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Abstract

We prove a density version of the Halpern–Läuchli Theorem. This settles in the affirmative a conjecture
of R. Laver.

Specifically, let us say that a tree T is homogeneous if T has a unique root and there exists an integer
b > 2 such that every t ∈ T has exactly b immediate successors. We show that for every d > 1 and every
tuple (T1, . . . , Td ) of homogeneous trees, if D is a subset of the level product of (T1, . . . , Td ) satisfying

lim sup
n→∞

D ∩


T1(n) × · · · × Td (n)


|T1(n) × · · · × Td (n)|

> 0

then there exist strong subtrees (S1, . . . , Sd ) of (T1, . . . , Td ) having a common level set such that the level
product of (S1, . . . , Sd ) is a subset of D.
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1. Introduction

1.1. Statement of the problem and the main result

Ramsey Theory is the collection of a number of partition results asserting that for every finite
coloring of a “structure” one can find a “substructure” which is monochromatic. In several cases,
however, one can actually prove a significantly stronger density result asserting that every large
subset of a “structure” must contain a “substructure”. This phenomenon, investigated from the
early beginnings of Ramsey Theory, has seen some dramatic developments in recent years and,
by now, there are several results in this direction. A well-known and illuminative example is the
density version of the Hales–Jewett Theorem [13] obtained by H. Furstenberg and Y. Katznelson
in [11] (see, also, [9]).

The main goal of the present paper is to prove a density version of the Halpern–Läuchli
Theorem [15]. The Halpern–Läuchli Theorem is a rather deep pigeonhole principle for trees. It
was discovered in 1966, three years after the discovery of the Hales–Jewett Theorem, as a result
needed for the construction of a Model of Set Theory in which the Boolean Prime Ideal Theorem
is true but not the full Axiom of Choice (see [16]). The original proof was based on tools from
Logic; since then, other proofs have been found some of which are purely combinatorial (see
[24, Section 3] for a detailed exposition). It has been the main tool for the development of Ramsey
Theory for trees, a rich area of Combinatorics with important applications in Functional Analysis
and Topology (see, for example, [4–6,12,14,17–22,24,1,2,7,8,23] for applications).

The Halpern–Läuchli Theorem has several equivalent forms (see [24, Section 3.1]). To pro-
ceed with our discussion it is useful at this point to recall one of these forms, known as the
“strong subtree version of the Halpern–Läuchli Theorem”.

Theorem 1. For every d > 1 we have that HL(d) holds, i.e. for every tuple (T1, . . . , Td) of
uniquely rooted and finitely branching trees without maximal nodes and for every finite coloring
of the level product

n∈N
T1(n) × · · · × Td(n)

of (T1, . . . , Td) there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) having common level set
such that the level product of (S1, . . . , Sd) is monochromatic.

We recall that a subtree S of a tree (T, <) is said to be strong if: (a) S is uniquely rooted,
(b) there exists an infinite subset LT (S) = {l0 < l1 < · · ·} of N, called the level set of S, such
that for every n ∈ N the n-level S(n) of S is a subset of T (ln), and (c) for every s ∈ S and every
immediate successor t of s in T there exists a unique immediate successor s′ of s in S with t 6 s′.
The last condition is the most important one and expresses a basic combinatorial requirement,
namely that a strong subtree of T must respect the “tree structure” of T . The notion of a strong
subtree was highlighted with the work of K. Milliken [20,21] who used Theorem 1 to show that
the family of strong subtrees of a uniquely rooted and finitely-branching tree is partition regular.

The natural problem whether there exists a density version of Theorem 1 was first asked by R.
Laver in the late 1960s who actually conjectured that there is such a version. The conjecture was
circulated among experts in the area and it was explicitly stated in the paper [3] by R. Bicker and
B. Voigt who made two important observations. First, by providing several examples – see, in
particular, [3, Theorems 2.4 and 2.5] – they isolated the largest class of trees for which a density
version of Theorem 1 could be true. This is the class of homogeneous trees: a tree T is said to
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be homogeneous if it has a unique root and there exists b > 2, called the branching number
of T , such that every t in T has exactly b immediate successors. Second, they showed that for
a single homogeneous tree Theorem 1 does have a density version. Specifically, it was shown
in [3, Theorem 2.3] that for every homogeneous tree T and every subset D of T satisfying

lim sup
n→∞

|D ∩ T (n)|

|T (n)|
> 0

there exists a strong subtree S of T with S ⊆ D.
Our main result shows that a density version of Theorem 1 is valid for an arbitrary finite

number of homogeneous trees and thereby settles in the affirmative Laver’s conjecture.

Theorem 2. For every d > 1 we have that DHL(d) holds, i.e. for every tuple (T1, . . . , Td) of
homogeneous trees and every subset D of the level product of (T1, . . . , Td) satisfying

lim sup
n→∞

D ∩

T1(n) × · · · × Td(n)


|T1(n) × · · · × Td(n)|

> 0

there exist strong subtrees (S1, . . . , Sd) of (T1, . . . , Td) having a common level set such that the
level product of (S1, . . . , Sd) is a subset of D.

Notice that the strong subtrees S1, . . . , Sd obtained by Theorem 2 are infinite. This is the
first result in Ramsey Theory where a density condition yields the existence of an infinite object
instead of a sequence of finite objects of arbitrarily large cardinality.

1.2. Outline of the argument

The proof of Theorem 2 proceeds by induction on the number of trees and is based on combi-
natorial tools. In particular, at the process of establishing DHL(d +1) we use, as pigeonhole prin-
ciples, DHL(d) as well as Theorem 1. One can actually determine which instance of Theorem 1
is needed in order to prove Theorem 2 for a fixed tuple (T1, . . . , Td+1) of homogeneous trees: if
bi is the branching number of Ti for every i ∈ {1, . . . , d+1}, then one needs to use HL

d
i=1 bi


.

Let us briefly discuss the main steps (for unexplained terminology and notation we refer the
reader to Section 2). Assume that we have proven DHL(d) for some d > 1 and that we are given
a tuple (T1, . . . , Td , W ) of homogeneous trees, a constant 0 < ε 6 1 and a subset D of the level
product of (T1, . . . , Td , W ) satisfyingD ∩


T1(n) × · · · × Td(n) × W (n)

 > ε|T1(n) × · · · × Td(n) × W (n)|

for infinitely many n ∈ N. Using a Fubini-type argument and DHL(d), we can find a vector
strong subtree S of (T1, . . . , Td), with the following property: there exists a strictly increasing
sequence (ln) in N such that for every n ∈ N and every s ∈ ⊗S(n) the section D(s) = {w ∈ W :

(s, w) ∈ D} of D at s is a subset of W (ln) of cardinality at least ε/2|W (ln)|. This property of
the section map D : ⊗S → 2W is abstracted in Definition 7 in the main text. We call such maps
dense level selections.

The next step (which is the most demanding part of the proof) is to show that for every dense
level selection D : ⊗S → 2W there exists a vector strong subtree R of S such that the sets
{D(r) : r ∈ ⊗R} are mutually “correlated”; this is the content of Theorem 9 in the main text.
Precisely, we show that there exist a constant 0 < θ 6 1, a vector strong subtree R of S and a
node w ∈ D(r), where r is the root of R, such that for every vector strong subtree Z of R with
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the same root as R the density of the set
z∈⊗Z(1)

D(z)

relative to every immediate successor w′ of w, is at least θ . The main difficulty in the proof of
this result lies in the fact that the number of sets in the above intersection increases exponentially
with respect to the dimension.1 It is worth pointing out that in this step we use again DHL(d) as
the pigeonhole principle, but in a slightly different form (Proposition 11 in the main text).

With Theorem 9 at hand, one can perform a recursive construction in order to find a vector
strong subtree (Z1, . . . , Zd , V ) of (T1, . . . , Td , W ) whose level product is a subset of D. This
recursive selection, however, is rather unusual since we actually construct an infinite chain of
(T1, . . . , Td) and a strong subtree V of W with special properties. The desired vector strong
subtree is then obtained using an “unfolding” argument.

1.3. Organization of the paper

The paper is organized as follows. In Section 2 we set up our notation and terminology. The
next section is devoted to the study of a natural class of finite vector trees, which we call vector
fans. In Section 4 we introduce the notion of a dense level selection we mentioned above; the
main result in this section is Theorem 9. The proof of Theorem 2 is completed in Section 5.
Finally, in Section 6 we make some comments.

2. Background material

By N = {0, 1, 2, . . .} we denote the natural numbers. The cardinality of a set X will be de-
noted by |X |.

