

dependent variable. We used the Akaike’s Information Criterion (AICc) to measure the relative 

quality of our model. The best model, or the best competing models, were selected based on the 

smallest AIC value and the total weight of the model (AICcWt). All statistical analyses were 

carried out using the statistical computing package R (R Core Team, 2013) with P = 0.05 as the 

critical level of significance. 

 

Results 

 

We sought to understand if patterns of gas exchange and the sensitivity of photosynthetic 

rate to temperature and CO2 can identify physiological characteristics of species that are 
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increasing or decreasing in the southwestern U.S. To test this, we used leaf-level gas exchange 

measurements taken throughout the year in addition to temperature response curves and A-Ci 

response curves to show how sensitivity to changing abiotic conditions varied across species.  

Our research finds three potential reasons for the increase of C3 shrubs on the Colorado 

Plateau: 1) Evergreen C3 shrubs (E. viridis and C. ramosissima) were functionally the same and 

were able to be photosynthetically active over the winter months when temperature and available 

moisture requirements were met (Figure 3), 2) Both C3 and C4 grass species were physiologically 

the same and did not separate out by photosynthetic pathway with different temperature and CO2 

conditions and 3) Shrubs have cooler temperature optima and a wider range and temperature 

optima than grass species giving them an advantage in cooler spring months and with more 

temperature variation (Table 3).  

 

Precipitation and Temperature Measurements 

 

Recorded precipitation and temperature measurements over the 2016 months resembled 

what we expected to see under climate change projections. The 2016 differences, while not 

extreme, showed an overall increase in summer and winter temperatures, more late summer 

precipitation and less winter precipitation than decadal averages (Figure 2). Compared to the 

fifteen-year averages, 2016 had warmer June temperatures (+3.2° C) with a 91% decrease in 

precipitation from 8 mm to 0.7 mm (Figure 2). From October to December, temperatures were 

2.17° C, 1.99° C, and1.04° C higher in 2016 respectively. January and February were cooler in 

2016 than the 15-year averages by 1.51° C and 0.53° C. February, April, May, July had 20-92% 

more precipitation than the 15-year averages. September to January had reduced precipitation 

32-80% of previous decadal averages.  
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Figure 2 15-year average precipitation and monthly precipitation values graphed 

Monthly precipitation values (mm) for 2016 graphed with the 15-year averages. Recorded precipitation 

measurements over the 2016 months resembled what we expected to see under climate change projections: more 

summer and less winter precipitation. It is important to note the variation in precipitation from June when there was 

hardly any rainfall and then in July and August when there was significantly more precipitation than the decadal 

averages. 

 

Seasonal Gas Exchange Measurements 

 

The three C3 shrubs in our experiment were able to maintain photosynthetic activity over 

the winter months, a trait that is likely to confer a benefit over non-evergreen species (Figure 3 

and Supplemental Table 1). Between our three common C3 shrub species, E. viridis, C. 

ramosissima, and C. viscidiflorus, there were significant differences in winter photosynthetic 

rates when we ran the ANOVA (photosynthesis ~ species, p=0.0256, F value=3.725). In both 

December and February, E. viridis had the highest photosynthetic rates (Figure 3). The results of 

the pairwise comparison between species over winter months showed that E. viridis and C. 

ramossisima did not vary significantly in photosynthetic rates over winter (p=0.145) but 
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comparisons between E. viridis and C. viscidiflorus and C. ramossisima and C. viscidiflorus 

were significantly different (p =0.004 and p >0.001).  

Overall, seasonality had the largest influence over peak photosynthetic rates (ANOVA, p 

<0.001, F value=11.86). The only months that were not significantly different from each other in 

terms of species peak photosynthetic rates were fall and winter (pairwise comparison, p=0.19). 

The ANOVA interaction between season and species showed that within seasons, species 

photosynthetic rates significantly differed from each other (p =0.003, F value=2.95). Over the 

course of the year, C3 shrubs did not reach peak photosynthetic rates as high as forbs and grass 

species but they were able to maintain more consistent peak photosynthetic rates over the course 

of the year (Figure 3). This is especially pronounced for the C3 species, E. viridis, which has an 

average photosynthetic rate of 11.43 µmol m−2 s−1 in April, 18.42 µmol m−2 s−1 in May and 16.62 

µmol m−2 s−1 in June. The C4 grass species, Pleuraphis jamesii, has a photosynthetic rate of 

24.16 µmol m−2 s−1 in April, 29.57 µmol m−2 s−1 in May, and then drops off dramatically to 11.04 

µmol m−2 s−1 in June (see Supplemental Table 1). Two shrub species, E. viridis and C. 

viscidiflorus, had among the highest measured photosynthetic rates in June (along with C3 forb, 
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C. album), and E. virdis has the highest measured photosynthetic rate in September, December, 

and February.  

 

Figure 3 Point photosynthetic measurements 

Leaf-level seasonal gas exchange measurements (µmol m−2 s−1) for the 15 measured species. Grass species are 

identifiable by their filled in shapes, shrubs have lines through their shapes, and forbs are open-filled shapes. Shrub 

species have high rates of photosynthesis in April, May, and June (10-21 µmol m−2 s−1) and slightly reduced rates 

throughout the rest of the year (2-7 µmol m−2 s−1). Grass species have the highest rates of photosynthesis during 

spring and summer (17-30 µmol m−2 s− 1) which quickly drop off in September (3-7 µmol m−2 s−1) and are not active 

in winter. Shrubs have a more consistent photosynthetic rate throughout the entire year which means fall and winter 

months they are still able to maintain activity when other species are not. 

 

Temperature Response Curves and Optima 

 

We found that, as expected, temperature influenced peak photosynthesis rates (linear 

regression, p=0.021, t value=-2.34) as well as identified differences among species over 

temperature response curves (linear regression with photosynthetic rate ~ temperature + species, 

p <0.001, t value=-8.89). The results from the linear regression for photosynthesis regressed by 

temperature and its interaction with species found that E. viridis is especially sensitive to 

increasing temperature (p=0.008, t-value=2.662). One C3 grass, Achnatherum hymenoides, and 

the C4 grass, B. gracilis, were also statistically sensitive to rising temperatures (p=0.044, t-
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value= 2.017 and p=0.014, t-value=2.45). For all three species, increasing temperature led to an 

overall increase in photosynthetic rate (regression coefficients for E. viridis = 4.79, A. 

hymenoides = 5.54, B. gracilis = 4.80). This is consistent with the overall increase of species 

photosynthetic rate to rising temperature (p>0.001). Grass species have a slight decline (slope = -

0.294), and shrubs and forbs have a slight increase (slopes = 0.471 and 0.117 respectively).  

 

Figure 4 Temperature Response Curves 

Temperature response curves for spring (April and May) 2016. C3 and C4 grasses species (graphed in shades of 

pink) had the highest photosynthetic rates and temperature optima, followed by forbs (green), and then shrubs 

(blue). While grass species had higher rates of photosynthesis, they also had a steeper incline to the peak and decline 

after the peak and a narrower curve, showing less generalized temperature optima. 

For all species, the temperature response curves were sigmoidal with an increase in 

photosynthetic rate with warmer temperatures until a peak was reached, and then a decline after 

the peak (Figure 5). For E. viridis and C. viscidiflorus, the sigmoidal response curves had two 

peaks instead of one. In both cases, the first peak was lower, there was a period of acclimation, 

then a small drop, followed by an increase in photosynthetic rate until the second peak. The C3 

and C4 grass species had higher peaks in photosynthetic rate and warmer temperature optima 
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(temperature at the highest photosynthetic rate) showing increased activity over warm 

conditions. C3 shrub species reached a peak photosynthetic rate at 19-23° C. C3 forb species 

reached a peak photosynthetic rate at 23° C. C3 grass species reached a peak photosynthetic rate 

at 28° C. C4 grass species reached 25-29° C (Table 2). While grass species had higher rates of 

photosynthesis, they also had a steeper incline to the peak and decline after the peak and a 

narrower curve, showing less generalized temperature optima (See Table 3). Although the peaks 

for shrubs are lower than for grasses, there is a wider range of temperatures where shrubs are 

photosynthesizing at, or near, their temperature optima. 

Table 2 Species Spring maximum photosynthetic rate and optimum temperatures 

Species max photosynthetic rate (µmol m−2 s−1) and temperature optima (determined by peak photosynthetic range 

in the temperature response curves for each species and functional group) over spring months (April and May). C3 

and C4 grass species had higher peaks in photosynthetic rate and warmer temperature optima showing increased 

activity over warm conditions. C3 shrub species reached a peak photosynthetic rate at 19-23° C. C3 forb species 

reached a peak photosynthetic rate at 23° C. C3 grass species reached a peak photosynthetic rate at 28° C. C4 grass 

species reached 25-29° C. 

 

Over the winter months (February and December), C3 shrubs had a net positive 

photosynthesis rate starting at 16° C to 19° C. In 2016, we experienced a total of 18 winter days 

when peak daily temperatures were high enough for net positive photosynthetic activity in shrubs 

(Figure 4). We found that the number of days with shrub temperature optima over the winter 

months statistically and linearly increased over the past fifteen years (p=0.003, t value =3.069) 

 
 

Species 

 
 

Form 

 
 

Pathway 

Max 
Photosynthesis  

(µmol m
−2

 s
−1

) 

 
 

Optimal ° C 

Ephedra viridis Shrub C3 18.3 21 

Coleogyne ramosissima Shrub C3 21.81 19 

Chrysothamnus viscidiflorus Shrub C3 24.61 23 

Lappula occidentalis Forb C3 31.71 23 

Sphaeralcea coccinea Forb C3 36.71 23.5 

Hesperostipa comata Grass C3 31.99 28 

Bouteloua gracilis Grass C4 30.91 25 

Pleuraphis jamesii Grass C4 34.22 29 
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even though overall winter temperatures slightly cooled. We compared spring and winter 

precipitation and temperatures values because these are two important seasons for growth in the 

species we measured. Spring is when all of our species were most photosynthetically active. 

Winter represents the time when shrubs are active while grasses have senesced.  

 

 
 

Figure 5 Temperature optima days over the past 15 years 

Number of days with optimal temperatures for shrubs, grasses, and forbs over winter and spring months. The largest 

observed change occurred over winter months as the number of photosynthetically active days for shrubs increased 

(p=0.01, slope =0.68). In the spring, there was a slight increase in number of optimum days for shrubs and forbs and 

a decrease for grasses but not statistically significant. 

