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0. INTRODUCTION 

In this paper we treat that portion of classical invariant theory which 
goes under  the name of "first" and "second" fundamental  theorem for 
the classical groups, in a characteristic free way, i.e., where the base 
r ing A is any commutative ring (in particular the integers 77 or an 
arbitrary field). 

The  results we obtain are exactly the ones predicted by the classical 
theory (see [5]), provided we interpret the word invariant to mean 
formal or absolute ones, they are contained in Theorems 3.1, 3.3, 4.1, 
5.6, 6.6. 

For instance we have 

THEOREM 3.1 [5]. The ring of polynomial functions over A in the 
entries of n m-vectors Xl ,..., x n and n m-covectors ~1,..., ~ , left formally 
invariant under the action of GL(m, - )  is generated over A by the scalar 
products 

(xi l ~J) = ~ x j j k .  
k=l 

This theorem has an important  corollary, due to Schur in the characte- 
ristic 0 case. 
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Let P be a projective module over a commutative ring A, G its group of 
linear transformations. If  we consider P®~ with its canonical G action, 
the symmetric group S~ acts on P®~ commuting G; then we have, 
under a mild condition on A: 

THEOREM 4.1.[5]. The centralizer of G on P®~ is spanned by S ~ .  

The condition, which is often satisfied, is that a polynomialf(x) ~ A[x] 
of degree n, vanishing identically on A, should be 0. 

The fact that Theorem 3.1 implies Theorem 4.1 is essentially triviaI 
and well known (cf. [5] for historical comments and classical references). 
Certainly Theorems 3.1 and 4.1 are equivalent if one restricts the atten- 
tion to multilinear invariant. Thus in characteristic 0 the two statements 
are completely equivalent and in fact there are independent proofs of the 
two facts. 

The classical proofs of invariant theoretic results follow essentially 
two equivalent paths. Polarization and the Gordan-Capelli expansion 
(via the theorem of E. Pascal) or double centralizer theorems, owing to 
the linear reductivity of the group in consideration. 

There is, on the other hand, another line of approach based on the 
standard tableaux of Young which should be traced at least to Hodge [3], 
to Igusa [4] (who proves the first fundamental theorem of vector in- 
variants in a characteristic free approach), and finally to Doubilet, Rota, 
and Stein [2], which gives the main technical tool: the straightening 
formula. 

In [2] there is a gap which we fill with Theorem 1.2. The ideal ]a,  
of Doubilet, Rota, and Stein's Theorem 4, is in fact, as one expects, the 
ideal of elements vanishing on d-vectors and d-covectors. At the same 
time we give a different proof of their Theorem 3 which is more suitable 
for the functional interpretation of the ring R a . 

The line of the proof is the following: We have an algebraic group G 
acting on an affine variety V with coordinate ring R and we have a 
subring B of R c which we want to show equals R a. First we show that 
on an open set U C_ V, where an element d e B is invertible, the group 
action is a product action; thus we compute the invariant ring which 
turns out to be the localized ring B[1/d]. Then we have to find a way to 
cancel d; i.e., if da ~ B, a ~ R c we must show that a ~ B. This is accom- 
plished by finding an explicit basis of the ring B and deducing the can- 
cellation result from this. This part is the main contribution of the 
paper. 
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l .  T H E  STRAIGHTENING FORMULA 

Let  A be a commutative ring with 1. We construct the polynomial ring 
in the "variables" (x~] ~i), i, j = 1,..., k. 

I f  B is a commutative A algebra, M a module over B, m~ ,..., m k 6 M, 
91 , '" ,  9k ~ M*, we can evaluate the variables (x i [ ~j) on the "vectors" 
m/s  and "covectors" 9~'s to obtain the elements (miI  ~oj) = 9j(mi). In 
this fashion every e l e m e n t f ~  R becomes a function on M k X M *k. 

Let  us denote I~ = { f  ~ R If vanishes on B a, d <~ n, B any 
commutative A algebra). Set R~ = R/I~.  It is quite easy to verify that 
0 ~ I ~  = 0. 

The  ring R possesses a formal structure which makes it a free algebra 
in a suitable sense. In fact one can operate formally, in R, substitutions of 
type x i = Z )tijxi, ~h = ~/Xhk~k by just  imposing the bilinearity of the 
symbol (xi]  ~ ) .  Such a substitution, applied to an element f E R, 
gives rise to a new element in R @A A[AIj,/~hk]. I t  is compatible, in an 
obvious sense, with the evaluation of f as a function, on vectors and 
covectors. 

The  monomials in the (xi[  ~3')can be naturally given a multidegree 
(content [2]) in the xi's and ~j's. I t  is immediate that the ideals I~ are 
homogeneous, with respect to such content. 

The  starting point of our work is the straightening formula 
[2, Theorems 1.3]. A double tableau (cf. [2]) is an array 

all "'" a1~11 bl~ ... b~l) 
a2m2 . b~m~ T = a: 21 b22 = (A I B), 

\ a s l  asms bsl .. .  bsras 

where the a~j.'s are indices out of 1, 2,..., k and one assumes that 

(i) m i >~m 2 >/ "'" > / m s .  

Furthermore,  if we have 

(ii) aij < a i ~ , b i j  <b~k when k > j ,  

(iii) a,ij ~< akj, bij ~< bl, j when k >~ i, 

then we say that T is standard. 
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One associates [2] to a tableau T an element, still denoted by T, of R, 

T = 12[ det K X a ~ i ,  ~ b ~ ) ] ,  i, k = i,..., m~. 
J = l  

The  main result of [2] is 

THEOREM 1.1 (Straightening formula [2, Theorems  1, 3]). The 
double s tandard tableau are a basis o f  R over A .  

We are now ready to start our work. Le t  T = (A ]B)  be a double 
tableau. We make, in T, the substi tution 

xl ~ xl + ~  ~ixi. 
i=2 

Due to the linearity of the rows of T the resulting element has the form 

n h 2 ' ' ' h  n 

where Ph, . .% is a sum of tableaux ( A I I B ) .  A~ is obtained from A 
substi tuting h~, h 3 ,..., h~ entries of x I , respectively, with x~, x3 .... , x~.  

We will always cancel, f rom this sum, all the tableaux which have 
repetitions on one row; and hence are formally zero .  

Assume now that A is standard, and A has the form 

A = 

1 2 3 
1 2 3 

1 2 3 

7-s+l 

• "- k 1 

- . -  k 2 

7.1 ' ' "  

7- 2 - . .  

. . . .  k s :  T s 

with 71 > k 1 + 1, 7 2 > k 2 + 1,..., 7s+ 1 > 1, ri  the first element of the 
ith row which, lying on t h e f l h  column, is different f romj .  

Due to the standard nature of A we have h 1 >~ h 2 >~ k 3 /> .-. > / k  8. 
Upon  the substi tution x 1 = x 1 4- ~2i~2 Aixi we analyze, in the resulting 
expression 2 t~2 • h, "" ;~n Ph , ' "h , ,  the coefficient of the highest monomial  
in the lexicographic order  of the sequences (h 2 , h 3 ..... h~). 