2.1. Trees and subtrees

By the term tree we mean a partially ordered set (T, <) such that the set {s ∈ T : s < t} is
finite and linearly ordered under < for every t ∈ T . The cardinality of this set is defined to be
the length of t in T and is denoted by ℓT (t). For every n ∈ N the n-level of T , denoted by T (n),
is defined to be the set {t ∈ T : ℓT (t) = n}. The height of T , denoted by h(T ), is defined as
follows. If there exists k ∈ N with T (k) = ∅, then we set h(T ) = max{n ∈ N : T (n) ≠ ∅} + 1;
otherwise, we set h(T ) = ∞.

For every t ∈ T by SuccT (t) we denote the set of successors of t in T , i.e.

SuccT (t) = {s ∈ T : t 6 s}. (1)

The set of immediate successors of t in T is the subset of SuccT (t) defined by ImmSuccT (t) =

{s ∈ T : t 6 s and ℓT (s) = ℓT (t) + 1}. More generally, for every subset F of T we set
SuccT (F) = {s ∈ T : exists t ∈ F with t 6 s}.

Let n ∈ N with n < h(T ) and F ⊆ T (n). The density of F is defined by

dens(F) =
|F |

|T (n)|
. (2)

1 A typical phenomenon in the proof of several combinatorial results is that the “low dimensional” cases are relatively
easy to prove and the full complexity appears after a critical threshold. In the case of the density Halpern–Läuchli
Theorem this critical threshold is dimension 3. In particular, the authors are aware of a different, and in a sense more
effective, proof of DHL(2). This proof, however, cannot be generalized to higher dimensions.
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More generally, for every m ∈ N with m 6 n and every t ∈ T (m) the density of F relative to
the node t is defined by

dens(F | t) =
|F ∩ SuccT (t)|

|T (n) ∩ SuccT (t)|
. (3)

A subtree S of a tree (T, <) is a subset of T viewed as a tree equipped with the induced partial
ordering. For every n ∈ N with n < h(T ) we set

T � n = T (0) ∪ · · · ∪ T (n). (4)

Notice that h(T � n) = n + 1. An initial subtree of T is a subtree of T of the form T � n for
some n ∈ N.

Finally, we recall that a tree T is said to be pruned (respectively, finitely branching) if for
every t ∈ T the set of immediate successors of t in T is nonempty (respectively, finite). It is said
to be uniquely rooted if |T (0)| = 1. The root of a uniquely rooted tree T is defined to be the
node T (0).

2.2. Vector trees and level products

A vector tree T is a nonempty finite sequence of trees having common height; this common
height is defined to be the height of T and will be denoted by h(T). We notice that, throughout
the paper, we will start the enumeration of vector trees with 1 instead of 0.

For every vector tree T = (T1, . . . , Td) and every n ∈ N with n < h(T) we set

T � n = (T1 � n, . . . , Td � n). (5)

A vector tree of this form is called a vector initial subtree of T. Also let

T(n) =

T1(n), . . . , Td(n)


(6)

and

⊗ T(n) = T1(n) × · · · × Td(n). (7)

The level product of T, denoted by ⊗T, is defined to be the set
n<h(T)

⊗T(n). (8)

If t = (t1, . . . , td) ∈ ⊗T, then we define ℓT(t) to be the unique n ∈ N such that t ∈ ⊗T(n). Also
we set

SuccT(t) =

SuccT1(t1), . . . , SuccTd (td)


. (9)

Finally, we say that a vector tree T = (T1, . . . , Td) is pruned (respectively, finitely branching,
uniquely rooted) if Ti is pruned (respectively, finitely branching, uniquely rooted) for every
i ∈ {1, . . . , d}. Notice that if T is uniquely rooted, then T(0) = ⊗T(0); the element T(0)

will be called the root of T.

2.3. Strong subtrees and vector strong subtrees

Let T be a pruned, finitely branching and uniquely rooted tree. A subtree S of T is said to
be strong provided that: (a) S is uniquely rooted, (b) for every n ∈ N there exists m ∈ N with
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S(n) ⊆ T (m), and (c) for every s ∈ S and every t ∈ ImmSuccT (s) there exists a unique node
s′

∈ ImmSuccS(s) such that t 6 s′. The level set of a strong subtree S of T is defined to be the
set

LT (S) = {m ∈ N : exists n ∈ N with S(n) ⊆ T (m)}. (10)

A finite strong subtree of T is an initial subtree of a strong subtree of T .
The above concepts are naturally extended to vector trees. Specifically, let T = (T1, . . . , Td)

be a pruned, finitely branching and uniquely rooted vector tree. A vector strong subtree of T is
a vector tree S = (S1, . . . , Sd) such that Si is a strong subtree of Ti for every i ∈ {1, . . . , d}

and LT1(S1) = · · · = LTd (Sd). A finite vector strong subtree of T is a vector initial subtree of a
vector strong subtree of T.

2.4. Homogeneous trees and vector homogeneous trees

Let b ∈ N with b > 2. By b<N we shall denote the set of all finite sequences having values in
{0, . . . , b − 1}. The empty sequence is denoted by ∅ and is included in b<N. We view b<N as a
tree equipped with the (strict) partial order @ of end-extension. For every n ∈ N by bn we denote
the n-level of b<N. If n > 1, then b<n stands for the initial subtree of b<N of height n. By <lex
we denote the usual lexicographical order on bn . For every t, s ∈ b<N by t⌢s we denote their
concatenation.

As we have already mentioned in the introduction, a homogeneous tree T is a uniquely rooted
tree such that every node in T has exactly b immediate successors, where b > 2 is the branching
number of T . In several cases, we need to enumerate the set of nodes of a level of T . There
is, of course, no problem for selecting an enumeration. But an arbitrary enumeration might
lack compatibility when passing to subtrees. This problem can be resolved by restricting our
attention to the class of strong subtrees of a fixed homogeneous tree. It is, of course, clear that
all homogeneous trees with the same branching number are pairwise isomorphic, and so, such a
restriction will have no effect in the generality of our results.
Convention. In the rest of the paper by the term “homogeneous tree” we will mean a strong
subtree of b<N for some b ∈ N with b > 2. For every homogeneous tree T by bT we shall denote
the branching number of T and we set BT = b<N

T . We follow the same conventions for vector
trees. Precisely, by the term “vector homogeneous tree” we will mean a vector strong subtree of
(b<N

1 , . . . , b<N
d ) for some b1, . . . , bd ∈ N with bi > 2 for every i ∈ {1, . . . , d}. For every vector

homogeneous tree T = (T1, . . . , Td) we set bT = (bT1 , . . . , bTd ) and BT = (b<N
T1

, . . . , b<N
Td

).
The above convention enables us to effectively enumerate the set of immediate successors of a

given node of a homogeneous tree T . Specifically, for every t ∈ T and every p ∈ {0, . . . , bT −1}

we set

t⌢T p = ImmSuccT (t) ∩ SuccBT (t⌢ p). (11)

Notice that

ImmSuccT (t) =

t⌢T p : p ∈ {0, . . . , bT − 1}


.

Also observe that for every p, q ∈ {0, . . . , bT −1} we have t⌢T p <lex t⌢T q if and only if p < q .

2.5. Canonical embeddings and vector canonical embeddings

Let T and S be two homogeneous trees with the same branching number. We will say that a
map f : T → S is a canonical embedding if the following conditions are satisfied.
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(a) For every t, t ′ ∈ T we have ℓT (t) = ℓT (t ′) if and only if ℓS


f (t)


= ℓS


f (t ′)

.

(b) For every t ∈ T and p ∈ {0, . . . , bT − 1} we have f (t⌢T p) ∈ SuccS


f (t)⌢S p

.

It is easy to verify that for every canonical embedding f : T → S the following holds: (i) for
every t, t ′ ∈ T we have t @ t ′ if and only if f (t) @ f (t ′), (ii) f is an injection, and (iii) the
image f (T ) of T under f is a strong subtree of S.

Also notice that there exists a unique bijection between T and S satisfying the above condi-
tions. This unique bijection will be called the canonical isomorphism between T and S and will
be denoted by I(T, S).

We proceed to define the notion of a “vector canonical embedding”. It is a kind of “ten-
sorization” of a finite sequence of canonical embeddings with special properties. Specifically, let
T = (T1, . . . , Td) and S = (S1, . . . , Sd) be two vector homogeneous trees with bT = bS. For
every i ∈ {1, . . . , d} let fi : Ti → Si be a canonical embedding and assume that for every n ∈ N
and every t = (t1, . . . , td) ∈ ⊗T(n) we have ℓS1


f1(t1)


= · · · = ℓSd


fd(td)


. This assumption

permits us to define a map (⊗d
i=1 fi ) : ⊗T → ⊗S by the rule

(⊗d
i=1 fi )


(t1, . . . , td)


=


f1(t1), . . . , fd(td)

. (12)

A map of this form will be called a vector canonical embedding of ⊗T into ⊗S. The vector
canonical isomorphism between ⊗T and ⊗S is defined to be the map (⊗d

i=1 I(Ti , Si )) and will
be denoted by I(T, S).