 

A-Ci Response Curves 

The graphed A-Ci response curves show two groups that respond to increasing CO2 

differently: CO2 responsive species with very steep A-Ci curves showing fast response in A to 

increasing CO2, and CO2 conservative species, with slower responses and more conservative 

slopes (Figure 5). The C3 grass and forb species are grouped together as CO2 responsive, and the 

C3 shrub species are grouped together as CO2 conservative. The shrubs here show a marked 
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difference in slope, characterized by the biochemical parameter, Vcmax, and a lower elevation, 

characterized by the parameter Jmax. From the ANOVA results, we can see that with all our 

measured biotic and abiotic factors included, species (p<0.001), season (p<0.001), and 

temperature (p=0.004) are the most influential in determining peak photosynthesis. In our study, 

Vcmax and J/Vcmax were influenced the most by photosynthetic pathway (p=0.00826, F-

value=7.816, p=0.00426, F-value=9.31). Jmax was influenced more by the abiotic conditions 

season (p=0.0036, F-value=5.453) and differences between species (p=0.0279, F-value=2.48). 

The model selection confirms that photosynthetic pathway describes almost all of the variation 

for Vcmax (AICcWt: 0.97) and precipitation and photosynthetic pathway can best describe Jmax 

(AICcWt =0.96). In addition, species varied in their Vcmax values (p<0.001, F value=4.04) and 

the main differences between C3 plants was with the shrub species, C. viscidiflorous and C. 

ramosissima (p=0.00884) and E. viridis (p=0.0032), the CO2 conservative species.  
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Figure 6 A-Ci curves 

A-Ci response curves for C3 grass, shrub, and forb species. A-Ci curves model photosynthetic CO2 uptake rate (A) 

over changes in in intercellular CO2 (ci). Species with steep slopes (high Vcmax) and high elevations (high Jmax) 

represent CO2 responsive forb and grass species that are highly active with increases in CO2. Species with gradual 

slopes and elevations we call CO2 conservative species that do not respond as quickly to increases in CO2  

 

Grouping Species by General Strategies for Success 

 

Photosynthetic pathway differences lead to the most discernable differences in 

photosynthetic rate between species (p <0.001, F value = 14.08) followed by lifeform (grass vs. 

shrub vs. forb) (p <0.001, F value = 4.212) (See Table 4). Overall grasses had the highest mean 

photosynthetic rate (regression coefficient = 12.57), followed closely by forbs (regression 

coefficient = 12.40), with shrubs further behind (regression coefficient = 8.20). In the pairwise 

comparison using t-tests, grasses and forbs did not significantly vary but forbs and shrubs (p = 

0.043) and grasses and shrubs did (p <0.001). C4 photosynthetic pathway had higher rates of 

photosynthesis (regression coefficient = 15.33) compared to C3 species (regression coefficient = 

10.05).  
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Table 3 ANOVA results 

ANOVA results for photosynthetic rate regressed by species, lifeform, photosynthetic pathway, month and 

interactions between independent variables (panel 1). HSD test for photosynthesis by month. Mean square 

error=29.43. The letters represent grouping. The same letters represent months that are not statistically different 

from each other. 

  

 

 In the Discriminant Analysis of Principal Components (DAPC), our species divided into 

six clusters. For the first axis, which accounts for 58% of the variation in photosynthetic rate, the 

key loading is based on photosynthetic pathway and mesophyll conductance (gm), and the second 

axis loads primarily by light respiration (Rd), lifeform, J/Vcmax, and photosynthetic pathway 

(Figure 7 and 8). The six clusters largely separate into lifeform groupings: 1) Sphaeralcea 

coccinea and Gutierrezia microcephala (C3 forb and shrub); 2) Chrysothamnus viscidiflorus (C3 

shrub); 3) E. viridis and C. ramosissima (C3 shrubs); 4) Bouteloua gracilis (C4 grass); 5) Lappula 

occidentalis and Streptanthella longirostris (C3 forbs); and 6) Pleuraphis jamesii and 

Hesperostipa comata (C4 and C3 grass). While most of the grouping represented functional 

groups, evergreen, increasing woody shrubs, C. ramosissima and E. viridis grouped more closely 

to the C3 and C4 grass species and further from the other shrub and forb species.  

Test R Code Df F value Pr (>F)

aov Photo ~ Species 14 1.769 0.0495

aov Photo ~ Lifeform 2 4.212 0.0166

aov Photo ~ Pathway 1 14.08 <0.001

aov Photo ~ Month 5 19.51 <0.001

aov Photo ~ Species * Season 15 4.465 <0.001

aov Photo ~ Species * Month 22 9.96 <0.001

aov WinterPhoto ~ Species 2 3.725 0.025

Groups Treatments Means

a May 14.52

a April 14.32

b June 9.78

c September 4.47

c December 1.78

c February 1.19
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Figure 7 Clustering of species by similar traits 

Discriminant Analysis of Principle Components (DAPC) showing the clustering of groups of species. Clusters 

represent combinations of the ecophysiological variables which have the largest between-group variance and the 

smallest-within group variance. Cluster 3 includes increasing species (E. viridis and C. ramosissima), clusters 4 and 

6 are decreasing grass species (B. gracilis, P. jamesii, and H. comata) and the other groups have no known changes. 

From the PCA loadings of these variables, the strongest parameters defining the axes are 

biophysical (mesophyll conductance and light respiration), biochemical (photosynthetic pathway 

and J/Vcmax), and structural (photosynthetic pathway and lifeform) (Figure 8). In the clusters 

defined by the DAPC, increasing species, E. viridis and C. ramosissima are found grouped 

together and decreasing species, B. gracilis, P. jamesii, H. comata) comprise two groups. The 

forbs are clustered toward the bottom of the chart together showing similar values of the 
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ecophysiological parameters. Interestingly, both the increasing species cluster and the decreasing 

species clusters spatially arrange near each other in the upper half of the figure. 

 

Figure 8 Important variables in clustering 

Loading plots for both DAPC axes showing important variables in clustering species. For axis one, photosynthetic 

pathway is the most important variable (V2), followed by mesophyll conductance (V10). For axis two, species were 

grouped into clustered based on light respiration (V7), J/Vcmax (V8), lifeform (V1), and photosynthetic pathway 

(V2). 

 

Discussion 

 

 Anthropogenic climate change, driven by increases in atmospheric CO2 is projected to 

cause rising temperature and shifts in plant community composition (Shaw et al. 1998; Sheffield 

and Wood 2008b, a; Christensen et al. 2007). Given that these abiotic changes will alter plant 

photosynthetic rates, we focused on leaf-level plant ecophysiology measurements to identify 

plant sensitivities to rising CO2. In order to determine whether increasing species (C3 shrubs) 

display similar sensitivities and patterns of gas exchange to temperature and CO2, we took 

seasonal, leaf-level gas exchange measurements and measured temperature and CO2 response 

curves. Overall we found that C3 shrubs are able to maintain higher photosynthetic rates over 

spring and summer, are more physiologically active over the increasingly warmer winter months, 

and have wider range of temperature optima than grass species. Increasing atmospheric CO2 
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concentrations, on the other hand, benefit responsive C3 and C4 grass species through an increase 

in photosynthetic activity. 

 

Seasonal Gas Exchange Measurements 

 

Our objective was to determine whether plants increasing on the Colorado Plateau 

displayed commonalities that might lead to their success in climate changing conditions. The 

biggest indication of their success, from the data we collected, is the increased activity over 

winter months. Not only we were able to find that shrubs are active over the winter months, but 

that their activity was not statistically different from fall months. This, combined with the fact 

that grasses are senesced during those months means that there is limited competition for shrubs 

during the winter.  

While C3 shrub species show a reduction in peak photosynthesis values over winter 

months, they consistently have positive net photosynthetic activity when temperature minimums 

are met (Figure 3). Our site experienced an overall cooler average temperature in 2016 compared 

to the 15-year averages but with twice as many warm days. These conditions are likely to benefit 

shrubs that are hardy enough to survive the cooler temperatures and also able to be 

photosynthetically active on days when minimum photosynthetic requirements are met. 

D’Odorico et al. (2010) found that woody plant encroachment is largely due to the warming of 

nighttime air in winter months in the Chihuahuan Desert. They predict that small warming can 

yield meaningful changes in shrub species. The authors suggest that the effect of changing air 

temperature on vegetation depends on whether plants experience drought during the winter 

months. Because of different annual distribution of precipitation and potential evapotranspiration 

between the Colorado Plateau and the Chihuahuan desert where the abovementioned study was 
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conducted, the warming of winter months could be more significant in more arid desert 

communities (D’Odorico et al. 2010).  

Warmer winter temperatures were not spread out equally throughout the winter months. 

Daily temperature measurements show that there are increasing number of warm winter days at 

the end of October and carrying into the beginning of November. Warming during these months 

paired with late season precipitation, is likely to lead to increasing growth over these months. E. 

viridis could disproportionality benefit from these climatic changes because the species had the 

highest photosynthetic rate from June to February among the species we measured. Not only will 

evergreen shrubs be increasing during these months when they conditions are right and 

competition reduced, but E. viridis and C. ramosissima, both woody shrubs, are expected to 

perform better than other shrub species because of its slightly elevated photosynthetic rate.  

E. viridis (Gymnospermae; Gnetales; Ephedraceae) has several traits that could explain 

its success. As an evergreen, woody shrub with dense clusters of erect green twigs, E. virdis is 

photosynthetically active year-round. As a shrub, it has deep, woody roots that may extend deep 

into the well, drained, sandy soils (Anderson 2001). It is found exclusively in the western United 

States around the arid Great Basin Region, Colorado, San Juan and Rio Grande drainages. While 

grazing has been shown to explain increases in shrub expansion in other studies (DeMalach et al. 

2014), the 2011 Munson et al. study took place in long-term plots inside the boundaries of 

national parks and BLM lands, suggesting that grazing alone is unlikely to explain the increase in 

canopy cover of E. viridis. Legacy effects of grazing from prior to the 1960s and 70s could 

potentially play a role in community dynamics but further examination of that is needed. 

The Munson et al. (2011) data showed increases in E. viridis corresponded to high 

summer temperatures in the previous year. While our results do not directly suggest that high 
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summer temperatures benefit E. viridis and other shrubs, it is possible that previous year hot 

summer temperatures also lead to warmer winters. Yoder and Nowak (1999) hypothesize that the 

growth of E. viridis may be affected by high temperatures because it receives much of its water 

from winter precipitation when temperatures are low. With increasing winter temperatures over 

the winter months, soil water availability could decline as shrub species tap into those resources 

for photosynthesis. 

