A Characteristic Free Approach to Invariant Theory

C. De Concini and C. Procesi
Istituto di Fisica, Universitá di Salerno, Italy, and Istituto di Matematica, Universitá di Roma, Rome, Italy

Contents. 0. Introduction. 1. The Straightening Formula. 2. Absolute Invariants. 3. The First Fundamental Theorem. 4. The Symmetric Group. 5. The Orthogonal Group. 6. The Symplectic Group. 7. The Brauer-Weyl Algebra. 8. Note added in proof.

0. Introduction

In this paper we treat that portion of classical invariant theory which goes under the name of "first" and "second" fundamental theorem for the classical groups, in a characteristic free way, i.e., where the base ring A is any commutative ring (in particular the integers \mathbb{Z} or an arbitrary field).

The results we obtain are exactly the ones predicted by the classical theory (see [5]), provided we interpret the word invariant to mean formal or absolute ones, they are contained in Theorems 3.1, 3.3, 4.1, 5.6, 6.6.

For instance we have

Theorem 3.1 [5]. The ring of polynomial functions over A in the entries of $n m$-vectors x_{1}, \ldots, x_{n} and $n m$-covectors ξ_{1}, \ldots, ξ_{n}, left formally invariant under the action of $G L(m,-)$ is generated over A by the scalar products

$$
\left\langle x_{i} \mid \xi_{j}\right\rangle=\sum_{k=1}^{m} x_{i k} \xi_{j l k}
$$

This theorem has an important corollary, due to Schur in the characteristic 0 case.

Let P be a projective module over a commutative ring A, G its group of linear transformations. If we consider $P^{\otimes^{n}}$ with its canonical G action, the symmetric group S_{n} acts on $P^{\otimes n}$ commuting G; then we have, under a mild condition on A :

Theorem 4.1.[5]. The centralizer of G on $P^{\otimes n}$ is spanned by S_{n}.
The condition, which is often satisfied, is that a polynomial $f(x) \in A[x]$ of degree n, vanishing identically on A, should be 0 .

The fact that Theorem 3.1 implies Theorem 4.1 is essentially trivial and well known (cf. [5] for historical comments and classical references). Certainly Theorems 3.1 and 4.1 are equivalent if one restricts the attention to multilinear invariant. Thus in characteristic 0 the two statements are completely equivalent and in fact there are independent proofs of the two facts.

The classical proofs of invariant theoretic results follow essentially two equivalent paths. Polarization and the Gordan-Capelli expansion (via the theorem of E. Pascal) or double centralizer theorems, owing to the linear reductivity of the group in consideration.

There is, on the other hand, another line of approach based on the standard tableaux of Young which should be traced at least to Hodge [3], to Igusa [4] (who proves the first fundamental theorem of vector invariants in a characteristic free approach), and finally to Doubilet, Rota, and Stein [2], which gives the main technical tool: the straightening formula.

In [2] there is a gap which we fill with Theorem 1.2. The ideal J_{d}, of Doubilet, Rota, and Stein's Theorem 4, is in fact, as one expects, the ideal of elements vanishing on d-vectors and d-covectors. At the same time we give a different proof of their Theorem 3 which is more suitable for the functional interpretation of the ring R_{d}.

The line of the proof is the following: We have an algebraic group G acting on an affine variety V with coordinate ring R and we have a subring B of R^{G} which we want to show equals R^{G}. First we show that on an open set $U \subseteq V$, where an element $d \in B$ is invertible, the group action is a product action; thus we compute the invariant ring which turns out to be the localized ring $B[1 / d]$. Then we have to find a way to cancel d; i.e., if $d a \in B, a \in R^{G}$ we must show that $a \in B$. This is accomplished by finding an explicit basis of the ring B and deducing the cancellation result from this. This part is the main contribution of the paper.

1. The Straightening Formula

Let A be a commutative ring with 1 . We construct the polynomial ring in the "variables" $\left\langle x_{i} \mid \xi_{j}\right\rangle, i, j=1, \ldots, k$.

If B is a commutative A algebra, M a module over $B, m_{1}, \ldots, m_{k} \in M$, $\varphi_{1}, \ldots, \varphi_{k} \in M^{*}$, we can evaluate the variables $\left\langle x_{i} \mid \xi_{j}\right\rangle$ on the "vectors" m_{j} 's and "covectors" φ_{j} 's to obtain the elements $\left\langle m_{i} \mid \varphi_{j}\right\rangle=\varphi_{j}\left(m_{i}\right)$. In this fashion every element $f \in R$ becomes a function on $M^{k} \times M^{* k}$.

Let us denote $I_{n}=\left\{f \in R \mid f\right.$ vanishes on $B^{d}, d \leqslant n, B$ any commutative A algebra\}. Set $R_{n}=R / I_{n}$. It is quite easy to verify that $\cap_{n} I_{n}=0$.

The ring R possesses a formal structure which makes it a free algebra in a suitable sense. In fact one can operate formally, in R, substitutions of type $x_{i}=\sum \lambda_{i j} x_{j}, \xi_{k}=\Sigma \mu_{h k} \xi_{k}$ by just imposing the bilinearity of the symbol $\left\langle x_{i} \mid \xi_{j}\right\rangle$. Such a substitution, applied to an element $f \in R$, gives rise to a new element in $R \otimes_{A} A\left[\lambda_{i j}, \mu_{k k}\right]$. It is compatible, in an obvious sense, with the evaluation of f as a function, on vectors and covectors.

The monomials in the $\left\langle x_{i} \mid \xi_{j}\right\rangle$ can be naturally given a multidegree (content [2]) in the x_{i} 's and ξ_{j} 's. It is immediate that the ideals I_{n} are homogeneous, with respect to such content.

The starting point of our work is the straightening formula [2, Theorems 1.3]. A double tableau (cf. [2]) is an array

$$
T=\left(\begin{array}{ccc|cccc}
a_{11} & \cdots & a_{1 m_{1}} & b_{11} & \cdots & b_{1 m_{1}} \\
a_{21} & \cdots & a_{2 m_{2}} & b_{22} & \cdots & b_{2 m_{2}} \\
\vdots & & \cdots & & & & \\
a_{s 1} & \cdots & a_{s m_{s}} & b_{s 1} & \cdots & b_{s m_{s}}
\end{array}\right)=(A \mid B),
$$

where the $a_{i j}$'s are indices out of $1,2, \ldots, k$ and one assumes that

$$
\text { (i) } m_{1} \geqslant m_{2} \geqslant \cdots \geqslant m_{s} .
$$

Furthermore, if we have
(ii) $a_{i j}<a_{i k}, b_{i j}<b_{i k}$ when $k>j$,
(iii) $a_{i j} \leqslant a_{k j}, \quad b_{i j} \leqslant b_{k j} \quad$ when $k \geqslant i$,
then we say that T is standard.

One associates [2] to a tableau T an element, still denoted by T, of R,

$$
T=\prod_{j=1}^{s} \operatorname{det}\left|\left\langle x_{a_{j i}}, \dot{\xi}_{b_{j k}}\right\rangle\right|, \quad i, k=i, \ldots, m_{j} .
$$

The main result of [2] is
Theorem 1.1 (Straightening formula [2, Theorems 1, 3]). The double standard tableau are a basis of R over A.

We are now ready to start our work. Let $T=(A \mid B)$ be a double tableau. We make, in T, the substitution

$$
x_{1} \equiv x_{1}+\sum_{i=2}^{n} \lambda_{i} x_{i} .
$$

Due to the linearity of the rows of T the resulting element has the form
where $P_{h_{2} \cdots h_{n}}$ is a sum of tableaux $\left(A_{i} \mid B\right) . A_{i}$ is obtained from A substituting $h_{2}, h_{3}, \ldots, h_{n}$ entries of x_{1}, respectively, with $x_{2}, x_{3}, \ldots, x_{n}$.

We will always cancel, from this sum, all the tableaux which have repetitions on one row; and hence are formally zero.

Assume now that A is standard, and A has the form

$$
A=\left|\begin{array}{ccccccc}
1 & 2 & 3 & \cdots & k_{1} & \tau_{1} & \cdots \\
1 & 2 & 3 & \cdots & k_{2} & \tau_{2} & \cdots \\
\vdots & \vdots & \vdots & & & & \\
1 & 2 & 3 & \cdots & k_{s} ; & \tau_{s} &
\end{array}\right|
$$

with $\tau_{1}>k_{1}+1, \tau_{2}>k_{2}+1, \ldots, \tau_{s+1}>1, \tau_{i}$ the first element of the i th row which, lying on the j th column, is different from j.

Due to the standard nature of A we have $k_{1} \geqslant k_{2} \geqslant k_{3} \geqslant \cdots \geqslant k_{s}$. Upon the substitution $x_{1}=x_{1}+\sum_{i=2}^{n} \lambda_{i} x_{i}$ we analyze, in the resulting expression $\sum \lambda_{2}^{h_{2}} \cdots \lambda_{n}^{h_{n}} P_{h_{2} \cdots h_{n}}$, the coefficient of the highest monomial in the lexicographic order of the sequences ($h_{2}, h_{3}, \ldots, h_{n}$).

This, of course, is obtained by substituting for 1 the maximum number of 2's which do not make the tableau formally zero, then the maximum number of 3's whith the same property and so on.

Thus it is immediate that $h_{2}=h_{2}(A)=$ number of rows starting
with $1 \tau, \tau>2 ; h_{3}=h_{3}(A)=$ number of rows starting with $12 \tau, \tau>3$ and so on. The h_{2} rows $1 \tau, \ldots$ follow the h_{3} rows $12 \tau, \ldots$, etc.

