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a b s t r a c t

A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this
paper, we classify all cubic s-regular graphs of order 16p for every s ≥ 1 and every prime
p. As a result, a new infinite family of cubic 1-regular graphs with girth 10 is constructed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, graphs are finite, simple, undirected and connected. For a graph X , let V (X), E(X) and Aut(X)
denote the vertex set, the edge set and the full automorphism group of X , respectively. The arc set A(X) of a graph X is
defined to be the set {(u, v), (v, u) | {u, v} ∈ E(X)}. For a vertex v ∈ V (X), by N(v) we denote the set of vertices adjacent
to v. A graph X̃ is called a covering of X with a projection p : X̃ → X if p is a surjection from V (̃X) to V (x) such that
p|N (̃v) : N (̃v)→ N(v) is a bijection for any vertex v ∈ V (X) and ṽ ∈ p−1(v). The graph X is usually referred to as the base
graph and X̃ as the covering graph. The fibre of an arc or a vertex is its preimage under p. The group CT(p) of all automorphisms
of X̃ which fix each of the fibres setwise is called the covering transformation group.
An s-arc in a graph X is an ordered (s + 1)-tuple (v0, v1, . . . , vs) of vertices of X such that vi−1 is adjacent to vi for

1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s. A graph X is said to be s-arc-transitive if Aut(X) is transitive on the set of s-arcs in
X . In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A subgroup
of the automorphism group of a graph X is said to be s-regular if it acts regularly on the set of s-arcs of X . In particular, if
the subgroup is the full automorphism group Aut(X) of X then X is said to be s-regular. Thus, if a graph X is s-regular then
Aut(X) is transitive on the set of s-arcs and the only automorphism fixing an s-arc is the identity automorphism of X .
A covering p : X̃ → X is said to be regular (or N-covering) if there is a semiregular subgroup N of the automorphism

group Aut(̃X) such that the graph X is isomorphic to the quotient graph X̃/N , say by an isomorphism h, and the quotient
map X̃ → X̃/N is the composition hp of h and p. If the covering graph X̃ is connected, then N is the covering transformation
group. An automorphism of a covering graph X̃ is said to be fibre-preserving if it maps a fibre to a fibre, while a covering
transformation maps a fibre onto itself. An automorphism α ∈ Aut(X) lifts along p if there exists an automorphism
α̃ ∈ Aut(̃X) such that αp = pα̃. In this case we also say that p is α-admissible. A subgroup G ≤ Aut(X) lifts along p if
each α ∈ G lifts. The set of all lifts G forms a group G̃ ≤ Aut(̃X), called the lift of G. A regular covering projection p is
arc-transitive if some arc-transitive subgroup of Aut(X) lifts along p.
Two coverings X̃ and X̃ ′ with projections p and p′, respectively, are said to be isomorphic if there exist an automorphism

α ∈ Aut(X) and an isomorphism α̃ : X̃ → X̃ ′ such that αp = p′α̃. In particular, if α is the identity automorphism of X , then
we say that X̃ and X̃ ′ are equivalent.
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Table 1
Cubic symmetric graphs of order 16pwith p ≤ 47

Graph Order s-regular Girth Diameter Bipartite?

F32 16 · 2 2 6 5 Yes
F48 16 · 3 2 8 6 Yes
F80 16 · 5 3 10 8 Yes
F112A 16 · 7 1 10 7 Yes
F112B 16 · 7 2 8 7 Yes
F112C 16 · 7 3 8 10 Yes
F208 16 · 13 1 10 9 Yes
F304 16 · 19 1 10 11 Yes
F496 16 · 31 1 10 15 Yes
F592 16 · 37 1 10 15 Yes
F688 16 · 43 1 10 17 Yes

Let X be a connected graph and N be a finite group, called the voltage group. Assign to each arc of X a voltage ξ(u, v) ∈ N
such that ξ(v, u) = ξ(u, v)−1. This function ξ is called an (ordinary) voltage assignment of X . Let Cov(X, ξ) be the derived
graph with vertex set V × N and adjacency relation defined by (u, a) ∼ (v, aξ(u, v)) whenever u ∼ v in X . Then the
first coordinate projection is a regular covering pξ : Cov(X, ξ) → X where the group N , viewed as CT(pξ ), acts via left
multiplication on itself. Given a spanning tree T of the graph X , a voltage assignment ξ is called T -reduced if the voltages on
the tree arcs are the identity. Gross and Tucker [14] showed that every regular covering projection p : X̃ → X is equivalent
to pξ : Cov(X, ξ)→ X for some T -reduced voltage assignment ξ : X → N with respect to an arbitrary fixed spanning tree
T of X .
Tutte [25,26] showed that every finite cubic symmetric graph is s-regular for some s ≥ 1, and this s is at most five. It