 

Temperature and CO2 Response Curves 

 

Temperature and CO2 response curves did not consistently benefit one species or 

functional group. In the spring temperature response curves, C3 shrub species had the lowest 

peak photosynthetic rate and the lowest temperature optima. In 2016, our site experienced lower 

spring temperatures that, if continued, could lead to increased activity for shrub and forb species.  

This is likely due to the cooler spring temperatures which reach peak temperature ranges 

for shrubs and forbs which are slightly lower than grass temperature optima (Figure 4). This 

confers a competitive advantage for the species during this period because over the cooler winter 

months, they are still able to be active at similar rates to fall while their competitor species are 

senesced. Grasses have the advantage with increasingly warmer temperatures. Their temperature 

optima were consistently much higher than shrubs and forbs, with C4 grasses at the highest. This 

is consistent with findings that the contrasting physiological responses of C3 and C4 plants to 

warming, is the main driver of observed patterns of plant assemblage structure (Duffy & Chown, 

2016).  

Grass species, through their responsiveness to increasing concentrations of atmospheric 

CO2, are likely to benefit from rising atmospheric concentrations in our region. While grasses 
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and forbs benefited from the short term addition of CO2, it does not necessarily mean they will 

maintain elevated photosynthetic rates with higher CO2 concentrations over a longer period of 

time. Ainsworth et al. (2003) found a 43% higher rate of light-saturated leaf photosynthesis in 

grasses over 10 years in elevated CO2 conditions. Other studies have found no difference in 

densities of plants grown in higher CO2 conditions (Blumenthal et al. 2016). Entire research 

methodologies like the Free-Air Concentration Enrichment (FACE) exist to test whether the 

photosynthetic responses of species to increasing CO2 in closed chamber experiments is what 

will actually happen in the field. 

In terms of the biochemical and biophysical reactions of plants to increased CO2, 

photosynthetic pathway was the most important indicator of Vcmax and J/Vcmax. while Jmax was 

influenced by precipitation and differences between species. This is consistent with findings that 

J/Vcmax, the ratio between the maximum rate of electron transport driving RuBP regeneration 

(Jmax) and the in vivo maximum rate of RuBP carboxylation (Vcmax), has been shown to change 

from species to species depending on abiotic conditions (Onoda et al. 2004). The variation in 

J/Vcmax across seasons did not vary as much as it did between species (Onoda et al. 2004). This is 

demonstrated in the graphed A-Ci curves which show the CO2 conservative species with a 

reduced slope and elevation of the curve. Curves like these that are less steep indicate a broad 

range of stomatal limitations. These limitations shape plants ability to capture carbon while 

avoiding water loss, a key requirement for survival in dryland ecosystems (Amthor 1995; 

Blumenthal et al. 2016). Elevated atmospheric CO2 concentration stimulates forbs and grass 

species photosynthetic rates more than shrubs, reduces stomatal and mesophyll conductance, and 

inhibits plant respiration, as several studies have also found (Idso et al. 1993; Callaway et al. 

1994; Gunderson and Wullschleger 1994; Jackson et al. 1994; Amthor 1995; Polley et al. 2013).   
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Grouping of General Strategies for Success 

 

In the groupings from the Discriminant Analysis of Principal Components (DAPC), we 

found that functional trait differences contributed to increased or decreased sensitivity in the 

species we measured. Among those species, lifeform and photosynthetic pathway were the most 

important traits in determining peak photosynthetic rate. Other than that, there were several 

ecophysiological parameters that are able to separate species from each other: mesophyll 

conductance (gm), light respiration (Rd), J/Vcmax. While the scope of our research does not 

attempt to explain why different species and functional groups respond variably to changing 

abiotic conditions, other research has come out on the issue. In high light conditions like ours, 

researchers have found that chloroplast CO2 concentration (Cc) in C4 leaves are 8-10 times 

higher than C3 leaves, explaining why there is virtually no photorespiration in C4 leaves (Yin & 

Struik 2009). Differences in J/Vcmax has been shown to indicate leaf nitrogen, phosphorus, and 

specific leaf area values (Walker et al. 2014). Walker et al. (2014) found that increasing leaf P 

substantially increased the sensitivity of Vcmax to leaf N (Walker et al. 2014). While dryland 

ecosystems are primarily limited by water availability, they are also known for the restrictions on 

plant growth and nutrient uptake that limiting available N and P creates (James et al. 2005; He et 

al. 2014). With climate changing precipitation regimes, availability of N and P could become 

more important during seasons with increasing rainfall. 

 

Conclusions  

 It is unlikely that one factor alone can explain the increase in some species and the 

decreases in others in arid ecosystems. Our objective was to determine whether plants increasing 

on the Colorado Plateau displayed commonalities that might lead to their success in climate 
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changing conditions. The most significant indication of shrub success in our site was the 

increasing photosynthetic activity over the winter months. While photosynthesis rates over 

winter were not comparable to those in the spring, that time still represents limited competition 

between shrubs and senesced grass species, available resources from late season precipitation, 

and increasing warmer winter months. In climate changing conditions, warmer winter months in 

arid ecosystems might continue to benefit shrub species and have a disproportionately larger 

effect than increasing summer temperatures and atmospheric CO2 concentrations.  
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Chapter 2:  

Using Very High Resolution (VHR) satellite Imagery to Create an Accurate, Species-level 

Baseline Map in Canyon Terrain 

Abstract 

Accurate species distribution mapping is crucial for assessing ecological benefits and 

risks to species as well as effective management strategies. Further, fine-scale species-level and 

functional type mapping is important to monitor plant expansion, invasions, biodiversity, and 

ecosystem function. The objective of this study was to create an accurate species-level 

classification map using a combination of very high resolution (VRH) World View-3 

multispectral and hand-held hyperspectral data acquired from a handheld radiometer and to 

assess the differences in accuracy assessment between pixel-based and object-based 

classification techniques. In order to identify how species classification in the landscape has 

changes and will continue to change, we need accurate, large-scale, baseline maps of species 

distribution to compare to future images. We compared pixel-based classification and object-

based classification approaches using hyperspectral data and VHR multispectral data to 

determine what factors were most important for creating accurate species-level classifications. 

Overall, object-based classification had higher classification accuracy (0.915, kappa 

coefficient=0.905) than pixel-based classification (0.79, kappa coefficient=0.766). The most 

noticeable improvement with the object-based classifications was more effective differentiation 

between species within the same life form (shrubs, grasses, trees, etc.). Although the common 

vegetation indices, NDVI and GNDI, were effective for much of the species identification, other 

area metrics like number of pixels, density, shape, texture, length, and brightness, were necessary 

to distinguish between similar life forms. Results from this study demonstrate that while the 

pixel-based classification approach created fairly accurate species-level maps, classification was 
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improved upon by using training sites and an object oriented classification. The improvement in 

accuracy was due to other metrics besides reflectance used to differentiate species. If the 

mapping objective is to identify life forms, pixel based approaches would be sufficient. But to 

classify species within life forms, object based approaches were necessary. 

 

Keywords: Colorado Plateau, World View-3, hyperspectral, multispectral, object-based 

classification, pixel-based classification  

 

Introduction 

 

Accurate species distribution mapping is crucial for assessing ecological changes in 

communities leading to effective management strategies (Ahrens et al. 2010). Ecosystem 

mapping has been important in monitoring biological invasions, global climate change, 

biodiversity, and fundamental ecosystem processes such as fire and nutrient cycling (National 

Research Council 1994; Mack 2005; Panetta & Lawes 2005; Herrick et al. 2010; Shouse et al. 

2013; Calviño-Cancela et al. 2014; Gillian et al. 2014). Detection and mapping of species and 

communities is often based on field surveys. Although field surveys provide precise information 

about species relative cover, density, and composition (Stock et al. 2004; Adjorlolo et al. 2012), 

they are often time consuming and labor intensive (Jorgensen & Kollmann 2009; Ahrens et al. 

2011; Calviño-Cancela et al. 2014) and can provide limited information, usually confined to 

small sampling areas (Panetta & Lawes 2005). Remote sensing techniques are popular for 

ecosystem assessments because of their lower total cost, greater coverage, and more regular data 

collection cycle while still being able to distinguish between similar categories, such as plant 

species (Calviño-Cancela et al. 2014). Using remote sensing technology to discriminate between 
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different plant species and functional types has been effective in better understanding local 

vegetation and ecosystem dynamics (Ehleringer & Monson 1993; Bredenkamp et al. 2002; 

Hamada et al. 2011; Adjorlolo et al. 2012; Ferreira et al. 2016).  

 

Remote Sensing 

 

While remote sensing technologies are useful in ecosystem assessments, they require 

researchers to determine the optimal spatial and spectral resolution for mapping vegetation 

properties which can often be challenging (Atkinson & Curran 1995; Curran & Atkinson 1999; 

Woodcock & Strahler 1987). The scale at which observations are made (i.e. the instantaneous 

field of view or pixel size) may or may not align well with the scale of biophysical processes, 

and target size (i.e. individual species, patches of a given species, etc.) will vary across 

ecosystems and with ecological questions and concerns (Feld et al. 2009; Fisher 1997, Turner et 

al.1989). Satellite open access data such as Landsat or MODIS, while beneficial for large-scale 

ecotype classification, is hampered by high spatial resolution (30 km) that is too broad for 

species-level classification. Recent advances in remote sensing systems, such as World View-3 

(launched on August 13, 2014, 31cm panchromatic resolution, 1.24m multispectral resolution, 

3.7m short wave infrared resolution) now provide very high resolution (VHR-multispectral 

resolution 2 x 2 m or lower (Nagendra and Rocchini (2008)) data for land cover mapping. The 

use of these finer scale, VHR data for remote detection of invasive species has been shown to be 

useful in detection of plant species which occupy contiguous patches and occur in clumps (Wan 

et al. 2014; Niphadkar et al. 2017). It is less certain whether these platforms are sufficient for the 

remote sensing of more heterogeneous landscapes and dispersed clustering (Hamada et al. 2010). 

However, VHR multispectral data paired with in situ hyperspectral data acquired from a hand-
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held radiometer, can improve spectral signatures used to differentiate between plant species 

(Ferreira et al. 2016).  