This,  of course, is obtained by substituting for 1 the maximum number  
of 2's which do not make the tableau formally zero, then the maximum 
number  of 3's whith the same proper ty  and so on. 

Thus  it is immediate  that h a ~- h~(./t) = number  of rows starting 



334 DE C O N C I N I  A N D  P R O C E S I  

with  1 r, r > 2; ha = ha(A) = n u m b e r  of rows s ta r t ing  wi th  1 2 r, r > 3 
and so on. T h e  h 2 rows 1 r,. . .  fol low the  h a rows 1 2 r,..., etc. 

T h e  resu l t ing  tableau,  wh ich  we deno te  F (A) ,  can  be r ea r r anged  in 
o rder  to be, up  to sign, of  the  f o r m  

F ( A )  = 

1 2 " '"  n "-" 

1 2 "" n ... 
2 3 "" n - - 1  "-. 

2 3 .-" n - - I  .., 

2 3 "-" k -.. 

T h e  new tab leau  is still s t andard .  M o r e o v e r  F ( A )  un ique ly  de t e rmines  
A once one knows  the  n u m b e r s  h e , h a ,..., h~ .  

I n  fact,  to ob ta in  A f r o m  F(A) ,  one has to replace  in the  first  h~ rows 
s ta r t ing  wi th  2, wh ich  necessar i ly  are of  the  f o r m  2 3 l . . - n  l - . . ,  the  
e l emen t s  2 3 . . . n  wi th  1 2 . - ' n -  1. O n  the  nex t  h,~_ 1 rows,  wh ich  
necessar i ly  s tar t  w i th  2 3 . . . n -  1, one replaces  2 3 . - - n - - 1  wi th  
1 2 " - n - - 2 a n d s o o n .  

n 
S u p p o s e  we  p e r f o r m  the  subs t i tu t ion  x 1 = x 1 + ~i=2 hixi into a s u m  

p = ~ ciTi, c i @ O, T i = (A i [Bi) 

of  dis t inct  double  s t anda rd  tableaux.  
T h e  coefficient  of  the  h ighes t  m o n o m i a l ,  in the  resul t ing  express ion,  is 

J 

Ej = ~ l ,  and  the  s u m  is t aken  f r o m  the  doub le  s t anda rd  t ab leaux  
T~ ( & I B j )  for which  the  s equence  h~(A~), ha(4-), . . .  , hn(Aj) is 
max imal .  

T h u s ,  wr i t ing  f i  = ~ %.Tj ,  we have  tha t  the  r j ' s  are not  zero and  the  
Tj ' s  are dist inct .  

W e  are n o w  r eady  to d raw the  conclus ions .  F i rs t  of  all we clarify the  
s t r u c t u r e  of  R~ (cf. [2]). 

THEOREM 1.2. The ring R~ has a basis over A formed by the double 
standard tableaux with every row of length <~ n. 
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Remark. This  shows in particular the linear independence in R of 
the double standard tableaux [2, T h e o r e m  3]. 

Proof. Clearly, f rom ~ T h e o r e m  1.1, R~ is spanned by these tableaux. 
We must  show that they are linearly independent.  Suppose that p -= 

ciT, is a linear combination of these tableaux and p ~/,~. We make an 
induct ion on the size of the Ti's and on the number  of variables x~, ~:j 
appearing i np .  Le t  Xl ,..., xt; ~:i ,-.., ~s be the variables appearing. Make 
the substitution x 1 = x 1 -~ ~.¢=2 Aix~ and then we obtain 

f = ~ ~j~; E I . ,  ~;(e(n;)l Bj). 

Now, setting x 1 = 0, we obtain a nonzero element of I~ depending on 
the variables x2 ,..., xt only, unless the first row of each F(Aj)  is 1 2 "'" t 
exactly. In  this case, of course, t ~< n. We perform now the same 
operation on the ~e~'s and finally we, either succeed in reducing the 
number  of variables or reduce ourselves to an element ~ ~j.Tj ~ I n ,  
where the first row of Tj. is always 

d = ( 1 2 . . . t l  l 2 . . . t  ). 

Now in this case 2~j. = d . Q j ,  Qj obtained f rom Tj erasing the first row. 
Since d is generically invertible (p = ~ ~.Qj ~ I  n and we finish by 
induction on the size of the tableaux. 

We come now to our next theorem. 

THEOm~M 1.3. Let p = Z QTi ,  Ti = (At I Bi) be a linear combination 
of distinct double standard tableaux with rows of length at most n. I f  p 
vanishes when x i ,  x 2 .... , x~ are computed on linearly dependent vectors 
then the first row of each A i is 1 2 3 " .  n exactly. 

Proof. I f  one of the variables xa ,..., x~ say x l ,  does not appear in 
all Ti's then, setting x 1 ~--0 we obtain a contradiction to the linear 
independence of the tableaux. Split p = Pl @ P~ in two terms. In P2 
we collect all T~ : (A i I Bi) such that A i has first row 1 2 ..- n. Clearly 
Pl still satisfies the hypothesis of Theo rem 1.3 and we must shOWpl = 0. 
Without  loss of generality we can thus assume p = px.  

Perform the substi tution xl = xl ~- •i=2 )tixi and extract the poly- 
nomial ig ~ ~ cjT~. P still verifies the hypothesis of Th eo rem  1.3 but  
now, since no first row of an Aj starts with 1 2 "" n we have canceled the 
variable xl f rom p. As before we have a contradiction. 

We collect one more result which will be useful for the computat ion of 
invariants. 
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PROPOSITION 1.4. Le t  p = • c i T i ,  T i ~_ (A  s 7 Bt )  be a sum o f  
double s tandard tableaux with rows o f  length <~n. 

Assume that  the variables Xl , x~ ..... x~ ; x~+a ,..., x ~  ; ...; x(s__l)~+~ ,..., 
xsn appear linearly in p and  that  p vanishes when one o f  the s groups o f  
n-variables x l  ,..., Xn ; x~+l ,..., x2~ ;...; x(8-1),~+1 ,..., x ~  is computed on 
linearly dependent vectors. Then each A s has the first  s rows 

1 2 "'" n 

n - l - 1  n + 2  ".  2n 

( s - -  1) n + l  ... sn. 

Proof. First  of all, setting xj = O, j ~ sn we get a eontradietion to 
the linear independence of the T~'s, unless xj appears in each T i . 

For  s = 1, it is contained in T h e o r e m  1.3, assume it t rue for s - -  1, 
then each As starts as 

1 2 ..- n 

n + l  ... 2 n  

( s - - 2 )  n + l  ... ( s - -  1)n. 

Since, by assumption, A i is linear in 1 2 " .  (s - -  1)n and these indices 
have all been used, the standard nature of A i forces the next  row neces- 
sarily to start with (s - -  1) n + 1. 

n 

For x(s_l)n+ 1 , substitute X(s_l)n+ 1 @ ~-~j=2 ~ij X(s_l)n+ j . T h e  coefficient 
of the highest monomial  (which is linear) is obtained by substi tut ing 
x(s_l)n+ j for x(s_l)n+ 1 in all the tableaux A~ whose sth row is of the fo rm 
(s - -  1) n + 1, (s - -  1) n + 2..., (s - -  1) + j - -  1, 7, where 
~- > (s , 1) n ~ - j  or the row ends before ~-.j is the min imum index for 
which such a violation occurs. Now the resulting p does not  contain 
x(s_l)n+ 1 and we have a contradiction, unless all the Ai's have the required 
form. 

