# A classification of cubic $s$-regular graphs of order $16 p$ 

Ju-Mok Oh<br>Combinatorial and Computational Mathematics Center, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea

## A R T I C L E I N F O

## Article history:

Received 25 November 2007
Received in revised form 10 August 2008
Accepted 1 September 2008
Available online 21 September 2008

## Keywords:

Cubic s-regular graph
Covering graph
The Möbius-Kantor graph


#### Abstract

A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this paper, we classify all cubic $s$-regular graphs of order $16 p$ for every $s \geq 1$ and every prime p. As a result, a new infinite family of cubic 1-regular graphs with girth 10 is constructed. © 2008 Elsevier B.V. All rights reserved.


## 1. Introduction

Throughout this paper, graphs are finite, simple, undirected and connected. For a graph $X$, let $V(X), E(X)$ and Aut $(X)$ denote the vertex set, the edge set and the full automorphism group of $X$, respectively. The $\operatorname{arc} \operatorname{set} A(X)$ of a graph $X$ is defined to be the set $\{(u, v),(v, u) \mid\{u, v\} \in E(X)\}$. For a vertex $v \in V(X)$, by $N(v)$ we denote the set of vertices adjacent to $v$. A graph $\widetilde{X}$ is called a covering of $X$ with a projection $p: \widetilde{X} \rightarrow X$ if $p$ is a surjection from $V(\widetilde{X})$ to $V(x)$ such that $\left.\mathbf{p}\right|_{N(\widetilde{v})}: N(\widetilde{v}) \rightarrow N(v)$ is a bijection for any vertex $v \in V(X)$ and $\widetilde{v} \in \mathbf{p}^{-1}(v)$. The graph $X$ is usually referred to as the base graph and $\widetilde{X}$ as the covering graph. The fibre of an arc or a vertex is its preimage under $p$. The group $C T(\mathbf{p})$ of all automorphisms of $X$ which fix each of the fibres setwise is called the covering transformation group.

An s-arc in a graph $X$ is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices of $X$ such that $v_{i-1}$ is adjacent to $v_{i}$ for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i<s$. A graph $X$ is said to be $s$-arc-transitive if Aut $(X)$ is transitive on the set of $s$-arcs in $X$. In particular, 0 -arc-transitive means vertex-transitive, and 1 -arc-transitive means arc-transitive or symmetric. A subgroup of the automorphism group of a graph $X$ is said to be $s$-regular if it acts regularly on the set of $s$-arcs of $X$. In particular, if the subgroup is the full automorphism group $\operatorname{Aut}(X)$ of $X$ then $X$ is said to be $s$-regular. Thus, if a graph $X$ is $s$-regular then Aut $(X)$ is transitive on the set of $s$-arcs and the only automorphism fixing an $s$-arc is the identity automorphism of $X$.

A covering $\mathbf{p}: \widetilde{X} \rightarrow X$ is said to be regular (or $N$-covering) if there is a semiregular subgroup $N$ of the automorphism group $\operatorname{Aut}(\widetilde{X})$ such that the graph $X$ is isomorphic to the quotient graph $\widetilde{X} / N$, say by an isomorphism $h$, and the quotient $\operatorname{map} \widetilde{X} \rightarrow \widetilde{X} / N$ is the composition $h \mathbf{p}$ of $h$ and $\mathbf{p}$. If the covering graph $\widetilde{X}$ is connected, then $N$ is the covering transformation group. An automorphism of a covering graph $\widetilde{X}$ is said to be fibre-preserving if it maps a fibre to a fibre, while a covering transformation maps a fibre onto itself. An automorphism $\alpha \in \operatorname{Aut}(X)$ lifts along $\mathbf{p}$ if there exists an automorphism $\widetilde{\alpha} \in \operatorname{Aut}(\widetilde{X})$ such that $\alpha \mathbf{p}=\mathbf{p} \widetilde{\alpha}$. In this case we also say that $\mathbf{p}$ is $\alpha$-admissible. A subgroup $G \leq \operatorname{Aut}(X)$ lifts along $\mathbf{p}$ if each $\alpha \in G$ lifts. The set of all lifts $G$ forms a group $\widetilde{G} \leq \operatorname{Aut}(\widetilde{X})$, called the lift of $G$. A regular covering projection $\mathbf{p}$ is arc-transitive if some arc-transitive subgroup of $\operatorname{Aut}(X)$ lifts along $\mathbf{p}$.

