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ABSTRACT 
 

Integrative Analysis to Evaluate Similarity Between 
BRCAness Tumors and BRCA Tumors 

 
Weston Reed Bodily 

Department of Biology, BYU 
Master of Science 

 
The term “BRCAness” is used to describe breast-cancer patients who lack a germline 

mutation in BRCA1 or BRCA2, yet who are believed to express characteristics similar to 
patients who do have a germline mutation in BRCA1 or BRCA2. Although it is hypothesized 
that BRCAness is related to deficiency in the homologous recombination repair (HRR) 
pathways, relatively little is understood about what drives BRCAness or what criteria should be 
used to assign patients to this category. We hypothesized that patients whose tumor carries a 
genomic or epigenomic aberration in BRCA1 or BRCA2 should be classified under the 
BRCAness category and that these tumors would exhibit downstream effects (additional 
mutations or gene-expression changes) similar to patients with germline BRCA1/2 mutations. To 
better understand BRCAness, we examined similarities and differences in gene-expression 
profiles and somatic-mutation "signatures" among 1054 breast-cancer patients from The Cancer 
Genome Atlas. First, we categorized patients into three categories: those who carried a germline 
BRCA1/2 mutation, those whose tumor carried a genomic aberration or DNA hypermethylation 
in BRCA1/2 (the BRCAness group), and those who fell into neither of the first two groups. Upon 
evaluating the gene-expression data in context of the PAM50 subtypes, we did not observe 
significant similarity between the germline BRCA1/2 and BRCAness groups, but we did observe 
enrichment within the basal subtype, especially for BRCAness tumors with hypermethylation of 
BRCA1/2. However, the gene-expression profiles were fairly heterogeneous; for example, 
BRCA1 patients differed significantly from BRCA2 patients. In agreement with prior findings, 
certain mutational signatures—especially "Signature 3"—were enriched for patients with 
germline BRCA1/2 mutations as well as for BRCAness patients. Furthermore, we observed 
significant similarity between germline BRCA1/2 patients and patients with germline mutations 
in PALB2, RAD51B, and RAD51C, genes that are key parts of the HRR pathway and that 
interact with BRCA1/2. Our findings suggest that the BRCAness category does have biological 
and clinical relevance but that the criteria for including patients in this category should be 
carefully defined, potentially including BRCA1/2 hypermethylation and homozygous deletions 
as well as germline mutations in PALB2, RAD51B, and RAD51C. 
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INTRODUCTION 
 
 Approximately 1-5% of breast cancer patients have a germline mutation in either the 

BRCA1 or BRCA2 gene. These individuals have a 30-70% chance of developing breast cancer 

in their lifetime. BRCA1 and BRCA2 play important roles in DNA repair, specifically 

homologous recombination repair (HRR) of double-stranded breaks. When double-stranded 

breaks have occurred, cells to develop into cancerous tumors rather than enter apoptosis. 

Many patients exhibit clinical responses that are characteristic of those who carry 

germline BRCA1/2 mutations, even though they lack germline BRCA1/2 mutations. This 

phenomenon, known as "BRCAness", may result from genomic or epigenomic aberrations that 

have similar, downstream biological effects as germline mutations in BRCA1/2. Such 

downstream effects may include an increase in double-stranded breaks and other HRR 

deficiencies, but relatively little is understood about the biological drivers and effects of 

BRCAness. As a result, relatively little is understood about what specific criteria should be used 

to assign patients to this category. If reliable BRCAness criteria could be identified, better or 

more specific treatments for BRCAness patients could be applied. For example, treatments for 

BRCA1/2 patients commonly include PARP inhibitors and platinum-salt therapies, which target 

cells with HRR defects. Because there is a possible link between BRCAness and HRR 

deficiencies, it is possible that these same treatments could be effective for BRCAness patients 

as well.Various criteria have been proposed to classify patients into the BRCAness category; 

these criteria include somatic mutations in BRCA1/2, large scale (chromosomal) deletions in 

HRR genes, tumor-mutational signatures, hypermethylation of BRCA1/2 genes, transcriptional 

profiles, and germline mutations in HRR genes other than BRCA1 and BRCA2.  
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For this study, we used a multi-omic approach to further investigate the BRCAness 

phenomenon and to evaluate criteria used to classify patients into this category. We obtained 

genomic, epigenomic, and transcriptomic data from The Cancer Genome Atlas (TCGA) for 1054 

breast-cancer patients. We hypothesized that breast tumors of patients who meet certain 

