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a b s t r a c t

In this correspondence, we will introduce a new combinatorial method for a coordinate-
wise construction of the homogeneous-weight preserving Gray map for Galois rings by
using elementary tools from Affine Geometries. Our construction differs in the methods
used from the algebraic constructions done previously in [M. Greferath, S.E. Schmidt, Gray
Isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code, IEEE Trans.
Inform. Theory 45 (1999) 2522–2524; S. Ling, J.T. Blackford, Zpk+1-linear codes, IEEE Trans.
Inform. Theory 48 (2002) 2592–2605].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For the purposes of this correspondence, by a Gray map on Galois rings we will mean a map from (GR(p`,m)n,
homogeneousweight) to (Fnp

(`−1)m

pm , Hammingweight) that isweight-preserving. The Galois rings and homogeneousweights
are going to be defined in the next section.
Graymaps fromZn4 toZ2n2 were effectively usedbyHammons et al. in theirwork [5], as a tool to obtain the binary nonlinear

Kerdock, Preparata-like, and Goethals codes as the Gray images of linear codes over Z4. Their definition of the Gray map is
quite a simple one. To define it, they defined maps α, β, γ from Z4 to Z2 such that for any c ∈ Z4, c = α(c)+ 2β(c) is the
unique 2-adic expansion of c. The identity α(c)+β(c)+γ (c) = 0 completed the definition of those maps. Then, extending
these maps in an obvious way to Zn4, they defined the Gray map φ : Z

n
4 → Z2n2 as

φ(c) = (β(c), γ (c)), c ∈ Zn4. (1.1)

The most important property of this map is that it is a distance preserving map, that is, it is an isometry from

(Zn4, Lee distance) to (Z
2n
2 ,Hamming distance). (1.2)

Carlet, in [1], extended this map to Z2k with the homogeneous weight and used this to obtain the generalized Kerdock
codes that were non-linear binary codes with large minimum distances. Several other authors, like Ling et al. and Greferath
et al. generalized the notion of Graymaps tomore general rings with certain homogeneous weights defined on them in [8,3,
4]. In particular, in [8], Ling and Blackford introduced a Graymap fromZnpk+1 toZp

kn
p that is homogeneous-weight-preserving.
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Their description of the weight uses algebraic methods applied to the p-adic representation of elements in Zpk+1 . While the
same methods used can be applied to Galois rings, in fact to any chain rings as was done in [3] by Greferath and Schmidt,
we want to introduce a new method that uses elementary tools from Combinatorics.
In Section 2, we will introduce Galois rings and the homogeneous weight defined on Galois rings. In Section 3, we will

describe the tools from Affine Geometries. In Section 4, we will give our main description of the Gray map on Galois rings
by using the tools from Affine Geometries. In the final section we will conclude with some final thoughts and remarks.

2. Galois Rings and the homogeneous weight

Throughout, p denotes a prime number. The introduction given here is taken mainly from [10] and also appears in [12].
Let φ(x) ∈ Zp` [x] be a basic irreducible polynomial of degree m. Then, the Galois ring GR(p`,m) is defined as the quotient
Zp` [x]/(φ(x)). Ifm1 is a positive integer such thatm1|m, thenGR(p`,m1) is a subring ofGR(p`,m). A very important property
of Galois rings is that it is a finite chain ring and it also has a unique maximal ideal which is given by (p) = pGR(p`,m) and
the quotient field is

GR(p`,m)
pGR(p`,m)

' Fpm . (2.1)

All the ideals of GR(p`,m) can be ordered as

{0} = p`GR(p`,m) ⊂ p`−1GR(pe,m) ⊂ · · · ⊂ pGR(p`,m) ⊂ GR(p`,m). (2.2)

What is done for Galois rings in this work can easily be extended to general finite chain rings. A linear code C over the Galois
ring GR(p`,m) of length n is a GR(p`,m)-submodule of GR(p`,m)n. The following theorem from [6] helps us understand the
question of type and size for linear codes over Galois rings:

Theorem 2.1 ([6]). A GR(p`,m)-linear code C is permutation-equivalent to a code with generating matrix of the form

G =


Ik1 A1 . . . A`
0 pIk2 pB1 . . pB`−1
0 0 . . . .
. . . . . .
. . . . . .