3. Fans and vector fans

We start with the following.

Definition 3. Let T be a homogeneous tree. We say that a tree F is a fan of T if F is of the form
R � 1 for some strong subtree R of T . The set of all fans of T will be denoted by Fan(T ).

Next we introduce the higher-dimensional analogues of fans.

Definition 4. Let T be a vector homogeneous tree. We say that vector tree F is a vector fan of T
if F is of the form R � 1 for some vector strong subtree R of T. The set of all vector fans of T
will be denoted by Fan(T).

We view vector fans as the fundamental building blocks of vector homogeneous trees. This
point of view is crucial for the proof of Theorem 2. Also we make two simple observations.
First, we notice that if R is a vector strong subtree of a vector homogeneous tree T, then
Fan(R) ⊆ Fan(T). Second, we observe that if F is a vector fan of T, then F(0) ∈ ⊗T and
⊗F(1) ⊆ ⊗T.

We will need two combinatorial results concerning vector fans. The first one is the following
(see [20, Theorem 1.3]).

Proposition 5. Let T be a vector homogeneous tree and set t0 = T(0). Then for every finite
coloring

Fan(T) = C0 ∪ · · · ∪ Cr

there exist m ∈ {0, . . . , r} and a vector strong subtree Z of T with Z(0) = t0 such that F ∈ Cm
for every F ∈ Fan(Z) with F(0) = t0.
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To state the second result we need to introduce some notation. For every vector homogeneous
tree T and every n ∈ N with n > 1 we set

Fan(T, n) =

F ∈ Fan(T) : ⊗F(1) ⊆ ⊗T(n)


. (13)

Proposition 6. Let T = (T1, . . . , Td) be a vector homogeneous tree. For every n ∈ N with n > 1
let Fn be a subset of Fan(T) with the following property.

(P) For every vector strong subtree S of T there exists F ∈ Fan(S) ∩ Fn with F(0) = S(0).

Also let R be a vector strong subtree T and set r0 = R(0). Then there exists a vector strong
subtree Z of R with Z(0) = r0 such that for every n ∈ N with n > 1 and every F ∈ Fan(Z, n)

with F(0) = r0 we have F ∈ Fn .

Proposition 6 can be hardly characterized as new since it follows using fairly standard argu-
ments (see, e.g., [5,20,21]). Nevertheless, we have decided to include a proof for two reasons.
The first one is for self-containedness. Second, because we want to emphasize which instance of
Theorem 1 is needed for the proof.

Proof of Proposition 6. We write R = (R1, . . . , Rd) and r0 = (r1, . . . , rd). Recursively, we
shall construct a sequence (Rn) of vector strong subtrees of R such that for every n ∈ N the
following are satisfied.

(a) Rn(0) = r0.
(b) Rn+1 is a vector strong subtree of Rn and Rn+1 � n = Rn � n.
(c) If n > 1, then for every F ∈ Fan(Rn, n) with F(0) = r0 we have F ∈ Fn .

Assuming that the construction has been carried out, we define Z to be the unique vector strong
subtree of R satisfying Z(n) = Rn(n) for every n ∈ N. It is easily seen that Z is the desired
vector tree.

We proceed to the construction. For n = 0 we set R0 = R and we notice that with this choice
property (a) is satisfied (the other properties are meaningless for n = 0). Assume that for some
n ∈ N we have constructed the vector trees R0, . . . , Rn so that (a), (b) and (c) are satisfied and
write Rn = (Rn

1 , . . . , Rn
d ). For the construction of the vector tree Rn+1 we need to introduce

some notation and terminology.

(A) Let i ∈ {1, . . . , d} be arbitrary. We set Mi = bn+1
Ti

and we notice that the cardinality of the
(n+1)-level Rn

i (n+1) of Rn
i is Mi . We write the set Rn

i (n+1) in a lexicographical increasing
order as {t i

1 <lex · · · <lex t i
Mi

} and we set V i
j = SuccRn

i
(t i

j ) for every j ∈ {1, . . . , Mi }.

(B) We define V to be the vector tree (V i
j )

d Mi
i=1, j=1. For every vector strong subtree U of V we

can naturally associate a vector strong subtree RU
= (RU

1 , . . . , RU
d ) of Rn . Precisely, write

U as (U i
j )

d Mi
i=1, j=1 and for every i ∈ {1, . . . , d} set

RU
i = (Rn

i � n) ∪ U i
1 ∪ · · · ∪ U i

Mi
.

Observe that RU � n = Rn � n. Also notice that RV
= Rn .

(C) Next we introduce the notion of a strong position. It is a technical tool for the construction
of the vector tree Rn+1. Specifically, a strong position P is defined to be a finite sequence
(P1, . . . , Pd) such that
(I) Pi ⊆ {1, . . . , Mi } for every i ∈ {1, . . . , d}, and

(II) if Fi = {ri } ∪ {t i
j : j ∈ Pi } for every i = {1, . . . , d}, then F = (F1, . . . , Fd) is a vector

fan of Rn .
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By (II), if P = (P1, . . . , Pd) is a strong position, then |Pi | = bTi for every i ∈ {1, . . . , d}. For
every v = (vi

j )
d Mi
i=1, j=1 ∈ ⊗V and every strong position P = (P1, . . . , Pd) we set

Fv,P =

{r1} ∪ {v1

j : j ∈ P1}, . . . , {rd} ∪ {vd
j : j ∈ Pd}


.

By (II), it is clear that Fv,P ∈ Fan(RV) and Fv,P (0) = r0. We isolate the following fact: if U is
a vector strong subtree of V, k ∈ N with k > n + 1 and F ∈ Fan(RU, k) with F(0) = r0, then
there exist a unique strong position P and an element u of ⊗U (not necessarily unique) such that
F = Fu,P . The existence of P and u is a rather direct consequence of the relevant definitions.

After this preliminary discussion we are ready to proceed to the construction of the vector tree
Rn+1. For every strong position P let

GP =

v ∈ ⊗V : Fv,P ∈ Fn+1


.

Applying successively Theorem 1, we find a vector strong subtree U0 of V such that for every
strong position P we have that either ⊗U0 ⊆ GP or ⊗U0 ∩ GP = ∅. Notice that the set
GP depends only on the coordinates determined by P , and so, each time we need to apply
HL
d

i=1 bTi


.

We set Rn+1 = RU0 . The vector tree Rn+1 is the desired one. It is clear that we only need to
check that property (c) is satisfied. So, let F ∈ Fan(Rn+1, n + 1) with F(0) = r0 be arbitrary. As
we have already mentioned in (C) above, there exist a unique strong position Q = (Q1, . . . , Qd)

and an element u of ⊗U0 (not necessarily unique) such that F = Fu,Q. In order to show that
F ∈ Fn+1 it is enough to prove that ⊗U0 ⊆ GQ. To this end, we will argue by contradiction. So,
assume that ⊗U0 ∩ GQ = ∅. We write U0 as (U i

j )
d Mi
i=1, j=1 and for every i ∈ {1, . . . , d} we set

Si = {ri } ∪ {U i
j : j ∈ Qi }. Let S = (S1, . . . , Sd) and notice that S is a vector strong subtree of T

with S(0) = r0. Let F′
∈ Fan(S) with F′(0) = r0. Observe that there exists k ∈ N with k > n +1

such that F′
∈ Fan(RU0 , k). Hence, there exists an element u′

∈ ⊗U0 (not necessarily unique)
such that F′

= Fu′,Q. Since u′
∈ ⊗U0 we see that u′

∉ GQ and so F′
∉ Fn+1. In other words,

for every F′
∈ Fan(S) with F′(0) = S(0) we have that F′

∉ Fn+1. This contradicts property (P).
Therefore, ⊗U0 ⊆ GQ and so the vector tree Rn+1 has the desired properties.

This completes the recursive construction, and as we have already indicated, the proof of
Proposition 6 is also completed. �

4. Dense level selections

4.1. Definitions and statement of the main result

We start by introducing the following definition.

Definition 7. Let T = (T1, . . . , Td) be a vector homogeneous tree, W a homogeneous tree and
0 < ε 6 1. We say that a map D : ⊗T → 2W is an ε-dense level selection if there exists a
strictly increasing sequence (ln) in N such that for every n ∈ N and every t ∈ ⊗T(n) we have
D(t) ⊆ W (ln) and dens


D(t)


> ε.

The next definition is a crucial conceptual step towards the proof of Theorem 2.