The resulting tableau, which we denote $F(A)$, can be rearranged in order to be, up to sign, of the form

$$
F(A)=\left|\begin{array}{ccccc}
1 & 2 & \cdots & n & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 2 & \cdots & n & \cdots \\
2 & 3 & \cdots & n-1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
2 & 3 & \cdots & n-1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
2 & 3 & \cdots & k & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right| .
$$

The new tableau is still standard. Moreover $F(A)$ uniquely determines A once one knows the numbers $h_{2}, h_{3}, \ldots, h_{n}$.

In fact, to obtain A from $F(A)$, one has to replace in the first h_{n} rows starting with 2 , which necessarily are of the form $23 l \cdots n l \cdots$, the elements $23 \cdots n$ with $12 \cdots n-1$. On the next h_{n-1} rows, which necessarily start with $23 \cdots n-1$, one replaces $23 \cdots n-1$ with $12 \cdots n-2$ and so on.

Suppose we perform the substitution $x_{1}=x_{1}+\sum_{i=2}^{n} \lambda_{i} x_{i}$ into a sum

$$
p=\sum c_{i} T_{i}, \quad c_{i} \neq 0, \quad T_{i}=\left(A_{i} \mid B_{i}\right)
$$

of distinct double standard tableaux.
The coefficient of the highest monomial, in the resulting expression, is

$$
\bar{p}=\sum_{j} \epsilon_{j} c_{j}\left(F\left(A_{j}\right) \mid B_{j}\right),
$$

$\epsilon_{j}= \pm 1$, and the sum is taken from the double standard tableaux $T_{j}=\left(A_{j} \mid B_{j}\right)$ for which the sequence $h_{2}\left(A_{j}\right), h_{3}\left(A_{j}\right), \ldots, h_{n}\left(A_{j}\right)$ is maximal.

Thus, writing $\bar{p}=\sum \tau_{j} \bar{T}_{j}$, we have that the τ_{j} 's are not zero and the \bar{T}_{j},s are distinct.

We are now ready to draw the conclusions. First of all we clarify the structure of R_{n} (cf. [2]).

Theorem 1.2. The ring R_{n} has a basis over A formed by the double standard tableaux with every row of length $\leqslant n$.

Remark. This shows in particular the linear independence in R of the double standard tableaux [2, Theorem 3].

Proof. Clearly, from Theorem 1.1, R_{n} is spanned by these tableaux. We must show that they are linearly independent. Suppose that $p=$ $\sum c_{i} T_{i}$ is a linear combination of these tableaux and $p \in I_{n}$. We make an induction on the size of the T_{i} 's and on the number of variables x_{i}, ξ_{j} appearing in p. Let $x_{1}, \ldots, x_{i} ; \xi_{i}, \ldots, \xi_{s}$ be the variables appearing. Make the substitution $x_{1}=x_{1}+\sum_{i=2} \lambda_{i} x_{i}$ and then we obtain

$$
\bar{p}=\sum \bar{c}_{j} \bar{T}_{j} \in I_{n}, \quad \bar{T}_{j}\left(F\left(A_{j}\right) \mid B_{j}\right) .
$$

Now, setting $x_{1}=0$, we obtain a nonzero element of I_{n} depending on the variables x_{2}, \ldots, x_{i} only, unless the first row of each $F\left(A_{j}\right)$ is $12 \cdots t$ exactly. In this case, of course, $t \leqslant n$. We perform now the same operation on the ξ_{j} 's and finally we, either succeed in reducing the number of variables or reduce ourselves to an element $\sum \tilde{c}_{j} \tilde{T}_{j} \in I_{n}$, where the first row of \widetilde{T}_{j} is always

$$
d=(12 \cdots t \mid 12 \cdots t) .
$$

Now in this case $\widetilde{T}_{j}=d \cdot Q_{j}, Q_{j}$ obtained from \widetilde{T}_{j} erasing the first row. Since d is generically invertible $\tilde{p}=\sum \tilde{c}_{j} O_{j} \in I_{n}$ and we finish by induction on the size of the tableaux.

We come now to our next theorem.
Theorem 1.3. Let $p=\sum c_{i} T_{i}, T_{i}=\left(A_{i} \mid B_{i}\right)$ be a linear combination of distinct double standard tableaux with rows of length at most n. If p vanishes when $x_{1}, x_{2}, \ldots, x_{n}$ are computed on linearly dependent vectors then the first row of each A_{i} is $123 \cdots n$ exactly.

Proof. If one of the variables x_{1}, \ldots, x_{n} say x_{1}, does not appear in all T_{i} 's then, setting $x_{1}=0$ we obtain a contradiction to the linear independence of the tableaux. Split $p=p_{1}+p_{2}$ in two terms. In p_{2} we collect all $T_{i}=\left(A_{i} \mid B_{i}\right)$ such that A_{i} has first row $12 \cdots n$. Clearly p_{1} still satisfies the hypothesis of Theorem 1.3 and we must show $p_{1}=0$. Without loss of generality we can thus assume $p=p_{1}$.
Perform the substitution $x_{1}=x_{1}+\sum_{i=2}^{n} \lambda_{i} x_{i}$ and extract the polynomial $\bar{p}=\sum c_{j} \bar{T}_{j} . \bar{P}$ still verifies the hypothesis of Theorem 1.3 but now, since no first row of an A_{j} starts with $12 \cdots n$ we have canceled the variable x_{1} from p. As before we have a contradiction.

We collect one more result which will be useful for the computation of invariants.

Proposition 1.4. Let $p=\Sigma c_{i} T_{i}, T_{i}=\left(A_{i} \mid B_{i}\right)$ be a sum of double standard tableaux with rows of length $\leqslant n$.

Assume that the variables $x_{1}, x_{2}, \ldots, x_{n} ; x_{n+1}, \ldots, x_{2 n} ; \ldots ; x_{(s-1)_{n+1}}, \ldots$, $x_{s n}$ appear linearly in p and that p vanishes when one of the s groups of n-variables $x_{1}, \ldots, x_{n} ; x_{n+1}, \ldots, x_{2 n} ; \ldots ; x_{(s-1)_{n+1}}, \ldots, x_{s n}$ is computed on linearly dependent vectors. Then each A_{i} has the first s rows

1	2	\cdots	n
$n+1$	$n+2$	\cdots	$2 n$
\cdots	\cdots	\cdots	\cdots
$(s-1) n+1$		\cdots	\cdots
	\cdots	sn.	

Proof. First of all, setting $x_{j}=0, j \leqslant s n$ we get a contradiction to the linear independence of the T_{j} 's, unless x_{j} appears in each T_{i}.

For $s=1$, it is contained in Theorem 1.3, assume it true for $s-1$, then each A_{i} starts as

$$
\begin{array}{cccc}
1 & 2 & \cdots & n \\
n+1 & & \cdots & 2 n \\
\cdots \cdots & \cdots & \cdots & \cdots \\
(s-2) n+1 & & \cdots & (s-1) n .
\end{array}
$$

Since, by assumption, A_{i} is linear in $12 \cdots(s-1) n$ and these indices have all been used, the standard nature of A_{i} forces the next row necessarily to start with $(s-1) n+1$.
For $x_{(s-1) n+1}$, substitute $x_{(s-1) n+1}+\sum_{j=2}^{n} \lambda_{j} x_{(s-1) n+j}$. The coefficient of the highest monomial (which is linear) is obtained by substituting $x_{(s-1)_{n+j}}$ for $x_{(s-1)_{n+1}}$ in all the tableaux A_{i} whose s th row is of the form $(s-1) n+1, \quad(s-1) n+2 \ldots, \quad(s-1)+j-1, \quad \tau, \quad$ where $\tau>(s-1) n+j$ or the row ends before $\tau . j$ is the minimum index for which such a violation occurs. Now the resulting p does not contain $x_{(s-1)_{n+1}}$ and we have a contradiction, unless all the A_{i} 's have the required form.

2. Absolute Invariants

We develop here a minimum formal machinary to deal correctly with formal invariants.

Let G be an affine group over A (we assume that 1_{G} is defined over A). If B is any A algebra, denote by $G(B)$ the group of points of G with coordinates in B. Let Λ_{G} denote the coordinate ring of G, thus by definition $G(B)=$ Maps $\left(\Lambda_{G}, B\right)$. Now let C be a fixed A algebra. Denote $S p(C)$ the functor $S p(C)(B)=\operatorname{Maps}(C, B)$.

Definition 2.1. An algebraic action of G on $S p(C)$ is a natural transformation of functors $G \times S p(C) \rightarrow S p(C)$ which is a group action in the category of functors.

Since all functors in question are representable, such an action is given by a map

$$
\mu: C \rightarrow C \otimes \Lambda_{G}
$$

satisfying the appropriate axioms.
If B is any A-algebra we have an induced action of $G(B)$ on $C \otimes_{A} B$. Given $\varphi \in G(B), \varphi$ is a map $\varphi: \Lambda_{G} \rightarrow B$. The induced automorphism on $C \otimes_{A} B$ is given by extending linearly to $C \otimes_{A} B$ the map

$$
C \xrightarrow{\mu} C \otimes_{A} \Lambda_{G} \xrightarrow{i \otimes \varphi} C \otimes_{A} B .
$$

Definition 2.2. An element $c \in C$ is called an absolute (or formal) invariant if for all A algebras B the element $c \otimes 1 \in C \otimes_{A} B$ is invariant under the group $G(B)$.

