Discrete Mathematics 309 (2009) 3150-3155

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A classification of cubic s-regular graphs of order 16p
Ju-Mok Oh

Combinatorial and Computational Mathematics Center, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea

ARTICLE INFO ABSTRACT
Arfic{e history: A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this
Received 25 November 2007 paper, we classify all cubic s-regular graphs of order 16p for every s > 1 and every prime

Received in revised form 10 August 2008
Accepted 1 September 2008
Available online 21 September 2008

p. As a result, a new infinite family of cubic 1-regular graphs with girth 10 is constructed.
© 2008 Elsevier B.V. All rights reserved.

Keywords:

Cubic s-regular graph
Covering graph

The Mobius-Kantor graph

1. Introduction

Throughout this paper, graphs are finite, simple, undirected and connected. For a graph X, let V(X), E(X) and Aut(X)
denote the vertex set, the edge set and the full automorphism group of X, respectively. The arc set A(X) of a graph X is
defined to be the set {(u, v), (v, u) | {u, v} € E(X)}. For avertex v € V(X), by N(v) we denote the set of vertices adjacent
to v. A graph X is called a covering of X with a projection p : X — X if p is a surjection from V(X) to V(x) such that
PIng) : N@) — N(v) is a bijection for any vertex v € V(X) and v € p~'(v). The graph X is usually referred to as the base
graph and X as the covering graph. The fibre of an arc or a vertex is its preimage under p. The group CT(p) of all automorphisms
of X which fix each of the fibres setwise is called the covering transformation group.

An s-arc in a graph X is an ordered (s + 1)-tuple (v, vq, ..., vs) of vertices of X such that v;_; is adjacent to v; for
1 <i<s,and vi_q # vy for 1 <i < s. Agraph X is said to be s-arc-transitive if Aut(X) is transitive on the set of s-arcs in
X. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A subgroup
of the automorphism group of a graph X is said to be s-regular if it acts regularly on the set of s-arcs of X. In particular, if
the subgroup is the full automorphism group Aut(X) of X then X is said to be s-regular. Thus, if a graph X is s-regular then
Aut(X) is transitive on the set of s-arcs and the only automorphism fixing an s-arc is the identity automorphism of X.

A covering p : X — X is said to be regular (or N-covering) if there is a semiregular subgroup N of the automorphism
group Aut(X) such that the graph X is isomorphic to the quotient graph X /N, say by an isomorphism h, and the quotient

map X—>X /N is the composition hp of h and p. If the covering graph)? is connected, then N is the covering transformation

group. An automorphism of a covering graph X is said to be fibre-preserving if it maps a fibre to a fibre, while a covering
transformation maps a fibre onto itself. An automorphism o € Aut(X) lifts along p if there exists an automorphism
a € Aut(X) such that ap = pa. In this case we also say that p is a-admissible. A subgroup G < Aut(X) lifts along p if

each « € G lifts. The set of all lifts G forms a group G < Aut()N(), called the lift of G. A regular covering projection p is
arc-transitive if some arc-transitive subgroup of Aut(X) lifts along p.

Two coverings X and X’ with projections p and p’, respectively, are said to be isomorphic if there exist an automorphism
o € Aut(X) and an jsomorphism & : X — X’ such that @p = p'@. In particular, if « is the identity automorphism of X, then
we say that X and X’ are equivalent.
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Table 1

Cubic symmetric graphs of order 16p with p < 47

Graph Order s-regular Girth Diameter Bipartite?
F3, 16-2 2 6 5 Yes
Fag 16-3 2 8 6 Yes
Fgo 16 -5 3 10 8 Yes
Fi12a 16 -7 1 10 7 Yes
Fi128 16-7 2 8 7 Yes
Fi12c 16 -7 3 8 10 Yes
Fog 16-13 1 10 9 Yes
F304 16-19 1 10 11 Yes
Faos 16 - 31 1 10 15 Yes
Fs92 16 - 37 1 10 15 Yes
Fess 16 - 43 1 10 17 Yes

Let X be a connected graph and N be a finite group, called the voltage group. Assign to each arc of X a voltage & (u, v) € N
such that £ (v, u) = £(u, v)~ . This function & is called an (ordinary) voltage assignment of X. Let Cov(X, £) be the derived
graph with vertex set V x N and adjacency relation defined by (u, a) ~ (v, aé(u, v)) whenever u ~ v in X. Then the
first coordinate projection is a regular covering p; : Cov(X, &) — X where the group N, viewed as CT(p;), acts via left
multiplication on itself. Given a spanning tree T of the graph X, a voltage assignment & is called T-reduced if the voltages on
the tree arcs are the identity. Gross and Tucker [ 14] showed that every regular covering projection p : X — X is equivalent
to pg : Cov(X, §) — X for some T-reduced voltage assignment & : X — N with respect to an arbitrary fixed spanning tree
T of X.