Remote sensing of vegetation is based on the physical properties of leaves and their 

interactions with electromagnetic energy. Leaf structures of most plants interact with solar 

energy in essential the same biophysical process: high absorption in visible (optimally red and 

blue) bands by leaf pigments (e.g. chlorophyll a, b and ß-carotene), high reflectance in near-

infrared band from the spongy mesophyll, and relatively high absorption in middle infrared 

bands by leaf water content. Hence, there is little selection for differences in spectral reflectance 

patterns during speciation, making the classification of different species by reflectance 

challenging (Sims & Gamon 2002; Shouse et al. 2013; Calviño-Cancela et al. 2014). 

Distinguishing between plant species often demands a large number of spectral bands to detect 

subtle differences in reflectance patterns. Hyperspectral sensors (also known as imaging 

spectrometers) measure reflectance in many narrow, adjacent spectral bands (often >100 bands) 

so they can pick up subtle differences in reflectance patterns necessary to distinguish between 

plant species (Ustin et al. 2004; Underwood et al. 2006; Kokaly et al. 2009; Schaepman et al. 

2009; He et al. 2011; Calviño-Cancela et al. 2014). Studies using multispectral satellite data, in 

conjunction with in situ hyperspectral data, have been able to derive valuable ecosystem 

information such as the characterization of dominant plant species, functional types, or 

successional stages (Ustin & Gamon 2010; Asner 2013; Laurin et al. 2016). Several researchers 

have found that for their applications, the most promising sensors for improving classified map 

accuracy, and even discriminating dominant plant species, are imaging spectrometers (DeFries 

2008; Schmidtlein et al. 2012; Ustin & Gamon 2010; Ustin et al. 2004; Roth et al. 2015). In arid 

grassland ecosystems, remote sensing techniques have been effective in quantifying shrub 
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expansion, invasive species, grazing extents, and anthropogenic threats (Hamada et al. 2011; 

Berg et al. 2016; Stevens et al. 2016). These techniques are less commonly used to identify 

individual species than functional types or life forms (Hamada et al. 2011). This is likely due to 

the difficulty in classifying grass species that are senesced and their small size and spectral 

similarities (Marsett et al. 2006). The ability map individual species as well as functional types 

and life forms is necessary for precise determination of distribution as well as effective 

management strategies (Calviño-Cancela et al. 2014). 

 

Image Classification 

 

In an ecosystem with a mosaic of different species, ages, sizes, and degree of spatial 

heterogeneity, remote sensing image classification is largely determined by specific site 

information and variation (Zhang & Qiu 2011; Shouse et al. 2013; Laurin et al. 2016). In a 

typical image classification, individual pixels are assigned to real world classes based solely on 

their spectral characteristics (Newman et al. 2011). The most commonly used classification 

methods operate on individual pixels as the units of classification. These methods assign each 

pixel into classes according to classification algorithms or decision rules. Each individual pixel is 

analyzed according to its spectral characteristics, but this method does not consider the spatial 

characteristics of the surrounding pixels and their relationships to each other (Laliberte et al. 

2004). A more recent approach to classification, developed around the year 2000 (Blaschke 

2010), uses clusters of pixels, or ‘image objects’, as representations of objects on the ground. In 

object-based classification, image objects are categorized into classes based on multiple defined 

criteria. Segmentation of the entire image to create image objects is based on the size and type of 

the real-world objects to be identified. The remote sensing software, eCognition, allows the user 
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to define criteria in an image segmentation such as scale parameter, composition of homogeneity 

criterion for color and shape, and the shape criterion for smoothness and compactness to classify 

objects in an image. The size of each image is defined by the scale factor that is related to the 

image resolution. The color parameter controls the extent of spectral heterogeneity within the 

object. The shape parameter is derived from textural characteristics of compactness and 

smoothness of the pixels. Thus, segmentation mimics human interpretation and groups images 

into homogenous areas (Laliberte et al. 2004; Newman et al. 2011). Once segmented, images are 

classified according to the ‘features’ of each object. These features are the spectral shape and 

contextual characteristics of the image objects. In addition to reflectance values and mean 

brightness for each band, area, length, texture, width, shape, compactness and dozens of other 

features can be used to differentiate between pixel classes. Object-based classification permits 

the incorporation of contextual and spatial information, whereas pixel-based classification 

methods are based on spectral/layer pixel values. Due to the addition of these parameters in 

classification, an object based classification would be expected to provide superior results to 

spectral differentiation (Laliberte et al. 2004; Karl 2010; Laliberte et al. 2010; Duniway et al. 

2011).  

Combining several features of spectral, geometric, and textural information to classify 

images often outperform spectral vectors alone (Proctor at al. 2013; Fernandes et al. 2014). 

Some of the most fundamental indicators relevant to ecosystem services in grasslands and 

shrublands are ground cover (vegetation, rock, and litter cover) and vegetation community 

composition (Duniway et al. 2011). The development of the Normalized Difference Vegetation 

Index (NDVI), which measures live green plant materials using the red and near-infrared bands, 

quickly became the most dominant satellite observable metric for plant biomass and 
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photosynthetic activity. It has led to an increase in the number of studies looking at plant canopy 

reflectance (Houborg et al. 2015). However, in arid ecosystems, using a green index like NDVI, 

or other vegetation metrics like the greenness index, GNDVI, it is possible to misclassify grass 

species after their peak greenest (Marsett et al. 2006). Recent studies have suggested that object-

based classification produces more accurate habitat maps than those classified using pixel-based 

methods (Clark et al. 2005; Hamada et al. 2011; Newman et al. 2011; Ferreira et al. 2016; 

Niphadkar et al. 2017). However, if the spectral signatures used to create the rule set for the 

pixel-based classification were created using hyperspectral data, the classification accuracy for 

the habitat map could potentially improve. Many of the studies that find improvement in object-

based classification are mapping larger landscapes, ecotypes, functional classes, or growth 

forms. Species-level classification techniques are less common and the small-scale nature of the 

question might benefit from a more heavily weighted spectral classification.   

Steep canyon walls, rocky terrain, and high species diversity make Canyonlands National 

Park on the Colorado Plateau an ideal place to conduct this research. Canyonlands is host to a 

diverse community of plant species with a clear, directional climate signal affecting key plant 

functional groups. Over time, researchers have seen shifts in community composition (Munson et 

al 2011a; 2011b; Hoover et al. 2017), due to differential responses to climate change. Plant 

functional types, specifically photosynthetic pathway, duration (annual or perennial), and life 

form (tree, shrub, forb, or grass) have been shown to confer benefits in climate changing 

conditions, (Munson et al. 2011a; Hoover et al. 2017; Duffy & Chown 2016). Canyonlands is 

host to conservation issues with invasive species, legacy effects from historic grazing, and 

declines in critical species, including desert grasses. Some locations within the national park are 

difficult to reach on foot and others are completely enclosed by canyon walls making field 
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sampling across a large area not feasible. Within United States national park boundaries, drones 

are not generally permitted making fine spatial imagery more difficult to acquire. However, there 

is a need for accurate species-level mapping of the ecosystem that can be generated over a large 

area. Important species can be tracked over time and changes in density and distribution can be 

monitored. Another feature of the location that adds complexity to our study is the heterogeneous 

size of the plant species. Species found in the site include trees with canopies much larger than 

WV-3 pixel sizes, shrub sizes around pixel sizes, and grasses that are much smaller than pixel 

size. Capturing the diversity of size, shape, and distribution of species in a map is a challenge 

with multispectral, satellite imagery.  

Our goal in this project was to produce a high-resolution map of species distributions in a 

topographically and botanically diverse landscape. To achieve this goal, we pursued three 

specific aims: 1) Utilize reflectance curves created from species-specific hyperspectral data to 

improve pixel-level classification, 2) Compare pixel-level classification to object-level 

classification, and 3) Evaluate the importance of non-spectral related features used in object-

based classification in improving overall accuracy. To achieve these aims, we assessed the 

feasibility and reliability of multiple remote sensing techniques to create a species-level 

classification map. We combined hyperspectral data from handheld spectral radiometers with 

multispectral data from the World View-3 satellite to build spectral signature curves and identify 

regions on the electromagnetic spectrum where each species could be separated from others. We 

used these values to create a rule set that we implemented in a spectral differentiation 

classification. We compared the accuracy assessment from the spectral differentiation to our 

object oriented classification using training sites. We also compared object attributes to 

determine whether reflectance values alone are sufficient for classifying species, and how other 
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features such as size, density, shape, and texture change the classification accuracy. While the 

question about classification accuracy has been addressed in other systems, the homogeneity of 

our study area combined with the size of the species we classified make this approach novel. 

Knowing what features and what techniques can be most successful to create accurate large-scale 

species-level classification maps will allow researchers to collect large-scale species distribution 

data in regions where in-situ sampling is not feasible. 

 

Methods 

 

Site Description 

 

The study was conducted in the Needles District, the southeast corner of Canyonlands 

National Park, on the Colorado Plateau in Utah, U.S.A (Fig 1). Across the study area, there is 

high variation in topography from the tall spires of Cedar Mesa Sandstone forming canyon walls, 

coarse Aeolian deposits and flat to gently sloping alluvial silty soils. Vegetation in our site 

represent common desert plant species found in the arid southwest (Table 1).  

 

Image Pre-processing 

 

Images were acquired on June 29, 2015 and May 30, 2016 using the World View-3 

satellite. The images were georeferenced by the USGS prior to our study. To begin the 

atmospheric correction using Fast Lane-of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH), we had to radiometrically calibrate the image from BSQ format to BIL output 

interleave with the calibration type set to “Radiance”, output data type set to “Float”, and the 

scale factor 0.1, according to FLAASH settings in ENVI. After the image was calibrated, we ran 



47 

 

the FLAASH atmospheric correlator. FLAASH accurately compensates for atmospheric effects 

by correcting wavelengths in the visible, near-infrared, and short-wave infrared regions. 

 

Figure 1 Study site 

Map of study site in the Needles District of Canyonlands National Park on the Colorado Plateau. Images overlaid on 

the map are the World View-3 images. Across the study area, there is high variation in topography from the tall 

spires of Cedar Mesa Sandstone forming canyon walls, coarse Aeolian deposits and flat to gently sloping alluvial 

silty soils. 
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Table 1 Species measured 

Common species found on the Colorado Plateau and sampled in the study. We used these species to measure 

spectral reflectance and also to take ground truth data with a GPS. 