Remark. It is trivial to verify that c is a formal invariant if and only if $\mu(c)=c \otimes 1$ (invariance under the generic element).

We will denote by C^{G} the subring of formal invariants.
Proposition 2.3. The absolute invariants of the action of G on itself, $\Lambda_{G}{ }^{G}$, are the "constants" A.

Proof. Let $c \in \Lambda_{G}{ }^{G}$, i.e., $\mu(c)=c \otimes 1$. Let $\tau: \Lambda_{G} \rightarrow \Lambda_{G}$ be the inverse map.

The composition

$$
\psi: \Lambda_{G} \xrightarrow{\mu} \Lambda_{G} \otimes \Lambda_{G} \xrightarrow{1 \otimes \tau} \Lambda_{G} \otimes \Lambda_{G} \xrightarrow{\pi} \Lambda_{G} .
$$

$\pi(a \otimes b)=a \cdot b$ is the unit

$$
\Lambda_{G} \rightarrow A \rightarrow \Lambda_{G} .
$$

Now $\psi(c)=\pi(1 \otimes \tau) \mu(c)=\pi(c \otimes 1)=c \in A$.

Corollary 2.4. Let W be an affine scheme over A with coordinate ring B. Let us endow $G \times W$ with the trivial G action. G acting on the first factor. The absolute invariants of $\Lambda_{G} \otimes_{A} B$ are $A \otimes_{A} B$.

Proof. Trivial by base change.
This corollary can be generalized in a useful way, assume that G acts on an affine scheme U and we have a projection map $U \rightarrow W$ compatible with the G action. If $W^{\prime} \rightarrow W$ is faithfully flat and $U \times{ }_{W} W^{\prime} \simeq$ $G \times_{\text {specA }} W^{\prime}$, with trivial G action, then the coordinate ring of W is identified with the formal invariants of the G action on U (same proof and descent).

3. The First Fundamental Theorem

In this paragraph we deduce the main result. Let A be a commutative ring, x_{1}, \ldots, x_{m} be n-vector, ξ_{1}, \ldots, ξ_{m} be n covector variables:

$$
x_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right) ; \quad \xi_{j}=\left(\xi_{\sqrt{1}}, \xi_{i 2}, \ldots, \xi_{j n}\right) .
$$

Consider the polynomial ring $S=A\left[x_{i j}, \xi_{s l}\right]$ in the entries. We act on $S p(S)$ with the general linear group $G L(n,-)$, which we will denote in this section with G, with the standard action.

Theorem 3.1. The ring S^{G} is generated by the elements $\left\langle x_{i} \mid \xi_{j}\right\rangle$.
Proof. Let us call $B=A\left[\left\langle x_{i} \mid \xi_{j}\right\rangle\right]$, the ring that we want to show equals S^{G}.

Since it is clear that, if Theorem 3.1 is true for m variables x_{i} 's it is also true for $m^{\prime} \leqslant m$ variables; we may assume m very large or even infinite. Now let d be the determinant of the $n \times n$ matrix

$$
\|\left\langle x_{i} \mid \xi_{j}\right\rangle, \quad i, j=1, \ldots, n
$$

We have $d=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \cdot\left[\xi_{1}, \ldots, \xi_{n}\right]$, where $\left[x_{1}, \ldots, x_{n}\right]$ denotes the determinant of the matrix

$$
\left|\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right| ;
$$

the proof rests on the following fact, which will be proved in Lemma 3.2. $B[1 / d]=S[1 / d]^{G}$. Assuming this fact let $a \in S^{G}$; since $S^{G} \subseteq B[1 / d]$ there is a power d^{k} such that $d^{k} a \in B$.

Clearly it is sufficient to prove that, if $d f \in B$ then $f \in B$ (for $f \in S$). Let us write $d f=\Sigma c_{i} T_{i}$, where the T_{i} 's are double standard tableaux with rows of length $\leqslant n$. Since, setting x_{1}, \ldots, x_{n} or ξ_{1}, \ldots, ξ_{n} linearly dependent, one has $d=0$, we are in the position to apply Theorem 1.3 and we deduce that each T_{i} has the form

$$
\left(\begin{array}{cccc|cccc}
x_{1} & x_{2} & \cdots & x_{n} & \xi_{1} & \xi_{2} & \cdots & \xi_{n} \\
\cdots & \cdots & \cdots & \cdots & n & \cdots & \cdots & \cdots
\end{array}\right) .
$$

Thus $T_{i}=d T_{i}^{\prime}$ and $f=\Sigma c_{i} T_{i}^{\prime} \in B$.
We now prove the fact used before.
Lemma 3.2. $\quad B[1 / d]=S[1 / d]^{G}$.
Proof. We use the results of Section 2.
$S[1 / d]$ is the coordinate ring of the open set W of an $2 n m$-dimensional affine space where d is invertible. The action of G on such affine space restricts to W and we claim that $W=G \times V$ is a product. In fact let V^{\prime} be the subspace, where $x_{i}=e_{i}, i=1, \ldots, n$, and e_{i} represent the vectors of the canonical basis. Let $V=V^{\prime} \cap W$ (we will identify V with $1 \times V$). V is the open set of V^{\prime}, where $\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right]$ is invertible. If C is any A algebra and $u \in W(C)$, there is a unique element $g \in G L(n, C)$ and $u^{\prime} \in V(C)$ such that $u=g \cdot u^{\prime}$. In fact one has to set

$$
g=\left(\begin{array}{ccc}
u_{11} & \cdots & u_{n 1} \\
u_{12} & \cdots & u_{n 2} \\
\vdots & \cdots & \vdots \\
u_{1 n} & \cdots & u_{n n}
\end{array}\right), \quad u^{\prime}=g^{-1} \cdot u .
$$

This establishes the isomorphism $W \sim G \times V$ of schemes. By Corollary 2.3 the ring of G invariants is identified with the coordinate ring D of $V . D$ is generated by the elements $x_{i j}, i=n+1, \ldots, m, j=$ $1, \ldots, n ; \xi_{s t}, s=1, \ldots, m ; t=1, \ldots, n$; and $\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right]^{-1}$. We have thus to identify the corresponding invariants on W. By construction $f \in D$ induces the invariant \bar{f} on W by setting $\bar{f}(u)=f\left(u^{\prime}\right), u=g \cdot u^{\prime}$.

If $u=\left(x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{m}\right)$ we have

$$
\bar{x}_{i j}(u)=x_{i j}\left(u^{\prime}\right)=x_{i j}\left(g^{-1} u\right)=\left\langle g^{-1} x_{i}, e^{j}\right\rangle .
$$

Since $g^{-1} x_{i}=e_{i}, i=1, \ldots, n$, we have

$$
x_{i}=\sum_{j=1}^{n}\left\langle g^{-1} x_{i}, e^{j}\right\rangle g e_{j}=\sum\left\langle g^{-1} x_{i}, e^{i}\right\rangle x_{j} ;
$$

hence

$$
\begin{aligned}
\left\langle g^{-1} x_{i}, e^{j}\right\rangle & =\frac{\left[x_{1}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n}\right]}{\left[x_{1}, x_{2}, \ldots, x_{n}\right]} \\
& =\frac{\left[\xi_{1}, \ldots, \xi_{n}\right]\left[x_{1} \cdots x_{i} \cdots x_{n}\right]}{d} \in B[1 / d] .
\end{aligned}
$$

Similarly

$$
\dot{\xi}_{s t}(u)=\xi_{s t}\left(u^{\prime}\right)=\xi_{s t}\left(g^{-1} u\right)=\left\langle e_{t}, g^{t} \xi_{s}\right\rangle=\left\langle g e_{t}, \xi_{s}\right\rangle=\left\langle x_{t}, \xi_{s}\right\rangle
$$

and finally

$$
\overline{\left[\xi_{1}, \ldots, \xi_{n}\right]^{-1}}=1 / d .
$$

We come now to the invariants under the special linear group $S l(n,-)$.
Theorem 3.3. The invariant ring $S^{s l}$ is generated over A by the elements

$$
\left\langle x_{i} \mid \xi_{j}\right\rangle, \quad\left[x_{i_{1}}, \ldots, x_{i_{n}}\right], \quad\left[\xi_{j_{1}}, \ldots, \xi_{j_{n}}\right] .
$$

Proof. Let $f \in S^{s l}$. We may assume f homogeneous in the variables x_{i} 's and ξ_{j} 's. Let us call t_{1}, t_{2} the total degree of f in the x_{i} 's and ξ_{j} 's, respectively.

If B is any A algebra and $g \in G L(n, B)$ we claim that

$$
f^{q}(x, \xi)=f\left(g^{-1} x_{1}, \ldots, g^{-1} \xi_{1}, \ldots, g^{-1} \xi_{s}\right)=\operatorname{det}(g)^{d} f(x, \xi),
$$

where $d \cdot n=t_{2}-t_{1}$. In fact, let $\alpha=\operatorname{det}(g)$ and consider the ring $B^{\prime}=B[x] / x^{n}-\alpha$. In B^{\prime} the element g can be written $g=\bar{g} \cdot \beta I$; $\bar{g} \in S l\left(n, B^{\prime}\right), \beta$ a scalar (e.g., $\left.\beta=\bar{x}\right)$ with $\beta^{n}=\alpha$. Thus $f^{g}(x, \xi)=$ $f^{\beta I}(x, \xi)=f\left(\beta^{-1} x, \beta \xi\right)=\beta^{t_{2}-l_{1}} f(x, \xi)$. But since $1, \beta, \ldots, \beta^{n-1}$ are a basis of B^{\prime} over B and $f(x, \xi), \beta^{t_{2}-t_{1}} f(x, \xi) \in B$ we must have $t_{2}-t_{1}=d \cdot n$.