2. ABSOLUTE INVARIANTS 

We develop here a min imum formal machinary to deal correctly with 
formal invariants. 
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Let  G be an affine group over A (we assume that la is defined over A). 
I f  B is any A algebra, denote by G(B) the group of points of G with 
coordinates in B. Let  Aa denote the coordinate ring of G, thus by 
definition G(B) = Maps (Ac, B). Now let C be a fixed A algebra. 
Denote Sp(C) the functor Sp(C)(B) = Maps (C, B). 

DEFINITION 2.1. An algebraic action of G on Sp(C) is a natural 
transformation of functors G × S p ( C ) ~  Sp(C) which is a group 
action in the category of functors. 

Since all functors in question are representable, such an action is 
given by a map 

I~: C--> C @ Aa 

satisfying the appropriate axioms. 
I f  B is any A-algebra we have an induced action of G(B) on C ®A B. 

Given ~ e G(B), cp is a map ~: Aa--+ B. The induced automorphism 
on C @A B is given by extending linearly to C ®A B the map 

C ~ l o& > C @AA~-- C @A B. 

DEFINITION 2.2. An element c c C is called an absolute (or formal) 
invariant if for all A algebras B the element c @ 1 ~ C @A B is invariant 
under the group G(B). 

Remark. It  is trivial to verify that c is a formal invariant if and only 
if/ ,(c) = c @ 1 (invariance under  the generic element). 

We will denote by C c the subring of formal invariants. 

PROPOSITION 2.3. The absolute invariants of the action of G on itself, 
Ac G, are the "constants" A. 

Proof. Let c~Aa  c, i.e., /x(c)=  c @ 1. Let  ~-:Ac--~Ac be the 
inverse map. 

The  composition 

¢:A~ " . 1®~ > Aa @ Aa ---+ Aa @ Aa ---+ Aa. 

zr(a@ b) ~ a • b is the unit  

A~--~ A - ~  Ac. 

Now ¢(c) ~ ~r(1 ® z)/~(c) = 7r(c ® 1) = c ~ A. 
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COROLLARY 2.4. Let W be an affine scheme over A with coordinate 
ring B. Let us endow G x W with the trivial G action. G acting on the 
first factor. The absolute invariants of AG @A B are A @A B. 

Proof. Trivial  by  base change. 
This  corollary can be generalized in a useful way, assume that  G 

acts on an affine scheme U and we have a projection map  U - +  W 
W '  "~ compatible with the G action. I f W ' - +  Wis  faithfully flat and U × • __ 

G × sp~oA W',  with trivial G action, then the coordinate ring of W is 
identified with the formal  invariants of the G action on U (same proof  
and descent). 

3. THE FIRST FUNDAMENTAL THEOREM 

In  this paragraph  we deduce the main  result. Le t  A be a commuta t ive  
ring, x 1 ,..., x m be n-vector,  ~:1 ,..., ~m be n covector variables: 

Consider  the polynomial  ring S = A[xij , ~sf] in the entries. We  act on 
Sp(S)  with the general linear group GL(n,-) ,  which we will denote in 
this section with G, with the s tandard action. 

THEOREM 3.1. The ring S a is generated by the elements (x  i [ ~j). 

Pro@ Let  us call B = A[(x~ 3 ~j)], the ring that  we want  to show 
equals S ° . 

Since it is clear that,  if T h e o r e m  3.1 is true for m variables x~'s it is 
also t rue for m'  ~< m variables; we may  assume m very large or even 
infinite. N o w  let d be the de terminant  of the n × n matr ix  

]lfxi I ~:~')l! i, j = 1 ..... n. 

We have d = [x l ,  x2 ,..., x ,]  • [~1 ,..., ~n], where [x 1 ,..., xn] 
the de terminant  of  the matr ix  

denotes 

Xll X 1 2  • • • X l ~  

[ X n l  X n 2  """ X n n  



I N V A R I A N T  T H E O R Y  3 3 9  

the proof  rests on the following fact, which will be proved in Lemma 3.2. 
B[1/d] = S[1/d]  c. Assuming this fact let a ~ Sa;  since S c C B[1/d] 
there is a power d k such that dka ~ B .  

Clearly it is sufficient to prove that, if d f  ~ B then f ~ B (for f ~ S). 
Let  us write d f  = ~ c i t e ,  where the Ti's are double standard tableaux 
with rows of length ~<n. Since, setting x 1 ,..., x~ or ~1 ,..., ~n linearly 
dependent ,  one has d -~ 0, we are in the position to apply Th eo rem  1.3 
and we deduce that each T i has the form 

i i :7 != i i 
Thus  T i = d T (  a n d f  = 52 c iT  e' E B.  

We now prove the fact used before. 

LEMMA 3.2. B[1/d] = S[1 /d]K 

Proof. We use the results of Section 2. 
S[1/d] is the coordinate ring of the open set W of an 2nm-dimensional 

affine space where d is invertible. T h e  action of G on such affine space 
restricts to W and we claim that W G × V is a product.  In fact let V' 
be the subspace, where x i = e e , i ~ 1,..., n, and e e represent the vectors 
of the canonical basis. Le t  V = V' c~ W (we will identify V with 1 × V). 
V is the open set of V', where [~1, ~2 .... , g~] is invertible. If  C is any A 
algebra and u ~ W ( C ) ,  there is a unique element g c GL(n,  C) and 
u' e V ( C )  such that u = g • u'. In  fact one has to set 

U l l  " ' "  Un l  \ 

u.~ ... u.n~} u' g-~ u. 
g ~ . . . .  . ~ ~ • 

l 
\ U l n  "'" g n n ]  

This  establishes the isomorphism W ~  G × V of schemes. By 
Corollary 2.3 the ring of G invariants is identified with the coordinate 
ring D of V. D is generated by the elements x i j ,  i = n q- 1,..., m, j = 
1,..., n; ~st, s =  1 ..... m; t = 1 .... , n; and [~:l,~o~,...,~n] -a. We have 
thus to identify the corresponding invariants on W. By construction 
f ~ D induces the invariant f on W by s e t t i n g f  (u) = f (u ' ) ,  u = g • u'. 

i f  u = ( x  I . . . .  , X m ,  ~1  , ' - - ,  ~m) we have 

~i j (u )  = x d u ' )  = * i~ (g -~u)  = <g-~*~ , e~). 



340 DE CONCINI AND PROCESI 

Since g-~x~ = e t , i ~ 1,..., n, we have 

hence  

Similar ly  

xi = L <g-lxi ' d> gej = ~, <g-lxi , d )  xj ; 

<g- lx i ,  d> =- [xl ..... x j_ l ,  x i ,  x~+l,..., x,] 
IX 1 , X 2 , . . - ,  Xn] 

[~1  . . . .  , ~n ] [~ l  " "  X i " "  X~] BB/d]. 