BRCAness criteria would exhibit tumor gene-expression patterns or mutational-signature 

patterns more similar to patients who carry germline mutations in BRCA1 or BRCA2 than to 

randomly selected breast cancer patients who do not meet these criteria. Such gene-expression 

patterns or mutational signatures would suggest that breast-tumor biology is affected similarly by 

germline BRCA1/2 mutations and these other mechanisms and thus that it may be advisable to 

treat both groups similarly. By including gene-expression data and mutational-signature data in 

our analysis, we were able to examine multiple sources of evidence for downstream effects of 

BRCA1/2 mutations simultaneously. For both data types, we found that there was a statistically 

significant similarity between patients with germline BRCA1/2 mutations and patients 

categorized as BRCAness; we did not observe such similarity between BRCAness patients and 

our control group. Upon examining the criteria we used to classify the patients into the 

BRCAness category, we observed that similarities in gene expression depended strongly on the 

categorization criteria being used. DNA hypermethylation status correlated strongly with 

germline-mutation status; however, the same was not true for CNVs or somatic mutations in 

BRCA1/2. In addition, we found that tumor-expression patterns from germline BRCA1 patients 

differed significantly from tumors from patients who carried a germline BRCA2 mutation. In 

contrast, similarity among these groups was quite consistent when examining mutational-

signature profiles. Lastly, we examined germline data for 60 additional breast-cancer 

predisposition genes and observed high similarity in the mutational-signature data between 
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tumors from BRCA1/2 carriers and tumors from individuals who carried germline mutations in 

PALB2, RAD51B, and RAD51C, but not in other genes that play an important role in DNA 

repair. Our findings suggest that the BRCAness category does have biological and clinical 

relevance but that care must be taken in deciding which patients to classify under this category. 
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METHODS 
Data preparation 

 
 We obtained breast-cancer patient data from TCGA. For each patient, we obtained data 

on germline mutations, somatic mutations, gene methylation, copy-number variations, and gene-

expression levels. Firstly, we used these data to categorize each patient into one of the following 

categories: BRCA, BRCAness, or Other. Secondly, to determine which criteria could be 

beneficial in characterizing BRCAness, we used the data to analyze similarities and differences 

among these groups. Due to the heterogeneous nature of how TCGA data are formatted, it was 

necessary to reformat the data. Therefore, we wrote computer scripts in the Python programming 

language (http://python.org) and restructured the data into the "tidy data" format. The BRCA 

group included patients who possessed a germline BRCA1/2 mutation that we deemed to be 

pathogenic (or likely pathogenic); the BRCAness group included patients who lacked a known, 

pathogenic, germline BRCA1/2 mutation but whose tumor had a somatic mutation (single-

nucleotide variant or small insertion/deletion) in BRCA1/2, a homozygous deletion in BRCA1/2, 

or hypermethylation in BRCA1/2; the Other group consisted of patients who were identified as 

having none of these aberrations. 

 To determine germline-mutation status, we downloaded raw sequencing data from 

CGHub for matching normal (blood) samples in TCGA. We limited our analysis to whole-exome 

sequencing samples that had been sequenced using Illumina Genome Analyzer or HiSeq 

equipment. Because the sequencing data files were stored in BAM format, we used Picard Tools 

(SamToFastq module, version 1.131) to convert them to FASTQ format. We used the Burrows-

Wheeler Alignment (BWA, version 0.7.12) tool to align the sequencing reads to version 19 of 

the GENCODE reference genome (hg19 compatible). We used sambamba (version 0.5.4) to sort, 
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index, mark duplicates, and flag statistics for the aligned BAM files. In cases where there were 

multiple BAM files per sample, we used bamUtil (1.0.13) to merge the BAM files. When 

searching for relevant germline variants, we focused solely on 62 genes that had been included in 

the BROCA Cancer Risk Panel (http://tests.labmed.washington.edu/BROCA). We extracted data 

for these genes using bedtools (intersectBed module, version 2). 

We used Picard Tools (CalculateHsMetrics module) to calculate alignment metrics. For 

exome-capture regions across all samples, the average sequencing coverage of target regions was 

44.4. The average percentage of target bases that achieved at least 30X coverage was 33.7%. The 

average percentage of target bases that achieved at least 100X coverage was 12.3%. 