Definition 8. Let T = (T1, . . . , Td) be a vector homogeneous tree, W a homogeneous tree,
0 < ε 6 1 and D : ⊗T → 2W an ε-dense level selection. Also let R be a vector strong subtree
of T, w ∈ W and 0 < θ 6 1. We say that the pair (R, w) is strongly θ -correlated with respect to
D if, setting r0 = R(0), the following conditions are satisfied.
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(C1) We have w ∈ D(r0).
(C2) For every F ∈ Fan(R) with F(0) = r0 and every p ∈ {0, . . . , bW − 1} we have

dens

 
r∈⊗F(1)

D(r)

w⌢W p


> θ. (14)

We are now ready to state the main result in this section.

Theorem 9. Let d > 1 and assume that DHL(d) holds. Also let T = (T1, . . . , Td) be a vector
homogeneous tree, W a homogeneous tree, 0 < ε 6 1 and D : ⊗T → 2W an ε-dense level
selection. Then there exist a vector strong subtree R of T, w ∈ W and 0 < θ 6 1 such that the
pair (R, w) is strongly θ -correlated with respect to D.

The proof of Theorem 9 will be given in Section 4.3. At this point, let us isolate the following
consequence of Theorem 9. It will be of particular importance in Section 5.

Corollary 10. Let d > 1 and assume that DHL(d) holds. Also let T = (T1, . . . , Td) be a vector
homogeneous tree, W a homogeneous tree, 0 < ε 6 1 and D : ⊗T → 2W an ε-dense level
selection. Then there exist a vector strong subtree S of T and for every s ∈ ⊗S a node ws ∈ W
and a constant 0 < θs 6 1 with the following property. For every s ∈ ⊗S and every vector strong
subtree Z of SuccS(s) with Z(0) = s the pair (Z, ws) is strongly θs-correlated with respect to D.

Proof. We start with the following observation. Let R be a vector strong subtree of T, w ∈ W
and 0 < θ 6 1 and assume that the pair (R, w) is strongly θ -correlated with respect to D.
Then for every vector strong subtree Z of R with Z(0) = R(0) the pair (Z, w) is also strongly
θ -correlated with respect to D.

Therefore, what we need to find is a vector strong subtree S of T, a family {ws : s ∈ ⊗S} in
W and a family {θs : s ∈ ⊗S} of reals in (0, 1] such that for every s ∈ ⊗S the pair


SuccS(s), ws


is strongly θs-correlated with respect to D. This can be proved using HL

d
i=1 bTi


as the

pigeonhole principle, Theorem 9 and arguing as in the proof of Proposition 6. We prefer, however,
to give a very simple proof which is based on Theorem 9 and on the work of K. Milliken on
Ramsey properties of strong subtrees. For every vector strong subtree Z of T let [Z]strong be the
set of all vector strong subtrees of Z and notice that [Z]strong is Gδ (hence Polish) subspace of
2T1 × · · · × 2Td . Now let C be the subset of [T]strong defined by

R ∈ C ⇔ there exist w ∈ W and 0 < θ 6 1 such that the pair

(R, w) is strongly θ -correlated with respect to D.

Notice that C is an Fσ subset of [T]strong. Moreover, by Theorem 9, we see that C ∩[Z]strong ≠ ∅
for every vector strong subtree Z of T. By [21, Theorem 2.1], there exists a vector strong subtree
S of T such that [S]strong ⊆ C. Observing that SuccS(s) ∈ [S]strong for every s ∈ ⊗S, the result
follows. �

4.2. A consequence of DHL(d)

In this subsection we shall obtain a consequence of DHL(d) which is stated within the context
of dense level selections. It will be used in the proof of Theorem 9.

Proposition 11. Let d > 1 and assume that DHL(d) holds. Let Z = (Z1, . . . , Zd) be a vector
homogeneous tree, W a homogeneous tree, 0 < η 6 1 and B : ⊗Z → 2W an η-dense level
selection. Then for every p ∈ {0, . . . , bW − 1} there exist F ∈ Fan(Z) and w ∈ B(z0), where
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z0 = F(0), such that
z∈⊗F(1)

B(z) ∩ SuccW (w⌢W p) ≠ ∅.

Proof. We fix p ∈ {0, . . . , bW − 1}. Let (ln) be the strictly increasing sequence in N such that
for every n ∈ N and every z ∈ ⊗Z(n) we have B(z) ⊆ W (ln) and dens


B(z)


> η. For every

n ∈ N we define Cn ⊆ W (ln) by the rule

w ∈ Cn ⇔ |{z ∈ ⊗Z(n) : w ∈ B(z)}| > η/2| ⊗ Z(n)|.

Claim 12. For every n ∈ N we have dens(Cn) > η/2.

Proof of Claim 12. This is a rather standard estimate and follows using a Fubini-type argument.
Indeed, let

En =

(z, w) ∈ ⊗Z(n) × W (ln) : w ∈ B(z)


.

Since dens

B(z)


> η for every z ∈ ⊗Z(n), we have

η · | ⊗ Z(n)| · |W (ln)| 6 |En|.

On the other hand, by the definition of the set Cn , we get

|En| 6 |Cn| · | ⊗ Z(n)| + (η/2) · | ⊗ Z(n)| · |W (ln)|.

Therefore, dens(Cn) > η/2. The proof of Claim 12 is completed. �

By Claim 12 and [3, Theorem 2.3], we may find a strictly increasing sequence (nk) in N and
a sequence (wk) in W such that for every k, m ∈ N with k < m we have

(a) wk ∈ Cnk and
(b) wm ∈ SuccW (w

⌢W
k p).

We define B ′
⊆ ⊗Z by

B ′
=


k∈N


z ∈ ⊗Z(nk) : wk ∈ B(z)


.

By (a) and the definition of the set Cnk , we see that

lim sup
n→∞

|B ′
∩ ⊗Z(n)|

| ⊗ Z(n)|
= lim sup

k→∞

|B ′
∩ ⊗Z(nk)|

| ⊗ Z(nk)|
> η/2 > 0.

Therefore, using our hypothesis that DHL(d) holds, it is possible to find a vector strong subtree
R of Z such that ⊗R ⊆ B ′. We set F = R � 1 ∈ Fan(Z) and z0 = F(0). Let k0 and k1 be the
unique integers such that z0 ∈ ⊗Z(nk0) and ⊗F(1) ⊆ ⊗Z(nk1). Clearly k0 < k1. Notice that

wk0 ∈ B(z0)

since z0 ∈ ⊗R ⊆ B ′. Moreover,

wk1 ∈


z∈⊗F(1)

B(z)

since ⊗F(1) ⊆ ⊗R ⊆ B ′. Using (b), we conclude that

wk1 ∈


z∈⊗F(1)

B(z) ∩ SuccW (w
⌢W
k0

p).

The proof of Proposition 11 is completed. �
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4.3. Proof of Theorem 9

The proof is a quest of a contradiction. So, assume that there exist a vector homogeneous tree
T = (T1, . . . , Td), a homogeneous tree W , a constant 0 < ε 6 1 and an ε-dense level selection
D : ⊗T → 2W such that

(H) for every vector strong subtree R of T, every w ∈ W and every 0 < θ 6 1 the pair (R, w) is
not strongly θ -correlated with respect to D.

The vector homogeneous tree T and the ε-dense level selection D : ⊗T → 2W will be fixed
throughout the proof. We will use hypothesis (H) to derive a contradiction. Our strategy is to
construct a vector strong subtree Z of T and an (ε/2bW )-dense level selection B : ⊗Z → 2W

that violates the conclusion of Proposition 11 for some p0 ∈ {0, . . . , bW − 1}. The construction
will be done in several intermediate steps. For notational simplicity, for every i ∈ {1, . . . , d} by
bi we shall denote the branching number of the tree Ti .

Step 1: selection of a rapidly decreasing sequence

For every n ∈ N with n > 1 we define

Θn = |Fan(T, n)|. (15)

Setting β =
d

i=1 bi we see that Θn 6 Θn+1 and βn−1 6 Θn 6 2βn
for every n ∈ N with n > 1.

We will need the following elementary facts.

Fact 13. For every vector strong subtree S of T and every n ∈ N with n > 1 we have
|Fan(S, n)| = Θn .

Fact 14. For every vector strong subtree R of T, every vector strong subtree S of R and every
n ∈ N with n > 1 there exists k ∈ N with k > n such that Fan(S, n) ⊆ Fan(R, k).