Two coverings $\widetilde{X}$ and $\widetilde{X}^{\prime}$ with projections $\mathbf{p}$ and $\mathbf{p}^{\prime}$, respectively, are said to be isomorphic if there exist an automorphism $\alpha \in \operatorname{Aut}(X)$ and an isomorphism $\widetilde{\alpha}: X \rightarrow X^{\prime}$ such that $\alpha \mathbf{p}=\mathbf{p}^{\prime} \widetilde{\alpha}$. In particular, if $\alpha$ is the identity automorphism of $X$, then we say that $\widetilde{X}$ and $\widetilde{X}^{\prime}$ are equivalent.

[^0]Table 1
Cubic symmetric graphs of order $16 p$ with $p \leq 47$

| Graph | Order | $s$-regular | Girth | Diameter |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $F_{32}$ | $16 \cdot 2$ | 2 | 6 | 5 | Bipartite? |
| $F_{48}$ | $16 \cdot 3$ | 2 | 8 | 6 | Yes |
| $F_{80}$ | $16 \cdot 5$ | 3 | 10 | 8 | 7 |
| $F_{112 A}$ | $16 \cdot 7$ | 1 | 10 | 7 | Yes |
| $F_{112 B}$ | $16 \cdot 7$ | 2 | 8 | 8 | 10 |
| $F_{112 C}$ | $16 \cdot 7$ | 3 | 10 | 9 | Yes |
| $F_{208}$ | $16 \cdot 13$ | 1 | 10 | 11 | Yes |
| $F_{304}$ | $16 \cdot 19$ | 1 | 10 | 15 | Yes |
| $F_{496}$ | $16 \cdot 31$ | 1 | 10 | 15 | Yes |
| $F_{592}$ | $16 \cdot 37$ | 1 | 10 | 17 | Yes |
| $F_{688}$ | $16 \cdot 43$ | 1 |  | Yes |  |

Let $X$ be a connected graph and $N$ be a finite group, called the voltage group. Assign to each arc of $X$ a voltage $\xi(u, v) \in N$ such that $\xi(v, u)=\xi(u, v)^{-1}$. This function $\xi$ is called an (ordinary) voltage assignment of $X$. Let $\operatorname{Cov}(X, \xi)$ be the derived graph with vertex set $V \times N$ and adjacency relation defined by $(u, a) \sim(v, a \xi(u, v))$ whenever $u \sim v$ in $X$. Then the first coordinate projection is a regular covering $\mathbf{p}_{\xi}: \operatorname{Cov}(X, \xi) \rightarrow X$ where the group $N$, viewed as $\mathrm{CT}\left(\mathbf{p}_{\xi}\right)$, acts via left multiplication on itself. Given a spanning tree $T$ of the graph $X$, a voltage assignment $\xi$ is called $T$-reduced if the voltages on the tree arcs are the identity. Gross and Tucker [14] showed that every regular covering projection $\mathbf{p}: \widetilde{X} \rightarrow X$ is equivalent to $\mathbf{p}_{\xi}: \operatorname{Cov}(X, \xi) \rightarrow X$ for some $T$-reduced voltage assignment $\xi: X \rightarrow N$ with respect to an arbitrary fixed spanning tree $T$ of $X$.

Tutte $[25,26]$ showed that every finite cubic symmetric graph is $s$-regular for some $s \geq 1$, and this $s$ is at most five. It follows that every cubic symmetric graph has an order of the form $2 m p$ for a positive integer $m$ and a prime number $p$. In order to know all cubic symmetric graphs, we need to classify the cubic s-regular graphs of order 2 mp for a fixed positive integer $m$ and each prime $p$. Conder and Dobcsányi [3,4] classified the cubic s-regular graphs up to order 2048 with the help of the "Low index normal subgroups" routine in MAGMA system [1]. Cheng and Oxley [2] classified the cubic s-regular graphs of order $2 p$. Recently, by using the covering technique, cubic $s$-regular graphs with order $2 p^{2}, 2 p^{3}, 4 p, 4 p^{2}, 6 p, 6 p^{2}$, $8 p, 8 p^{2}, 10 p, 10 p^{2}$ and $14 p$ were classified in [7-12,21].