~e,t(u) = ~e,t(u' ) ~- (,t(g-~u) = <et,gt~,} = <get, ~,> = ( x t ,  ~ }  

and  finally 

[#1 ,..., ~ ] -~  = lid. 

W e  come n o w  to the  invariants  u n d e r  the  special l inear g roup  Sl (n ,  - - ) .  

THEOREM 3.3. The  invar ian t  ring S st is genera ted  over -/t by the 
elements  

I 6.1. 
Proof .  Le t  f ~ S s~. W e  m a y  assume f h o m o g e n e o u s  in the variables 

xi 's  and  ~/s .  Le t  us call t 1 , t2 the total degree of  f in the xi 's  and  ~:/s, 
respectively.  

I f  B is any  A algebra and g ~ G L ( n ,  B )  we claim tha t  

fg(x ,  ~) = f ( g - l x  I ..... g - i~  1 .... ,g- l~ , )  = det(g)a f ( x ,  ~), 

where  d . n  = t 2 -  t l .  I n  fact, let ~ = de t (g)  and  consider  the r ing  
B '  = B [ x ] / x  ~ - -  ~. I n  B '  the  e lement  g can be wri t ten g = ff • fiI; 

c S l (n ,  B') ,  /3 a scalar (e.g.,/3 = ~) with /3n = ~. T h u s  f g ( x ,  ~ ) = 
f ro(x ,  ~) = f ( /3 -1x , /3~)  = fi t~-t~f(x,  ~). But  since 1,/3,..., fi~-i are a basis 
of  B '  over  B a n d f ( x ,  ~),/3t~-t~f(x, ~) E B we m u s t  have t 2 - -  t 1 = d .  n. 

L e t  us treat  the  case d ~ 0, the  o ther  being similar. W e  in t roduce  d -  n 

new  vec tor  variables Yl ,.--, Y~ ; Y~+~ ,-.., Y ~  "'" Y(a-~)~+~ ,..., Ya~ • W e  
make  the  conven t ion  tha t  the  x 's  follow the y ' s  in the  lexieographic  
order .  Cons ider  the  e lement  

h = f .  [Yl "'" Y+][Y,~+I "'" Ym,,] "'" [Y<a-1),,+I "" Ya,]. 
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Clearly h ~ S a and so h = Z Q Ti , Ti double standard tableaux. We 
are now in a position to apply Proposition 1.4 and deduce that each T i 
has the form 

n + l  ... 2n . 

!%,).+.1. i ? 

I f  we specialize theyj. 's to make [Y~+I ,..., Y(t+l)n] --= 1, l = 0, 1 ..... d - -  1 
we obtain the result. 

Remarks. (i) In case s = 0 we have back the theorem of Igusa [4] 
(cf. also [2]). 

(ii) We have in fact explicit bases for the rings S sz, S c over A. 

One can deduce from these bases the second fundamental  theorem as 
in [5]. One has immediately. 

THEOREM 3.4. The ideal of  relations among the ( x  i ] ~i) is generated 
by the n + 1 × n + 1 determinants. 

Similarly for  the S l  invariants. 

4. THE SYMMETRIC GROUP 

In this paragraph we draw the corollaries of Theorem 3.1 for the 
symmetric  group. As pointed out in the Introduct ion this is essentially 
a standard fact, known in the classical literature (cf. [5]). 

We assume that A is a commutat ive ring and m is an integer such that, 
i f f (x )  ~ A[x] is a polynomial of degree m a n d f ( x )  vanishes on A,  t h e n f  
is identically 0. Then  we have 

THEOREM 4.1. Let  P be a projective module over A .  EndaL(e)(P® m) is 
spanned over A by the symmetric group. 

Proof. By localizing one can assume that P is free. If  rk P is infinite, 
or just  ~> m, we can find independent  vectors e 1 , e 2 ,..., e m in the basis 
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and u --  el @ e2 ® " "  e,n-1 @ % e P®~. I f  q0 c EndcL(p)(P ®~) it is easy to 
see that 

I~O/.~ = ~ O~ ~o_1(1) @ e0__1(¢~ ) ® "'" @ eo_l(g/,~) 

and there is a ~b = Z a~a coinciding with ~ on u. 
But then it is easy to prove that u is a linear generator of P®~ over 

GI(P) and the claim follows. Thus  the relevant case is P = A ~ and in 
fact n % m. 

In this case GL(P) = GL(n, A) and 

EndcL(n,A)(p®~) ~ EndA(P®,m)cL(n,A) ~___ (p®~n @ p*®~n)*aL(a.m. 

T he  identification End(W)  ~--- (W ® W*)* is given by the usual pairing 

(A, u ® ~) = ¢(A.) .  

T h u s  EndcL(n.A~(P® *~) is identified with the multilinear invariants of m 
vectors and m covectors. At this point we have to make only two remarks 
to finish. 

First  of all the monomial  

(Xl I ~o(1))(X2 l (c(2)) "'" ( g .  [ ~(r~)) 

corresponds to the permuta t ion  a ~ End(V®m), since 

(~, xl ® "'" ® x ~ ®  ~, ® "" ® ~ )  

= E1 (~ ~2 ® "'" ® ~q/~(Xo--I(1) ® MU--I(2) ® ' '" ® X--I(~) ) 

Second, if ~o e (peru ® p*om)*Sl<n,a), qv is an absolute invariant; for then 
from T h e o r e m  3.3 and the fact that 9 has the same degree in the xi 's 
and ~j's the claim will follow. T h e  fact that q~ is an absolute invariant 
follows f rom our assumptions on A. In  our assumptions, A local, Sl(n, A) 
is generated by the elementary matrices I ~- ~eij. I t  is sufficient to show 
that, if a e End(P®~) and a commutes  with I q- ~eij, ~ e A then a 
commutes  with I q- ]3e~j,/3 e B any A algebra. Now the commuta tor  
[a, I -F xeij] is a polynomial in x of degree m and so the hypotheses on A 
imply the claim. 

T h e  explicit s tructure of the invariant ring implies also the structure 
of the Kernel  of the map, f rom the group algebra of S~ to End(por~). 
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THEOREM 4.2. I f  P is a free A module of rank n the kernel of the 
canonical map A: A[Sr,] --+ End(P®m) is 

(i) O if  n >/ m; 

(ii) generated by 7r = Z e,a, ~ running on all the permutations of the 
first n + 1 indices, i f  m > / n  + 1. 