 

Reflectance curves and pixel-based classification 

 

We used the HandHeld2 Pro hand-held spectrometer (ASD Inc.) to measure 170 

reflectance curves for seven common grass and shrub species from wavelength measurements of 

325 nm to 1075 nm; each band had a bandwidth of less than 3.0 nm. The values were averaged 

for each species to account for variation across individuals. The hyperspectral sensor allowed for 

greater discrimination of species in areas along the electromagnetic spectrum where they 

grouped together (Figure 2). Then using sensor information from the WV-3 satellite, we 

identified the bandwidth where each color was picked up by the sensor (see vertical lines on 

Figure 2). These are the bands where each color on our image was picked up by the WV-3 

satellite and which bands are useful in separating species from each other.  

 

Common Name Scientific Name Lifeform Pathway Duration

Ambrosia Ambrosia dumosa Shrub C3 Perennial

Big sagebrush Artemisia tridentata Shrub C3 Perennial 

Four Wing Saltbrush Atriplex canescens Shrub C4 Perennial

Blue Grama Bouteloua gracilis Grass C4 Perennial

Mountain Mahogany Cerocarpus betuloides Small tree C3 Perennial

Rabbitbrush Chrysothamnus viscidiflorus Shrub C3 Perennial

Blackbrush Coleogyne ramosissima Shrub C3 Perennial

Mormon Tea Ephedra viridis Shrub C3 Perennial

Torrey's Jointfir Ephedra torreyana Shrub C3 Perennial

Needle and Thread Hesperostipa comata Grass C3 Perennial 

Juniper Juniperus osteoperma Tree C3 Perennial

Common Pepperweed Lepidium densiflorum var. ramosum Forb C3 Annual 

Indian Rice Grass Oryzopsis hymenoides Grass C3 Perennial

James' Galleta Pleuraphis jamesii Grass C4 Perennial

Pinyon Pine Pinus monophylla Tree C3 Perennial
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Figure 2 Spectral signatures 

Measured wavelengths of light on the electromagnetic scale and the corresponding total reflectance for species. 

Vertical Bands represent where World View-3 sensors pick up reflectance for each color gun.  

 

Ground Reference Data 

 

Global Positioning System (GPS) points were measured for 281 large shrubs and patches 

of grass as well as bare ground and rocks using a Trimble GeoX GPS unit. We labeled the 

different elements of the terrain in areas where the invasive target species was abundant (with 

patches of different sizes and characteristics) and other representative elements (red rock, white 

rock, bare ground). Because of lack of accessibility to many areas blocked by canyon walls and 

far from roads or trails, not all areas within the images could be evenly sampled for ground 

reference data. We selected training pixels from these ground points to train the classifier. The 

dataset was randomly partitioned into 60% for training and 40% for testing. We repeated the 
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splitting ten times, randomly choosing reference points and testing the classifiers at each location 

to better assess the robustness of the classification and its ability to predict unknown samples. 

 

Comparison of Approaches  

 

Spectral Differentiation  

 

Using the decision tree we created to separate species from each other based on specific 

wavelengths with the most separation distance, we created a spectral differentiation rule set in 

eCogntition DeveloperTM 9.0 Software. The rule set used only reflectance values and created a 

range that each species fit within according to the hyperspectral data taken from the hand-held 

reflectometer. We ran a classification on the images and determined the accuracy of the 

assessment using the ground points. 

 

Figure 3 Spectral signature decision tree 

Decision tree based on spectral signatures graphed in Figure 2.  The decision tree works for creating a rule set in 

eCognition when running a spectral differentiation classification.  As an example, if you wanted to map E. viridis, 

the WV-3 color guns you should use are NIR 1, then Red, and Green. E. viridis can be most easily separated from G. 

microcephala on the image  at the wavelength 547.1 nm.
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Figure 4 Image processing methods 

Original World View-3 image (panel 1), segmented image (panel 2), image with object classes identified for one area of the region (panel 3), and classification 

(panel 4). 
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Object oriented classification 

 

 The second approach to creating a species-level classification was using the object-based 

classification approach in eCognition (Definiens 2010). Classification of remotely sensed 

imagery is the process of assigning pixels to discrete categories of terrain elements, i.e. one of 

the target plant species, red and white rock, and bare ground categories using training sites. 

Before running the classification, we ran a segmentation to subdivide the image into image 

objects or primitives (approximating ground targets, e.g. shrub patch) by clustering pixels into 

contiguous regions of minimum heterogeneity at a given scale (Benz et al. 2004). A 

multiresolution segmentation was used to optimize the mapping of ground features characterized 

by a wide range of sizes and shapes, from small clumps of shrubs to large patches of forest or 

pasture. Multiresolution segmentation is a bottom up region-growing technique starting with 

one-pixel objects and then in subsequent steps, merging smaller image objects into bigger ones. 

Throughout this pairwise clustering process, the underlying optimization procedure minimizes 

the weighted heterogeneity of resulting image objects. In each step, the pair of adjacent image 

objects is merged which stands for the smallest growth of the defined heterogeneity. If the 

smallest growth exceeds the threshold defined the scale parameter, the process stops. Doing so, 

multiresolution segmentation is a local optimization procedure. The segmentation used a low 

scale parameter (scale = 3) to delimit the smallest ground features. Segmentation at these scales 

tends to over-split medium-to-large ground features (e.g. large grass patches) into a large number 

of objects. Hence, we used a spectral difference segmentation to merge contiguous objects 

having similar mean reflectance values.  
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Important Features in Object-based classification 

 

When classifying objects, eCognition uses object descriptors or ‘features’ to assign an 

object to a class using crisp or fuzzy transition functions, or by the application of nearest-

neighbor membership functions trained by representative class samples (Benz et al. 2004). We 

applied both crisp rules and nearest-neighbor membership functions to assign objects to classes. 

For the latter, we selected between 10 and 30 object samples per class (depending on the 

abundance in the study area) as training references for the classification. The appropriate class 

for each training reference was determined from either field surveys or directly from the image. 

Four methods were considered for discriminating the land-cover classes in eCognition, namely 

(1) statistical (e.g. mean, standard deviation, ratios, and minimum and maximum of pixel values 

within an object); (2) textural (e.g. mean difference to neighbors); (3) contextual descriptors (e.g. 

mean difference of an object between inner and outer border or scene); (4) spectral indices for 

vegetation and bare ground characterization, such as NDVI and GNDVI (greenness index). 

We assessed class separability and selected the best discriminating features using the 

feature space optimization tool in eCognition. This tool uses the training references to measure 

the statistical distance between classes for a set of features and displays a class separation 

distance matrix (Definiens 2010).  A high separation distance between two classes suggests that 

the selected features can discriminate the two classes. A distance of J = 0 means complete 

correlation or low separability and J = 2 means complete non-correlation and high separability. 

 With the features selected for the classification, we next assigned training classes and 

points. We randomly selected training sites from within the ground truthing points to use in the 

classification. Fifteen non-vegetation and vegetation classes were mapped considering their 

likely discrimination in the scenes. Non-vegetation classes included white rock, red rock, road, 



54 

 

and bare ground. Vegetation classes included common species in the site: Ambrosia dumosa, 

Atriplex canescens (Four winged saltbrush), Cerocarpus betuloides (Mahogany), Coleogyne 

ramosissima (Blackbrush), Ephedra torreyana (Torrey’s jointfir), Ephedra viridis (Mormon tea), 

Chrysothamnus viscidiflorus (Rabbitbrush), Hesperostipa comata (Needle and Thread grass), 

Juniperus osteosperma (Juniper), Achnatherum hymenoides (Indian Rice Grass), and Pinus 

monophylla (Pinyon Pine).  

 

Accuracy Assessment 

 

To assess the accuracy of image classification we compared the classified image with 

ground validation data and created an error matrix. We randomly selected 250 reference points 

taken from the field and compared their identification in the field with the image classification 

we created. We first measured overall accuracy. Overall accuracy is the proportion of all 

reference pixels, which ae classified correctly (in the sense that the class assignment of the 

classification and of the reference classification agree). It is computed by dividing the total 

number of correctly classified pixels (the sum of the elements along the main diagonal) by the 

total number of reference pixels. Overall accuracy is a very coarse measurement. It gives no 

information about what classes are classified with good accuracy.  

We determined the rates of omission errors (or false negatives, when pixels with presence 

of a target species on the ground were not properly classified) and commission errors (or false 

positives, when pixels were classified as with presence of a target species that was absent on the 

ground) which define the producer’s and user’s accuracy, respectively. We also estimated the 

kappa coefficient, which provides a measure of the difference in agreement between the 

classified map and ground validated data against an agreement occurring by chance (Landis & 



55 

 

Koch 1977). Further, Kappa analysis is a discrete multivariate technique used in accuracy 

assessment for statistically determining if one error matrix is significantly different from another. 

The measure of agreement is based on the difference between the actual agreement in the error 

matrix (i.e. the agreement between the remote sensed classification and the reference data as 

indicated by the major diagonal) and the chance agreement, which is indicated by the row and 

column totals (i.e. marginals). 

There is always a detection threshold related to the spatial resolution of the system and, 

for all species, there will always be individuals, e.g. seedlings or small plantings, that cannot be 

detected. Therefore, we were not able to sample small forb species and seedlings that covered 

less than 50% of our pixel size, i.e. 0.5 m2 for images of 1m2 spatial resolution.  

 

Results 

 

Reflectance Curves and Pixel-based Classification 

 

The reflectance curves created from hyperspectral data improved the pixel-based 

classification by providing more detailed rule sets for each species. Their accuracy is confirmed 

by the improvement in accuracy between the pixel-based (only reflectance data) and the object-

based classification.  

 

Compare pixel-level classification to object-level classification 

 

Both spectral differentiation and object oriented classifications produced overall 

classification accuracies above 75%. The spectral differentiation had an overall accuracy of 79% 

(kappa coefficient=0.76) and the object oriented classification had an overall accuracy of 91% 

(kappa coefficient=0.90). For the producer’s accuracy, there were improvements in the object 
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oriented classification compared to the spectral differentiation for eight species, no change for 

three species, and decline in two species. Species that improved in producer’s accuracy with the 

object oriented classification were P. monophylla (from 0.6 to 0.85), J. osteosperma (from 0.58 

to 0.84), C. ramosissima (from 0.57 to 0.95), E. viridis (from 0.8 to 0.94), A. canescens (0.76 to 

0.88), C. viscidiflorus (0.87 to 0.88), H. comata (0.79 to 0.89), and A. hymenoides (0.84 to 0.93). 