0 0 . 0 p`−1Ik` p`−1D

 (2.3)

where the matrices Ai’s, Bj’s and so on are matrices over GR(p`,m) and the columns are grouped into blocks of size k1, k2, . . . , k`.
The size of C is pmα, where

α =
∑̀
i=1

ki(`+ 1− i). (2.4)

In this case, we say that C is of type

(p`m)k1(p(`−1)m)k2 · · · (pm)k` . (2.5)

We next introduce the homogeneous weight for linear codes over Galois rings which first appears in [2] and later in [11]
as:

whom(x) :=


0 if x = 0
pm(`−1) if 0 6= x ∈ p`−1GR(p`,m)
(pm − 1)pm(`−2) otherwise.

(2.6)

We naturally extend this definition to codes by letting, for c = (c1, c2, . . . , cn) ∈ GR(p`,m)n,

whom(c) =
n∑
i=1

whom(ci). (2.7)
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3. Combinatorial tools-affine geoemetries

Most of thematerial presentedherewas taken from [9], and canbe found in anybook about finite geometries. Formaterial
on finite fields we refer to [7].
An Affine space AG`(pm) of dimension ` over Fpm is defined to be the set V = F`pm of all points and all Affine subspaces of

V . An Affine subspace of V is the empty set or a linear vector subspace of V or a coset of a linear subspace of V in the additive
group.
An Affine Hyperplane in AG`(pm) is defined to be an Affine subspace of V of dimension ` − 1. We observe the following

remark:

Remark 3.1. Two hyperplanes in AG`(pm) are either disjoint or they intersect in an Affine subspace of dimension `− 2.

Definition 3.2. Suppose A, B are hyperplanes in AG`(pm). We say that A and B are parallel if A = B or A and B are disjoint.
We denote this by writing A ∼ B. The same definition can be made for lines as well.

It is easy to note that

Lemma 3.3. The relation∼ on the set of all hyperplanes of AG`(pm) is an equivalence relation.

Let us define, by a parallel class of a hyperplane A, the equivalence class Ā of Awith respect to∼. An analogous definition
works for lines as well. The following lemma will be quite useful the proof of which we will omit:

Lemma 3.4. There are exactly pm hyperplanes in each parallel class and there are (pm)`−1 + (pm)`−2 + · · · + pm + 1 parallel
classes in AG`(pm).

Now, let’s look at the parallel classes of lines. We know that in each parallel class of lines, there are exactly pm(`−1) lines.
Let’s fix one such parallel class in AG`(pm). Suppose it is

L̄ = {L0, L1, . . . , Lpm(`−1)−1} (3.1)

where each Lj is a line in the Affine space AG`(pm). Let’s write the lines in this parallel class as columns:

L̄ =




L10
L11
L12
...

L1pm−1

 ,

L20
L21
L22
...

L2pm−1

 , . . . ,


Lp
m(`−1)

0

Lp
m(`−1)

1

Lp
m(`−1)

2
...

Lp
m(`−1)

pm−1




(3.2)

where we will label each Li0 by 0 and each L
i
j by α

j−1 for j = 1, 2, . . . , pm − 2.
We observe that, if a hyperplane contains two points from a line, it contains the whole line. So, each hyperplane that

doesn’t contain any of the lines L0, L1, . . . , Lpm(`−1)−1 contains exactly one point from each column in (3.2). Using this
observation we will prove the following quick lemma:

Lemma 3.5. Suppose that a hyperplane A doesn’t contain any of the lines L0, L1, . . . , Lpm(`−1)−1. If B ∈ Ā is any hyperplane, then
B doesn’t contain any of the lines L0, . . . , Lpm(`−1)−1 either.

Proof. If B ∈ Ā, this means that either B = A, in which case the assertion follows or B and A are disjoint. By the above
observation, we know that A must contain exactly one point from each line Lj, j = 0, 1, . . . , pm(`−1) − 1. But if B contains
one of the lines Lj, then we would have A ∩ B 6= ∅, contradicting the fact that A and B are disjoint. �

Remark 3.6. The result of Lemma 3.5 implies that the hyperplanes that don’t contain any of the lines L0, L1, . . . , Lpm(`−1)−1
are partitioned into parallel classes of hyperplanes.