To call DNA variants, we used freebayes (version v0.9.21-18-gc15a283) and Pindel 

(https://github.com/genome/pindel). We used freebayes to identify single-nucleotide variants and 

small insertions or deletions. We used Pindel to identify larger variants, including deletions and 

medium-sized insertions. Having called these variants, we used snpEff (version 4.1) to annotate 

the variants and GEMINI (version 0.16.3) to query the variant data. The scripts and code that 

were used to process the data can be found in this open-access repository: 

https://bitbucket.org/srp33/tcga_germline/overview. We collaborated with Drs. Mary-Claire 

King and Brian Shirts from the University of Washington to further filter the germline variants 

for pathogenicity. 

We classified pathogenic, somatic mutations in each patient by examining preprocessed 

data available from the Genomic Data Commons and using the following exclusion criteria: 1) 

synonymous variants and variants that snpEff classified as having a “LOW” or “MODIFIER” 

effect on protein sequence, 2) variants that SIFT and Polyphen2 both indicated to be benign, and 

3) variants that were observed at greater than 1% frequency across all populations in ExAC 

http://tests.labmed.washington.edu/BROCA
http://tests.labmed.washington.edu/BROCA
https://github.com/genome/pindel
https://bitbucket.org/srp33/tcga_germline/overview
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Lastly, we collaborated with our colleagues at the University of Washington to evaluate 

pathogenicity of the somatic variants in BRCA1/2 and compared these findings against data 

available in the ClinVar database. 

We downloaded DNA methylation data via Synapse 

(https://www.synapse.org/#!Synapse:syn2320010). These data were generated using the Illumina 

HumanMethylation450 platform. To map the methylation probes to genes, we used an annotation 

file (Closest_TSS_gene_name column) developed by Price, et al. This file can be accessed from 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16304. In cases where there were 

multiple values per gene, we used the median value. We classified tumor samples as exhibiting 

hypermethylation in BRCA1/2 using the getOutliersI function in the extremevalues R package 

(version 2.3.2). When invoking this function, we specified the following non-default parameter 

values:rho=(1, 1) and FLim=(0.1, 0.9). 

We obtained copy-number-variation data from the Xena database 

(https://xenabrowser.net/datapages/?dataset=TCGA.BRCA.sampleMap/Gistic2_CopyNumber_G

istic2_all_thresholded.by_genes&host=https://tcga.xenahubs.net). These data were generated 

using Affymetrix SNP 6.0 arrays, and CNV calls were made using the GISTIC2 method. The 

data had been summarized to gene-level values, and CNV values were summarized using 

integer-based discretization. We focused on tumors with a gene count of “-2” for BRCA1 or 

BRCA2, which indicated a homozygous deletion in those genes.  

We used RNA-Sequencing data that had been preprocessed using the Rsubread package 

and summarized to gene-level values. To facilitate biological and clinical interpretation, we 

limited the gene-expression data to the The Prosigna™ Breast Cancer Prognostic Gene Signature 

(PAM50) genes.  

https://www.synapse.org/#!Synapse:syn2320010
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16304
https://xenabrowser.net/datapages/?dataset=TCGA.BRCA.sampleMap/Gistic2_CopyNumber_Gistic2_all_thresholded.by_genes&host=https://tcga.xenahubs.net
https://xenabrowser.net/datapages/?dataset=TCGA.BRCA.sampleMap/Gistic2_CopyNumber_Gistic2_all_thresholded.by_genes&host=https://tcga.xenahubs.net
https://xenabrowser.net/datapages/?dataset=TCGA.BRCA.sampleMap/Gistic2_CopyNumber_Gistic2_all_thresholded.by_genes&host=https://tcga.xenahubs.net
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We derived a mutational-signature profile for each patient using the deconstructSigs 

(version 1.8.0) R package using the mutational data for each breast-cancer patient. As input to 

this step, we used somatic-mutation data that had not been filtered for pathogenicity, as a way to 

ensure adequate representation of each signature. This provided us with a data set that has a 

value for each of the mutational signatures for each patient, indicating the “weight” of each 

signature. We formatted mutational data using the mut.to.sigs.input function, then used the 

whichSignatures function with the included signatures.nature2013 data as the signature profile 

data set to process the data. 