We define a sequence (θn) in R by the rule θ0 = 1 and

θn =
ε

2bW Θn
(16)

for every n ∈ N with n > 1. Notice that for every n ∈ N we have

θn+1 6 θn . (17)

Step 2: a family {Fn : n > 1} of subsets of Fan(T)

Let (θn) be the sequence defined in Step 1. For every n ∈ N with n > 1 we define a subset Fn
of Fan(T) by the rule

F ∈ Fn ⇔ there exists a map φ : D

F(0)


→ {0, . . . , bW − 1} such that for every w ∈ D


F(0)


if p = φ(w),

then dens

 
t∈⊗F(1)

D(t)

w⌢W p


6 θn .

For every F ∈ Fn there exists a canonical map φn
F witnessing that F belongs to Fn . It is defined

by setting φn
F(w) to be the least p ∈ {0, . . . , bW − 1} for which the above inequality is satisfied.

We will call the map φn
F the witness of F.



P. Dodos et al. / Advances in Mathematics 244 (2013) 955–978 967

The next lemma reduces hypothesis (H) to certain properties of the sets in the family {Fn :

n > 1}.

Lemma 15. Under hypothesis (H), for every n ∈ N with n > 1 the following hold.

(a) We have Fn+1 ⊆ Fn .
(b) For every vector strong subtree S of T there exists F ∈ Fan(S) ∩ Fn with F(0) = S(0).

Proof. Part (a) follows by (17) and the relevant definitions. For part (b) we will argue by contra-
diction. So, assume that there exist n0 ∈ N with n0 > 1 and a vector strong subtree S of T such
that for every F ∈ Fan(S) with F(0) = S(0) we have that F ∉ Fn0 . This implies that for every
F ∈ Fan(S) with F(0) = S(0) there exists wF ∈ D


S(0)


such that for every p ∈ {0, . . . , bW −1}

we have

dens

 
s∈⊗F(1)

D(s)

w⌢W
F p


> θn0 .

The set D

S(0)


is finite. Therefore, by Proposition 5, there exist a vector strong subtree R

of S with R(0) = S(0) and w0 ∈ D

S(0)


such that wF = w0 for every F ∈ Fan(R) with

F(0) = R(0). It follows that the pair (R, w0) is strongly θn0 -correlated with respect to D and this
contradicts hypothesis (H). The proof of Lemma 15 is completed. �

Step 3: control of vector fans with a fixed root

Let R be an arbitrary vector strong subtree of T. Our goal in this step is to construct a
vector strong subtree S of R with the same root as R such that for every vector fan F of S
with F(0) = S(0) we have significant control over the quantity appearing on the left side of
inequality (14). Precisely, we will show the following.

Lemma 16. Let (θn) be the sequence defined in Step 1. Also let R be a vector strong subtree of
T and set r0 = R(0). Then there exist a vector strong subtree S of R with S(0) = r0 and a map
φ : D(r0) → {0, . . . , bW − 1} such that the following is satisfied. For every n ∈ N with n > 1,
every F ∈ Fan(S, n) with F(0) = r0 and every w ∈ D(r0) if p = φ(w), then

dens

 
s∈⊗F(1)

D(s)

w⌢W p


6 θn .

Proof. By part (b) of Lemma 15, we may apply Proposition 6 to the vector homogeneous tree
T, the family {Fn : n > 1} and the vector strong subtree R of T. Therefore, there exists a
vector strong subtree Z of R with Z(0) = r0 such that for every k ∈ N with k > 1 and every
F ∈ Fan(Z, k) with F(0) = r0 we have that F ∈ Fk . Let φk

F : D(r0) → {0, . . . , bW − 1} be
the corresponding witness. The set {0, . . . , bW − 1}

D(r0) is finite. By Proposition 5, there exist
a vector strong subtree S of Z with S(0) = r0 and a map φ : D(r0) → {0, . . . , bW − 1} such
that for every F ∈ Fan(S) with F(0) = r0 if k is the unique integer such that F ∈ Fan(Z, k), then
φk

F = φ. The vector tree S and the map φ are as desired.
Indeed, let n ∈ N with n > 1 and F ∈ Fan(S, n) with F(0) = r0 be arbitrary. By Fact 14,

there exists k ∈ N with k > n such that F ∈ Fan(Z, k). Let w ∈ D(r0) be arbitrary. If p = φ(w),
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then p = φk
F(w). Hence,

dens

 
s∈⊗F(1)

D(s)

w⌢W p


6 θk

(17)
6 θn .

The proof of Lemma 16 is completed. �

Step 4: construction of an “asymptotically sparse” vector tree

In this step we will refine the construction presented in Step 3. Our goal is to construct an
“asymptotically sparse” vector tree, i.e. a vector strong subtree S of T for which we have control
over the behavior of every vector fan of S. Specifically, we have the following.

Lemma 17. Let (θn) be the sequence defined in Step 1. Then there exists a vector strong subtree
S of T with the following property. For every s0 ∈ ⊗S there exists a map φs0 : D(s0) →

{0, . . . , bW − 1} such that for every n ∈ N with ℓS(s0) < n, every F ∈ Fan(S, n) with F(0) = s0
and every w ∈ D(s0) if p = φs0(w), then

dens

 
s∈⊗F(1)

D(s)

w⌢W p


6 θn .

Proof. Let us say that a vector strong subtree of T is in a good position if it satisfies the conclu-
sion of Lemma 16. That is, a vector strong subtree Z of T is in a good position if there exists a map
φ : D


Z(0)


→ {0, . . . , bW −1} such that for every k ∈ N with k > 1, every F ∈ Fan(Z, k) with

F(0) = Z(0) and every w ∈ D

Z(0)


if p = φ(w), then dens


z∈⊗F(1) D(z) | w⌢W p


6 θk .

We notice two permanence properties of this notion. The first one is that it is hereditary when
passing to vector subtrees. Precisely, if a vector strong subtree Z of T is in a good position and
Z′ is a vector strong subtree of Z with Z′(0) = Z(0), then Z′ is also in a good position. This can
be easily checked arguing as in the proof of Lemma 16 and using the fact that the sequence (θn)

is decreasing. The second property is that the family of vector strong subtrees of T which are in
a good position is dense, i.e. for every vector strong subtree R of T there exists a vector strong
subtree Z of R with Z(0) = R(0) such that Z is in a good position. This is, of course, the content
of Lemma 16. Using these properties and a standard recursive construction, it is possible to find
a vector strong subtree V of T such that for every v ∈ ⊗V the vector strong subtree SuccV(v) of
T is in a good position.

The desired vector tree S will be an appropriately chosen vector strong subtree of V.
Specifically, let (m j ) be a sequence in N such that for every j ∈ N with j > 1 we have
m j > m j−1 + j . We select a vector strong subtree S of V such that ⊗S( j) ⊆ ⊗V(m j ) for
every j ∈ N. We will show that S is as desired. To this end, let s0 ∈ ⊗S be arbitrary and set
k = ℓS(s0). By the properties of V, the vector tree SuccV(s0) is in a good position. We fix a map
φs0 : D(s0) → {0, . . . , bW − 1} witnessing this fact. Let n ∈ N with k < n and F ∈ Fan(S, n)

with F(0) = s0. Observe that s0 ∈ ⊗S(k) ⊆ ⊗V(mk) and ⊗F(1) ⊆ ⊗S(n) ⊆ ⊗V(mn). By the
choice of the sequence (m j ), there exists l ∈ N with l > n such that F ∈ Fan


SuccV(s0), l


. It

follows that for every w ∈ D(s0) if p = φs0(w), then

dens

 
s∈⊗F(1)

D(s)

w⌢W p


6 θl

(17)
6 θn .

The proof of Lemma 17 is completed. �
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Step 5: fixing the “direction”

Let S be the vector strong subtree of T obtained by Lemma 17. For every p ∈ {0, . . . , bW −1}

we define C p : ⊗S → 2W by the rule

C p(s) = {w ∈ D(s) : φs(w) = p}. (18)

Lemma 18. There exist a vector strong subtree Z of S and p0 ∈ {0, . . . , bW − 1} such that for
every z ∈ ⊗Z we have

dens

C p0(z)


> ε/bW .

Proof. Let s ∈ ⊗S be arbitrary. Let ps be the least p ∈ {0, . . . , bW −1} such that dens

C p(s)


>

ε/bW . Notice that, by the classical pigeonhole principle, ps is well-defined. By HL(d), there
exist a vector strong subtree Z of S and p0 ∈ {0, . . . , bW − 1} such that pz = p0 for every
z ∈ ⊗Z. It is clear that Z and p0 are as desired. �

Step 6: properties of C p0

In this step we will not construct something new but rather summarize what we have achieved
so far. Let Z and p0 be as in Lemma 18. Then the following are satisfied.