The following lemma will give us the number of hyperplanes that don’t contain any of those lines:

Lemma 3.7. There are exactly pm(`−1) parallel classes of hyperplanes that don’t contain any of the lines L0, L1, . . . , Lpm(`−1)−1, or
equivalently there are exactly pm` hyperplanes that don’t contain any of the lines L0, L1, . . . , Lpm(`−1)−1.
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Proof. Since, by Lemma 3.5, we know that the hyperplanes that don’t contain any of the lines L0, L1, . . . , Lpm(`−1)−1 are
partitioned into parallel classes, we see that the hyperplanes that contain at least one of the lines L0, L1, . . . , Lpm(`−1)−1 are
also partitioned into parallel classes. So, the number of parallel classes of hyperplanes that contain at least one of the lines
in L0, L1, . . . , Lpm(`−1)−1 is the same as the number of (`− 1)-dimensional subspaces of an `-dimensional vector space that
contains a particular line, which is[

`− 1
`− 2

]
pm
=
((pm)`−1 − 1)((pm)`−2 − 1) · · · (p2m − 1)
((pm)`−2 − 1)((pm)`−3 − 1) · · · (pm − 1)

=
(pm)`−1 − 1
pm − 1

(3.3)

which in turn is equal to

pm(`−2) + pm(`−3) + · · · + pm + 1. (3.4)

By combining Lemmas 3.4 and 3.5, we see the number of the parallel classes of hyperplanes that don’t contain any of the
lines L0, L1, . . . , Lpm(`−1)−1 is

(pm(`−1) + pm(`−2) + · · · + pm + 1)− (pm(`−2) + pm(`−3) + · · · + pm + 1) = pm(`−1). (3.5)

4. The construction of the Gray map

We are now ready to give a coordinate-wise construction of the Gray map from GR(p`,m)n to Fnp
(`−1)m

pm that preserves
the homogeneous distance. Since the map is going to be given coordinate-wise, we will actually construct φ : GR(p`,m)→
Fp

(`−1)m

pm such that

dhom(u1, u2) = dH(φ(u1), φ(u2)) (4.1)

for all u1, u2 ∈ GR(p`,m). Here, dH denotes the Hamming distance.
Assume that Γ0,Γ1, . . . ,Γpm(`−1)−1 are the parallel classes of the hyperplanes that don’t contain any of the lines

L0, L1, . . . , Lpm(`−1)−1, by the result of Lemma 3.7. So, each hyperplane in these parallel classes is formed by taking one
element from each column of (3.2). Suppose, without loss of generality that we have labelled (3.2) in such a way that there
exists a hyperplane that corresponds to a labelling of (0, 0, . . . , 0) and that it is in Γ0. From now on, by the vector that
corresponds to a hyperplane, wewill mean the {0, 1, α . . . , αp

m
−2
}-vector of length pm(`−1), which comes from the labelling

of the elements of the hyperplane in accordance with the labelling of (3.2). So now we are finally ready to describe the
Gray map:

Definition 4.1. For u ∈ p`−1GR(p`,m), φ maps u to the vector of the hyperplanes of Γ0 bijectively in such a way that 0 is
mapped to the hyperplane denoted by (0, 0, . . . , 0).
For 1 ≤ j ≤ pm(`−1) − 1, we map the elements of the coset cj = cj + p`−1GR(p`,m) to the vectors of the hyperplanes of

Γj bijectively. Here, {cj+ p`−1GR(p`,m)|j = 1, 2, . . . , pm(`−1)− 1} denotes the set of all non-trivial cosets of p`−1GR(p`,m).

Note that this is a well-defined map from GR(p`,m) to Fp
(`−1)m

pm .
We will now prove the main result about this map:

Theorem 4.2. The map φ defined above is indeed a distance-preserving map from GR(p`,m) with the homogeneous distance to
Fp

(`−1)m

pm with the Hamming distance.