Let us treat the case $d \geqslant 0$, the other being similar. We introduce $d \cdot n$ new vector variables $y_{1}, \ldots, y_{n} ; y_{n+1}, \ldots, y_{2 n} \cdots y_{(d-1) n+1}, \ldots, y_{d n}$. We make the convention that the x 's follow the y 's in the lexicographic order. Consider the element

$$
h=f \cdot\left[y_{1} \cdots y_{n}\right]\left[y_{n+1} \cdots y_{2 n}\right] \cdots\left[y_{(d-1) n+1} \cdots y_{d n}\right] .
$$

Clearly $h \in S^{G}$ and so $h=\Sigma c_{i} T_{i}, T_{i}$ double standard tableaux. We are now in a position to apply Proposition 1.4 and deduce that each T_{i} has the form

$$
\left(\begin{array}{cccc|cc}
1 & 2 & \cdots & n & \cdots & \cdots \\
n+1 & & \cdots & 2 n & \cdots & \cdots \\
& \cdots & & & & \\
(d-1) n+1 & & \cdots & d n & & \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right) .
$$

If we specialize the y_{j}^{\prime} 's to make $\left[y_{l n+1}, \ldots, y_{(t+1) n}\right]=1, l=0,1, \ldots, d-1$ we obtain the result.

Remarks. (i) In case $s=0$ we have back the theorem of Igusa [4] (cf. also [2]).
(ii) We have in fact explicit bases for the rings $S^{s l}, S^{G}$ over A.

One can deduce from these bases the second fundamental theorem as in [5]. One has immediately.

Theorem 3.4. The ideal of relations among the $\left\langle x_{i} \mid \xi_{j}\right\rangle$ is generated by the $n+1 \times n+1$ determinants.

Similarly for the Sl invariants.

4. The Symmetric Group

In this paragraph we draw the corollaries of Theorem 3.1 for the symmetric group. As pointed out in the Introduction this is essentially a standard fact, known in the classical literature (cf. [5]).

We assume that A is a commutative ring and m is an integer such that, if $f(x) \in A[x]$ is a polynomial of degree m and $f(x)$ vanishes on A, then f is identically 0 . Then we have

Theorem 4.1. Let P be a projective module over $A . \operatorname{End}_{G L(P)}\left(P \otimes{ }^{m}\right)$ is spanned over A by the symmetric group.

Proof. By localizing one can assume that P is free. If $r k P$ is infinite, or just $\geqslant m$, we can find independent vectors $e_{1}, e_{2}, \ldots, e_{m}$ in the basis
and $u=e_{1} \otimes e_{2} \otimes \cdots e_{m-1} \otimes e_{m} \in P^{\otimes m}$. If $\varphi \in \operatorname{End}_{G L(P)}\left(P^{\otimes m}\right)$ it is easy to see that

$$
\varphi \mu=\sum \alpha_{\sigma} e_{\sigma^{-1}(1)} \otimes e_{\sigma^{-1}(2)} \otimes \cdots \otimes e_{\sigma^{-1}(m)}
$$

and there is a $\psi=\sum \alpha_{\sigma} \sigma$ coinciding with φ on u.
But then it is easy to prove that u is a linear generator of $P^{\otimes m}$ over $G l(P)$ and the claim follows. Thus the relevant case is $P=A^{n}$ and in fact $n<m$.
In this case $G L(P)=G L(n, A)$ and

$$
\operatorname{End}_{G L(n, A)}\left(P^{\otimes m}\right) \simeq \operatorname{End}_{A}\left(P^{\otimes m}\right)^{G L(n, A)} \simeq\left(P^{\otimes m} \otimes P^{* \otimes m}\right)^{* G L(n, A)} .
$$

The identification $\operatorname{End}(W) \simeq\left(W \otimes W^{*}\right)^{*}$ is given by the usual pairing

$$
(A, u \otimes \psi)=\psi(A u) .
$$

Thus $\operatorname{End}_{C L(n, A)}\left(P_{\otimes m}\right)$ is identified with the multilinear invariants of m vectors and m covectors. At this point we have to make only two remarks to finish.

First of all the monomial

$$
\left\langle x_{1} \mid \xi_{\sigma(1)}\right\rangle\left\langle x_{2} \mid \xi_{\sigma(2)}\right\rangle \cdots\left\langle x_{n} \mid \xi_{\sigma(n)}\right\rangle
$$

corresponds to the permutation $\sigma \in \operatorname{End}(V \otimes m)$, since

$$
\begin{aligned}
& \left(\sigma, x_{1} \otimes \cdots \otimes x_{m} \otimes \xi, \otimes \cdots \otimes \xi_{m}\right) \\
& \quad=\xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{m}\left(x_{\sigma-1}(1) \otimes x_{\sigma-1}(2) \otimes \cdots \otimes x_{\sigma-1(m)}\right) \\
& \quad=\Pi\left\langle x_{\sigma-1}\right)\left|\xi_{i}\right\rangle=\Pi\left\langle x_{i} \mid \xi_{\sigma(i)}\right\rangle .
\end{aligned}
$$

Second, if $\varphi \in\left(P^{\otimes m} \otimes P^{* \otimes m}\right)^{* s u n, a)}, \varphi$ is an absolute invariant; for then from Theorem 3.3 and the fact that φ has the same degree in the x_{i} 's and ξ_{j} 's the claim will follow. The fact that φ is an absolute invariant follows from our assumptions on A. In our assumptions, A local, $S l(n, A)$ is generated by the elementary matrices $I+\alpha e_{i j}$. It is sufficient to show that, if $a \in \operatorname{End}\left(P_{\otimes m}\right)$ and a commutes with $I+\alpha e_{i j}, \alpha \in A$ then a commutes with $I+\beta e_{i j}, \beta \in B$ any A algebra. Now the commutator $\left[a, I+x e_{i j}\right]$ is a polynomial in x of degree m and so the hypotheses on A imply the claim.

The explicit structure of the invariant ring implies also the structure of the Kernel of the map, from the group algebra of S_{m} to $\operatorname{End}\left(P^{\otimes m}\right)$.

Theorem 4.2. If P is a free A module of rank n the kernel of the canonical map $\lambda: A\left[S_{m}\right] \rightarrow \operatorname{End}\left(P^{\otimes m}\right)$ is
(i) 0 if $n \geqslant m$;
(ii) generated by $\pi=\Sigma \epsilon_{\sigma} \sigma$, σ running on all the permutations of the first $n+1$ indices, if $m \geqslant n+1$.

Proof. By the proof of Theorem 4.1 we identify $A\left[S_{m}\right]$ with the space spanned by the double standard tableaux of content ($1,1, \ldots$, $1 \mid 1,1, \ldots, 1)$. The kernel of λ is given by the tableaux with the first row of length $\geqslant n+1$. It is sufficient to show that each such tableau lies in the ideal generated by π. If

$$
T=\left(\begin{array}{lll|lll}
i_{1} & \cdots & i_{k} & j_{1} & \cdots & j_{k} \\
& \cdots & & \cdots &
\end{array}\right), \quad k \geqslant n+1,
$$

T is a sum of Terms:

$$
u=\left(i_{1} \cdots i_{k} \mid j_{1} \cdots j_{k}\right)\left(s_{1} \mid t_{1}\right) \cdots\left(s_{r} \mid t_{r}\right)
$$

we claim that $u=\left(i_{1}, \ldots, i_{k} \mid j_{1}, \ldots, j_{k}\right)\left(s_{1} \mid t_{1}\right) \cdots\left(s_{m} \mid t_{2}\right)$ is a consequence of π.

In fact the monomial $\left(a_{1} \mid b_{1}\right)\left(a_{2} \mid b_{2}\right) \cdots\left(a_{m} \mid b_{m}\right)$ corresponds to the permutation $\sigma: a_{i} \rightarrow b_{i}$; thus

$$
\left(a_{1} \mid \tau\left(b_{1}\right)\right)\left(a_{2} \mid \tau\left(b_{2}\right)\right) \cdots\left(a_{n} \mid \tau\left(b_{n}\right)\right)
$$

corresponds to $\tau \sigma$ and

$$
\left(\tau\left(a_{1}\right) \mid b_{1}\right)\left(\tau\left(a_{2}\right) \mid b_{2}\right) \cdots\left(\tau\left(a_{n}\right) \mid b_{n}\right)
$$

to $\sigma \tau^{-1}$. Thence u corresponds to $\tau_{1} \bar{u} \tau_{2}$ for some permutations τ_{1}, τ_{2}, where $\bar{u}=(12 \cdots k \mid 12 \cdots k)(k+1 \mid k+1) \cdots(m \mid m)$.

Now clearly \bar{u} is the antisymmetrizer of the first k letters and if $k \geqslant n+1$ this is a consequence of π.

5. The Orthogonal Group

First of all we want to deduce the straightening formula for scalar products.

Consider a ring A and $m n$-vector variables $u_{i}, u=\left(u_{i 1}, \ldots, u_{i n}\right)$. Define $\left(u_{i}, u_{j}\right)=\sum_{k=1}^{n} u_{i k} u_{j k}$ and $R=A\left[\left(u_{i}, u_{j}\right)\right]$. We will find, as in Theorem 1.1, a basis of R over A.