(P 1) For every z ∈ ⊗Z we have C p0(z) ⊆ D(z).
(P 2) The map C p0 : ⊗Z → 2W is an (ε/bW )-dense level selection.
(P 3) For every k ∈ N with k > 1, every F ∈ Fan(Z, k) and every w ∈ C p0(z0), where

z0 = F(0), we have dens


z∈⊗F(1) D(z) | w⌢W p0


6 θk .

Property (P 1) follows immediately by (18). Property (P 2) is essentially the content of
Lemma 18. Finally, property (P 3) follows by Lemma 17 and Fact 14.

Step 7: a sequence of “forbidden” subsets of W

Let C p0 : ⊗Z → 2W be the (ε/bW )-dense level selection obtained in Step 5. Let (lk) be
the strictly increasing sequence in N such that for every k ∈ N and every z ∈ ⊗Z(k) we have
C p0(z) ⊆ W (lk).

For every k ∈ N with k > 1 we define a subset Gk of W (lk) by the rule

w′
∈ Gk ⇔ there exist F ∈ Fan(Z, k) and w ∈ C p0(z0), where z0 = F(0),

such that w′
∈


z∈⊗F(1)

D(z) ∩ SuccW (w⌢W p0).

We view the sequence (Gk) as a sequence of “forbidden” subsets of W . Specifically, we will
modify the dense level selection C p0 in such a way that the range of the new one will be disjoint
from every Gk . But in order to do so, we will need the following estimate on the size of each Gk .

Lemma 19. For every k ∈ N with k > 1 we have

dens(Gk) 6
ε

2bW
.

Proof. For every F ∈ Fan(Z, k) let

HF =


z∈⊗F(1)

D(z) ∩ SuccW


w⌢W p0 : w ∈ C p0


F(0)
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and notice that

Gk =


F∈Fan(Z,k)

HF.

Since Z is a vector strong subtree of the vector homogeneous tree T, by Fact 13, we have
|Fan(Z, k)| = Θk . Therefore, it is enough to show that for every F ∈ Fan(Z, k) we have
dens(HF) 6 ε/(2bW Θk).

To this end, let F ∈ Fan(Z, k) be arbitrary and set z0 = F(0). Also let λ = dens

C p0(z0)


/bW

and observe that λ 6 1. The tree W is homogeneous. Hence,

dens(HF) 6 λ · max


dens

 
z∈⊗F(1)

D(z)

w⌢W p0


: w ∈ C p0(z0)



6 max


dens

 
z∈⊗F(1)

D(z)

w⌢W p0


: w ∈ C p0(z0)


(P 3)

6 θk
(16)
=

ε

2bW Θk
.

The proof of Lemma 19 is completed. �

Step 8: definition of the dense level selection B

Let C p0 : ⊗Z → 2W be the (ε/bW )-dense level selection obtained in Step 5. Also let (Gk) be
the sequence of subsets of W defined in Step 7.

We define B : ⊗Z → 2W as follows. First we set B

Z(0)


= C p0


Z(0)


. If z ∈ ⊗Z(k) for

some k ∈ N with k > 1, then we set

B(z) = C p0(z) \ Gk . (19)

We summarize, below, the main properties of the map B.

(P 4) For every z ∈ ⊗Z we have B(z) ⊆ C p0(z) ⊆ D(z).
(P 5) The map B : ⊗Z → 2W is an (ε/2bW )-dense level selection.
(P 6) For every F ∈ Fan(Z) and every w ∈ B(z0), where z0 = F(0), we have

z∈⊗F(1)

B(z) ∩ SuccW (w⌢W p0) = ∅.

Property (P 4) follows by property (P 1) isolated in Step 6 and (19). Property (P 5) follows
by property (P 2) and Lemma 19. To see that property (P 6) is satisfied, let F ∈ Fan(Z) and
w ∈ B(z0), where z0 = F(0). We set

A =


z∈⊗F(1)

B(z) ∩ SuccW (w⌢W p0).

Let k be the unique integer such that F ∈ Fan(Z, k). By property (P 4) and the definition of Gk ,
we see that A ⊆ Gk . We fix z′

∈ ⊗F(1) and we notice that A ⊆ B(z′). Since z′
∈ ⊗Z(k),

by the previous inclusions and the definition of the dense level selection B, we conclude that
A ⊆ Gk ∩ B(z′) = ∅, as desired.
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Step 9: getting the contradiction

We are finally in a position to derive the contradiction. Indeed, by property (P 5), the map
B : ⊗Z → 2W is an (ε/2bW )-dense level selection. Moreover, by our assumptions, we have that
DHL(d) holds. Therefore, by Proposition 11 applied to “B : ⊗Z → 2W ” and “p0”, there must
exist F ∈ Fan(Z) and w ∈ B(z0), where z0 = F(0), such that

z∈⊗F(1)

B(z) ∩ SuccW (w⌢W p0) ≠ ∅.

This contradicts property (P 6). The proof of Theorem 9 is thus completed.

4.4. Comments

We recall that a vector tree T = (T1, . . . , Td) is said to be boundedly branching if for every
i ∈ {1, . . . , d} there exists bi ∈ N with bi > 1 such that every t ∈ Ti has at most bi immediate
successors. By Theorem 1, for every vector boundedly branching, pruned tree T = (T1, . . . , Td)

there exist a vector strong subtree S = (S1, . . . , Sd) of T and b1, . . . , bd ∈ N, with bi > 1 for
every i ∈ {1, . . . , d}, such that every s ∈ Si has exactly bi immediate successors in Si for every
i ∈ {1, . . . , d}. Therefore, Theorem 9 is also valid for nontrivial vector boundedly branching
trees simply by reducing the general case to the case of vector homogeneous trees.

The next natural class of vector trees for which Theorem 9 could be possibly true is that of
vector quasi-homogeneous trees: a vector tree T = (T1, . . . , Td) is said to be quasi-homogeneous
if for every i ∈ {1, . . . , d} the number of immediate successors of a node in Ti depends
only on its length. We point out that all arguments in this section (as well as the recursive
construction presented in Section 5) can be easily adapted to treat vector quasi-homogeneous
trees except Fact 13. Indeed, by Fact 13, we have an a priori estimate for the cardinality of the
set Fan(S, k) for every k ∈ N and every vector strong subtree S of a vector homogeneous tree T.
If the vector tree T is quasi-homogeneous but not boundedly branching, then no estimate can be
obtained. As is shown in [3, Theorem 2.5] this obstacle is a necessity rather than a coincidence.

Finally we remark that, using essentially the same arguments as in the proof of Theorem 9,
one can show that there exist a vector strong subtree R of T and a constant 0 < θ 6 1 such that
for “almost all” nodes w in D


R(0)


the pair (R, w) is strongly θ -correlated with respect to D.

Precisely, we have the following.

Theorem 20. Let d > 1 and assume that DHL(d) holds. Also let T = (T1, . . . , Td) be a vector
homogeneous tree, W a homogeneous tree, 0 < ε 6 1 and D : ⊗T → 2W an ε-dense level
selection. Then for every 0 < δ < ε there exist a vector strong subtree R of T and a constant
0 < θ 6 1 such that, setting r0 = R(0) and

G =

w ∈ D(r0) : the pair (R, w) is strongly θ -correlated with respect to D


,

we have dens(G) > dens

D(r0)


− δ.

5. Proof of Theorem 2

As we have already mentioned in the introduction, the proof of Theorem 2 proceeds by in-
duction. The case “d = 1” is the content of [3, Theorem 2.3]. So, assume that we have proven
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DHL(d) for some d ∈ N with d > 1 and that we are given a vector homogeneous tree (T1, . . . ,

Td , W ), a constant 0 < ε 6 1, a subset D of the level product of (T1, . . . , Td , W ) and an infinite
subset L of N such thatD ∩


T1(n) × · · · × Td(n) × W (n)

 > ε
T1(n) × · · · × Td(n) × W (n)

 (20)

for every n ∈ L . Our goal is to find a vector strong subtree (Z1, . . . , Zd , V ) of (T1, . . . , Td , W )

whose level product is contained in D. This will be done in several steps. We set T = (T1,

. . . , Td). For notational simplicity, for every i ∈ {1, . . . , d} by bi we shall denote the branching
number of the homogeneous tree Ti . The vector homogeneous tree BT = (b<N

1 , . . . , b<N
d ) will

be denoted simply by B. Notice that if p ∈ ⊗B(1), then p is a finite sequence (p1, . . . , pd) with
pi ∈ {0, . . . , bi − 1} for every i ∈ {1, . . . , d}. By 0 we shall denote the unique finite sequence
in ⊗B(1) having zero entries. For every n ∈ N, every u = (u1, . . . , ud) ∈ ⊗B(n) and every
p = (p1, . . . , pd) ∈ ⊗B(1) we set u⌢p = (u⌢

1 p1, . . . , u⌢
d pd) ∈ ⊗B(n + 1).