 
Analytical Pipeline 

We analyzed the PAM50 gene-expression profiles and mutational-signature profiles for 

each patient using Rtsne (version 0.11), an R package that implements the t-distributed 

Stochastic Neighbor Embedding (t-SNE) algorithm. This algorithm enabled us to further reduce 

the dimensionality of the data and visualize similarities and differences among tumors based on 

these gene-expression or mutational-signature patterns. 

For a given group or groups of patients, we used Cartesian coordinates produced by the t-

SNE algorithm to determine similarity by calculating the pairwise Euclidean distance between 

each patient in the group(s). We then calculated the median of the pairwise Euclidean distances. 

To determine whether the similarity within or between groups was statistically significant, we 

performed a permutation analysis. First, we created an empirical null distribution against which 

we could compare the actual median distances; to create this distribution, we calculated the 

median, pairwise Euclidean distance among or between individuals of group(s) the same size 

after randomizing the “identity” of each sample. We calculated empirical p-values by finding the 

percentage of randomized medians higher than the actual median.  
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RESULTS 
 
 The purpose of this study was to evaluate similarity between breast-cancer patients with 

germline BRCA1/2 mutations and BRCAness patients. To do this, we categorized patients into 

one of three categories (BRCA, BRCAness, Other), and performed an integrative analysis to 

evaluate gene-expression profiles and mutational-signature profiles of each patient. Figure 1 

illustrates patient counts for each of the patient categories. The Other group contained the largest 

number of patients (n = 927), whereas the BRCA group was the smallest, containing only 47 

patients. 

 

Figure 1 - Distribution of patients in each patient category. 
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 As a way to characterize downstream biological effects that may result from genomic 

aberrations in BRCA1 or BRCA2, we evaluated gene-expression data from 1054 breast tumors 

in TCGA. A profile for each patient consisted of expression values for the 50 genes from the 

PAM50 panel (see Methods), which has been demonstrated to have biological and clinical 

relevance. We also evaluated mutational signatures for the same cohort of patients (see 

Methods). These signatures reflect somatic-mutation patterns of single nucleotide variants in a 

trinucleotide context that likely result from lack of DNA damage repair and other aberrant 

cellular processes and have been shown to have clinical relevance. This resulted in a data table 

containing a weight for each signature for each patient. An example of this output is shown in 

Table 1. 

Table 1 - Example output of deconstructSigs. 

 

 TCGA ID Signature.1A Signature.1B Signature.2 Signature.3 ... 

1 TCGA-B7-XYZ1 0.552 0.000 0.239 0.000 ... 

2 TCGA-A2-XYZ2 0.000 0.000 1.000 0.000 ... 

3 TCGA-C3-XYZ3 0.000 0.000 0.000 0.000 ... 

4 TCGA-D7-XYZ4 0.446 0.000 0.000 0.000 ... 

5 ... ... ... ... ... ... 

 
 
 To reduce the dimensionality of the data, we applied the t-distributed Stochastic 

Neighbor Embedding (t-SNE) algorithm to the gene-expression and mutational-signature profile 

data. This algorithm produced X and Y coordinates for each patient, which we then plotted 

(Figures 2 and 3). These scatterplots illustrate interesting patterns that arise from the data. For 
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the mutational-signature data (Figure 2), samples with germline BRCA1 and BRCA2 mutations 

cluster primarily in one area that is predominantly populated by “Signature 3” tumors. 

 

 
Figure 2 - Scatterplot showing the mutational signature profiles. 

 

 The t-SNE plot for the gene-expression data (Figure 3) shows a cluster (upper right) that 

is distinct from the remaining patients and is populated almost exclusively by tumors of the 

"Basal" subtype (PAM50 classification). Nearly all of the patients with BRCA1 germline 

mutations fell in this cluster, whereas only four BRCA2 patients fell in this cluster.  
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Figure 3 - Scatterplot showing the gene expression profiles. 

 
 As a complement to visualizing the data using the t-SNE algorithm, we used a 

permutation analysis to evaluate the similarity within and between various groups of patients. 

First, we analyzed the homogeneity among BRCA1 patients when compared to themselves, 

expecting that there would be a high degree of similarity. The results of this analysis shows 

significant similarity (P-value < 0.001) within the BRCA1 group, which is expected (Figure 4). 