Proof. Suppose u ∈ p`−1GR(p`,m) \ {0}. Then this means that φ(u) is the vector of a hyperplane in Γ0 that is disjoint from
the hyperplane of (0, 0, . . . , 0). But this means that φ(u) doesn’t have any zeros, which means that

wH(φ(u)) = pm(`−1). (4.2)

If v 6∈ p`−1GR(p`,m) then v ∈ cj for some j ≥ 1 and so by the definition of the map, φ(v) is the vector of a hyperplane
in some Γj with j 6= 0. But since any hyperplane in Γj will intersect with any hyperplane in Γ0 in exactly pm(`−2) points and
since (0, 0, . . . , 0) belongs to a hyperplane in Γ0, we see that φ(v) has to have exactly pm(`−2) 0’s. Hence we see that

wH(φ(v)) = pm(`−1) − pm(`−2) = (pm − 1)pm(`−2). (4.3)

Now, suppose u, v ∈ GR(p`,m) so that u − v ∈ p`−1GR(p`,m) \ {0}. This means that u and v are two distinct elements
in the same coset of p`−1GR(p`,m). Then by the construction of φ, we see that φ(u) and φ(v) come from two distinct
hyperplanes in the same parallel class Γj for some j. But this means that φ(u) and φ(v) are different in each coordinate
since their hyperplanes are disjoint, which means that

dH(φ(u), φ(v)) = pm(`−1). (4.4)
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Suppose now that u − v ∈ GR(p`,m) \ p`−1GR(p`,m) and hence u and v are in different cosets of p`−1GR(p`,m). This
means thatφ(u) andφ(v) correspond to hyperplanes fromΓj1 andΓj2 , respectively,where j1 6= j2. But since twohyperplanes
from different parallel classes must necessarily intersect, and since they intersect in a (k− 2)-dimensional Affine subspace,
we see that φ(u) and φ(v)will have exactly pm(`−2) coordinates where the entries are equal. Hence we see that

dH(φ(u), φ(v)) = pm(`−1) − pm(`−2) = (pm − 1)pm(`−2). � (4.5)

5. Conclusion

The methods applied in this correspondence can easily be applied to the special case of Zpk by using the Affine space
AGk(p) = AGk(Fp) and the same tools that we described here. As a result, we get a combinatorial construction to the Gray
map that was described in [8]. It is easy to see that the same methods could be applied to finite chain rings in general.
One of the advantages of our construction is that it gives us more freedom in constructing the Gray map, as we have a lot

of ways of constructing the bijections described above, considering that there are n! different bijections that can be defined
between two sets of size n.
One of the questions of interest in this regard is to show that the maps described by Ling and Greferath in [8,3] are just

special cases of our more general construction. Even if we cannot prove this at the moment, we can see this on an example.
Carlet in [1] described the generalized Gray map G from Z8 to Z42 by letting

G(0) = (0, 0, 0, 0); G(1) = (0, 1, 0, 1); G(2) = (0, 0, 1, 1); G(3) = (0, 1, 1, 0);
G(4) = (1, 1, 1, 1); G(5) = (1, 0, 1, 0); G(6) = (1, 1, 0, 0); G(7) = (1, 0, 0, 1);

which is a map that is mentioned as a special case of the constructions described in [3,8]. This turns out to be a special case
for our construction as well, because letting p = 2, ` = 3 andm = 1 in our construction and taking a parallel class of lines

L̄ =
{(
(000)
(111)

)
,

(
(010)
(101)

)
,

(
(100)
(011)

)
,

(
(110)
(001)

)}
(5.1)

in AG3(F2), we label the first coordinate in each column by 0 and the second coordinate by 1. So to show that Carlet’smap is a
special case of our construction, all we need to do is show that the corresponding 4-element sets thatwe get are hyperplanes.
This is easy to verify. For example, 0 ∈ Z8 should bemapped to (0000), which is represented by ((000), (010), (100), (110))
which is a subspace of F32 and hence is a hyperplane. 4 ∈ Z8 should be represented by ((111), (101), (011), (001))which is
(111) + ((000), (010), (100), (110)) and hence is a hyperplane. Similarly the other correspondences can easily be seen to
give us hyperplanes which means we can actually get Carlet’s map from our construction.
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