In this paper, we classify all cubic $s$-regular cubic graphs with order $16 p$ for each $s \geq 1$ and each prime $p$. As a result, a new infinite family of cubic 1-regular graphs with girth 10 is constructed.

## 2. The cubic symmetric graphs of order $16 p$

We will use the following well-known results in group theory.
Proposition 2.1 ([15, Chapter IV, Theorem 2.6]). Let $G$ be a finite group and $P$ a Sylow p-subgroup of $G$. Let $N_{G}(P)$ be the normalizer of $P$ in $G$ and $C_{G}(P)$ the centralizer of $P$ in $G$. If $N_{G}(P)=C_{G}(P)$, then $G$ has a normal subgroup $N$ such that $G / N \cong P$.

Proposition 2.2. (1) [22, Theorem 8.5.3] Let $p$ and $q$ be primes and let $a$ and $b$ be non-negative integers. Then every group of order $p^{a} q^{b}$ is solvable.
(2) [13, Feit-Thompson Theorem $]$ Every finite group of odd order is solvable.

Let $X$ be a graph and let $N$ be a subgroup of $\operatorname{Aut}(X)$. Denote by $\underline{X}$ the quotient graph corresponding to the orbits of $N$, that is the graph having the orbits of $N$ as vertices with two orbits adjacent in $\underline{X}$ whenever there is an edge between those orbits in $X$.

Proposition 2.3 ([16, Theorem 9]). Let $X$ be a connected symmetric graph of a prime valency and let $G$ be an s-arc-transitive subgroup of $\operatorname{Aut}(X)$ for some $s \geq 1$. If a normal subgroup $N$ of $G$ has more than two orbits, then it is semiregular and $G / N$ is an $s$-arc-transitive subgroup of $\operatorname{Aut}(\underline{X})$ where $\underline{X}$ is the quotient graph of $X$ corresponding to the orbits of $N$.

By [3,4] we have the following.
Lemma 2.4. Let $p$ be a prime. Let $X$ be a cubic symmetric graph of order $16 p$. If $p \leq 47$, then $X$ is isomorphic to one of the graphs in Table 1.

Assume that a connected graph $X$ and a subgroup $G \leq \operatorname{Aut}(X)$ are given. Choose a spanning tree $T$ of $X$ and a set of $\operatorname{arcs}\left\{x_{1}, \ldots, x_{r}\right\} \subseteq A(X)$ containing exactly one arc from each edge in $E(X \backslash T)$. Let $\mathscr{B}_{T}$ be the corresponding basis of the first homology group $H_{1}\left(X, \mathbb{Z}_{p}\right)$ determined by $\left\{x_{1}, \ldots, x_{r}\right\}$. Further, denote by $G^{\#_{h}}=\left\{\alpha^{\# h} \mid \alpha \in G\right\} \leq G L\left(H_{1}\left(X, \mathbb{Z}_{p}\right)\right)$ the induced action of $G$ on $H_{1}\left(X, \mathbb{Z}_{p}\right)$, and let $M_{G} \leq \mathbb{Z}_{p}^{r \times r}$ be the matrix representation of $G^{\#_{h}}$ with respect to the basis $\mathscr{B}_{T}$. By $M_{G}^{t}$ we denote the dual group consisting of all transposes of matrices in $M_{G}$.

The following proposition is a special case of [18, Proposition 6.3, Corollary 6.5] (also see [6,23]).