However, we do not observe statistically significant similarity within the BRCA2 group in the 

gene expression context (P-value 0.121). We observe significant similarity within both the 

BRCA1 group (P-value <0.001) and the BRCA2 (P-value <0.001) group in the mutational 

signature data (Figure 4). 
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 BRCA1 BRCA2 

Gene expression 

  

Mutational 
signature 

  

 
Figure 4 - Permutation analysis comparing BRCA1/2 patients to others with the same mutation 

across two data sets. 

 
 Next we compared patients in the BRCA category to those in the BRCAness category. As 

shown in Figure 5, there was a statistically significant similarity between the BRCA and 

BRCAness groups in the mutational signature data (P-value <0.001). However, when this 

analysis was repeated with the gene expression data, we found that there isn’t significant 

similarity between the two groups. 
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 Gene expression Mutational signature 

BRCA vs  
BRCAness 

  

BRCA vs  
Other 

  
 
Figure 5 - Results of the permutation analysis of BRCA patients compared to BRCAness 

patients in two data sets. 

 

A more detailed analysis of the mutational-signature data revealed that all subgroups 

within the BRCAness category—hypermethylation, deletions, or somatic mutations—showed 

high similarity to patients in the BRCA category, irrespective of whether these aberrations 

affected BRCA1 or BRCA2 (Table 2) 
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Table 2 - Empirical p-values for subgroup comparisons using the mutational-signature data. 

 

Gene Deletion Methylation Somatic mutation 

BRCA 1 <0.001 <0.001 <0.001 

BRCA 2 <0.001 0.004 <0.001 

BRCA 1&2 <0.001 <0.001 <0.001 

 
 

A subgroup analysis of the gene-expression data revealed that patients with germline 

BRCA1 mutations were highly similar to patients with somatic hypermethylation in BRCA1 

(Table 3). However, expression patterns for patients with germline BRCA1 mutations were 

significantly different from patients with somatic BRCA1 mutations. Patients with germline 

BRCA2 mutations showed similar results. Although only one tumor exhibited hypermethylation 

in BRCA2, expression patterns for this tumor were significantly similar to patients with somatic 

BRCA2 hypermethylation. Patients with somatic BRCA2 mutations were significantly dissimilar 

to patients with patients with germline mutations in this gene. 
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Table 3 - Empirical p-values for subgroup comparisons using the gene expression data. 

 

Gene Deletion Methylation Somatic mutation 

BRCA 1 0.698 <0.001 0.919 

BRCA 2 0.921 0.004 0.983 

BRCA 1&2 0.821 0.045 0.007 

 
 
When we considered BRCA1 and BRCA2 separately for the gene-expression, we 

observed a significant difference between patients with either a BRCA1 germline mutation or 

tumor hypermethylation and patients with either a BRCA2 germline mutation or somatic 

hypermethylation (Table 3). However, when we did the same for the mutation signatures, these 

two subgroups were statistically indistinguishable (Table 2). 

In our initial evaluations, we only considered somatic aberrations as candidates for 

classifying patients into the BRCAness category. However, germline mutations in many other 

genes are known to be breast-cancer predisposition genes and may confer similar downstream 

effects on tumor biology as BRCA1 or BRCA2. In particular, we were interested in genes that 

aid in homologous recombination repair. We searched for germline variants in 60 such genes 

(see Methods). Germline variants occurred most frequently in CHEK2 (n=25) and ATM (n=10) 

with a long tail of mutations occurring in a variety of other genes (Figure 6).  
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Figure 6 - Distribution of germline mutations across several genes. 

 

We used the gene-expression data and mutational signatures to evaluate these genes as 

candidates to be included in the BRCAness category. For the gene-expression data, two patients 

who carried germline mutations in either RAD51B or RAD51C had a tumor of the Basal 

subtype; however, two additional patients with a mutation in RAD51B did not cluster with these 

patients. The patterns for the mutational-signature data were more clear. Seven of eight patients 

who carried a germline mutation in PALB2, BARD1, RAD51B, or RAD51C clustered tightly 

with the Signature 3 samples, even though Signature 3 was the most prominent signature for only 

one of these patients. Each of these genes codes for a protein that plays a role in homologous 

recombination repair and interacts—whether directly or indirectly—with BRCA1 and/or 

BRCA2. Accordingly, we created a new category called HRR+ that consisted of patients who 

had a germline mutation in one of these genes. We then used a permutation analysis to assess the 
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level of similarity between the HRR+ group and the BRCA group. This analysis revealed a highly 

significant similarity between these groups as well as between the PALB2 mutated samples 

considered alone (Table 4). However, these relationships were not significant in the gene 

expression data (Table 4).  