Tutte [25,26] showed that every finite cubic symmetric graph is s-regular for some s > 1, and this s is at most five. It
follows that every cubic symmetric graph has an order of the form 2mp for a positive integer m and a prime number p. In
order to know all cubic symmetric graphs, we need to classify the cubic s-regular graphs of order 2mp for a fixed positive
integer m and each prime p. Conder and Dobcsanyi [3,4] classified the cubic s-regular graphs up to order 2048 with the
help of the “Low index normal subgroups” routine in MAGMA system [1]. Cheng and Oxley [2] classified the cubic s-regular
graphs of order 2p. Recently, by using the covering technique, cubic s-regular graphs with order 2p?, 2p*, 4p, 4p?, 6p, 6p2,
8p, 8p?, 10p, 10p? and 14p were classified in [7-12,21].

In this paper, we classify all cubic s-regular cubic graphs with order 16p for each s > 1 and each prime p. As a result, a
new infinite family of cubic 1-regular graphs with girth 10 is constructed.

2. The cubic symmetric graphs of order 16p
We will use the following well-known results in group theory.

Proposition 2.1 ([15, Chapter 1V, Theorem 2.6]). Let G be a finite group and P a Sylow p-subgroup of G. Let Ng(P) be the
normalizer of P in G and Cs(P) the centralizer of P in G. If Ng(P) = Cg(P), then G has a normal subgroup N such that G/N = P.

Proposition 2.2. (1) [22, Theorem 8.5.3] Let p and q be primes and let a and b be non-negative integers. Then every group of
order p°q® is solvable.
(2) [13, Feit-Thompson Theorem] Every finite group of odd order is solvable.

Let X be a graph and let N be a subgroup of Aut(X). Denote by X the quotient graph corresponding to the orbits of N, that
is the graph having the orbits of N as vertices with two orbits adjacent in X whenever there is an edge between those orbits
in X.

Proposition 2.3 ([16, Theorem 9]). Let X be a connected symmetric graph of a prime valency and let G be an s-arc-transitive
subgroup of Aut(X) for some s > 1. If a normal subgroup N of G has more than two orbits, then it is semiregular and G/N is an
s-arc-transitive subgroup of Aut(X) where X is the quotient graph of X corresponding to the orbits of N.

By [3,4] we have the following.

Lemma 2.4. Let p be a prime. Let X be a cubic symmetric graph of order 16p. If p < 47, then X is isomorphic to one of the graphs
in Table 1.

Assume that a connected graph X and a subgroup G < Aut(X) are given. Choose a spanning tree T of X and a set of
arcs {xq, ..., X} € A(X) containing exactly one arc from each edge in E(X \ T). Let 87 be the corresponding basis of the
first homology group H; (X, Zp) determined by {x1, ..., x;}. Further, denote by G* = {o™ | « € G} < GL(H;(X, Zp)) the
induced action of G on Hy(X, Zp), and let Mg < Z;” be the matrix representation of G*» with respect to the basis Br. By Mf;
we denote the dual group consisting of all transposes of matrices in M.

The following proposition is a special case of [ 18, Proposition 6.3, Corollary 6.5] (also see [6,23]).
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Fig. 1. The Mobius-Kantor graph.

Proposition 2.5. Let T be a spanning tree of a connected graph X and let the set {x{,x,...,x:} C A(X) contain exactly
one arc from each cotree edge. Let § : A(X) — Z, be a voltage assignment on X which is trivial on T, and let Z(§) =
[Ex1),E(x2), ..., Ex)] € Z;Xl. Then the following holds.

(@) A group G < Aut(X) lifts along ps : Cov(X,&) — X if and only if the induced subspace (Z(§)) is an M{-invariant

1-dimensional subspace.