Fig. 1. The Möbius-Kantor graph.
Proposition 2.5. Let $T$ be a spanning tree of a connected graph $X$ and let the set $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \subseteq A(X)$ contain exactly one arc from each cotree edge. Let $\xi: A(X) \rightarrow \mathbb{Z}_{p}$ be a voltage assignment on $X$ which is trivial on $T$, and let $Z(\xi)=$ $\left[\xi\left(x_{1}\right), \xi\left(x_{2}\right), \ldots, \xi\left(x_{r}\right)\right]^{t} \in \mathbb{Z}_{p}^{r \times 1}$. Then the following holds.
(a) A group $G \leq \operatorname{Aut}(X)$ lifts along $p_{\xi}: \operatorname{Cov}(X, \xi) \rightarrow X$ if and only if the induced subspace $\langle Z(\xi)\rangle$ is an $M_{G}^{t}$-invariant 1-dimensional subspace.
(b) If $\xi^{\prime}: A(X) \rightarrow \mathbb{Z}_{p}$ is another voltage assignment satisfying (a), then $\operatorname{Cov}\left(X, \xi^{\prime}\right)$ is equivalent to $\operatorname{Cov}(X, \xi)$ if and only if $\langle Z(\xi)\rangle=\left\langle Z\left(\xi^{\prime}\right)\right\rangle$, as subspaces. Moreover, $\operatorname{Cov}\left(X, \xi^{\prime}\right)$ is isomorphic to $\operatorname{Cov}(X, \xi)$ if and only if there exists an automorphism $\alpha \in \operatorname{Aut}(X)$ such that the matrix $M_{\alpha}^{t}$ maps $\left\langle Z\left(\xi^{\prime}\right)\right\rangle$ onto $\langle Z(\xi)\rangle$.

The Möbius-Kantor graph $F_{16}$ is illustrated in Fig. 1. It is known that $F_{16}$ is a unique cubic symmetric graph of order 16 , which is 2 -regular (see [3,4]). We choose

$$
\begin{aligned}
\alpha & :=(2,8,9)(3,16,14)(4,13,6)(7,12,10), \\
\beta & :=(1,2)(3,8)(4,7)(5,6)(9,10)(11,16)(12,15)(13,14), \\
\gamma & :=(1,2)(3,9)(4,14)(5,6)(7,13)(8,10)(11,12)(15,16)
\end{aligned}
$$

as automorphisms of $F_{16}$. Then $\operatorname{Aut}\left(F_{16}\right)=\langle\alpha, \beta, \gamma\rangle$ and $\operatorname{Aut}\left(F_{16}\right)$ has two proper arc-transitive subgroups $H:=\langle\alpha, \beta\rangle$ and $K:=\langle\alpha, \gamma\rangle$. This can be checked by GAP [24].

Thus, in order to determine all arc-transitive $\mathbb{Z}_{p}$-covering projections of $F_{16}$, it suffices to find those which are $H$ - or $K$-admissible. By Proposition 2.5, this is equivalent to finding all invariant 1-dimensional subspaces of the representations $M_{H}^{t}$ or $M_{K}^{t}$.

We choose a spanning tree $T$ of $F_{16}$ consisting of the edges

$$
\begin{aligned}
& \{\{1,9\},\{2,10\},\{3,11\},\{4,12\},\{5,13\},\{6,14\},\{7,15\},\{8,16\} \\
& \quad\{9,12\},\{9,14\},\{10,13\},\{10,15\},\{11,14\},\{12,15\},\{13,16\}\}
\end{aligned}
$$

We orient the cotree arcs by setting

$$
\begin{array}{llll}
x_{1}=(1,2), & x_{2}=(2,3), & x_{3}=(3,4), & x_{4}=(4,5), \quad x_{5}=(5,6), \\
x_{6}=(6,7), & x_{7}=(7,8), & x_{8}=(8,1), & x_{9}=(11,16) .
\end{array}
$$

Let $\mathscr{B}=\left\{C_{x_{i}} \mid 1 \leq i \leq 9\right\}$ be the standard ordered basis of $H_{1}\left(F_{16}, \mathbb{Z}_{p}\right)$ associated with the spanning tree $T$ and the arcs $x_{i}(i=1, \ldots, 9)$. Let $p \geq 5$ be a prime number such that $p=1 \bmod (6)$ and let $\zeta$ be a solution of the equation $x^{2}+x+1=0$ in $\mathbb{Z}_{p}$. We define a $T$-reduced voltage assignment $\xi:\left\{x_{i} \mid 1 \leq i \leq 9\right\} \rightarrow \mathbb{Z}_{p}$ by setting

$$
\begin{aligned}
& x_{1} \mapsto \zeta, \quad x_{2} \mapsto 1-\zeta, \quad x_{3} \mapsto \zeta, \quad x_{4} \mapsto-\zeta-1, \quad x_{5} \mapsto \zeta+2, \\
& x_{6} \mapsto-\zeta-1, \quad x_{7} \mapsto \zeta, \quad x_{8} \mapsto 1-\zeta, \quad x_{9} \mapsto-2 .
\end{aligned}
$$