 

Table 4 - P-values of analyses of PALB2 and HRR+ patients. 

 BRCA1 
Gene 
expression 

BRCA2 
Gene 
expression 

BRCA1&2 
Gene 
expression 

BRCA1 
Mutational 
signatures 

BRCA2 
Mutational 
signatures 

BRCA1&2 
Mutational 
signatures 

PALB2 0.215 0.231 0.199 <0.001 <0.001 <0.001 

HRR+ 0.949 0.850 0.923 <0.001 <0.001 <0.001 

 
  



 

18 
 

DISCUSSION 
 

 Our analysis comparing mutational signature profiles of BRCA patients to BRCAness 

patients revealed statistically significant similarity between the two groups. Additionally, our 

analysis comparing BRCA patients to Other patients revealed significant difference between the 

two groups. The results of this analysis suggest that BRCA patients are more similar to 

BRCAness patients than they are to Other patients in terms of mutational signature profiles, and 

also that mutational signature profiles could be an indicator of BRCAness. The results also 

suggest that in terms of mutational signature data, our method of categorizing BRCAness 

patients using BRCA1/2 hypermethylation, somatic mutations, and homozygous chromosomal 

deletions is a valid method for categorizing BRCAness patients. Our results also suggest that 

additional patients who cluster with the signature 3 patients—especially those who carry 

germline mutations in PALB2, BARD1, RAD51B, or RAD51C—could be classified into the 

BRCAness category. Future steps could include analyzing if a patient without a germline 

BRCA1/2 mutation who has a high weight in Signature 3 should be categorized as BRCAness, 

despite not having the other biomarkers we used to categorize BRCAness. 

 The analysis between BRCA and BRCAness patients in the gene-expression data did not 

reveal statistically significant similarity overall, suggesting that BRCAness patients do not 

necessarily have similar gene expression profiles as BRCA patients under our categorization 

methods and that the downstream effects of HRR inactivation are less well reflected in gene-

expression profiles than they are in mutational signatures. However, comparisons between 

BRCA and BRCAness patients did reveal similarities between some sub categories of patients 

for the gene expression data. In particular, there is significant similarity between BRCA patients 

and patients with hypermethylation in BRCA1 and BRCA2. 
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 When using the mutational-signature data to compare individuals with BRCA1 germline 

mutations against individuals with BRCA2 mutations, we observed that mutations in these genes 

have a similar effect on a patient's mutational signature profile. However, there was a significant 

difference between the gene-expression profiles of patients in these groups. Since the difference 

between the two groups is significant, it also suggests that germline BRCA1/2 mutations affect a 

patient’s gene expression profile, but that the effects of each of these genes is different from each 

other. For medical treatments based off of a patient’s gene expression profile, patients with 

germline BRCA1/2 mutations should perhaps be considered separately from each other. 

 In regards to comparisons of patients with germline BRCA1/2 mutations, there is 

significant similarity in both gene expression profiles and in mutational signature profiles to 

patients with somatic BRCA1/2 hypermethylation. Also, in the case of the mutational signature 

profiles, there is also significant similarity between patients with germline BRCA1/2 mutations, 

and patients with somatic BRCA1/2 large scale deletions, as well as significant similarity 

between patients with germline BRCA2 mutations, and patients with somatic BRCA2 mutations.  

In regards to “BRCAness’, this suggests that somatic hypermethylation in BRCA1/2 is an 

indicator for BRCAness in breast cancer patients in both mutational signature profiles, and gene 

expression profiles. This also suggests that large scale BRCA1/2 deletions and somatic mutations 

could be indicators of BRCAness in regards to mutational signature profiles. 
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APPENDIX: SUPPLEMENTARY MATERIALS 
 

 
Figure A.1 - Bar chart showing the proportion of patients in each subtype, colored by what 
BRCA category they fall in. 
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Figure A.2 - Example of one patient’s mutational signature. 
 
 

 

 

Figure A.3 - Scatterplot showing selected germline mutations in samples in the mutational 

signature data. 

 



 

29 
 

 

Figure A.4 - Scatterplot showing selected germline mutations in samples in the gene expression 

data. 
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