Step 1: obtaining a dense level selection

For every n ∈ L let Cn be the subset of ⊗T(n) defined by the rule

t ∈ Cn ⇔ |{w ∈ W (n) : (t, w) ∈ D}| > ε/2|W (n)|.

Using (20) and arguing as in the proof of Claim 12, we get the following.

Fact 21. For every n ∈ L we have |Cn| > ε/2| ⊗ T(n)|.

We set C =


n∈L Cn . By Fact 21, we see that

lim sup
n→∞

|C ∩ ⊗T(n)|

| ⊗ T(n)|
= lim sup

n∈L

|Cn ∩ ⊗T(n)|

| ⊗ T(n)|
> ε/2 > 0.

Since DHL(d) holds, there exists a vector strong subtree S of T such that ⊗S ⊆ C . It follows
that the section map

⊗S ∋ s → {w ∈ W : (s, w) ∈ D} ∈ 2W

is an (ε/2)-dense level selection. It will be denoted by D : ⊗S → 2W .

Step 2: defining certain vector fans

Let S = (S1, . . . , Sd) be the vector strong subtree of T obtained in Step 1. Also let R be an
arbitrary vector strong subtree of S. In this step, we will introduce a method to obtain vector
fans of R from certain elements of ⊗R. The method is based on the notion of a vector canonical
isomorphism described in Section 2.5. The resulting vector fans will be used in the next step.

We will describe, first, the one-dimensional case in abstract setting. So, let Z be a homoge-
neous tree and set z0 = Z(0). For every p ∈ {0, . . . , bZ − 1} let

Z [p] = SuccZ (z⌢Z
0 p). (21)

It is clear that Z [p] is a strong subtree of Z , and so, it is homogeneous with branching number
bZ . This observation permits us to consider the canonical isomorphism I


Z [0], Z [p]


between
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Z [0] and Z [p] for every p ∈ {0, . . . , bZ − 1}. Now, for every z ∈ Z [0] we set

Fz,Z = {z0} ∪


I

Z [0], Z [p]


(z) : p ∈ {0, . . . , bZ − 1}


. (22)

Notice that Fz,Z ∈ Fan(Z). The fan Fz,Z will be called a (z, Z)-directed fan. We point that not
every fan of Z is (z, Z)-directed for some z ∈ Z [0]. Actually, the set of all (z, Z)-directed fans
is a rather “thin” subset of Fan(Z).

After this preliminary discussion, we are ready to introduce the vector fans we mentioned
above. Specifically, let R = (R1, . . . , Rd) be an arbitrary vector strong subtree of S. For every
p = (p1, . . . , pd) ∈ ⊗B(1) we set

R[p] =

R1[p1], . . . , Rd [pd ]


(23)

and we notice that R[p] is a vector strong subtree of R. Again we emphasize that this observation
permits us to consider that vector canonical isomorphism I


R[0], R[p]


between R[0] and R[p]

for every p ∈ ⊗B(1). Observe that I

R[0], R[0]


is the identity map on R[0]. For every

r = (r1, . . . , rd) ∈ ⊗R[0] we define

Fr,R = (Fr1,R1 , . . . , Frd ,Rd ). (24)

Notice that Fr,R is well-defined since ri ∈ Ri [0] for every i ∈ {1, . . . , d}. Also observe that
Fr,R ∈ Fan(R) and Fr,R(0) = R(0). The vector fan Fr,R will be called an (r, R)-directed vector
fan. We isolate, for future use, the following representation of the set ⊗Fr,R(1). It is a direct
consequence of the relevant definitions.

Fact 22. For every vector strong subtree R of S and every r ∈ R[0] we have

⊗Fr,R(1) =


I

R[0], R[p]


(r) : p ∈ ⊗B(1)


.

In particular, we have r ∈ ⊗Fr,R(1).

Step 3: a recursive construction

This is the main step of the proof. Let D : ⊗S → 2W be the (ε/2)-dense level selection
obtained in Step 1. Recursively, we shall construct

(a) two sequences (Sn) and (Rn) of vector strong subtrees of S,
(b) two sequences (εn) and (θn) of reals in (0, 1],
(c) a strictly increasing sequence (ln) in N,
(d) for every n ∈ N a map Dn : ⊗Sn → 2W and
(e) a family {wv : v ∈ b<N

W } in W

such that for every n ∈ N the following conditions are satisfied.

(C1) Rn is a vector strong subtree of Sn .
(C2) Sn+1 = Rn[0].
(C3) For every v ∈ bn

W we have ℓW (wv) = ln .
(C4) For every v ∈ bn

W and p ∈ {0, . . . , bW − 1} we have wv⌢ p ∈ SuccW (w
⌢W
v p).

(C5) The map Dn : ⊗Sn → 2W is an εn-dense level selection.
(C6) For every s ∈ ⊗Sn we have Dn(s) ⊆ D0(s) = D(s).
(C7) For every v ∈ bn

W the pair (Rn, wv) is strongly θn-correlated with respect to the dense level
selection Dn .
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(C8) For every r ∈ ⊗Rn[0] we have

Dn+1(r) =


p∈⊗B(1)

Dn


I

Rn[0], Rn[p]


(r)

. (25)

We proceed to the construction. For n = 0 we set “S0 = S”, “ε0 = ε/2” and “D0 = D”
and we notice that with these choices conditions (C5) and (C6) are satisfied. Recall that we
have already proven DHL(d). Therefore, by Theorem 9 applied to the ε0-dense level selection
D0 : ⊗S0 → 2W , there exist a vector strong subtree R of S0, a node w ∈ W and a constant
0 < θ 6 1 such that the pair (R, w) is strongly θ -correlated with respect to D0. We set “R0 = R”,
“θ0 = θ”, “w∅ = w” and “l0 = ℓW (w)” and we observe that with these choices conditions (C1),
(C3) and (C7) are satisfied. Since conditions (C2), (C4) and (C8) are meaningless for n = 0, the
first step of the recursive construction is completed.

Let n ∈ N and assume that the construction has been carried out up to n. We set “Sn+1 =

Rn[0]” and we notice that condition (C2) is satisfied. Let r ∈ ⊗Sn+1 be arbitrary and consider
the (r, Rn)-directed fan Fr,Rn described in Step 2. We define Dn+1 : ⊗Sn+1 → 2W by the rule

Dn+1(r) =


s∈⊗Fr,Rn (1)

Dn(s).

By Fact 22 and our inductive assumptions, we see that conditions (C6) and (C8) are satisfied. We
set “εn+1 = θnbn−ln

W ” and we claim that with this choice condition (C5) is satisfied. To this end,
it is enough to show that dens


Dn+1(r)


> εn+1 for every r ∈ ⊗Sn+1. So, let r ∈ ⊗Sn+1 be

arbitrary. By our inductive assumptions, the pair (Rn, wv) is strongly θn-correlated with respect
to Dn for every v ∈ bn

W . Recall that ℓW (wv) = ln and Fr,Rn ∈ Fan(Rn). Since the tree W is
homogeneous we get that

dens

Dn+1(r)


>

1

bln+1
W


v∈bn

W

bW −1
p=0

dens

Dn+1(r) | w⌢W

v p


=
1

bln+1
W


v∈bn

W

bW −1
p=0

dens

 
s∈⊗Fr,Rn (1)

Dn(s)

w⌢W
v p


>

bn+1
W

bln+1
W

· θn = εn+1.

This shows that Dn+1 is an εn+1-dense level selection.
Now for every v ∈ bn

W and every p ∈ {0, . . . , bW − 1} we define Dv,p : ⊗Sn+1 → 2W by the
rule Dv,p(r) = Dn+1(r) ∩ SuccW (w

⌢W
v p). Arguing as above, it is easy to check that Dv,p is a

δn-dense level selection where δn = θn/bln+1
W . Again we emphasize that we have already proven

DHL(d). Therefore, by repeated applications of Corollary 10, we may find a vector strong subtree
R of Sn+1 and for every v ∈ bn

W and every p ∈ {0, . . . , bW − 1} a node wv,p ∈ W and a constant
0 < θv,p 6 1 such that the pair (R, wv,p) is strongly θv,p-correlated with respect to Dv,p. We set
“Rn+1 = R”, “θn+1 = min


θv,p : v ∈ bn

W and p ∈ {0, . . . , bW − 1}

” and “wv⌢ p = wv,p” for

every v ∈ bn
W and every p ∈ {0, . . . , bW −1}. Notice that with these choices conditions (C1), (C4)

and (C7) are satisfied. Let rn+1 be the root of Rn+1. Since the pair (Rn+1, wv⌢ p) is strongly θn+1-
correlated with respect to Dv,p we see that wv⌢ p ∈ Dv,p(rn+1) ⊆ Dn+1(rn+1) ⊆ D(rn+1).
Hence, there exists l ∈ N with l > ln such that ℓW (wv⌢ p) = l for every v ∈ bn

W and every
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p ∈ {0, . . . , bW − 1}. We set “ln+1 = l” and we observe that the last condition, condition (C3),
is also satisfied. The recursive construction is completed.