We remark that the voltage assignment $\xi$ is derived from the $M_{H}^{t}$-invariant 1-dimensional subspace $\left\langle k_{1}\right\rangle$ (see Section 3). Let $C F_{16 p}(p \geq 5)$ be the derived graph from the voltage assignment $\xi$.

Malnič et al. [17] classified semisymmetric elementary abelian covers of $F_{16}$. One might derive the following theorem from [17]. But, we give its (simpler) proof in the next section.

Theorem 2.6. Let $p \geq 5$ be a prime. Let $\widetilde{X}$ be an arc-transitive $\mathbb{Z}_{p}$-cover of the Möbius-Kantor graph $F_{16}$. Then $\tilde{X}$ is isomorphic to the 1-regular graph $C F_{16 p}$ of girth 10 where $p=1 \bmod (6)$.

Remark. Marušič et al. [19,20] gave the relation between half-transitive group action with vertex stabilizer $\mathbb{Z}_{2}$ and 1-regular group action with cyclic vertex stabilizer, which give us infinitely many finite half-transitive graphs of valency 4.

The following is the main result in this paper.
Theorem 2.7. Let $p$ be a prime and let $X$ be a connected cubic symmetric graph of order 16p. Then $X$ is 1-, 2- or 3-regular.
Furthermore,
(1) $X$ is 1-regular if and only if $X$ is isomorphic to the $\operatorname{graph} C F_{16 p}(p \geq 7)$, where $p=1 \bmod (6)$.
(2) $X$ is 2-regular if and only if $X$ is isomorphic to one of the three graphs $F_{32}, F_{48}$ and $F_{112 B}$.
(3) $X$ is 3-regular if and only if $X$ is isomorphic to one of the two graphs $F_{80}$ and $F_{112 c}$.

Proof. Let $X$ be a cubic symmetric graph of order $16 p$. By [3,4] we may assume $p>47$. Let $A=\operatorname{Aut}(X)$ and let $P$ be a Sylow $p$-subgroup of $A$. If $P$ is normal in $A$, by Proposition $2.3 X$ is a regular covering of the graph $F_{16}$ with the covering transformation group $\mathbb{Z}_{p}$ and the normality of $P$ implies that the fibre-preserving group is arc-transitive. By Theorem $2.6, X$ is isomorphic to $C F_{16 p}$. Thus, it suffices to show that $P$ is normal in $A$.

Let $N_{A}(P)$ be the normalizer of $P$ in $A$. By Sylow's theorem, the number of Sylow $p$-subgroups of $A$ is $n p+1=\left|A: N_{A}(P)\right|$. Since $X$ is at most 5-regular, $|A|$ is a divisor of $48 \cdot 16 p$. Thus $n p+1$ is a divisor of $48 \cdot 16$. Suppose to the contrary that $P$ is not normal in $A$. Since $n p+1 \geq 54$ and $n p+1 \mid 2^{8} \cdot 3$, we have $(n, p)=(13,59),(1,127),(1,191)$ or $(1,383)$. If $N_{A}(P)=P$ then $C_{A}(P)=P$, where $C_{A}(P)$ is the centralizer of $P$ in $A$. By Proposition 2.1, $A$ has a normal subgroup $N$ such that $A / N \cong P$, and by Proposition 2.3, the quotient graph corresponding to the orbits of $N$ has odd order and valency 3, a contradiction. Thus one may assume $(n, p) \neq(13,59)$. Since $\left|A: N_{A}(P)\right|=2^{7}, 2^{6} \cdot 3$ or $2^{7} \cdot 3,|A|$ has a divisor $2^{7} \cdot 3 \cdot p$ where $p=127,191$ or 383, implying that $X$ is at least 3-arc-transitive. Let $M$ be a minimal normal subgroup of $A$ and $\underline{X}$ the quotient graph of $X$ corresponding to the orbits of $M$.