follows that every cubic symmetric graph has an order of the form 2mp for a positive integer m and a prime number p. In
order to know all cubic symmetric graphs, we need to classify the cubic s-regular graphs of order 2mp for a fixed positive
integer m and each prime p. Conder and Dobcsányi [3,4] classified the cubic s-regular graphs up to order 2048 with the
help of the ‘‘Low index normal subgroups’’ routine in MAGMA system [1]. Cheng and Oxley [2] classified the cubic s-regular
graphs of order 2p. Recently, by using the covering technique, cubic s-regular graphs with order 2p2, 2p3, 4p, 4p2, 6p, 6p2,
8p, 8p2, 10p, 10p2 and 14pwere classified in [7–12,21].
In this paper, we classify all cubic s-regular cubic graphs with order 16p for each s ≥ 1 and each prime p. As a result, a

new infinite family of cubic 1-regular graphs with girth 10 is constructed.

2. The cubic symmetric graphs of order 16p

We will use the following well-known results in group theory.

Proposition 2.1 ([15, Chapter IV, Theorem 2.6]). Let G be a finite group and P a Sylow p-subgroup of G. Let NG(P) be the
normalizer of P in G and CG(P) the centralizer of P in G. If NG(P) = CG(P), then G has a normal subgroup N such that G/N ∼= P.

Proposition 2.2. (1) [22, Theorem 8.5.3] Let p and q be primes and let a and b be non-negative integers. Then every group of
order paqb is solvable.

(2) [13, Feit–Thompson Theorem] Every finite group of odd order is solvable.

Let X be a graph and let N be a subgroup of Aut(X). Denote by X the quotient graph corresponding to the orbits of N , that
is the graph having the orbits of N as vertices with two orbits adjacent in X whenever there is an edge between those orbits
in X .

Proposition 2.3 ([16, Theorem 9]). Let X be a connected symmetric graph of a prime valency and let G be an s-arc-transitive
subgroup of Aut(X) for some s ≥ 1. If a normal subgroup N of G has more than two orbits, then it is semiregular and G/N is an
s-arc-transitive subgroup of Aut(X) where X is the quotient graph of X corresponding to the orbits of N.

By [3,4] we have the following.

Lemma 2.4. Let p be a prime. Let X be a cubic symmetric graph of order 16p. If p ≤ 47, then X is isomorphic to one of the graphs
in Table 1.

Assume that a connected graph X and a subgroup G ≤ Aut(X) are given. Choose a spanning tree T of X and a set of
arcs {x1, . . . , xr} ⊆ A(X) containing exactly one arc from each edge in E(X \ T ). Let BT be the corresponding basis of the
first homology group H1(X,Zp) determined by {x1, . . . , xr}. Further, denote by G#h = {α#h | α ∈ G} ≤ GL(H1(X,Zp)) the
induced action of G on H1(X,Zp), and letMG ≤ Zr×rp be the matrix representation of G#h with respect to the basisBT . ByM tG
we denote the dual group consisting of all transposes of matrices inMG.
The following proposition is a special case of [18, Proposition 6.3, Corollary 6.5] (also see [6,23]).
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Fig. 1. The Möbius–Kantor graph.

Proposition 2.5. Let T be a spanning tree of a connected graph X and let the set {x1, x2, . . . , xr} ⊆ A(X) contain exactly
one arc from each cotree edge. Let ξ : A(X) → Zp be a voltage assignment on X which is trivial on T , and let Z(ξ) =
[ξ(x1), ξ(x2), . . . , ξ(xr)]t ∈ Zr×1p . Then the following holds.

(a) A group G ≤ Aut(X) lifts along pξ : Cov(X, ξ) → X if and only if the induced subspace 〈Z(ξ)〉 is an M tG-invariant
1-dimensional subspace.