Proof. By the proof  of T h e o r e m  4.1 we ident i fy  A[Sm] with the 
space spanned by the double  s tandard  tableaux of content  (1, 1 .... , 
1 ] 1, 1,..., 1). T h e  kernel of A is given by the tableaux with  the first row 
of length  /> n -k 1. I t  is sufficient to show that  each such tableau lies in 
the ideal generated by zr. I f  

. . . . .  il % 
T is a sum of Te rms :  

u = (i t ... i~ [Jl ""Jk)(sl ] tl) "'" (st [tr) 

we claim tha t  u = (il, . . . ,  i k l J1,..., Jk)(sl I ta) "'" (sin I t2) is a consequence 
o f  "/7. 

i n  fact the monomia l  (a 1 ] bl)(a z [ bz) ... (am Ibm) corresponds to the 
pe rmuta t ion  or: a~ --+ bi ; thus  

(al [ z(ba))(a2 ] r(b~)) "" (a.  I T(b.)) 

corresponds to z~ and 

(~(aa)] ba)(~-(a2) I b2) "'" (~-(a,)l b,) 

to ~r~ --a. Th e n ce  u corresponds to ra~z~ for some permuta t ions  za,  r~ ,  
where  ~ = (1 2 . "  k l 1 2 "" k)(k + 1 l k + 1) ".. (mira) .  

N o w  clearly ~ is the ant i symmetr izer  of the first k letters and if 
k /> n + 1 this is a consequence of ~r. 

5. THE ORTHOGONAL GROUP 

First  of all we want  to deduce the s t ra ightening formula  for scalar 
products .  

Consider  a r ing A and m n-vector variables u~, u - ~  (uil ,..., ui ,  ). 
n 

Define (u , ,  u~) ---- ~e= l  U~kU~ and R = A[ (u , ,  u3) ]. We  will find, as in 
T h e o r e m  1.1, a basis of R over A. 
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Consider a double tableau 

 =(all ::: bll ::: bl.) 
• ° ° , . . ° • . . . . . .  

and associate to T the element in R product  of the determinants 

( a i l  . . . .  , a i~ t  [ ba ,..., bi~i) = d e t  [](Uai~ , ubi~)[I. 

Let  us form from T the single tableau 

Tt 

all •.. alFal 

b n ... bl~ 1 

a 2 1  " "  a 2 ~  2 

with 2k rows of length m I , m 1 , rn~, m 2 ,..., m k , m k . We will say that T 
is doubly standard, briefly a d-tableau, if T '  is standard. 

THEOREM 5.1. The d-tableaux, with rows of length <~n, are a basis 
of R over A .  

The proof will be based on two lemmas. Given 

T = ( u  I " . .  u n _ a X l  - "  x A ] x t + 1  " "  a n + i v 1  " ' "  V a _ l )  

and a permutat ion a of xx, x2, .... xn+ 1 the element 

E a ( ' g  I " ' "  g n _ ; t X a ( 1 )  " ' "  X~)(A) I X o ( ~ + I )  " ' "  X o ( n + l )  ' V l  " ' "  V A - - 1 )  

depends only on the class of cr modulo the subgroup Sa × S~+l_a fixing 
the set {xl, x 2 ,..., xa}. Let  us indicate 

2' = E %( ,~  "'"- . -~-o(1)  "'" xo(~)t ,o(.+11 "'" xo(.+~)~l - "  ~ _ 1 )  
a 

running over a set of representatives in the lateral classes of Sa × S~+l-a 
in S~+ 1 . T is the signed sum of T and other terms, in each of which at 
least one of xa+l ,..., xn+l is passed to the left part of the row. 
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LEMMA 5.2. ~" = 0. 

Proof .  Since this is a formal identity we  may  assume A = Q, the  
rational numbers .  We  make induct ion on A. For A = 1 we  must  prove 

x-~n+l 
( g l " ' "  g~- -151  ] $ g " "  $n.+1) = A-.o=2 ( g l ' ' "  Un--lXp I $2 "'" X0--1XlXp+I' '"  Xn+l)" 

Expand the determinants  with respect to the last row: 

n+l 
Z (Ul""gn- lXo ] X2 "'" Xo-lXlXo+I "'" Xn+l) 
0=2 

n+o~=2 ( o-1 
= Z ( -1 ) i+n- l (xO'  Xi)(Ul "'" Un--1 Ix2 "'" Xi "'" Xo--lXlXo+I "'" Xn+l) 

\ i=1 

4 (--1)°+'~-X(xo, Xl)(/£1 "'" Un-1 Ix2 "'" ;~o "'" x . + l )  

n+l ) 
+ 2 ( - 1 ) J + ~ - ~ ( . o ,  ~)(,,~ ... U._l  I ~  "'" *o-m~o+~ ' "  ~J ' ~.+~) 

j=o+l 

= Z ( - - 1 )  h+n-l (xk ' *h)( g l  "'" S/n--1 IX2 "'" ~h "'" Xk--lXl'%'k+l "'" Xn+l) 

? Z ( - - 1 ) ~ + " - l ( x h '  Xlc)(//1 "'" /'/n--1 152 "'" Xh--lglXh+l "'" ~/c "'" "%"o,+1) 
h<k 

~- (Ul "'" Un_lX 1 ] X2X3 "'" Xn+l). 

N o w  (Xh ,  xk) = (Xk, Xh) and (Ul . . -un_  1 I x="" Xh"" X k - - l * l g k + l  "'" 
x~+l) = (--1)k-h+a(Ul "'" U=_l l X= "'" Xh_lXlXh+I "'" Xk "'" X~+I) and 
( - 1 )  k-~+* • ( - 1 )  h+~+l + ( - 1 )  k+~-I = 0. 

T h u s  the claim follows.  
N o w  suppose  the l emma proved for A - -  1. Since )t!(n q- 1 - -  ~)! ~' = 

~-~aeSn+l Ea(g 1 ""Un_aXa(1) "'" X~(a) [ Xa(a+l) "'" X~(n+1)731 "'" 73a_1) i t  i s  s u f f i c i e n t  
to s h o w  that this second expression is zero. 

Apply  the result for h : -  1 and get 

Z Ea(Zll"""n--aXa(1)'"Xa(k)[Xa(~+l)'"Xa(n+l)Vl "*" V~--I) 
a~Sn+l 

/ n+l 

a~Sn+ 1 \p=2ttl 

"@ XaCP+l) "'" Xa(n+l)7.) 1 "'" 7ja_l) 

a--1 

~- Z (Ul ""Un--aXa(1) "'" X(7(a--1)V~ ] xo(a+l) "'" Xa(n+I)Vl"'" Vr-iXa(a)Vr+l ""Va-1))  ! 

6o712I/3-8 
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= - (n + 1 - ~) Y~ ~ o ( u ~ ' " u . _ ~ x o ( ~ ) ' " x o ( ~ ) l x ~ ( a + ~ ) . " x ~ ( . + ~ v , . . .  ~ - 0  
ffES~+I 

a--1 

+ Z (-1)-+,-* Z ~o(u, ... "n-~,*o(~) "'" *o(,-~)1 ~o(~) "'" 
¢~1 a~Sn+ ~ 

xo(n+l)vl "': v,  "'" %-1) 

= - -  (n  -7  1 - -  )t) ~ Ea(Ul . - -Un_aXa(1)  -.-a:~(a) lxa (a+ l )  . . .  X.(n+l)Vl  . . .  Va_l ) 

by induction on A. This  clearly yields the result. 
Now we prove half of Theorem 5.1. 

LEMMA 5.3. The  d - tab leaux  span R over A .  