If $M$ is elementary abelian then by Proposition $2.3 \underline{X}$ is 3 -arc-transitive with order $2^{4}, 2 p, 4 p$ or $8 p$, which is impossible by the result in [3,4], [8, Theorem 5.2] and [11, Theorem 5.1]. Thus, one may assume that $M=T_{1} \times T_{2} \times \cdots \times T_{t}$, where $T_{i}(1 \leq i \leq t)$ are isomorphic non-abelian simple groups. By Proposition $2.2,\left|T_{i}\right|$ has at least three prime factors. Notice that $|A|$ is a divisor of $2^{8} \cdot 3 \cdot p$ where $p=127,191$ or 383 . Then $t=1$ and $M$ is a non-abelian simple group. Thus $M$ has order $2^{\ell} \cdot 3 \cdot p$ for some $1 \leq \ell \leq 8$. However, there is no simple group with such orders (see [5]).

## 3. The proof of Theorem 2.6

Let $p \geq 5$ be a prime. It is known that a polynomial $x^{2}+x+1=0$ has a solution in $\mathbb{Z}_{p}$ if and only if -3 is a square root in $\mathbb{Z}_{p}$, which is if and only if $p=1(\bmod 6)$.

Let $R, T$ and $S$ be the transposes of the matrices which represent the linear transformations $\alpha^{\#_{h}}, \beta^{\#_{h}}$ and $\gamma^{\#_{h}}$ relative to $\mathcal{B}$, respectively. Then

$$
\begin{aligned}
& S=\left[\begin{array}{ccccccccc}
-1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & -1 \\
0 & 0 & -1 & -1 & -1 & -1 & -1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

In order to find $\langle R, T\rangle$ - or $\langle R, S\rangle$-invariant 1-dimensional subspaces in $\mathbb{Z}_{p}$, it is useful to consider $R, T$ and $S$ as matrices over the splitting field $\mathbb{Z}_{p}(\zeta)$ where $\zeta$ is a solution of the polynomial $x^{2}+x+1=0$. The respective characteristic and minimal polynomials of $R, T$ and $S$ are

$$
\begin{aligned}
& \Delta_{R}(x)=(x-1)(x-\zeta)^{4}\left(x-\zeta^{2}\right)^{4}, \quad m_{R}(x)=(x-1)(x-\zeta)\left(x-\zeta^{2}\right) \\
& \Delta_{T}(x)=(x-1)^{3}(x+1)^{6}, \quad m_{T}(x)=(x-1)(x+1) \\
& \Delta_{S}(x)=(x-1)^{4}(x+1)^{5}, \quad m_{S}(x)=(x-1)(x+1)
\end{aligned}
$$

By a straightforward calculation, we have

$$
\begin{aligned}
& \operatorname{Ker}(R-I)=\left\langle u_{1}\right\rangle, \quad \operatorname{Ker}(R-\zeta I)=\left\langle u_{2}, u_{3}, u_{4}, u_{5}\right\rangle, \quad \operatorname{Ker}\left(R-\zeta^{2} I\right)=\left\langle u_{6}, u_{7}, u_{8}, u_{9}\right\rangle, \\
& \operatorname{Ker}(T-I)=\left\langle v_{1}, v_{2}, v_{3}\right\rangle, \quad \operatorname{Ker}(T+I)=\left\langle v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\rangle \\
& \operatorname{Ker}(S-I)=\left\langle w_{1}, w_{2}, w_{3}, w_{4}\right\rangle, \quad \operatorname{Ker}(S+I)=\left\langle w_{5}, w_{6}, w_{7}, w_{8}, w_{9}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& u_{1}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-1 \\
1 \\
1 \\
-1 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-\zeta-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
\zeta \\
-\zeta \\
-1 \\
1 \\
0 \\
\zeta \\
1 \\
0 \\
0
\end{array}\right], \quad u_{4}=\left[\begin{array}{c}
0 \\
\zeta \\
-\zeta \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], \quad u_{5}=\left[\begin{array}{c}
\zeta \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], \quad u_{6}=\left[\begin{array}{c}
-\zeta-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], \\
& u_{7}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
\zeta \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad u_{8}=\left[\begin{array}{c}
0 \\
-\zeta-1 \\
\zeta+1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], \quad u_{9}=\left[\begin{array}{c}
-\zeta-1 \\
\zeta+1 \\
-1 \\
1 \\
0 \\
-\zeta-1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{1}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], \\
& v_{4}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{5}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{6}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{7}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], \quad v_{8}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{9}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], \quad w_{1}=\left[\begin{array}{c}
0 \\
-1 \\
2 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], \\
& w_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
-1 / 2 \\
1 \\
-1 \\
1 \\
-1 / 2 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad w_{4}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{5}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{6}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], \quad w_{7}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], \\
& w_{8}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{9}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Solving homogeneous linear equations over the splitting field $\mathbb{Z}_{p}(\zeta)$, one can see that