Two species had slightly worse producer’s accuracies with the object oriented classification than 

the spectral differentiation, E. torreyana (0.86 to 0.85), A. dumosa (0.76 to 0.72) (Figure 5 and 

Figure 6).  

For the user’s accuracy, there were improvements in the object oriented classification 

compared to the spectral differentiation for eight species, no change for three species, and 

decline in two species. Species that improved in user’s accuracy with the object oriented 

classification were P. monophylla (from 0.75 to 0.85), C. ramosissima (from 0.84 to 0.96), A. 

canescens (0.82 to 0.95), and C. viscidiflorus (0.93 to 1), and a decline for E. torreyana (1 to 

0.93), A. dumosa (0.9 to 0.8), H. comata (1 to 0.97), and A. hymenoides (0.88 to 0.87). 

Producer’s and user’s accuracies were in general very similar for species, with higher user’s 

accuracy in both instances (0.88 for spectral differentiation and 0.92 for object oriented 

classification) compared to producer’s accuracy (0.80 and 0.90). 

 

Important Features in Object-based Classification  

 

Overall, reflectance values for NDVI and GNDVI indices were fairly effective in 

classifying species (Figure 5), but the use of other features improved the classification (Figure 6). 

The differences can be seen in the class separation distance matrix (Table 2) and the sample 

editor table (Figure 3 for just NDVI values and Suppl. Fig S1 for complete table). In Table 3, we 
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can see that there are four instances where species completely overlap in the range of reflectance 

values when NDVI only was used in the classification. All four instances of complete overlap 

occurred between three grass species, and two lighter-colored shrubs (H. comata, A. hymenoides, 

C. ramosissima, B. gracilis, and C. viscidiflorous). Figure 4 shows alternative bands and metrics 

that can be used to differentiate plant species when there is overlap in a feature like NDVI. To 

differentiate between B. gracilis and H. comata (both grasses), C. viscidiflorus and H. comata 

(shrub and grass) and C. ramosissima and A. hymenoides (shrub and grass), mean brightness 

only overlaps by 0.19, 0.55, and 0 respectively. Brightness was not effective for C. ramosissima 

and H. comata, but mean NIR only had 0.28 overlap. Geometric metrics like size, width, length, 

and shape were effective in differentiating between different shrub species and also contrasting 

them with other lifeforms. 
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Figure 5 Classification map 

Complete classification maps for both the front country and canyon regions of Canyonlands National Park.
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Table 2 Pixel-based confusion matrix 

Confusion matrix for the pixel-based, rule set and spectral differentiation analysis in eCognition. 

 

vvv 

 

 

 

 

 

Table 3 Object-based confusion matrix 

Confusion matrix for the object-based classification using training sites in eCognition. 

 

 

 

 

 

 

 

Class/Class P.	monophylla C.	betuloides J.	osteosperma Q.	gambelii C.	ramosissima E.	viridis E.	torreyana A.	dumosa A.	canescens C.	viscidiflorus H.	comata O.	hymenoides Bare	Ground Unclassified	 Row	Total Accuracy

P.	monophylla 3 0 0 0 0 0 0 0 0 0 0 0 0 2 5 0.6

C.	betuloides 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1

J.	osteosperma 1 0 7 0 0 0 0 0 2 0 0 0 0 2 12 0.58333333

Q.	gambelii 0 0 0 5 0 0 0 0 0 0 0 0 0 0 5 1

C.	ramosissima 0 0 0 0 11 1 0 1 2 0 0 0 0 4 19 0.57894737

E.	viridis 0 0 0 0 1 38 0 0 0 0 0 0 0 8 47 0.80851064

E.	torreyana 0 0 0 0 0 1 13 0 0 0 0 0 0 1 15 0.86666667

A.	dumosa 0 0 0 0 0 0 0 10 0 0 0 0 0 3 13 0.76923077

A.	canescens 0 0 0 0 1 1 0 0 19 0 0 0 0 4 25 0.76

C.	viscidiflorus 0 0 0 0 0 0 0 0 0 14 0 0 0 2 16 0.875

H.	comata 0 0 0 0 0 0 0 0 0 0 27 2 0 5 34 0.79411765

O.	hymenoides 0 0 0 0 0 0 0 0 0 1 0 32 0 5 38 0.84210526

Bare	Ground 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 1

Unclassified	 0 0 0 0 0 0 0 0 0 0 0 2 0 12 14 0.85714286

Column	Total 4 2 7 5 13 41 13 11 23 15 27 36 3 48

Reliability 0.75 1 1 1 0.846153846 0.9268293 1 0.909090909 0.826086957 0.933333333 1 0.888888889 1 0.25

Overall Accuracy 0.79032

Kappa Coefficient 0.76867

Producer's Accuracy 0.80965

User's Accuracy 0.88074

Class/Class P. monophylla C. betuloides J. osteosperma Q. gambelii C. ramosissima E. viridis E. torreyana A. dumosa A. canescens C. viscidiflorus H. comata O. hymenoides Bare Ground Unclassified Row Total Accuracy

P. monophylla 6 0 0 0 0 0 0 0 0 0 0 0 0 1 7 0.85714286

C. betuloides 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1

J. osteosperma 1 0 11 0 0 0 0 0 1 0 0 0 0 0 13 0.84615385

Q. gambelii 0 0 0 5 0 0 0 0 0 0 0 0 0 0 5 1

C. ramosissima 0 0 0 0 23 1 0 0 0 0 0 0 0 0 24 0.95833333

E. viridis 0 0 0 0 0 37 0 0 0 0 0 0 0 2 39 0.94871795

E. torreyana 0 0 0 0 0 1 15 0 0 0 0 0 0 0 14 0.78571429

A. dumosa 0 0 0 0 0 1 1 8 0 0 0 0 0 1 11 0.72727273

A. canescens 0 0 0 0 1 0 0 2 22 0 0 0 0 0 25 0.88

C. viscidiflorus 0 0 0 0 0 0 0 0 0 8 0 0 0 1 9 0.88888889

H. comata 0 0 0 0 0 0 0 0 0 0 34 2 0 2 38 0.89473684

O. hymenoides 0 0 0 0 0 0 0 0 0 0 1 27 0 1 29 0.93103448

Bare Ground 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 1

Unclassified 0 0 0 0 0 0 0 0 0 0 0 2 0 15 17 0.88235294

Column Total 7 2 11 5 24 40 16 10 23 8 35 31 5 23 238

Reliability 0.857142857 1 1 1 0.958333333 0.925 0.9375 0.8 0.956521739 1 0.971428571 0.870967742 1 0.652173913

Overall Accuracy 0.91596

Kappa Coefficient 0.90676

Producer's Accuracy 0.90002487

User's Accuracy 0.92350487
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The values within the class separation distance matrix inform us how much separation 

there is between species pixel values for all of the combined factors in the classification. 0 

indicates no separation and higher numbers indicate higher separation. The values below 2, the 

benchmark set for sufficient separability are C. viscidiflourus and E. torreyana (1.87), C. 

viscidiflourus and A. hymenoides (1.15), J. osteosperma and P. monophylla (1.26), and E. viridis 

and E. torreyana (1.29) (see Table 2). 

In the Average Nearest Neighbor analysis, we see that the distribution of species in the 

landscape is not due to chance. The expected mean difference between species was 0.577m and 

the observed  mean distance was 1.03 m.  With a z-score of 2320.47 and a p-value of <0.001, 

there is less than a 1% chance that the dispersal pattern witnessed in the site is due to chance. 
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Table 4 Class separation distance matrix 

Class Separation Distance Matrix for object-based classification. The values represent the amount of separation between two species in the image using all of the 

image object related features in the object-based classification. A value of 2 is generally accepted as the benchmark for separating between species. More than 2 

units of separation between species is deemed sufficient for accurately separating them. From 0-2 is not the most ideal separation. Species can still be 

differentiated but it is more difficult. 

 

 

 

Class/Class A. tridentata A. canescens Bare Ground B. gracilis C. viscidiflorus C. ramosissima E. torreyana E. viridis H. comata J. osteosperma A. hymenoides P. monophyla Red Rock Road White Rock

A. tridentata 0

A. canescens 3.597957 0

Bare Ground 18.798298 9.504423 0

B. gracilis 11.148174 5.656309 15.635604 0

C. viscidiflorus 5.602458 2.42932 16.648042 2.787529 0

C. ramosissima 17.688781 15.787685 20.437673 17.248157 17.125904 0

E. torreyana 6.012781 3.16641 13.529162 2.222371 1.874773 12.372592 0

E. viridis 3.903661 3.120262 16.336391 3.943448 2.300185 14.233153 1.193336 0

H. comata 5.948544 2.155921 6.978308 6.393288 3.970894 12.942281 3.820866 5.261408 0

J. osteosperma 4.080788 6.838284 18.231344 16.249151 9.833356 24.956844 11.653387 7.08443 8.242005 0

A. hymenoides 5.136762 2.138177 9.108365 2.215567 1.15342 17.935609 2.021818 2.791877 2.014733 9.458255 0

P. monophyla 4.144869 7.793742 17.813204 16.488712 10.542592 26.192191 12.364177 9.04341 9.299724 1.261062 10.295789 0

Red Rock 15.084899 9.060893 3.154298 9.121408 10.76909 21.406476 7.897792 9.611497 6.714601 15.499927 6.01782 13.723144 0

Road 12.381036 8.842366 20.060391 18.252177 13.176859 26.005876 14.935734 14.546 12.772127 17.617183 13.089019 17.328866 11.809875 0

White Rock 29.566601 24.091286 16.360871 22.961975 23.824595 37.951618 21.84081 24.35151 21.288614 31.651687 19.187892 25.509138 3.373638 9.046635 0
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Table 5 Object overlap values 

Object Oriented Classification object overlap values taken from the Sample Editor for NDVI values from a 0 to 1 scale with 0 being no overlap between NDVI 

ranges and 1 being complete overlap. There is strong overlap with NDVI levels between the grass species H. comata and the grass species B. gracilis, the shrub 

species, C. ramosissima, and C. viscidiflorus. This likely means there is a large NDVI range for H. comata and an inability by the NDVI matrix alone to 

differentiate between these species. 