Proof .  We proceed as in [2] using their straightening algorithm plus 
our Lemma 5.2. A monomial (uq , uh)(ul~ , uh )  ... (ui~ , uj,)  can be 
displayed by the double tableau 

(/1 J,) 
T = i2 J2 

f i  x -~ 
J~ 
i2 

or T' = J.2 

ik 
v_j~ j 

We have to straighten T'. Now, using the procedure of [2], one can 
straighten T as a double tableau. Looking at a single row of T, 

C : ( i a i 2 " " i ~ l j , ' " j h  ) displayed as (5~ i : :~)  

one may have a violation of standardness in a position ; we apply Lemma 
5.2 to C and see that C is a linear combination of tableaux of the same 
shape and with the first row higher lexicographically than i 1 --. i h .  
This shows that T = (A~ [ B 0 is a linear combination of T' = (A~' [ B~') 
with A~' higher than A i . Applying the two straightening laws one 
always increases A i as much as possible, then B i  and Ai simultaneously, 
then A l again and so on. Clearly one must  stop at some point, when all 
the tableaux are d-standard. 

We now complete the theorem. 
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LEMMA 5.4. T h e  d - tab l eaux  w i th  rows  o f  length ~ n are l inear ly  
independent .  

t 
Proof .  We proceed as in Section 1. Writ ing x 1 = x 1 - / ~ = 2  Aixi we 

eliminate x 1 unless t ~ n and the first row is always 1 2 ... t. Now the 
variables are exactly 1 2 ... t and therefore must  all appear also on the 
second row. There fore  we can take out the factor (1 2 ... t l l  2 ... t) 
and conclude by induction. 

We need to extend this theorem to the ring 

R '  = A[(ui  , uj), [uq ..... ui,J]. 

We can easily see that R '  also has a standard basis over A given by the 
elements 

(1) d-tableaux; 

(2) products  [uq 
tableau 

, . . . , u j T ,  T a tableau such that the unique 

is standard. 
T h e  proof  is similar to the previous ones and it will be omitted. 
We will call these last tableaux odd d-tableaux and those previously 

considered, even d-tableaux. 
We are now ready to prove the first fundamental  theorem for O(n,  -) .  

(Note: In what follows A is assumed to be a field of characteristic =/=2. 
For  the general case see the note added in proof.) 

Le t  us consider the space of vectors (u s , u2 ..... Urn) and assume, as 
usual, m >~ n. Let  d = det J(ui ,  uj)l ,  i , j  = 1,... ,  n. Let  W b e  the opense t  
where d is invertible, we still propose to show that, if R is the ring 
A [ ( u  h , Uk) ], S the polynomial ring in the entries of the vectors ui 's  
and S °(n,-)  is the invariant ring; then: 

LEMMA 5.5. R [1 / d]  = S°¢n,-~[1/d] .  

Proof .  We show that W is locally isomorphic to a product  G × V,  
not in a Zarisky sense, but  in the faithfully flat topology (cf. comments  
after Corollary 2.4). We follow [1]. T h e  space V is the space U 1 × U 2 ,  
where U1 is the space of invertible n × n symmetric  matrices and Us 

! t is the space of vectors u~+~ ,..., u m . In  fact let us restrict our attention to 
the first n vectors u 1 ,..., u n ; we are essentially studying the quotient  
of G L ( n , - )  under  the subgroup O ( n , - ) .  T h e  way to s tudy this quotient  
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is to act with GL(n, -) on invertible symmetric  matrices, via the action 
X A X  t, and notice that O(n,-) is the stabilizer of I and GL(n,-) acts 
transitively. Finally one shows that the principal fibration 

O(n, --) ~ G.L(n, --) --~ Sym 

has a local section in the faithfully flat topology. This  finally proves that 
the invariant ring of O(n,-), acting on GL(n,-), is identified with the 
coordinate ring of Sym. T h e  only assertion that needs a comment  is the 
existence of a local section. One has to be able to extract the square root 
of a symmetric  matrix, i.e., given A • Sym find B • GL(n,-) with 
B B t = A. This  of course is accomplished by diagonalizing first the 
quadratic form (Ax, x) and then extracting the roots of the diagonal 
elements. For  the diagonalization procedure one has the canonical con- 
struction of the basis f l  ,...,f,~ , f i  = u , - - 2 j < i ( ( A u i  ,fj)/(Af~.,fj))f~. 
This  gives rise to a basis at least on an open Zarisky neighborhood, with 
coordinate ring/~,  of the matrix I. Now let ai = (Aft ,  f~); the extension 

R t  = x~(o~l/2) = ~ [ X l  ' $2  . . . .  , '~n]/("Yi 2 - -  °~i) 

is faithfully flat and on Spec/~ '  one has the canonical section. 
T o  complete the proof  of L e m m a  5.5 one has to interpret  the coor- 

dinate ring of V as invariant functions on W. If  u • W, u = (u 1 , u2 ,..., 
u,~ u,~+l ,..., urn) projects to the point u' of V, u' = (A, u ,+ 1 .... , m ), 
where A = gg~, u s' = gu/ and g is the invertible matrix with rows 
u 1 , u 2 ,..., u n . Now the coordinates of A are just  the scalar products  
(u¢, u3. ). T h e  coordinates of u s' are (u¢, uj), i = 1,..., n. T h e  determinant  
of A, which is the final element to add inverted, is just  d and the lemma is 
completely proved. 

We come to the main theorem: 

THEOREM 5.6. (i) The ring S °(n,-) is R = A[(ui ,  us) ]. 

(ii) the ring SS°(~,-) is R' = A[(ui ,  us), [uq ,..., u j .  

Proof. (ii) First  of all replace in Lemma  5 . 5 0 ( n , - )  with SO(n,-)  
and see that we still have a principal fibration. Th e  quotient  V' covers 
V with fiber Z/(2), the element A = [u 1 ,..., u~] is the extra invariant 
corresponding to the generator ~ of the coordinate ring A[~7], ~/2 = 1, of 
the group Z/(2). Thus ,  as in L e m m a  5.5, S s°(n,-) is contained in R'[1/A]. 
Now l e t f c  S s°(n,-) and assume AlE R'; we have to s h o w f c  R', and this 
will prove (ii). Now since Af = ~ c¢T¢, T¢ are tableaux (of the type 
explained after L e m m a  5.4.). ~ ciT ~ vanishes when Ul .... , u,~ are depen- 
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dent  and it is sufficient to show that the first row of each T has the form 
1, 2,..., n. This  is essentially the usual argument.  Substi tute u 1 + 32i~=2Aiui 
for u 1 and see that either each T i has the required form, or there is a 
1~ = ~2 giTi ,  not containing u l ,  and vanishing when ul ,..., u~ are 
dependent ;  this contradicts L e m m a  5.4 and so (ii) is proved. 

(i) Now let ~2 ciT~ ~ S °(~'-k I f  we apply the element 

with ~2 = 1 (formally), to 32 ciT i we have on the one hand ~ ciTi ,  by 
m 1 ~7~t invariance, and on the other hand 32~=1 c~T~ + o~ ~=~ c jT j ,  where the 

Tj are odd d-tableaux of type [uq ,..., u j  T / .  Ti ,  T3.' are even d-tableaux. 
By the linear independence of d-tableaux over any commutat ive ring, 
in particular over A[c~], we have cj = 0, j = 1,..., m 2 , and the theorem 
is completed. 