(b) If &' : AX) — Z, is another voltage assignment satisfying (a), then Cov(X, §') is equivalent to Cov(X, &) if and only if
(Z(&)) = <Z (s/)), as subspaces. Moreover, Cov(X, ') is isomorphic to Cov(X, &) if and only if there exists an automorphism
a € Aut(X) such that the matrix M, maps (Z(§")) onto (Z(§)).

The Mdobius-Kantor graph Fyg is illustrated in Fig. 1. It is known that Fyg is a unique cubic symmetric graph of order 16,

which is 2-regular (see [3,4]). We choose

o= (2,8,9)(3, 16, 14)(4, 13,6)(7, 12, 10),

B = (1,2)(3, 8)(4,7)(5, 6)(9, 10)(11, 16)(12, 15)(13, 14),

y = (1,2)(3,9)(4, 14)(5, 6)(7, 13)(8, 10)(11, 12)(15, 16)
as automorphisms of Fy5. Then Aut(Fis) = (&, B, y) and Aut(F;6) has two proper arc-transitive subgroups H := («, ) and
K := («, y). This can be checked by GAP [24].

Thus, in order to determine all arc-transitive Z,-covering projections of Fyg, it suffices to find those which are H- or
K-admissible. By Proposition 2.5, this is equivalent to finding all invariant 1-dimensional subspaces of the representations
M}, or Mj.

We choose a spanning tree T of Fig consisting of the edges

{{1,9} {2, 10}, {3, 11}, {4, 12}, {5, 13}, {6, 14}, {7, 15}, {8, 16},
{9, 12}, {9, 14}, {10, 13}, {10, 15}, {11, 14}, {12, 15}, {13, 16}}.
We orient the cotree arcs by setting
X1 = (19 2)7 Xy = (27 3)’ X3 = (3a4)a X4 = (43 5)7 X5 = (57 6)7
X6 = (6s 7)7 X7 = (77 8)9 Xg = (87 1)5 X9 = (115 ]6)

Let B8 = {C; | 1 < i < 9} be the standard ordered basis of H;(Fis, Z,) associated with the spanning tree T and the arcs
xi(i=1,...,9).Letp > 5 beaprime number such that p = 1 mod(6) and let { be a solution of the equation x> +x+1 =10
in Z,. We define a T-reduced voltage assignment £ : {x; | 1 <i < 9} — Z, by setting

x‘l'_){a X2H1_§a x3"_)§5 x4'_)_§_15 X5H€+25

Xe = —¢ — 1, X7 =, xg—>1—-2¢, X9 > —2.
We remark that the voltage assignment & is derived from the Mj;-invariant 1-dimensional subspace (k;) (see Section 3). Let
CFi6p(p > 5) be the derived graph from the voltage assignment &.

Malnic et al. [17] classified semisymmetric elementary abelian covers of Fig. One might derive the following theorem
from [17]. But, we give its (simpler) proof in the next section.

Theorem 2.6. Let p > 5 be a prime. Let X be an arc-transitive Zp-cover of the Mébius-Kantor graph Fqs. Then Xis isomorphic
to the 1-regular graph CFiep of girth 10 where p = 1 mod(6).
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Remark. Marusic et al. [19,20] gave the relation between half-transitive group action with vertex stabilizer Z; and 1-regular
group action with cyclic vertex stabilizer, which give us infinitely many finite half-transitive graphs of valency 4.

The following is the main result in this paper.

Theorem 2.7. Let p be a prime and let X be a connected cubic symmetric graph of order 16p. Then X is 1-, 2- or 3-regular.
Furthermore,

(1) X is 1-regular if and only if X is isomorphic to the graph CFis,(p > 7), where p = 1 mod(6).

(2) X is 2-regular if and only if X is isomorphic to one of the three graphs Fs,, F43 and F112p.

(3) X is 3-regular if and only if X is isomorphic to one of the two graphs Fgo and Fy1ac.

Proof. Let X be a cubic symmetric graph of order 16p. By [3,4] we may assume p > 47.Let A = Aut(X) and let P be a
Sylow p-subgroup of A. If P is normal in A, by Proposition 2.3 X is a regular covering of the graph Fig with the covering
transformation group Z, and the normality of P implies that the fibre-preserving group is arc-transitive. By Theorem 2.6, X
is isomorphic to CFygp. Thus, it suffices to show that P is normal in A.