 

 

 

 

 

Table 6 Other features that can be used to increase separation distance 

This table displays other factors that can be used to differentiate between species with similar greenness (NDVI and GNDVI). The species shown here are the 

species with 100% overlap in NDVI range. There are other factors where they are quite different from each other, shown by lower overlap values. Weighing that 

color band more heavily or a feature like brightness, can emphasize these differences and allow for better discrimination. This is an advantage of object-based 

classification over pixel-based classification.  

 

 

 

Class A. tridentata A. canescens B. gracilis C. viscidiflorus C. ramosissima E. viridis H. comata J. osteosperma O. hymenoides P. monophylla

A. tridentata 0 0.52 0.1 0.27 0.04 0.63 0.34 0.39 0.29 0.36

A. canescens 0 0.03 0.15 0.01 0.28 0.37 0.39 0.23 0.18

B. gracilis 0 0.55 0 0.47 1 0 0.82 0.2

C. viscidiflorus 0 0.07 0.53 1 0.21 0.5 0.05

C. ramosissima 0 0.02 1 0 1 0

E. viridis 0 0.24 0.45 0.13 0.3

H. comata 0 0.1 0.46 0.07

J. osteosperma 0 0.02 0.34

O. hymenoides 0 0.1

P. monophylla 0

Species Brightness Mean Red Mean NIR 1 Mean Green Mean Blue Mean NIR 2 Mean Coastal Mean Yellow Max Difference NDVI GNDVI

B. gracilis-H. comata 0.19 0 1 1 1 1 1 1 0.88 1 1

C. viscidiflorus-H. comata 0.55 0.42 0.75 1 1 0.88 0.85 0.5 0.88 1 1

C. ramosissima-H. comata 1 1 0.28 1 1 0.88 0.85 0.89 0.73 1 0.97

C. ramosissima-O. hymenoides 0 0.09 0 0.63 1 0 1 0.86 0.28 1 0.07
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Discussion 

We were able to successfully use VHR imagery to create the first accurate, park-wide 

map that shows the species-level distribution of dominant plants on the Colorado Plateau (Figure 

5). These maps will serve as a baseline for future comparisons of species-level distributions over 

time and changes brought about by shifts in global climate. From the maps we can see that there 

is structure to where species exist. Chesler Park is pictured because it is geologically interesting 

and representative of regions on the Colorado Plateau. It is also a critical area for tourism with 

popular hikes and jeep trails. From the classification map, we can see that the rock fins 

surrounding the park are host to the larger tree species, P. monophylla and J. ostesosperma with 

an occasional deep-rooted shrub such as E. viridis, E. torreyana, and C. ramosissima. Sand 

ramps along the edge of the rock fins have fewer tree species and are replaced predominantly by 

shrub species. In the deep, silty soils of the inner canyon, grasses are the domain functional 

group.  

 

Classification Accuracy 

 

Overall, both classification methods were successful for large bunchgrasses and shrubs 

which is helpful for tracking the increase in shrub densities and the decrease in grasses. With the 

inclusion of roads, rock, and vegetation in the segmentation and classification, the object-based 

classification produced more accurate land-cover maps that better represented the plant class 

than the pixel-based classification methods did. For an object-based classification, the results of 

an accuracy assessment reflect not only the accuracy in the classification technique (e.g. the 

selection of features used to differentiate between the classes), but also the results of the initial 

segmentation of the image (Liu et al. 2008; Newman et al. 2011). Due to the spatial resolution of 

the imagery and the heterogeneity of the species distribution, the best segmentation used pixel 
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sizes of three. Slightly larger and the classification was largely successful but missed much of the 

detail found in the landscape and thus compromised the accuracy of the classification. 

We obtained a good discrimination between classes (even for those with very similar 

reflectance patterns) in uniform areas where one particular class occupied entire pixels. The 

greatest overall improvements from the pixel-based classification to the object-based 

classification were found in classifying P. monophylla vs. J. osteosperma. Both highly 

photosynthetic species were difficult to differentiate in the pixel-based classification but were 

much better in the object-based classification. C. ramosissima also benefited from the object-

based classification. In the pixel-based classification, several C. ramosissima were classified as 

A. dumosa and A. canescens, species with similar NDVI and peak reflectance values. In these 

cases, size metrics are important in differentiating between the species. Size, area, thickness, 

volume, and length all had almost negligible overlap values (0.05) which likely explains the 

improvement in accuracy assessment for the object-based classification. Another way to consider 

the correct classification of species is to notice the reduction of species incorrectly classified as 

‘unclassified’. In the pixel-based classification, there was a low user’s accuracy for the 

unclassified pixels. This means that we incorrectly classified species as unclassified frequently.  

For the grass species, there was improvement in correctly classifying species. In the 

pixel-based classification, there was an overestimation of A. hymenoides. Grass species were 

generally classified as grasses but not necessarily the correct species. The improvement in the 

object based classification occurred because of differences in brightness and max difference in 

pixel values, which had little overlap. 
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Limitations of the method 

 

 While the WV-3 satellite imagery was able to discriminate between major species of 

grasses, trees, and shrubs, the spatial resolution was still not fine enough to classify forbs and 

seedlings in the landscape. For a complete, inclusive species-level map, more fine resolution 

imagery would be required. Detection errors occurred when small individuals were located 

within or nearby large patches of another species. In these cases, the individual was often 

classified with the larger group. In practice, this shortcoming could influence the ability of 

remote sensing classifications to correctly identify species that benefit from close spatial 

distribution with shrubs. This ‘island effect’ finds hotspots of biological activity around shrubs 

that are able to pull moisture from deep within the soil profile that can then be used by species 

with shorter root systems. While our classification often identified these occurrences, more fine 

spatial resolution would aid in classifying species in these instances. 

Considering the small size of a newly-emerged seedling, there are always individuals that 

will pass undetected regardless of the spatial resolution of the detection technique used. Because 

our site is classified as a perennial grassland with shrubs, most of the species are well-established 

bunch grasses or large shrubs, so missing seedlings is not too worrisome for a general 

classification mapping. Periodic image acquisition combined with in situ sampling in accessible 

regions would do well to improve upon the classification and track changes over time for species 

in the landscape. In addition, seedlings missed by earlier classifications can be detected in 

subsequent campaigns, once they exceed the size threshold for detection. 
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Implications  

 

Arid ecosystems present different challenges in remote sensing of the landscape. There is 

less variation in heights of species and rarely are species stacked on top of each other as you 

would see in forest ecosystems. However, the size of the individual, their proximity to each 

other, and the interspaces prove to be challenges in classifying species in arid ecosystems. 

Duniway et al. (2011) said that remote sensing techniques have shown promise for measuring 

plant community composition and ground cover efficiently, but to applied to more large-scale 

surveys, it is necessary that they are feasible, cost-effective, and repeatable. That is the criteria 

we attempted to maintain in this project. While there are platforms with more fine spatial and 

spectral resolution, such as very-high-resolution imagery (~1mm ground sampling distance 

(GSD)), the equipment necessary for the analysis is not commonly available or affordable 

(Duniway et al. 2011). This research sheds light on the trade-off between imagery sufficient 

enough to discern major plant species but broad enough to fit the time and cost criteria stated 

above. We can see limitations of the data collected but also informative results that can lead to 

better landscape management and understanding of ecological phenomena. Berg et al. (2016) 

found that woody shrub encroachment underwent a major redistribution across the landscape. 

Shrub expansion did not occur equally or randomly across the landscape but was concentrated in 

formerly open, grassy areas. In previously wooded areas, there was no change or a reduction in 

shrub cover. With more findings like this, and a consistent mapping of open areas and woody 

areas, we can predict where shrub expansion will occur and other important ecological questions. 
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Supplementary Information 

 

Chapter 1 

 

Table S1 Point measurements for photosynthetic rate 

Leaf-level seasonal gas exchange measurements (µmol m−2 s−1) for 15 common species on the Colorado Plateau 

with the standard error values. Missing values indicate no tissue samples to measure. 

 

 

  

Functional Type Species February April May June September December

Grass Achnatherum hymenoides
10.9 (+/- 

1.16 SE)

11.52 (+/- 

1.07 SE)

1.36 (+/- 0.16 

SE)

Bouteloua gracilis
26.09 (+/- 

0.19 SE)

17.4 (+/- 

1.92 SE)

3.89 (+/- 0.80 

SE)

Hesperostipa comata
28.69 (+/- 

0.49 SE)

14.11 (+/- 

2.11 SE)

10.211 (+/- 

0.49 SE)

4.31 (+/- 0.01 

SE)

Pleuraphis jamesii
24.16 (+/- 

0.55 SE)

29.75 (+/- 

0.86 SE)

11.04 (+/- 

0.55 SE)

Shrub Chrysothamnus viscififlorus
0.84 (+/- 

0.52 SE)

19.86 (+/- 

1.87 SE)

14.04 (+/- 

6.21 SE)

16.75 (+/- 

2.04 SE)

5.31 (+/- 0.49 

SE)

1.89 (+/- 0.61 

SE)

Coleogyne ramosissima
2.02 (+/- 

0.37 SE)

10.01 (+/- 

1.22 SE)

21.55 (+/- 

2.69 SE)

9.71 (+/- 

0.91 SE)

6.89 (+/- 0.40 

SE)

1.58 (+/- 0.54 

SE)

Ephedra viridis
2.73 (+/- 

0.32 SE)

11.43 (+/- 

0.39 SE)

18.42 (+/- 

3.11 SE)

16.62 (+/- 

1.19 SE)

7.77 (+/- 0.39 

SE)

2.91 (+/- 0.94 

SE)

Forb Amaranthus blitoides
10.87 (+/- 

2.24 SE)

15.2 (+/- 

0.01 SE)

Astragalus amphioxys
9.33 (+/- 

2.14 SE)

13.97 (+/-  

0.55 SE)

Chenopodium album
9.34 (+/- 

3.17 SE)

17.04 (+/- 

0.80 SE)

Eriogonum inflatum
3.97 (+/- 

1.57 SE)

Lappula occidentalis
11.63 (+/- 

0.60 SE)

18.19 (+/- 

3.43 SE)

Lepidium densiflorum
18.68 (+/- 

0.89 SE)

Sphaeralcea coccinea
10.14 (+/- 

0.86 SE)

Streptanthella longirostris
14.73 (+/- 

1.33 SE)
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Chapter 2 

 
Figure S1 Original image and classification 

Original image and classification using object oriented classification. The region pictured is of Chesler Park and Virginia Park, two canyon regions within 

Canyonlands National Park. 
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Figure S2 Chelser Park Classification 

Close up image of Chesler Park classification. Visually, you can see the difference where the shrubs at the canyon walls meet the grasses within the basin. 
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Figure S3 Zoomed in Chesler Park Classification 

Smaller, more in-depth view of the classification of Chesler Park. 
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Figure S4 Shrub to grass interface in Chesler Park 

Chesler Park detailed with the tree to shrub and shrub to grass interface with canyon geography. 
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Figure S5 Virginia Park classification 

Close up of Virginia Park, another canyon located near Chesler Park. Virginia Park differs from Chesler Park and other surrounding regions because it has never 

been grazed. The canyon is completely closed off to tourists and grazing animals so the plant community will likely vary from what is seen outside the canyon. 
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Figure S6 Visitor Center classification 

Close-up of the front country area of the Needles District of Canyonlands National Park near the Visitor's Center. 
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Table S1 Classification Sample Editor 

Table of Object Oriented Classification Sample Editors showing the overlap between parameters when comparing species. 