$$
\begin{aligned}
& \operatorname{Ker}(R-I) \cap \operatorname{Ker}(T \pm I)=\operatorname{Ker}(R-I) \cap \operatorname{Ker}(S \pm I)=0, \\
& \operatorname{Ker}(R-\zeta I) \cap \operatorname{Ker}(S \pm I)=\operatorname{Ker}\left(R-\zeta^{2} I\right) \cap \operatorname{Ker}(S \pm I)=0, \\
& \operatorname{Ker}(R-\zeta I) \cap \operatorname{Ker}(T-I)=\operatorname{Ker}\left(R-\zeta^{2} I\right) \cap \operatorname{Ker}(T-I)=0, \\
& \operatorname{Ker}(R-\zeta I) \cap \operatorname{Ker}(T+I)=\left\langle k_{1}\right\rangle, \\
& \operatorname{Ker}\left(R-\zeta^{2} I\right) \cap \operatorname{Ker}(T+I)=\left\langle k_{2}\right\rangle
\end{aligned}
$$

where

$$
k_{1}:=\left[\begin{array}{c}
\zeta \\
1-\zeta \\
\zeta \\
-\zeta-1 \\
\zeta+2 \\
-\zeta-1 \\
\zeta \\
1-\zeta \\
-2
\end{array}\right] \quad \text { and } \quad k_{2}:=\left[\begin{array}{c}
1 \\
\zeta-1 \\
1 \\
-\zeta-1 \\
2 \zeta+1 \\
-\zeta-1 \\
1 \\
\zeta-1 \\
-2 \zeta
\end{array}\right]
$$

Hence, there exist only two $\langle R, T\rangle$-invariant 1-dimensional subspaces $\left\langle k_{1}\right\rangle$ and $\left\langle k_{2}\right\rangle$. Furthermore, since $S k_{1}=\zeta k_{2}$, two spaces $\left\langle k_{1}\right\rangle$ and $\left\langle k_{2}\right\rangle$ induce isomorphic covering projections whose maximal lifting group is $H$. By considering the induced subgraph

$$
\left\langle N_{0}(1,0) \cup N_{1}(1,0) \cup N_{2}(1,0) \cup N_{3}(1,0) \cup N_{4}(1,0) \cup N_{5}(1,0)\right\rangle
$$

of $C F_{16 p}$, one can see that the girth of $C F_{16 p}$ is 10 . This completes the proof that any arc-transitive $\mathbb{Z}_{p}$-covering $(p \geq 5)$ graph of $F_{16}$ is isomorphic to the graph $C F_{16 p}$ with girth 10.