Let N4(P) be the normalizer of P in A. By Sylow’s theorem, the number of Sylow p-subgroups of Aisnp + 1 = |A : N4(P)|.
Since X is at most 5-regular, |A| is a divisor of 48 - 16p. Thus np 4 1 is a divisor of 48 - 16. Suppose to the contrary that P is not
normal in A. Since np + 1 > 54 and np + 1 | 28 - 3, we have (n, p) = (13, 59), (1, 127), (1, 191) or (1, 383). If N4(P) = P
then C4(P) = P, where C4(P) is the centralizer of P in A. By Proposition 2.1, A has a normal subgroup N such that A/N = P,
and by Proposition 2.3, the quotient graph corresponding to the orbits of N has odd order and valency 3, a contradiction.
Thus one may assume (11, p) # (13, 59). Since |A : No(P)| = 27,253 or 27 - 3, |A| has a divisor 27 - 3 - p where p = 127, 191
or 383, implying that X is at least 3-arc-transitive. Let M be a minimal normal subgroup of A and X the quotient graph of X
corresponding to the orbits of M.

If M is elementary abelian then by Proposition 2.3 X is 3-arc-transitive with order 24, 2p, 4p or 8p, which is impossible
by the result in [3,4], [8, Theorem 5.2] and [11, Theorem 5.1]. Thus, one may assume that M = T; x T, x --- x T;, where
T; (1 < i < t) are isomorphic non-abelian simple groups. By Proposition 2.2, |T;| has at least three prime factors. Notice that
|A] is a divisor of 28 - 3 - p where p = 127, 191 or 383. Then t = 1 and M is a non-abelian simple group. Thus M has order
2¢.3.pforsome 1 < £ < 8. However, there is no simple group with such orders (see [5]). O

3. The proof of Theorem 2.6

Let p > 5 be a prime. It is known that a polynomial x> + x + 1 = 0 has a solution in Z, if and only if —3 is a square root
in Z,, which is if and only if p = 1(mod 6).

Let R, T and S be the transposes of the matrices which represent the linear transformations o*", 81 and y*t relative to
B, respectively. Then

——1 0 0 0 0 0 -1 -1 0~
0 -1 0 0 0 0 1 0o -1
0 1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0
R=(0 -1 -1 -1 -1 -1 0 0 0|,
0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0o -1 O 0 0
L 0 1 0 0 0 1 0 0 0
r—1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 -1 0 0
0 0 0 0 0o -1 O 0 0
T=|0 0 0 0 -1 0 0 0 01,
0 0 0o -1 O 0 0 0 0
0 0 -1 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0
L O 0 0 0 0 0 0 0o -1
——1 -1 0 0 0 0 0 -1 —1q
0 0o -1 O 0 0 0 1 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0o -1
S=1]0 o -1 -1 -1 -1 -1 O 1
0 0 1 1 0 0 0 0o -1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 -1 0 1
L0 0 1 0 0 0 1 0o -1
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In order to find (R, T)- or (R, S)-invariant 1-dimensional subspaces in Z,, it is useful to consider R, T and S as matrices
over the splitting field Z,(¢) where ¢ is a solution of the polynomial x> + x + 1 = 0. The respective characteristic and
minimal polynomials of R, T and S are

Ar®) = x = DX =0 x =D mpe) = (= D= HE =),
Ar) = x—1D’x+1°%  mr)=@x-1Dx+1),
As@) = x =D x4+ 1% ms) = (x = D&+ 1).
By a straightforward calculation, we have
Ker(R—1) = (uy), Ker(R — ¢I) = (uy, us, ug, Us) , Ker(R — ¢21) = (ug, U7, ug, o),
Ker(T —I) = (v1, vy, v3), Ker(T +I) = (va, vs, vg, V7, Vg, Vg) ,