 
 

Species	Overlap Area Thickness Length/Thickness Volume Length/Width Length Number	of	Pixels Relative	border	to	image	border Width Border	length Brightness Mean	Red Mean	NIR	1 Mean	Green Mean	Blue Mean	NIR	2 Mean	Coastal Mean	Red	Edge Mean	Yellow Max	Difference NDVI GNDVI

Artemisia-Atriplex 0.86 1 1 0.86 0.71 0.71 0.86 1 1 0.86 0.21 0 0.02 0.18 0.54 0.07 0.49 0.24 0.14 0.33 0.52 0.31

Artemisia-Bare	Ground 1 1 1 1 1 1 1 1 1 1 0 0 0.14 0 0.14 0.06 0.29 0 0 0.14 0.45 0.14

Artemisia-Bouteloua 0 0.14 0 0 0 0 0 0.14 0.14 0 0 0 0 0 0 0 0 0 0 0 0.1 0.03

Artemisia-Chrysothamnus 0 0.57 0.57 0 0 0 0 0.57 0.43 0 0 0 0.1 0 0 0 0 0 0 0.2 0.27 0

Artemisia-Coleogyne 0.14 0.29 0.29 0.14 0.14 0.29 0.14 0.29 0.14 0.29 0 0 0 0 0 0 0 0 0 0 0.04 0

Artemisia-Ephedra 0.71 1 1 0.71 0.57 0.57 0.71 1 1 0.71 0.14 0 0.11 0 0.14 0.14 0.17 0.14 0 0.1 0.63 0.44

Artemisia-Hesperostipa 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0.02 0 0.25 0.08 0 0.14 0.34 0.19

Artemisia-Juniperus	 1 1 1 1 0.86 0.86 1 1 1 0.86 0.52 0.94 0.26 1 1 0.3 0.79 0.29 1 0.2 0.39 0.26

Artemisia-Oryzopsis 0.71 1 1 0.71 0.57 0.86 0.71 1 1 0.71 0 0 0 0 0 0.29 0 0 0.14 0.29 0.14

Artemisia-Pinus 1 1 1 1 0.71 0.71 1 1 1 1 0.52 0.81 0.2 0.2 0.97 0.09 0.24 0.24 0.97 0.14 0.36 0.51

Atriplex-Bouteloua 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0 0.3 0 0 0 0.5 0 0 0 0.03 0.04

Atriplex-Chrysothamnus 0.14 0.18 0.18 0.14 0.14 0.14 0.14 0.18 0.14 0.14 0.08 0.05 0.02 0.09 0.11 0.08 0.12 0.07 0.02 0.07 0.15 0.17

Atriplex-Coleogyne 0.05 0.09 0.09 0.05 0.05 0.05 0.05 0.09 0.09 0.09 0 0.2 0.07 0.03 0.05 0.3 0.04 0.04 0.04 0.09 0.01 0.08

Atriplex-Ephedra 0.68 0.73 0.73 0.68 0.68 0.68 0.68 0.73 0.68 0.68 0.4 0.15 0.19 0.44 0.38 0.43 0.46 0.35 0.44 0.32 -0.28 0.42

Atriplex-Hesperostipa 0.86 1 1 0.86 0.91 0.86 0.86 1 1 0.86 0.17 0.12 0.29 0.29 0.24 0.31 0.54 0.2 0.18 0.38 0.37 0.56

Atriplex-Juniperus 1 1 1 1 1 1 1 1 0.96 1 0.65 0.37 0.76 0.62 0.48 0.75 0.46 0.72 0.31 0.6 0.39 0.51

Atriplex-Oryzopsis 0.73 0.91 0.91 0.73 0.73 0.82 0.91 0.91 0.86 0.72 0.06 0 0.09 0.03 0.12 0.08 0.3 0.09 0.08 0.18 0.23 0.31

Atriplex-Pinus 1 1 1 1 1 1 1 1 1 1 0.42 0.14 0.6 27 0.13 0.58 0.06 0.64 0.13 0.29 0.18 0.39

Bouteloua-Chrysothamnus 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0.8 0.3 0.28 0 0 0 0.55 0

Bouteloua-Coleogyne 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0.9 0 0.72 0 0 0 0 0

Bouteloua-Ephedra 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0.37 0 0.74 0 0 0.68 0.47 0.54

Bouteloua-Hesperostipa 1 1 1 1 1 1 1 1 1 1 0.19 0 1 1 1 1 1 0.75 1 0.88 1 1

Bouteloua-Juniperus 1 1 1 1 1 1 1 1 1 1 0.82 0 0.6 0 0 1 1 0 0 1 0 1

Bouteloua-Oryzopsis 1 1 1 1 1 1 1 1 1 1 1 1 0.61 1 1 0.66 1 0.4 1 1 0.82 1

Bouteloua-Pinus 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0.19 0.33 0 0 1 0.2 1

Chrysothamnus-Coleogyne 0 0.5 0.5 0 0 0 0 0.5 0.25 0 0.2 0 0.07 0.07 0.41 0.13 0.17 0.25 0.14 0.02 0.07 0.38

Chrysothamnus-Ephedra 0.75 1 1 0.75 0.75 0.75 0.75 1 0.75 0.75 0.17 0.16 0.36 0.39 0.5 0.39 0.6 0.09 0.22 0.23 0.53 0.79

Chrysothamnus-Hesperostipa 0.75 1 1 0.75 0.75 0.75 0.75 1 0.75 1 0.55 0.42 0.75 1 1 0.88 0.85 0.75 0.5 0.88 1 1

Chrysothamnus-Juniperus 0.75 1 1 0.75 0.75 0.75 0.75 1 0.75 0.75 0.36 0.32 1 0.17 0 1 0.56 0.25 0.07 1 0.21 0.86

Chrysothamnus-Oryzopsis 0.75 1 1 0.75 0.75 0.75 0.75 1 0.75 0.75 0.3 0.4 0.2 0.43 1 0.25 0.75 0.25 0.25 0.44 0.5 0.54

Chrysothamnus-Pinus 0.75 1 1 0.75 0.75 0.75 0.75 1 0.75 0.75 0 0 0.55 0 0 0.97 0.1 0 0 0.85 0.05 0.64

Coleogyne-Ephedra 0 1 1 0 0 0 0 1 0.5 0.5 0.15 0 0.36 0.05 0.19 0.28 0.78 0.37 0 0.5 0.02 1

Coleogyne-Hesperostipa 0.6 1 1 0.5 1 1 0.5 1 1 1 1 1 0.28 1 1 0.88 0.85 0.92 0.89 0.73 1 0.97

Coleogyne-Juniperus 0.5 1 1 0.5 0.5 1 0.5 1 1 0.5 0.5 0 1 0 0 1 0.74 0.43 0.11 1 0 0.72

Coleogyne-Ozyzopsis 0 1 1 0 0.5 1 0 1 1 0.5 0 0.09 0 0.63 1 0 1 0.35 0.86 0.28 1 0.07

Coleogyne-Pinus 0.5 1 1 0.5 0.5 0.5 0.5 1 1 1 0 0 0.76 0.76 0 0 0.61 0 0 0.06 0 0.42

Ephedra-Hesperostipa 0.88 1 1 0.88 1 0.88 0.88 1 1 0.88 0.19 0.06 0.23 0.3 0.45 0.27 0.68 0.23 0.17 0.28 0.24 0.54

Ephedra-Juniperus 1 1 1 1 0.94 0.94 1 1 0.94 0.94 0.74 0.5 0.93 0.59 0.09 0.95 0.42 0.92 0.55 0.54 0.45 0.42

Ephedra-Ozyzopsis 0.88 1 1 0.88 0.81 0.81 0.99 1 0.94 0.88 0.03 0 0.08 0 0.16 0.06 0.27 0.03 0.06 0.14 0.13 0.16

Ephedra-Pinus 1 1 1 1 1 1 1 1 1 1 0.38 0.03 0.48 0.06 0 0.65 0.13 0.65 0.08 0.34 0.3 0.31

Hesperostipa-Juniperus 0.86 1 1 0.85 0.9 0.86 0.86 1 0.86 0.83 0.21 0.12 0.52 0.13 0.04 0.65 0.33 0.32 0.14 0.81 0.1 0.87

Hesperostipa-Oryzopsis 0.69 0.69 0.69 0.69 0.62 0.69 0.69 0.69 0.66 0.69 0.22 0.24 0.25 0.35 0.47 0.22 0.51 0.22 0.35 0.48 0.46 0.54

Hesperostipa-Pinus 0.83 1 1 0.83 0.86 0.79 0.83 1 0.93 0.83 0.01 0 0.47 0.02 0 0.4 0.07 0.03 0 0.53 0.07 0.51

Juniperus-Oryzopsis 0.21 0.23 0.23 0.21 0.2 0.23 0.21 0.23 0.21 0.2 0.02 0.01 0.06 0 0 0.1 0.06 0.03 0.02 0.22 0.02 0.23

Juniperus-Pinus 0.59 0.59 0.59 0.59 0.58 0.58 0.59 0.59 0.57 0.58 0.43 0.4 0.41 0.5 0.47 0.37 0.46 0.44 0.43 0.4 0.34 0.51

Oryzopsis-Pinus 0.9 1 1 0.9 0.85 0.9 0.9 1 0.95 0.9 0 0 0.18 0 0 0.24 0.05 0 0 0.64 0.1 0.71
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