(b) If ξ ′ : A(X) → Zp is another voltage assignment satisfying (a), then Cov(X, ξ ′) is equivalent to Cov(X, ξ) if and only if
〈Z(ξ)〉 =

〈
Z(ξ ′)

〉
, as subspaces. Moreover, Cov(X, ξ ′) is isomorphic to Cov(X, ξ) if and only if there exists an automorphism

α ∈ Aut(X) such that the matrix M tα maps
〈
Z(ξ ′)

〉
onto 〈Z(ξ)〉.

The Möbius–Kantor graph F16 is illustrated in Fig. 1. It is known that F16 is a unique cubic symmetric graph of order 16,
which is 2-regular (see [3,4]). We choose

α := (2, 8, 9)(3, 16, 14)(4, 13, 6)(7, 12, 10),
β := (1, 2)(3, 8)(4, 7)(5, 6)(9, 10)(11, 16)(12, 15)(13, 14),
γ := (1, 2)(3, 9)(4, 14)(5, 6)(7, 13)(8, 10)(11, 12)(15, 16)

as automorphisms of F16. Then Aut(F16) = 〈α, β, γ 〉 and Aut(F16) has two proper arc-transitive subgroups H := 〈α, β〉 and
K := 〈α, γ 〉. This can be checked by GAP [24].
Thus, in order to determine all arc-transitive Zp-covering projections of F16, it suffices to find those which are H- or

K -admissible. By Proposition 2.5, this is equivalent to finding all invariant 1-dimensional subspaces of the representations
M tH orM

t
K .

We choose a spanning tree T of F16 consisting of the edges

{{1, 9}, {2, 10}, {3, 11}, {4, 12}, {5, 13}, {6, 14}, {7, 15}, {8, 16},
{9, 12}, {9, 14}, {10, 13}, {10, 15}, {11, 14}, {12, 15}, {13, 16}}.

We orient the cotree arcs by setting

x1 = (1, 2), x2 = (2, 3), x3 = (3, 4), x4 = (4, 5), x5 = (5, 6),
x6 = (6, 7), x7 = (7, 8), x8 = (8, 1), x9 = (11, 16).

Let B = {Cxi | 1 ≤ i ≤ 9} be the standard ordered basis of H1(F16,Zp) associated with the spanning tree T and the arcs
xi (i = 1, . . . , 9). Let p ≥ 5 be a prime number such that p = 1mod(6) and let ζ be a solution of the equation x2+ x+1 = 0
in Zp. We define a T -reduced voltage assignment ξ : {xi | 1 ≤ i ≤ 9} → Zp by setting

x1 7→ ζ , x2 7→ 1− ζ , x3 7→ ζ , x4 7→ −ζ − 1, x5 7→ ζ + 2,
x6 7→ −ζ − 1, x7 7→ ζ , x8 7→ 1− ζ , x9 7→ −2.

We remark that the voltage assignment ξ is derived from theM tH-invariant 1-dimensional subspace 〈k1〉 (see Section 3). Let
CF16p(p ≥ 5) be the derived graph from the voltage assignment ξ .
Malnič et al. [17] classified semisymmetric elementary abelian covers of F16. One might derive the following theorem

from [17]. But, we give its (simpler) proof in the next section.

Theorem 2.6. Let p ≥ 5 be a prime. Let X̃ be an arc-transitive Zp-cover of the Möbius–Kantor graph F16. Then X̃ is isomorphic
to the 1-regular graph CF16p of girth 10 where p = 1mod(6).
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Remark. Marušič et al. [19,20] gave the relation between half-transitive group actionwith vertex stabilizerZ2 and 1-regular
group action with cyclic vertex stabilizer, which give us infinitely many finite half-transitive graphs of valency 4.

The following is the main result in this paper.

Theorem 2.7. Let p be a prime and let X be a connected cubic symmetric graph of order 16p. Then X is 1-, 2- or 3-regular.
Furthermore,
(1) X is 1-regular if and only if X is isomorphic to the graph CF16p(p ≥ 7), where p = 1mod(6).
(2) X is 2-regular if and only if X is isomorphic to one of the three graphs F32, F48 and F112B.
(3) X is 3-regular if and only if X is isomorphic to one of the two graphs F80 and F112C .
Proof. Let X be a cubic symmetric graph of order 16p. By [3,4] we may assume p > 47. Let A = Aut(X) and let P be a
Sylow p-subgroup of A. If P is normal in A, by Proposition 2.3 X is a regular covering of the graph F16 with the covering
transformation group Zp and the normality of P implies that the fibre-preserving group is arc-transitive. By Theorem 2.6, X
is isomorphic to CF16p. Thus, it suffices to show that P is normal in A.
Let NA(P) be the normalizer of P in A. By Sylow’s theorem, the number of Sylow p-subgroups of A is np+ 1 = |A : NA(P)|.