Consider a double tableau

$$
T=\left(\begin{array}{ccc|ccc}
a_{11} & \cdots & a_{1 m_{1}} & b_{11} & \cdots & b_{1 m_{1}} \\
& \cdots & & \cdots & \\
\ldots & \ldots & . & \ldots & \cdots
\end{array}\right)
$$

and associate to T the element in R product of the determinants

$$
\left(a_{i 1}, \ldots, a_{i n_{i}} \mid b_{i 1}, \ldots, b_{i n_{i}}\right)=\operatorname{det}\left\|\left(u_{a_{i h}}, u_{b_{i k} k}\right)\right\| .
$$

Let us form from T the single tableau

$$
T^{\prime}=\left|\begin{array}{ccc}
a_{11} & \cdots & a_{1 m_{1}} \\
b_{11} & \cdots & b_{1 m_{1}} \\
a_{21} & \cdots & a_{2 m_{2}} \\
b_{21} & \cdots & b_{2 m_{2}} \\
\cdots & \cdots & \cdot \\
\cdots & \cdots & \cdot \\
\cdots & \cdots & \cdot
\end{array}\right|
$$

with $2 k$ rows of length $m_{1}, m_{1}, m_{2}, m_{2}, \ldots, m_{k}, m_{k}$. We will say that T is doubly standard, briefly a d-tableau, if T^{\prime} is standard.

Theorem 5.1. The d-tableaux, with rows of length $\leqslant n$, are a basis of R over A.

The proof will be based on two lemmas. Given

$$
T=\left(u_{1} \cdots u_{n-\lambda} x_{1} \cdots x_{\lambda} \mid x_{\lambda+1} \cdots x_{n+1} v_{1} \cdots v_{\lambda-1}\right)
$$

and a permutation σ of $x_{1}, x_{2}, \ldots, x_{n+1}$ the element

$$
\left.\epsilon_{\sigma}\left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{o(\lambda)} \mid x_{\sigma(\lambda+1)} \cdots x_{o(n+1)}\right) v_{1} \cdots v_{\lambda-1}\right)
$$

depends only on the class of σ modulo the subgroup $S_{\lambda} \times S_{n+1-\lambda}$ fixing the set $\left\{x_{1}, x_{2}, \ldots, x_{\lambda}\right\}$. Let us indicate

$$
\dot{T}=\sum_{\sigma} \epsilon_{\sigma}\left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{\sigma(1)} \mid x_{\sigma(\lambda+1)} \cdots x_{\sigma(n+1))^{\sigma}} \cdots v_{\lambda-1}\right)
$$

σ running over a set of representatives in the lateral classes of $S_{\lambda} \times S_{n+1-\lambda}$ in $S_{n+1} . \dot{T}$ is the signed sum of T and other terms, in each of which at least one of $x_{\lambda+1}, \ldots, x_{n+1}$ is passed to the left part of the row.

Lemma 5.2. $\dot{T}=0$.
Proof. Since this is a formal identity we may assume $A=Q$, the rational numbers. We make induction on λ. For $\lambda=1$ we must prove $\left(u_{1} \cdots u_{n-1} x_{1} \mid x_{2} \cdots x_{n+1}\right)=\sum_{\rho=2}^{n+1}\left(u_{1} \cdots u_{n-1} x_{\rho} \mid x_{2} \cdots x_{\rho-1} x_{1} x_{\rho+1} \cdots x_{n+1}\right)$.

Expand the determinants with respect to the last row:

$$
\begin{aligned}
& \quad \sum_{\rho=2}^{n+1}\left(u_{1} \cdots u_{n-1} x_{\rho} \mid x_{2} \cdots x_{\rho-1} x_{1} x_{\rho+1} \cdots x_{n+1}\right) \\
& =\sum_{\rho=2}^{n+1}\left(\sum_{i=1}^{\rho-1}(-1)^{i+n-1}\left(x_{\rho}, x_{i}\right)\left(u_{1} \cdots u_{n-1} \mid x_{2} \cdots \check{x}_{i} \cdots x_{\rho-1} x_{1} x_{\rho+1} \cdots x_{n+1}\right)\right. \\
& \quad+(-1)^{\rho+n-1}\left(x_{\rho}, x_{1}\right)\left(u_{1} \cdots u_{n-1} \mid x_{2} \cdots \check{x}_{\rho} \cdots x_{n+1}\right) \\
& \\
& \left.\quad+\sum_{j=\rho+1}^{n+1}(-1)^{j+n-1}\left(x_{\rho}, x_{j}\right)\left(u_{1} \cdots u_{n-1} \mid x_{2} \cdots x_{\rho-1} x_{1} x_{\rho+1} \cdots \check{x}_{j} \cdots x_{n+1}\right)\right) \\
& =\sum_{n<k}(-1)^{n+n-1}\left(x_{k}, x_{h}\right)\left(u_{1} \cdots u_{n-1} \mid x_{2} \cdots \check{x}_{h} \cdots x_{k-1} x_{1} x_{k+1} \cdots x_{n+1}\right) \\
& \quad+\sum_{n<k}(-1)^{k+n-1}\left(x_{h}, x_{k}\right)\left(u_{1} \cdots u_{n-1} \mid x_{2} \cdots x_{h-1} x_{1} x_{h+1} \cdots \check{x}_{k} \cdots x_{n+1}\right) \\
& \quad+\left(u_{1} \cdots u_{n-1} x_{1} \mid x_{2} x_{3} \cdots x_{n+1}\right) .
\end{aligned}
$$

Now $\left(x_{h}, x_{k}\right)=\left(x_{k}, x_{h}\right)$ and ($u_{1} \cdots u_{n-1} \mid x_{2} \cdots \check{x}_{h} \cdots x_{k-1} x_{1} x_{k+1} \cdots$ $\left.x_{n+1}\right)=(-1)^{k-h+1}\left(u_{1} \cdots u_{n-1} \mid x_{2} \cdots x_{h-1} x_{1} x_{h+1} \cdots \check{x}_{k} \cdots x_{n+1}\right)$ and $(-1)^{k-h+1} \cdot(-1)^{h+n+1}+(-1)^{k+n-1}=0$.

Thus the claim follows.
Now suppose the lemma proved for $\lambda-1$. Since $\lambda!(n+1-\lambda)!\dot{T}=$ $\sum_{\sigma \in S_{n+1}} \epsilon_{\sigma}\left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{\sigma(\lambda)} \mid x_{\sigma(\lambda+1)} \cdots x_{\sigma(n+1)} v_{1} \cdots v_{\lambda-1}\right)$ it is sufficient to show that this second expression is zero.

Apply the result for $\lambda=1$ and get

$$
\begin{aligned}
& \sum_{\sigma \in S_{n+1}} \epsilon_{\sigma}\left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{\sigma(\lambda)} \mid x_{\sigma(\lambda+1)} \cdots x_{\sigma(n+1)} v_{1} \cdots v_{\lambda-1}\right) \\
& =\sum_{\sigma \in S_{n+1}} \epsilon_{\sigma}\left(\sum _ { \sigma = \lambda + 1 } ^ { n + 1 } \left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{\sigma(\lambda-1)} x_{\sigma(\sigma)} \mid x_{\sigma(\lambda+1)} \cdots x_{\sigma(\rho-1)} x_{\sigma(\lambda)}\right.\right. \\
& \left.\quad+x_{\sigma(\rho+1)} \cdots x_{\sigma(n+1)} v_{1} \cdots v_{\lambda-1}\right) \\
& \left.\quad+\sum_{\tau=1}^{\lambda-1}\left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{\sigma(\lambda-1)} v_{\tau} \mid x_{\sigma(\lambda+1)} \cdots x_{\sigma(n+1)} v_{1} \cdots v_{\tau-1} x_{\sigma(\lambda)} v_{\tau+1} \cdots v_{\lambda-1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & -(n+1-\lambda) \sum_{\sigma \in S_{n+1}} \epsilon_{\sigma}\left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{\sigma(\lambda)} \mid x_{\sigma(\lambda+1)} \cdots x_{\sigma(n+1)} v_{1} \cdots v_{\lambda-1}\right) \\
& +\sum_{\tau=1}^{\lambda-1}(-1)^{n+\tau-1} \sum_{\sigma \in S_{n+1}} \epsilon_{\sigma}\left(u_{1} \cdots u_{n-\lambda} v_{\tau} x_{\sigma(1)} \cdots x_{\sigma(\lambda-1)} \mid x_{\sigma(\lambda)} \cdots\right. \\
& \left.x_{\sigma(n+1)} v_{1} \cdots \check{v}_{\tau} \cdots v_{\lambda-1}\right) \\
= & -(n+1-\lambda) \sum_{\sigma \in S_{n+1}} \epsilon_{\sigma}\left(u_{1} \cdots u_{n-\lambda} x_{\sigma(1)} \cdots x_{\sigma(\lambda)} \mid x_{\sigma(\lambda+1)} \cdots x_{\sigma(n+1)} v_{1} \cdots v_{\lambda-1}\right)
\end{aligned}
$$

by induction on λ. This clearly yields the result.
Now we prove half of Theorem 5.1.
Lemma 5.3. The d-tableaux span R over A.
Proof. We proceed as in [2] using their straightening algorithm plus our Lemma 5.2. A monomial $\left(u_{i_{1}}, u_{j_{1}}\right)\left(u_{i_{2}}, u_{j_{2}}\right) \cdots\left(u_{i_{k}}, u_{j_{k}}\right)$ can be displayed by the double tableau

$$
T=\left(\begin{array}{c}
i_{1} \\
i_{2} \\
i_{2} \\
\vdots \\
\vdots \\
i_{k} \\
i_{2} \\
\vdots \\
j_{k}
\end{array}\right) \quad \text { or } \quad T^{\prime}=\left(\begin{array}{c}
i_{1} \\
j_{1} \\
i_{2} \\
j_{2} \\
\vdots \\
i_{k} \\
j_{k}
\end{array}\right) .
$$

We have to straighten T^{\prime}. Now, using the procedure of [2], one can straighten T as a double tableau. Looking at a single row of T,

$$
C=\left(i_{1} i_{2} \cdots i_{h} \mid j_{1} \cdots j_{h}\right) \quad \text { displayed as }\binom{i_{1} \cdots i_{n}}{j_{1} \cdots j_{h}}
$$

one may have a violation of standardness in a position ; we apply Lemma 5.2 to C and see that C is a linear combination of tableaux of the same shape and with the first row higher lexicographically than $i_{1} \cdots i_{h}$. This shows that $T=\left(A_{i} \mid B_{i}\right)$ is a linear combination of $T^{\prime}=\left(A_{i}{ }^{\prime} \mid B_{i}{ }^{\prime}\right)$ with $A_{i}{ }^{\prime}$ higher than A_{i}. Applying the two straightening laws one always increases A_{i} as much as possible, then B_{i} and A_{i} simultaneously, then A_{i} again and so on. Clearly one must stop at some point, when all the tableaux are d-standard.