As for the second fundamental  theorem we have 

THEOREM 5.7. The ideal of relations among the (ui , u / )  is generated 
by the n + 1 × n + 1 minors of the symmetric matrix I(ui , uj)[. 

Proof. Trivial  by T h e o r e m  5.1. 

6. THE SYMPLECTIC GROUP 

This case is fairly similar in spirit to the case of the orthogonal group, 
and hence we shall give only the main variations of the argument. 
Wc consider k vectors x I ,..., x k from a 2n-dimensional vector space with 
a symplectic form. Consider the skew products <x i , xi} which we shall 
display in a skew symmetric  matrix 

Z = [<x~, x~>], i , j  = 1 ..... k. 

I f  i 1 , i 2 ,..., i2h are 2h indices out of 1,..., k we shall indicate by [i 1 ,..., i~h ] 
the Pfaffian on the skew matrix obtained f rom Z taking the rows and 
columns of indices i 1 .... , i2h. 

We notice that, with these notations, [i, j ]  = <xi,  x~}. Our basic 
combinatorial  lemmas are the following. 

LEMMA 6.1. [a I ..... an] [bl .... ,bm] --  X~=I [al .... , al~-i, h i ,  ah+l ,..., an] 
[ah, b2 ,..., bm] = 2k=2m (_l)k_l[b~ ,..., ~ ,-.., bm][bk ' bl ' al , ' , ' ,  an]. 
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Proof .  By s tandard  proper t ies  of Pfaffians: 

[al ,..., an][bi ,..., bm] - -  L [al , '" ,  ah-1, b l ,  ah+l ,..., an][ah, b~ ,..., b~] 
h=l 

= [al , . . . ,  an] ( - - 1 ) ~ [ b l ,  b~][b~ ,..., ~ ,..., bin] 
k 

- -  L ([al .... , a~-x, b~, an+~ ..... an] ~, (--1)k[an, bk][b2 .... , [~ ..... b,~]) 
h=l k=2 

- -  ~ (--1)k[b2 ..... bk .... , b~](--[b~, b~][al ..... a~] + (--1)~-1[b~, ah] 
k=2 

[bl, al . . . . .  a h - x ,  ah+x ,..., a~]) = ~ (--1)~-l[b~ ,..., bk .... , b~] 
k=2 

× [be, bl ,  a l , . . . ,  an]. 

LEMMA 6.2. Zo~s~+~+~E~[al .... , a i ,  X~(x) ,..., x~(~)][x~(~+~) .... , Xo(~+i+0, 
v 1 ,..., vt] = R ,  where  R is a linear combination,  wi th  rat ional  coefficients, 
o f  products  [i1 ,..., in][j~ ,..., jr], where  s ~ i + h a n d  s + r = (i + A) + 
(;~ + i + 1 + t). 

Proof .  By induc t ion  on i. I f  i : 0 this follows f r o m  L e m m a  6.1. 
L e t  us suppose  it t rue  for  i - -  1. By ] , e m m a  6. l ,  we have 

~o[al , . . . ,  a~ ,  xo(1) , . . . ,  xo(~)] 

× [x~(~+l) ,..., x~(~+i+O, Vl ,..., vt] 

: E % ( L  [ a l  . . . .  , a i - l , X a ( a + l ) , a , + l  .... , a i , x¢ , (1 )  . . . . .  Xa(a)] 

× [a~, x~(~+2 ) .... , x~(~+i+l), vl ,..., vt] 
a 

+ ~ [al ,..., a i ,  xoo) ,..., Xa(¢--l) , Xo(A+I ) , Xa(~-+l ) , . . . ,  Xo(~)] 
¢=1 

× [x~(.), x.(~+~) .... , x.(a+i+O, vl ,..., v,]j  + R '  

/ 

ere ~+i+2 
\ 

X [XO-(/~+I) , - . . ,  Xo(~+i+I)  , el) 1 , . . . ,  e/)t] ) + R ' .  

(R '  is given by  induct ion . )  



INVARIANT THEORY 351 

Hence (1 + h)!E,~sa+~+ 1 *~[a 1 ,..., a~, xo(1 ) ,..., xda)][xo(a+l ) , .... xda+~+l), 
% ,..., v,] = R -t- R'  and the lemma follows. Let  us now consider the 
ring Sa = A[(x¢ ,  xj)], A a commutative ring. To a given standard 
tableau 

T = (; i:: !:: !:i) 
with an even number  of elements on each row and ~2n ,  we can associate 
an element still denoted by T of S a ,  T = [i x .... , ihl][Jx , . , . , jhj . . . ;  then, 
as in [2], one can use Lemma 6.2 to prove 

LEMMA 6.3. The ring S o  is spanned over Q by the standard tableaux. 

We come now to the linear independence. 

LEMMA 6.4. The standard tableaux in SA (A any commutative ring) 
are linearly independent. 

Proof. One proceeds as in paragraph 1, using the linearity of a tableau 
in each row and reduces by induction the size of the tableaux canceling 
the Pfaffian [1, 2 , . . ,  2n], which is generically invertible. 

We can now prove our main theorem. 

THEOREM 6.5. For any commutative ring A the standard tableaux are 
a basis of SA .  

Proof. By L e m m a  6.4 it is sufficient to show that the double standard 
tableaux span SA. Clearly one is reduced to the case A = Z. Now, 
given q ~ S z we know, by L e m m a  6.3, that 

q = y, c,T,,  c, +O. 
i 

Now let r be the least integer such that rQ G Z, each i. We have rq = 
~ l r Q T i  and, if p/r  is a prime, computing our expression modp(as  
functions) we have, by the linear independence of the Ti's , that p/rc, 
Vi, hence a contradiction to minimality of r unless r = 1. 

Finally the theorem on invariants: 
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THEOREM 6.6. S A is the ring of invariants of k 2n-vectors, x 1 ,..., Xk , 
under the symplectic group. 

Pro@ It is similar to the case of the general linear group. One can 
assume k >/2n, and consider the open set where [1, 2,..., 2n] is invcrtible; 
here the variety with its group action is a product and one uses 
the standard monomial theory to make the final cancellation. 

As in Section 5 we have 

THEOREM 6.7. The ideal of relations among the (xi , xj) is generated by 
the Pfaffians of the principal minors of size 2n + 2 of the skew symmetric 
matrix [(x i , xj) I. 

Proof. Trivial by Theorem 6.5. 