Since X is at most 5-regular, |A| is a divisor of 48 ·16p. Thus np+1 is a divisor of 48 ·16. Suppose to the contrary that P is not
normal in A. Since np + 1 ≥ 54 and np + 1 | 28 · 3, we have (n, p) = (13, 59), (1, 127), (1, 191) or (1, 383). If NA(P) = P
then CA(P) = P , where CA(P) is the centralizer of P in A. By Proposition 2.1, A has a normal subgroup N such that A/N ∼= P ,
and by Proposition 2.3, the quotient graph corresponding to the orbits of N has odd order and valency 3, a contradiction.
Thus one may assume (n, p) 6= (13, 59). Since |A : NA(P)| = 27, 26 · 3 or 27 · 3, |A| has a divisor 27 · 3 · pwhere p = 127, 191
or 383, implying that X is at least 3-arc-transitive. LetM be a minimal normal subgroup of A and X the quotient graph of X
corresponding to the orbits ofM .
If M is elementary abelian then by Proposition 2.3 X is 3-arc-transitive with order 24, 2p, 4p or 8p, which is impossible

by the result in [3,4], [8, Theorem 5.2] and [11, Theorem 5.1]. Thus, one may assume that M = T1 × T2 × · · · × Tt , where
Ti (1 ≤ i ≤ t) are isomorphic non-abelian simple groups. By Proposition 2.2, |Ti| has at least three prime factors. Notice that
|A| is a divisor of 28 · 3 · p where p = 127, 191 or 383. Then t = 1 and M is a non-abelian simple group. Thus M has order
2` · 3 · p for some 1 ≤ ` ≤ 8. However, there is no simple group with such orders (see [5]). �

3. The proof of Theorem 2.6

Let p ≥ 5 be a prime. It is known that a polynomial x2 + x+ 1 = 0 has a solution in Zp if and only if−3 is a square root
in Zp, which is if and only if p = 1(mod 6).
Let R, T and S be the transposes of the matrices which represent the linear transformations α#h , β#h and γ #h relative to

B, respectively. Then

R =



−1 0 0 0 0 0 −1 −1 0
0 −1 0 0 0 0 1 0 −1
0 1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0
0 −1 −1 −1 −1 −1 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0


,

T =



−1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1


,

S =



−1 −1 0 0 0 0 0 −1 −1
0 0 −1 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 −1
0 0 −1 −1 −1 −1 −1 0 1
0 0 1 1 0 0 0 0 −1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 −1 0 1
0 0 1 0 0 0 1 0 −1


.
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In order to find 〈R, T 〉- or 〈R, S〉-invariant 1-dimensional subspaces in Zp, it is useful to consider R, T and S as matrices
over the splitting field Zp(ζ ) where ζ is a solution of the polynomial x2 + x + 1 = 0. The respective characteristic and
minimal polynomials of R, T and S are

∆R(x) = (x− 1)(x− ζ )4(x− ζ 2)4, mR(x) = (x− 1)(x− ζ )(x− ζ 2),
∆T (x) = (x− 1)3(x+ 1)6, mT (x) = (x− 1)(x+ 1),
∆S(x) = (x− 1)4(x+ 1)5, mS(x) = (x− 1)(x+ 1).

By a straightforward calculation, we have

Ker(R− I) = 〈u1〉 , Ker(R− ζ I) = 〈u2, u3, u4, u5〉 , Ker(R− ζ 2I) = 〈u6, u7, u8, u9〉 ,
Ker(T − I) = 〈v1, v2, v3〉 , Ker(T + I) = 〈v4, v5, v6, v7, v8, v9〉 ,
Ker(S − I) = 〈w1, w2, w3, w4〉 , Ker(S + I) = 〈w5, w6, w7, w8, w9〉