Ker(S — I) = <w1, wy, W3, U)4> s Ker(S + I) = (I,U5, we, W7, Wg, U.)g)
where
-0 - - 0 - - ¢ -0 ¢ ——¢ — 1-
0 0 —¢ ¢ 0 0
1 0 -1 ¢ 0 0
0 -1 1 0 0 0
u, = —1 s U = 1 s Us = 0 , Uy = 0 s Us = 0 s Usg = 0 s
1 0 ¢ 0 0 0
1 0 1 0 0 0
-1 0 0 0 1 1
L1 L 0 4 L 0 - L 14 L0 L 0 4
~0- S ——¢ — 17 -0 - - 0 -0 -
0 —r—1 C+1 0 0 -1
0 ¢+1 -1 0 -1 0
¢ 0 1 -1 0 0
u; = 1 s Ug = 0 y Ug = 0 , v = 0 s Uy = 0 y V3 = 0 ,
0 0 ——1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1
L0 L 1 A L 0 4 L 0 - L 0 4 L0
-0- 0 -1 -0 -0 -0- -0
0 0 0 0 0 1 —1
1 0 0 0 0 0 2
0 1 0 0 0 0 —1
Vg = 0 , Vs = 0 . Vg = 0 s V7 = 0 , Vg = 1 . Vg = 0 . w1 = 0 ,
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
L0 L0 L0 L1 L0 L0 L1 4
-1 -—1/2- -0 - -1 - 0 - -0 -
1 1 0 0 —1 —1
0 -1 0 0 0 0
0 1 1 0 1 0
Wy = 0 s w3 = —]/2 s Wy = —1 . W5 = 0 . We = 0 . wy = 0 ,
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 1
L 0 - L 0 A L 0 - LO- L1 4 L0
— O —_ _O_.
0 0
0 0
—1 0
wg = 0 y Wg = 1
1 0
0 0
0 0
L 0 L0
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Solving homogeneous linear equations over the splitting field Z,(¢ ), one can see that
Ker(R—1) NKer(T £1) = Ker(R—1) NKer(S £1) =0,
Ker(R — ¢I) N Ker(S £1) = Ker(R — ;21) NKer(S+1) =0,
Ker(R — ¢I) NKer(T —I) = Ker(R — g“zI) N Ker(T —1) =0,
Ker(R — ¢I) NKer(T + 1) = (kq),
Ker(R — z2I) NKer(T + 1) = (ky)

where
— é- —_ — ‘1 —_
1-¢ -1
¢ 1
- -1 - -1
k=] ¢+2 and k, .= | 2¢+1
- -1 - -1
e 1
1-¢ -1
L —2 L —2¢

Hence, there exist only two (R, T)-invariant 1-dimensional subspaces (k;) and (k,). Furthermore, since Sk; = ¢k,, two
spaces (k) and (k) induce isomorphic covering projections whose maximal lifting group is H. By considering the induced
subgraph
(No(1,0) UN;(1,0) UN,(1,0) UNs3(1,0) UN4(1,0) UNs(1,0))

of CFy6p, One can see that the girth of CFyp is 10. This completes the proof that any arc-transitive Zy-covering (p > 5) graph
of Fyg is isomorphic to the graph CFyg, with girth 10.

By Lemma 2.4, the graph CFyg.7 is 1-regular and isomorphic to F1124 because the girth of CFy.7 is 10. Thus, one can assume
p > 11.Letp : CFigp — Fig be the associated covering projection from the voltage assignment & and A := Aut(CFigp).
Suppose to the contrary that CFyg, is s-regular for some s > 2. By Tutte [25,26],s < 5and so |A| | 16 - p - 48. Thus L := CT(p)
is a Sylow p-subgroup of A. Let B be the 1-regular subgroup of Aut(CF;¢p) lifted by (g, B).Then |B| = 16 - 3 - p. The normality
of L in B implies that B < N4 (L), where N,4(L) is the normalizer of L in A. Since X is at most 5-regular, |A : Na(L)| |
By Sylow’s theorem, the number of Sylow p-subgroups of Aisnp + 1and np + 1 = |A : N4(L)|. Since p > 11, we have
np + 1 = 1. Thus L is normal in A. By Proposition 2.3, A/L is an s-regular subgroup of Aut(F;). This is impossible because
otherwise s-regular subgroup A/L(s > 2) of Aut(Fy) lifts. This completes the proof of Theorem 2.6.

As continuation of this work, we have classified the cubic s-regular graphs of order 18p and 20p for every s > 1and every
prime p.
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