7. T H E  BRAUER--WEYL ALGEBRA 

As in Section 4 for the case of the general linear group, one can deduce 
the structure of the endomorphism ring in V®- with respect to the other 
classical groups. We shall limit ourselves to the case of the orthogonal 
group since the symplectic case is similar. So, let G ---- O(m, k), k being 
as in paragraph 4. The ring Ends( V ®~) is identified to (V®~ @ V® ~)*a ~ 
(V®2'~) *a which is spanned by the contractions v 1 @ .... @ %  @ 
u 1 @. . .  @ u~--+l-I (v~, vj)(v h, uk)(u s, ut). Now one easily verifies 
that, if each v i is matched with a ui ,  one has a permutation ~ S~ _C 
Enda(V®~). The other generators for this algebra can be obtained as 
follows. Let i, j be two indices in 1, 2,..., n, say 1, 2 for simplicity. Let 
T12 : V®~--+ V® ~ be the map 

'rl._, : V 1 (~  V2 (~) V3 (~) "'" (~  V'o. ~ ('/)1, V2) I (~  "g3 (~  "'" (~) "On, 

I E V ® V being the element corresponding to the identity mapping 
l r~End(V)  ~ V @ V. Then 7 1 2  corresponds to the invariant 
(Vl, v2)(Ul, u~)(va, u3)... (v~, un), and it is a simple matter to show that 
the a's and the ~'ij generate Enda(V®~) as an algebra over the base ring. 
In fact as in Section 4, if 7 c Endc(V®n) corresponds to a product of 
scalar products and if/* is a permutation, 7/z -~ and/zy correspond to the 
same product where the ui's (resp. the vj's) are permuted according to/x. 
Thus Endc(V®~) is spanned by the elements o'1"r127"34 " ' "  "r2k--l.2kO'2 one 
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can also write down a multiplication table for such elements that shows 
that 

T i j  = T j i  

¢TTij(~ - 1  : T o ( i ) ~ ( j )  , 

T i j T h t  c = T h k ~ ' i j  

2 
T i j  : m.rij  

In characteristic 0 one can base on this algebra the decomposition theory 
of  V ®~ u n d e r  O ( V ) .  

if ( i , j)  n (h, k) = ~ ;  

i # k ;  

(m = dim V). 

Note  added in proof. W e  prove here  T h e o r e m  5.6 wi th  A any commuta t ive  ring. 
Firs t  of  all, we need  to have  L e m m a  5.5 w h e n  A is a field of  char  2. 

W e  go back to the  nota t ions  of  L e m m a  5.5. Le t  V be the  variety U1 × U2 ; U1 be ing  
the  space of nondegenera te  n × n s y m m e t r i c  matr ices,  U~ the  space of  m - n  tuples  of  
vectors  (u~+l,  u~+ 2 .... , u~n'). 

Cons ider  the  m a p  7r: W --+ V given by  ~r: (u 1 ,..., u,m) --~ (gg*; gu~+ 1 , gun+~ .... , gum); 
where  g is the  n × n mat r ix  wi th  rows ul  .... , u~ .  T h e  image of ~r is the  set ~ = 01 × U s ,  
O 1 being the  set  of  diagonalizable nondegenera te  bil inear symmet r i c  forms.  I f  char  A # 2 
we have  U1 = O1,  in characterist ic  2 we will show that  the  c o m p l e m e n t  of  O1 × Us 
in V is closed of cod imens ion  ~>2. T h i s  is clearly sufficient for the  p roof  of  L e m m a  5.5. 

W e  work by induc t ion  on  n. T h e  g roup  Gl(n ,  - - )  acts on U1 by  CAC~(C e Gl (n ,  K ) ,  
A e UI (K) ,  K a field). 

01 is the  orbit  of  1. Clearly 01 conta ins  an  open  set and  so, be ing  an orbit,  it is open.  
Le t  us  write A = (a~j) for a symmet r i c  mat r ix  and  consider  the  open sets U ~, i = 1,..., n 
defined by  aii :/: 0. It  will be enough  to show that  the  c o m p l e m e n t  of  U1 has  cod imens ion  
~>2 in each U ~. Le t  i = 1 for implieity.  

T h e  first s tep for pu t t i ng  the  fo rm ( A x ,  y)  in diagonal fo rm is the  change  of  basis 

el" = e l ,  ei" ~ e l - -  (a~l/all)el, i > 1. 

(e I ,..., e,  the  canonical  basis). 
By this  base change the  mat r ix  of  the  fo rm (Ax ,  y) becomes  

(: o) 
T h e  m a p  j :  A ~ -/t is a m o r p h i s m  f rom U 1' to the  nondegenera te  symmet r i c  n - -  1 × 

n - -  1 matr ices .  T h e  fibers of  j have  cons tan t  d imens ion  n - -  1 and  clearly the  fo rm 
associated to A can be p u t  in diagonal  fo rm if this  is t rue  for A.  

T h u s  the  induct ive  hypothes i s  concludes  the  proof  tha t  the  c o m p l e m e n t  of  O1 × Us 
in V is closed of eod imens ion  ~>2. 

T h e  a r g u m e n t  g iven in T h e o r e m  5.6 works  therefore also for A,  a field of  characterist ic 2. 
W e  comple te  now the  proof  of  T h e o r e m  5.6 for A an arbi trary commuta t ive  ring. 
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I f /z  is the  m a p  classifying the  given action, the  formal  invar iants  are the  e lements  a wi th  
/~(a) = a ® 1 (cf. Section 2). 

T h u s ,  if T h e o r e m  5.6 is p roved  for a base r ing  B it is also proved  for any  base r ing A 
flat over B,  in part icular ,  if A is an  algebra over a field. N o w  let A be arbi t rary and  f a 
formal  invariant .  Cons ider  2{ = A @z Q, f @ 1 s ~f is a formal  invar iant  for wh ich  
T h e o r e m  5.6 holds,  t h u s  f @ I = 52 ciT¢,  ci E _/t, Ti's d-tableaux.  

Let  A '  ~ A @ 1 C ¢{ and  m the  m i n i m u m  integer  wi th  mci ~ A @ 1 = A '  for all ci • 
W e  claim m = 1, otherwise a s sume  m = pq and p a p r ime.  W e  reduce  m o d p  and  in 

A'/pA'[ui j]  we have  52 m-ciTi = 0. Since the  Ti's are l inearly i ndependen t  over A ' / p A ' ,  
we m u s t  have  mci ~ p A '  for all i, t hus  mci = pal  and p(qci --  a¢) = 0 in  A' .  Since A" is 
torsion free qc¢ = a¢ ~ A" and  we have  a contradic t ion to the  a s s u m p t i o n  tha t  m = pq. 

W e  can conclude  thus ,  tha t  there  is a l inear combina t ion  g of tableaux wi th  coefficients 
in A such  tha t  f '  = f --  g has  coefficients in the  kernel  I of  the  m a p  A --~ A @z Q. 

Replac ing f wi th  f '  we m a y  a s sume  tha t  f is a torsion element .  By decompos ing  the  
torsion of A into its p r imary  par ts  we m a y  a s sume  fu r the rmore  tha t  f has  p torsion for 
some  p r ime  p, i.e., p~f  ~ 0. W e  work by  induc t ion  on h, if  k = 1 we are in an  algebra 
over Z / ( p )  and  T h e o r e m  5.6 holds,  otherwise let J = (a ~ A Ip~-la = 0}. 

I n  A / J  t he  image o f f  is killed by p, hence  it is a linear combina t ion  of double  tableaux,  
t hus  we can again modi fy  f to make  it killed by p~-i  and  t hen  finish by  induct ion.  
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