where

u1 =



0
0
1
0
−1
1
1
−1
1


, u2 =



0
0
0

−ζ − 1
1
0
0
0
0


, u3 =



ζ
−ζ
−1
1
0
ζ
1
0
0


, u4 =



0
ζ
−ζ
0
0
0
0
0
1


, u5 =



ζ
0
0
0
0
0
0
1
0


, u6 =



−ζ − 1
0
0
0
0
0
0
1
0


,

u7 =



0
0
0
ζ
1
0
0
0
0


, u8 =



0
−ζ − 1
ζ + 1
0
0
0
0
0
1


, u9 =



−ζ − 1
ζ + 1
−1
1
0

−ζ − 1
1
0
0


, v1 =



0
0
0
−1
0
1
0
0
0


, v2 =



0
0
−1
0
0
0
1
0
0


, v3 =



0
−1
0
0
0
0
0
1
0


,

v4 =



0
0
1
0
0
0
1
0
0


, v5 =



0
0
0
1
0
1
0
0
0


, v6 =



1
0
0
0
0
0
0
0
0


, v7 =



0
0
0
0
0
0
0
0
1


, v8 =



0
0
0
0
1
0
0
0
0


, v9 =



0
1
0
0
0
0
0
1
0


, w1 =



0
−1
2
−1
0
0
0
0
1


,

w2 =



−1
1
0
0
0
0
0
1
0


, w3 =



−1/2
1
−1
1
−1/2
0
1
0
0


, w4 =



0
0
0
1
−1
1
0
0
0


, w5 =



1
0
0
0
0
0
0
0
0


, w6 =



0
−1
0
1
0
0
0
0
1


, w7 =



0
−1
0
0
0
0
0
1
0


,

w8 =



0
0
0
−1
0
1
0
0
0


, w9 =



0
0
0
0
1
0
0
0
0


.
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Solving homogeneous linear equations over the splitting field Zp(ζ ), one can see that
Ker(R− I) ∩ Ker(T ± I) = Ker(R− I) ∩ Ker(S ± I) = 0,
Ker(R− ζ I) ∩ Ker(S ± I) = Ker(R− ζ 2I) ∩ Ker(S ± I) = 0,
Ker(R− ζ I) ∩ Ker(T − I) = Ker(R− ζ 2I) ∩ Ker(T − I) = 0,
Ker(R− ζ I) ∩ Ker(T + I) = 〈k1〉 ,
Ker(R− ζ 2I) ∩ Ker(T + I) = 〈k2〉

where

k1 :=



ζ
1− ζ
ζ

−ζ − 1
ζ + 2
−ζ − 1
ζ
1− ζ
−2


and k2 :=



1
ζ − 1
1

−ζ − 1
2ζ + 1
−ζ − 1
1

ζ − 1
−2ζ


.

Hence, there exist only two 〈R, T 〉-invariant 1-dimensional subspaces 〈k1〉 and 〈k2〉. Furthermore, since Sk1 = ζk2, two
spaces 〈k1〉 and 〈k2〉 induce isomorphic covering projections whose maximal lifting group is H . By considering the induced
subgraph

〈N0(1, 0) ∪ N1(1, 0) ∪ N2(1, 0) ∪ N3(1, 0) ∪ N4(1, 0) ∪ N5(1, 0)〉
of CF16p, one can see that the girth of CF16p is 10. This completes the proof that any arc-transitive Zp-covering (p ≥ 5) graph
of F16 is isomorphic to the graph CF16p with girth 10.
By Lemma 2.4, the graph CF16·7 is 1-regular and isomorphic to F112A because the girth of CF16·7 is 10. Thus, one can assume

p ≥ 11. Let p : CF16p → F16 be the associated covering projection from the voltage assignment ξ and A := Aut(CF16p).
Suppose to the contrary that CF16p is s-regular for some s ≥ 2. By Tutte [25,26], s ≤ 5 and so |A| | 16 · p · 48. Thus L := CT(p)
is a Sylow p-subgroup of A. Let B be the 1-regular subgroup of Aut(CF16p) lifted by 〈α, β〉. Then |B| = 16 ·3 ·p. The normality
of L in B implies that B ≤ NA(L), where NA(L) is the normalizer of L in A. Since X̃ is at most 5-regular, |A : NA(L)| | 16.
By Sylow’s theorem, the number of Sylow p-subgroups of A is np + 1 and np + 1 = |A : NA(L)|. Since p ≥ 11, we have
np + 1 = 1. Thus L is normal in A. By Proposition 2.3, A/L is an s-regular subgroup of Aut(F16). This is impossible because
otherwise s-regular subgroup A/L(s ≥ 2) of Aut(F16) lifts. This completes the proof of Theorem 2.6.
As continuation of this work, we have classified the cubic s-regular graphs of order 18p and 20p for every s ≥ 1 and every

prime p.
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