We now complete the theorem.

Lemma 5.4. The d-tableaux with rows of length $\leqslant n$ are linearly independent.
Proof. We proceed as in Section 1. Writing $x_{1}=x_{1}+\sum_{i=2}^{i} \lambda_{i} x_{i}$ we eliminate x_{1} unless $t \leqslant n$ and the first row is always $12 \cdots t$. Now the variables are exactly $12 \cdots t$ and therefore must all appear also on the second row. Therefore we can take out the factor ($12 \cdots t \mid 12 \cdots t$) and conclude by induction.

We need to extend this theorem to the ring

$$
R^{\prime}=A\left[\left(u_{i}, u_{j}\right),\left[u_{i_{1}}, \ldots, u_{i_{n}}\right]\right] .
$$

We can easily see that R^{\prime} also has a standard basis over A given by the elements
(1) d-tableaux;
(2) products $\left[u_{i_{1}}, \ldots, u_{i_{n}}\right] T, T$ a tableau such that the unique tableau

$$
\left(\begin{array}{lll}
u_{i_{1}} & \cdots & u_{i_{n}} \\
& T^{\prime} &
\end{array}\right)
$$

is standard.
The proof is similar to the previous ones and it will be omitted.
We will call these last tableaux odd d-tableaux and those previously considered, even d-tableaux.

We are now ready to prove the first fundamental theorem for $O(n,-)$. (Note: In what follows A is assumed to be a field of characteristic $\neq 2$. For the general case see the note added in proof.)

Let us consider the space of vectors ($u_{1}, u_{2}, \ldots, u_{m}$) and assume, as usual, $m \geqslant n$. Let $d=\operatorname{det}\left|\left(u_{i}, u_{j}\right)\right|, i, j=1, \ldots, n$. Let W be the open set where d is invertible, we still propose to show that, if R is the ring $A\left[\left(u_{h}, u_{k}\right)\right], S$ the polynomial ring in the entries of the vectors u_{i} 's and $S^{o(n,-)}$ is the invariant ring; then:

Lemma 5.5. $\quad R[1 / d]=S^{o(n,-)}[1 / d]$.
Proof. We show that W is locally isomorphic to a product $G \times V$, not in a Zarisky sense, but in the faithfully flat topology (cf. comments after Corollary 2.4). We follow [1]. The space V is the space $U_{1} \times U_{2}$, where U_{1} is the space of invertible $n \times n$ symmetric matrices and U_{2} is the space of vectors $u_{n+1}^{\prime}, \ldots, u_{m}{ }^{\prime}$. In fact let us restrict our attention to the first n vectors u_{1}, \ldots, u_{n}; we are essentially studying the quotient of $G L(n,-)$ under the subgroup $O(n,-)$. The way to study this quotient
is to act with $G L(n,-)$ on invertible symmetric matrices, via the action $X A X^{t}$, and notice that $O(n,-)$ is the stabilizer of I and $G L(n,-)$ acts transitively. Finally one shows that the principal fibration

$$
O(n,-) \rightarrow G L(n,-) \rightarrow \operatorname{Sym}
$$

has a local section in the faithfully flat topology. This finally proves that the invariant ring of $O(n,-)$, acting on $G L(n,-)$, is identified with the coordinate ring of Sym. The only assertion that needs a comment is the existence of a local section. One has to be able to extract the square root of a symmetric matrix, i.e., given $A \in \operatorname{Sym}$ find $B \in G L(n,-)$ with $B B^{t}=A$. This of course is accomplished by diagonalizing first the quadratic form $(A x, x)$ and then extracting the roots of the diagonal elements. For the diagonalization procedure one has the canonical construction of the basis $f_{1}, \ldots, f_{n}, f_{i}=u_{i}-\Sigma_{j<i}\left(\left(A u_{i}, f_{j}\right) /\left(A f_{j}, f_{j}\right)\right) f_{j}$. This gives rise to a basis at least on an open Zarisky neighborhood, with coordinate ring \bar{R}, of the matrix I. Now let $\alpha_{i}=\left(A f_{i}, f_{i}\right)$; the extension

$$
\bar{R}^{\prime}=\bar{R}\left(x_{i}^{1 / 2}\right)=\bar{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(x_{i}{ }^{2}-\alpha_{i}\right)
$$

is faithfully flat and on Spec \bar{R}^{\prime} one has the canonical section.
To complete the proof of Lemma 5.5 one has to interpret the coordinate ring of V as invariant functions on W. If $u \in W, u=\left(u_{1}, u_{2}, \ldots\right.$, $\left.u_{n}, u_{n+1}, \ldots, u_{m}\right)$ projects to the point u^{\prime} of $V, u^{\prime}=\left(A, u_{n+1}^{\prime}, \ldots, u_{m}{ }^{\prime}\right)$, where $A=g g^{l}, u_{j}^{\prime}=g u_{j}^{\prime}$ and g is the invertible matrix with rows $u_{1}, u_{2}, \ldots, u_{n}$. Now the coordinates of A are just the scalar products $\left(u_{i}, u_{j}\right)$. The coordinates of u_{j}^{\prime} are $\left(u_{i}, u_{j}\right), i=1, \ldots, n$. The determinant of A, which is the final element to add inverted, is just d and the lemma is completely proved.

We come to the main theorem:
Theorem 5.6. (i) The ring $S^{o(n,-)}$ is $R=A\left[\left(u_{i}, u_{j}\right)\right]$.
(ii) the ring $S^{S O}{ }^{n,-)}$ is $R^{\prime}=A\left[\left(u_{i}, u_{j}\right),\left[u_{i_{1}}, \ldots, u_{i_{n}}\right]\right.$.

Proof. (ii) First of all replace in Lemma $5.5 O(n,-)$ with $S O(n,-)$ and see that we still have a principal fibration. The quotient V^{\prime} covers V with fiber $Z /(2)$, the element $\Delta=\left[u_{1}, \ldots, u_{n}\right]$ is the extra invariant corresponding to the generator η of the coordinate ring $A[\eta], \eta^{2}=1$, of the group $Z /(2)$. Thus, as in Lemma $5.5, S^{s o(n,-)}$ is contained in $R^{\prime}[1 / 4]$. Now let $f \in S^{\text {so(n,-) }}$ and assume $\Delta f \in R^{\prime}$; we have to show $f \in R^{\prime}$, and this will prove (ii). Now since $\Delta f=\sum c_{i} T_{i}, T_{i}$ are tableaux (of the type explained after Lemma 5.4.). $\Sigma c_{i} T_{i}$ vanishes when u_{1}, \ldots, u_{n} are depen-
dent and it is sufficient to show that the first row of each T has the form $1,2, \ldots, n$. This is essentially the usual argument. Substitute $u_{1}+\sum_{i=2}^{n} \lambda_{i} u_{i}$ for u_{1} and see that either each T_{i} has the required form, or there is a $\bar{p}=\sum \bar{c}_{i} \bar{T}_{i}$, not containing u_{1}, and vanishing when u_{1}, \ldots, u_{n} are dependent; this contradicts Lemma 5.4 and so (ii) is proved.
(i) Now let $\Sigma c_{i} T_{i} \in S^{o(n,-)}$. If we apply the element

$$
\left(\begin{array}{llll}
\alpha & & & \\
& 1 & & 0 \\
& & 1 & \\
0 & & & 1
\end{array}\right)
$$

with $\alpha^{2}=1$ (formally), to $\sum c_{i} T_{i}$ we have on the one hand $\Sigma c_{i} T_{i}$, by invariance, and on the other hand $\sum_{i=1}^{m_{1}} c_{i} T_{i}+\alpha \sum_{i=1}^{m_{2}} c_{j} T_{j}$, where the T_{j} are odd d-tableaux of type $\left[u_{i_{1}}, \ldots, u_{i_{n}}\right] T_{j}^{\prime} \cdot T_{i}, T_{j}^{\prime}$ are even d-tableaux. By the linear independence of d-tableaux over any commutative ring, in particular over $A[\alpha]$, we have $c_{j}=0, j=1, \ldots, m_{2}$, and the theorem is completed.

As for the second fundamental theorem we have
Theorem 5.7. The ideal of relations among the $\left(u_{i}, u_{j}{ }^{\prime}\right)$ is generated by the $n+1 \times n+1$ minors of the symmetric matrix $\left|\left(u_{i}, u_{j}\right)\right|$.