By Lemma 2.4, the graph $C F_{16.7}$ is 1-regular and isomorphic to $F_{112 A}$ because the girth of $C F_{16.7}$ is 10 . Thus, one can assume $p \geq 11$. Let $\mathbf{p}: C F_{16 p} \rightarrow F_{16}$ be the associated covering projection from the voltage assignment $\xi$ and $A:=\operatorname{Aut}\left(C F_{16 p}\right)$. Suppose to the contrary that $C F_{16 p}$ is $s$-regular for some $s \geq 2$. By Tutte $[25,26], s \leq 5$ and so $|A| \mid 16 \cdot p \cdot 48$. Thus $L:=\mathrm{CT}(\mathbf{p})$ is a Sylow $p$-subgroup of $A$. Let $B$ be the 1-regular subgroup of $\operatorname{Aut}\left(C F_{16 p}\right)$ lifted by $\langle\alpha, \beta\rangle$. Then $|B|=16 \cdot 3 \cdot p$. The normality of $L$ in $B$ implies that $B \leq N_{A}(L)$, where $N_{A}(L)$ is the normalizer of $L$ in $A$. Since $\widetilde{X}$ is at most 5-regular, $\left|A: N_{A}(L)\right| \mid 16$. By Sylow's theorem, the number of Sylow $p$-subgroups of $A$ is $n p+1$ and $n p+1=\left|A: N_{A}(L)\right|$. Since $p \geq 11$, we have $n p+1=1$. Thus $L$ is normal in $A$. By Proposition $2.3, A / L$ is an $s$-regular subgroup of $\operatorname{Aut}\left(F_{16}\right)$. This is impossible because otherwise $s$-regular subgroup $A / L(s \geq 2)$ of $\operatorname{Aut}\left(F_{16}\right)$ lifts. This completes the proof of Theorem 2.6.

As continuation of this work, we have classified the cubic s-regular graphs of order $18 p$ and $20 p$ for every $s \geq 1$ and every prime $p$.

## Acknowledgement

This paper was supported by Korea Research Foundation Grant (KRF-2007-313-C00011).

## References

[1] W. Bosma, J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994.
2] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987) 196-211.
3] M.D.E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, 2006. http://www.math.auckland.ac.nz~conder/symmcubic2048list.txt.
[4] M.D.E. Conder, P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.
[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, An ATLAS of Finite Groups, Oxford University Press, Oxford, 1985.
[6] S.F. Du, J.H. Kwak, M.Y. Xu, Linear criteria for lifting automorphisms of the elementary abelian regular coverings, Linear Algebra Appl. 373 (2003) 101-119.
[7] Y.Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order 10p or $10 p^{2}$, Sci. China Ser. A 49 (2006) 300-319.
[8] Y.Q. Feng, J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007) 627-646.
[9] Y.Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc. 81 (2006) 153-164.
[10] Y.Q. Feng, J.H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004) $345-356$.
11] Y.Q. Feng, J.H. Kwak, K. Wang, Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$, European J. Combin. 26 (2005) 1033-1052.
[12] Y.Q. Feng, J.H. Kwak, M.Y. Xu, Cubic $s$-regular graphs of order $2 p^{3}$, J. Graph Theory 52 (2006) 341-352.
13] W. Feit, J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1936) 775-1029.
14] J.L. Gross, T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977) 273-283.
15 B. Huppert, Endliche Gruppen I, Springer, Berlin, 1979.
16] P. Lorimer, Vertex-tranșitive graphs: Symmetric graphs of prime valency, J. Graph Theory 8 (1984) 55-68.
[17] A. Malnič, D. Marušič, Š. Miklavič, P. Potočnik, Semisymmetric elementary abelian covers of the Möbius-Kantor graph, Discrete Math. 307 (2007) 2156-2175.
[18] A. Malnič, D. Marušič, P. Potočnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004) 71-97.
[19] D. Marušič, R. Nedela, Maps and half-transitive graphs of valency 4, European J. Combin. 19 (1998) 345-354.
[20] D. Marušič, M.Y. Xu, A $\frac{1}{2}$-transitive graph of valency 4 with a nonsolvable group of automorphisms, J. Graph Theory 25 (1994) 133-138.
[21] J.M. Oh, A classification of cubic s-regular graphs of order $14 p$, Discrete Math., in press (doi:10.1016/j.disc.2008.06.025).
[22] D.J. Robinson, A Course in the Theory of Groups, Springer-Verlag, Berlin, 1979.
[23] J. Siráň, Coverings of graphs and maps, orthogonality, and eigenvectors, J. Algebraic Combin. 14 (2001) 57-72.
[24] The GAP group, GAP - Groups, algorithms, and programming, Version 4.4, 2007. http://www.gap-system.org.
[25] W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947) 459-474.
[26] W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959) 621-624.


[^0]:    E-mail address: jumokoh@postech.ac.kr.