Proof. Trivial by Theorem 5.1.

6. The Symplectic Group

This case is fairly similar in spirit to the case of the orthogonal group, and hence we shall give only the main variations of the argument. We consider k vectors x_{1}, \ldots, x_{k} from a $2 n$-dimensional vector space with a symplectic form. Consider the skew products $\left\langle x_{i}, x_{j}\right\rangle$ which we shall display in a skew symmetric matrix

$$
Z=\left|\left\langle x_{i}, x_{j}\right\rangle\right|, \quad i, j=1, \ldots, k
$$

If $i_{1}, i_{2}, \ldots, i_{2 h}$ are $2 h$ indices out of $1, \ldots, k$ we shall indicate by $\left[i_{1}, \ldots, i_{2 h}\right]$ the Pfaffian on the skew matrix obtained from Z taking the rows and columns of indices $i_{1}, \ldots, i_{2 h}$.

We notice that, with these notations, $[i, j]=\left\langle x_{i}, x_{j}\right\rangle$. Our basic combinatorial lemmas are the following.

Lemma 6.1. $\left[a_{1}, \ldots, a_{n}\right]\left[b_{1}, \ldots, b_{m}\right]-\sum_{h=1}^{n}\left[a_{1}, \ldots, a_{h-1}, b_{1}, a_{h+1}, \ldots, a_{n}\right]$ $\left[a_{h}, b_{2}, \ldots, b_{m}\right]=\sum_{k=2}^{m}(-1)^{k-1}\left[b_{2}, \ldots, \breve{b}_{k}, \ldots, b_{m}\right]\left[b_{k}, b_{1}, a_{1}, \ldots, a_{n}\right]$.

Proof. By standard properties of Pfaffians:

$$
\begin{aligned}
& {\left[a_{1}, \ldots, a_{n}\right]\left[b_{1}, \ldots, b_{m}\right]-\sum_{h=1}^{n}\left[a_{1}, \ldots, a_{h-1}, b_{1}, a_{h+1}, \ldots, a_{n}\right]\left[a_{h}, b_{2}, \ldots, b_{m}\right]} \\
& = \\
& \quad\left[a_{1}, \ldots, a_{n}\right]\left(\sum_{k=2}^{m}(-1)^{k}\left[b_{1}, b_{k}\right]\left[b_{2}, \ldots, \check{b}_{k}, \ldots, b_{m}\right]\right) \\
& \\
& \quad-\sum_{h=1}^{n}\left(\left[a_{1}, \ldots, a_{h-1}, b_{1}, a_{h+1}, \ldots, a_{n}\right] \sum_{k=2}^{m}(-1)^{k}\left[a_{h}, b_{k}\right]\left[b_{2}, \ldots, \check{b}_{k}, \ldots, b_{m}\right]\right) \\
& = \\
& \sum_{k=2}^{m}(-1)^{k}\left[b_{2}, \ldots, \check{b}_{k}, \ldots, b_{m}\right]\left(-\left[b_{k}, b_{i}\right]\left[a_{1}, \ldots, a_{n}\right]+(-1)^{h-1}\left[b_{k}, a_{h}\right]\right. \\
& \left.\quad\left[b_{1}, a_{1}, \ldots, a_{h-1}, a_{h+1}, \ldots, a_{n}\right]\right)=\sum_{k=2}^{m}(-1)^{k-1}\left[b_{2}, \ldots, \check{b}_{k}, \ldots, b_{m}\right] \\
& \quad \times\left[b_{k}, b_{1}, a_{1}, \ldots, a_{n}\right] .
\end{aligned}
$$

Lemma 6.2. $\sum_{\sigma \in S_{\lambda+i+1}} \epsilon_{\sigma}\left[a_{1}, \ldots, a_{i}, x_{\sigma(1)}, \ldots, x_{\sigma(\lambda)}\right]\left[x_{\sigma(\lambda+1)}, \ldots, x_{\sigma(\lambda+i+1}\right)$, $\left.v_{1}, \ldots, v_{t}\right]=R$, where R is a linear combination, with rational coefficients, of products $\left[i_{1}, \ldots, i_{n}\right]\left[j_{1}, \ldots, j_{r}\right]$, where $s>i+\lambda$ and $s+r=(i+\lambda)+$ $(\lambda+i+1+t)$.

Proof. By induction on i. If $i=0$ this follows from Lemma 6.1. Let us suppose it true for $i-1$. By Lemma 6.1, we have

$$
\begin{aligned}
\sum_{\sigma \in S_{\lambda+i+1}} & \epsilon_{\sigma}\left[a_{1}, \ldots, a_{i}, x_{\sigma(1)}, \ldots, x_{\sigma(\lambda)}\right] \\
& \times\left[x_{\sigma(\lambda+1)}, \ldots, x_{\sigma(\lambda+i+1)}, v_{1}, \ldots, v_{t}\right] \\
= & \sum_{\sigma \in S_{\lambda+i+1}} \epsilon_{\sigma}\left(\sum_{j=1}^{i}\left[a_{1}, \ldots, a_{j-1}, x_{\sigma(\lambda+1)}, a_{j+1}, \ldots, a_{i}, x_{\sigma(1)}, \ldots, x_{\sigma(\lambda)}\right]\right. \\
& \times\left[a_{j}, x_{\sigma(\lambda+2)}, \ldots, x_{\sigma(\lambda+i+1)}, v_{1}, \ldots, v_{t}\right] \\
& +\sum_{\tau=1}^{\lambda}\left[a_{1}, \ldots, a_{i}, x_{\sigma(1)}, \ldots, x_{\sigma(\tau-1)}, x_{\sigma(\lambda+1)}, x_{\sigma(\tau+1)}, \ldots, x_{\sigma(\lambda)}\right] \\
& \left.\times\left[x_{\sigma(\tau)}, x_{\sigma(\lambda+2)}, \ldots, x_{\sigma(\lambda+i+1)}, v_{1}, \ldots, v_{t}\right]\right)+R^{\prime} \\
= & R^{\prime \prime}-\lambda\left(\sum_{\sigma \in S_{\lambda+i+2}} \epsilon_{\sigma}\left[a_{1}, \ldots, a_{i}, x_{\sigma(1)}, \ldots, x_{\sigma(\lambda)}\right]\right. \\
& \left.\times\left[x_{\sigma(\lambda+1)}, \ldots, x_{\sigma(\lambda+i+1)}, v_{1}, \ldots, v_{t}\right]\right)+R^{\prime} .
\end{aligned}
$$

(R^{\prime} is given by induction.)

Hence $(1+\lambda)\left(\sum_{\sigma \in S_{\lambda+i+1}} \epsilon_{\sigma}\left[a_{1}, \ldots, a_{i}, x_{\sigma(1)}, \ldots, x_{\sigma(\lambda)}\right]\left[x_{\sigma(\lambda+1)}, \ldots, x_{\sigma(\lambda+i+1)}\right.\right.$, $\left.v_{1}, \ldots, v_{t}\right]=R^{\prime}+R^{\prime \prime}$ and the lemma follows. Let us now consider the ring $S_{A}=A\left[\left\langle x_{i}, x_{j}\right\rangle\right], A$ a commutative ring. To a given standard tableau

$$
T=\left(\begin{array}{cccc}
i_{1} & i_{2} & \cdots & i_{h_{1}} \\
j_{1} & j_{2} & \cdots & j_{h_{2}} \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

with an even number of elements on each row and $\leqslant 2 n$, we can associate an element still denoted by T of $S_{A}, T=\left[i_{1}, \ldots, i_{h_{1}}\right]\left[j_{1}, \ldots, j_{h_{2}}\right] \ldots$; then, as in [2], one can use Lemma 6.2 to prove

Lemma 6.3. The ring S_{O} is spanned over Q by the standard tableaux.
We come now to the linear independence.
Lemma 6.4. The standard tableaux in S_{A} (A any commutative ring) are linearly independent.

Proof. One proceeds as in paragraph 1, using the linearity of a tableau in each row and reduces by induction the size of the tableaux canceling the Pfaffian $[1,2, \ldots, 2 n]$, which is generically invertible.

We can now prove our main theorem.
Theorem 6.5. For any commutative ring A the standard tableaux are a basis of S_{A}.

Proof. By Lemma 6.4 it is sufficient to show that the double standard tableaux span S_{A}. Clearly one is reduced to the case $A=Z$. Now, given $q \in S_{Z}$ we know, by Lemma 6.3, that

$$
q=\sum_{i} c_{i} T_{i}, \quad c_{i} \in Q .
$$

Now let r be the least integer such that $r c_{i} \in Z$, each i. We have $r q=$ $\sum_{i} r c_{i} T_{i}$ and, if p / r is a prime, computing our expression $\bmod p$ (as functions) we have, by the linear independence of the T_{i} 's, that $p / r c$, $\forall i$, hence a contradiction to minimality of r unless $r=1$.

Finally the theorem on invariants:

Theorem 6.6. S_{A} is the ring of invariants of $k 2 n$-vectors, x_{1}, \ldots, x_{k}, under the symplectic group.

Proof. It is similar to the case of the general linear group. One can assume $k \geqslant 2 n$, and consider the open set where $[1,2, \ldots, 2 n]$ is invertible; here the variety with its group action is a product and one uses the standard monomial theory to make the final cancellation.

As in Section 5 we have
Theorem 6.7. The ideal of relations among the $\left\langle x_{i}, x_{j}\right\rangle$ is generated by the Pfaffians of the principal minors of size $2 n+2$ of the skew symmetric matrix $\left|\left\langle x_{i}, x_{j}\right\rangle\right|$.

Proof. Trivial by Theorem 6.5.

7. The Brauer-Weyl Algebra

As in Section 4 for the case of the general linear group, one can deduce the structure of the endomorphism ring in $V^{\otimes n}$ with respect to the other classical groups. We shall limit ourselves to the case of the orthogonal group since the symplectic case is similar. So, let $G=O(m, k), k$ being as in paragraph 4. The ring $\operatorname{End}_{G}\left(V^{\otimes n}\right)$ is identified to $\left(V^{\otimes n} \otimes V^{\otimes n}\right)^{* G} \cong$ $\left(V^{\otimes 2 n}\right)^{* G}$ which is spanned by the contractions $v_{1} \otimes \cdots \otimes v_{n} \otimes$ $u_{1} \otimes \cdots \otimes u_{n} \rightarrow \Pi\left(v_{i}, v_{j}\right)\left(v_{h}, u_{k}\right)\left(u_{s}, u_{t}\right)$. Now one easily verifies that, if each v_{i} is matched with a u_{j}, one has a permutation $\in S_{n} \subseteq$ $\operatorname{End}_{G}\left(V^{\otimes n}\right)$. The other generators for this algebra can be obtained as follows. Let i, j be two indices in $1,2, \ldots, n$, say 1,2 for simplicity. Let $\tau_{12}: V^{\otimes n} \rightarrow V^{\otimes n}$ be the map

$$
\tau_{12}: v_{1} \otimes v_{2} \otimes v_{3} \otimes \cdots \otimes v_{n} \rightarrow\left(v_{1}, v_{2}\right) I \otimes v_{3} \otimes \cdots \otimes v_{n}
$$

$I \in V \otimes V$ being the element corresponding to the identity mapping $1_{V} \in \operatorname{End}(V) \cong V \otimes V$. Then τ_{12} corresponds to the invariant $\left(v_{1}, v_{2}\right)\left(u_{1}, u_{2}\right)\left(v_{3}, u_{3}\right) \cdots\left(v_{n}, u_{n}\right)$, and it is a simple matter to show that the σ 's and the $\tau_{i j}$ generate $\operatorname{End}_{G}\left(V^{\otimes n}\right)$ as an algebra over the base ring. In fact as in Section 4, if $\gamma \in \operatorname{End}_{G}\left(V^{\otimes n}\right)$ corresponds to a product of scalar products and if μ is a permutation, $\gamma \mu^{-1}$ and $\mu \gamma$ correspond to the same product where the u_{i} 's (resp. the v_{j} 's) are permuted according to μ. Thus $\operatorname{End}_{G}\left(V^{\otimes n}\right)$ is spanned by the elements $\sigma_{1} \tau_{12} \tau_{34} \cdots \tau_{2 k-1,2 k} \sigma_{2}$ one
can also write down a multiplication table for such elements that shows that

$$
\begin{aligned}
\tau_{i j} & =\tau_{j i}, & & \\
\sigma \tau_{i j} \sigma^{-1} & =\tau_{\sigma(i)_{\sigma}(j)}, & & \\
\tau_{i j} \tau_{h k} & =\tau_{h k} \tau_{i j} \quad & & \text { if } \quad(i, j) \cap(h, k)=\varnothing ; \\
\tau_{i j} \tau_{j k} & =\tau_{i j}(i k) & & i \neq k ; \\
\tau_{i j}^{2} & =m \tau_{i j} \quad & & (m=\operatorname{dim} V) .
\end{aligned}
$$

In characteristic 0 one can base on this algebra the decomposition theory of $V^{\otimes n}$ under $O(V)$.

Note added in proof. We prove here Theorem 5.6 with A any commutative ring. First of all, we need to have Lemma 5.5 when A is a field of char 2.
We go back to the notations of Lemma 5.5. Let V be the variety $U_{1} \times U_{2} ; U_{1}$ being the space of nondegenerate $n \times n$ symmetric matrices, U_{2} the space of $m-n$ tuples of vectors ($u_{n+1}^{\prime}, u_{n+2}^{\prime}, \ldots, u_{m}{ }^{\prime}$).

Consider the map $\pi: W \rightarrow V$ given by $\pi:\left(u_{1}, \ldots, u_{m}\right) \rightarrow\left(g g^{t} ; g u_{n+1}, g u_{n+2}, \ldots, g u_{m}\right)$; where g is the $n \times n$ matrix with rows u_{1}, \ldots, u_{n}. The image of π is the set $\bar{V}=\bar{U}_{1} \times U_{2}$, \bar{U}_{1} being the set of diagonalizable nondegenerate bilinear symmetric forms. If char $A \neq 2$ we have $U_{1}=\bar{U}_{1}$, in characteristic 2 we will show that the complement of $\bar{U}_{1} \times U_{2}$ in V is closed of codimension $\geqslant 2$. This is clearly sufficient for the proof of Lemma 5.5 .

We work by induction on n. The group $G 1(n,-)$ acts on U_{1} by $C A C^{t}(C \in G 1(n, K)$, $A \in U_{1}(K), K$ a field).
\bar{U}_{1} is the orbit of 1 . Clearly \bar{U}_{1} contains an open set and so, being an orbit, it is open. Let us write $A=\left(a_{i j}\right)$ for a symmetric matrix and consider the open sets $U^{i}, i=1, \ldots, n$ defined by $a_{i i} \neq 0$. It will be enough to show that the complement of U_{1} has codimension $\geqslant 2$ in each U^{i}. Let $i=1$ for implicity.

The first step for putting the form $(A x, y)$ in diagonal form is the change of basis

$$
e_{1}^{\prime}=e_{1}, \quad e_{i}^{\prime}=e_{1}-\left(a_{i 1} / a_{11}\right) e_{1}, \quad i>1 .
$$

(e_{1}, \ldots, e_{n} the canonical basis).
By this base change the matrix of the form ($A x, y$) becomes

$$
\left(\begin{array}{ll}
a_{i i} & 0 \\
0 & A
\end{array}\right)
$$

The map $j: A \rightarrow \bar{A}$ is a morphism from $U_{1}{ }^{\prime}$ to the nondegenerate symmetric $n-1 \times$ $n-1$ matrices. The fibers of j have constant dimension $n-1$ and clearly the form associated to A can be put in diagonal form if this is true for \bar{A}.

Thus the inductive hypothesis concludes the proof that the complement of $\bar{U}_{1} \times U_{2}$ in V is closed of codimension $\geqslant 2$.

The argument given in Theorem 5.6 works therefore also for A, a field of characteristic 2 .
We complete now the proof of Theorem 5.6 for A an arbitrary commutative ring.

If μ is the map classifying the given action, the formal invariants are the elements a with $\mu(a)=a \otimes 1$ (cf. Section 2).

Thus, if Theorem 5.6 is proved for a base ring B it is also proved for any base ring A flat over B, in particular, if A is an algebra over a field. Now let A be arbitrary and f a formal invariant. Consider $\bar{A}=A \otimes_{Z} Q, f \otimes 1 \in \bar{A}$ is a formal invariant for which Theorem 5.6 holds, thus $f \otimes 1=\sum c_{i} T_{i}, c_{i} \in \bar{A}, T_{i}$'s d-tableaux.

Let $A^{\prime}=A \otimes 1 \subset A$ and m the minimum integer with $m c_{i} \in A \otimes 1=A^{\prime}$ for all c_{i}.
We claim $m=1$, otherwise assume $m=p q$ and p a prime. We reduce $\bmod p$ and in $A^{\prime} / p A^{\prime}\left[u_{i j}\right]$ we have $\Sigma \bar{m}_{i} T_{i}=0$. Since the T_{i}^{\prime} s are linearly independent over $A^{\prime} / p A^{\prime}$, we must have $m c_{i} \in p A^{\prime}$ for all i, thus $m c_{i}=p a_{i}$ and $p\left(q c_{i}-a_{i}\right)=0$ in A^{\prime}. Since A^{\prime} is torsion free $q c_{i}=a_{i} \in A^{\prime}$ and we have a contradiction to the assumption that $m=p q$.

We can conclude thus, that there is a linear combination g of tableaux with coefficients in A such that $f^{\prime}=f-g$ has coefficients in the kernel I of the $\operatorname{map} A \rightarrow A \otimes_{z} Q$.

Replacing f with f^{\prime} we may assume that f is a torsion element. By decomposing the torsion of A into its primary parts we may assume furthermore that f has p torsion for some prime p, i.e., $p^{k} f=0$. We work by induction on k, if $k=1$ we are in an algebra over $Z /(p)$ and Theorem 5.6 holds, otherwise let $J=\left\{a \in A \mid p^{k-1} a=0\right\}$.

In A / J the image of f is killed by p, hence it is a linear combination of double tableaux, thus we can again modify f to make it killed by p^{k-1} and then finish by induction.

References

1. M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Inven. Math. 19 (1973), 279-330.
2. P. Doubilet, G. C. Rota, and J. Stein, "On The Foundations of Combinatorial Theory," Vol. IX, pp. 185-216, Studies in Applied Mathematics, Vol. 53, (1974).
3. W. V. D. Hodge, Some enumerative results in the theory of forms, Proc. Cambridge Philos. Soc. 39 (1943), 22-30.
4. J. Igusa, On the arithmetic normality of the Grassmann variety, Proc. Nat. Acad. Sc. U.S.A. 40 (1954), 309-313.
5. H. Weyl, "The Classical Groups," Princeton Univ. Press, Princeton, N. J., 1946.