Step 4: a family of vector canonical embeddings

Let (Sn) and (Rn) be the sequences of vector strong subtrees of S obtained in Step 3. Also
let (Dn) be the corresponding sequence of dense level selections. Recall that Sn+1 = Rn[0]. For
every n ∈ N we write Sn = (Sn

1 , . . . , Sn
d ) and Rn = (Rn

1 , . . . , Rn
d ). Our goal in this step is to

define a family {Hu : u ∈ ⊗B} of vector canonical embeddings. It will be used to “unravel” the
recursive definition of the sequence (Dn) and relate each Dn with the (ε/2)-dense level selection
D : ⊗S → 2W obtained in Step 1. This is the content of Fact 23.

To this end, we will describe first how these embeddings are acting in each coordinate. So, fix
i ∈ {1, . . . , d}. Recursively, for every n ∈ N and every u ∈ bn

i we define a map hu
i : Sn

i → Ti as
follows. For u = ∅ let h∅

i : S0
i → Ti be the identity. Let n ∈ N and u ∈ bn

i and assume that the
map hu

i : Sn
i → Ti has been defined. For every p ∈ {0, . . . , bi − 1} we set

hu⌢ p
i = hu

i ◦ I

Sn+1

i , Rn
i [p]


= hu

i ◦ I

Rn

i [0], Rn
i [p]


(26)

where I

Sn+1

i , Rn
i [p]


is the canonical isomorphism between the homogeneous trees Sn+1

i
and Rn

i [p]. Inductively, it is easy to verify the following properties guaranteed by the above
construction.

(P1) For every u ∈ b<N
i the map hu

i is a canonical embedding.
(P2) For every n ∈ N, every u ∈ bn

i and every s ∈ Sn
i we have ℓTi


hu

i (s)


= ℓTi (s).

We are ready to introduce the desired family {Hu : u ∈ ⊗B} of vector canonical embeddings.
So, let n ∈ N and u = (u1, . . . , ud) ∈ ⊗B(n) be arbitrary. We define Hu : ⊗Sn → ⊗T by the
rule

Hu

(s1, . . . , sd)


=

hu1

1 (s1), . . . , hud
d (sd)


. (27)

By properties (P1) and (P2), it is clear that Hu is a well-defined vector canonical embedding.
We will need a formula satisfied by these maps which follows by identities (23), (26) and (27).
Specifically, for every n ∈ N, every u = (u1, . . . , ud) ∈ ⊗B(n) and every p = (p1, . . . , pd) ∈

⊗B(1) it holds that

Hu⌢p = Hu ◦ I

Rn[0], Rn[p]


(28)

where I

Rn[0], Rn[p]


is the vector canonical isomorphism between Rn[0] and Rn[p]. We will

also need the following.

Fact 23. For every n ∈ N and every s ∈ ⊗Sn we have

Dn(s) =


u∈⊗B(n)

D

Hu(s)


.

Proof. The proof proceeds by induction on n. For n = 0 the desired identity follows immediately
by condition (C6) in Step 3 and the fact that HB(0) is the identity map on ⊗S0. Assume that the
result has been proved for some n ∈ N. Let s ∈ ⊗Sn+1 be arbitrary. Recall that Sn+1 = Rn[0]
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and that Rn is a vector strong subtree of Sn . Therefore,

Dn+1(s)
(25)
=


p∈⊗B(1)

Dn


I

Rn[0], Rn[p]


(s)


=


p∈⊗B(1)


u∈⊗B(n)

D


Hu


I

Rn[0], Rn[p]


(s)


(28)
=


p∈⊗B(1)


u∈⊗B(n)

D

Hu⌢p(s)


=


u′∈⊗B(n+1)

D

Hu′(s)


where the second equality follows by our inductive assumption. The proof of Fact 23 is com-
pleted. �

Step 5: an infinite chain of (T1, . . . , Td) and an “unfolding” argument

Let (ln) be the strictly increasing sequence in N and (Rn) the sequence of vector strong
subtrees of S obtained in Step 3. For every n ∈ N we set

rn = Rn(0) (29)

and we write rn = (rn
1 , . . . , rn

d ). Recall that a subset C of a tree (T, <) is said to be a chain if for
every s, t ∈ C we have that either t 6 s or s 6 t .

Lemma 24. For every i ∈ {1, . . . , d} the family {rn
i : n ∈ N} is an infinite chain of the tree Ti .

Moreover, for every n ∈ N we have ℓTi (r
n
i ) = ln .

Proof. Let n ∈ N be arbitrary. As in Step 4, we write Rn = (Rn
1 , . . . , Rn

d ). By conditions (C1)
and (C2) in Step 3, we see that rn+1

i ∈ SuccRn
i
(rn

i ) ⊆ SuccTi (r
n
i ). This shows that the family

{rn
i : n ∈ N} is an infinite chain of Ti . Also notice that, by conditions (C6) and (C7), we have

(rn
1 , . . . , rn

d , wv) ∈ D for every v ∈ bn
W . Invoking condition (C3), we conclude that ℓTi (r

n
i ) = ln .

The proof of Lemma 24 is completed. �

Let i ∈ {1, . . . , d} and consider the family {hu
i : u ∈ b<N

i } of canonical embeddings defined
in Step 4. We define a map Φi : b<N

i → Ti as follows. For every n ∈ N and every u ∈ bn
i we set

Φi (u) = hu
i (rn

i ). (30)

That is, for every n ∈ N the family {Φi (u) : u ∈ bn
i } is the “orbit” of the node rn

i under the family
of maps {hu

i : u ∈ bn
i }.

Lemma 25. For every i ∈ {1, . . . , d} the map Φi : b<N
i → Ti is a canonical embedding.

Moreover, for every n ∈ N and every u ∈ bn
i we have

ℓTi


Φi (u)


= ln . (31)

Proof. Let i ∈ {1, . . . , d} be arbitrary. First notice that, by property (P2) in Step 4 and Lemma 24,
condition (a) in Section 2.5 and equality (31) are both satisfied. To show that condition (b)
in Section 2.5 is satisfied we need to prove that for every n ∈ N, every u ∈ bn

i and every
p ∈ {0, . . . , bi − 1} we have that Φi (u⌢ p) ∈ SuccTi


Φi (u)⌢Ti p


. To this end let

w = rn
i and r = I


Rn

i [0], Rn
i [p]


(rn+1

i ).
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By (26) and (30), we see that Φi (u) = hu
i (w) and Φi (u⌢ p) = hu

i (r). Also observe that
r ∈ SuccTi (w

⌢Ti p). By property (P1) in Step 4, the map hu
i is a canonical embedding. Therefore,

hu
i (r) ∈ SuccTi


hu

i (w)⌢Ti p

. The proof of Lemma 25 is completed. �

Step 6: the end of the proof

For every i ∈ {1, . . . , d} we set

Zi = {Φi (u) : u ∈ b<N
i } (32)

where Φi is the canonical embedding defined in (30). Also, we set

V = {wv : v ∈ b<N
W } (33)

where {wv : v ∈ b<N
W } is the family obtained in part (e) of the construction presented in Step 3.

By conditions (C3) and (C4), we see that V is a strong subtree of W and LW (V ) = {ln : n ∈ N}.
Moreover, by Lemma 25, Zi is a strong subtree of Ti and LTi (Zi ) = {ln : n ∈ N} for every
i ∈ {1, . . . , d}. It follows that (Z1, . . . , Zd , V ) is a vector strong subtree of (T1, . . . , Td , W ). The
proof will be completed once we show that the level product of (Z1, . . . , Zd , V ) is contained in
D.

So, let (z1, . . . , zd , v) be an arbitrary element of the level product of (Z1, . . . , Zd , V ). There
exist n ∈ N, u0 = (u1, . . . , ud) ∈ ⊗B(n) and v0 ∈ bn

W such that v = wv0 and zi = Φi (ui ) for
every i ∈ {1, . . . , d}. Notice that

Φ1(u1), . . . ,Φd(ud)
 (30)

=

hu1

1 (rn
1 ), . . . , hud

d (rn
d )
 (27)

= Hu0(rn)
(29)
= Hu0


Rn(0)


.

By condition (C7), the pair (Rn, wv0) is strongly θn-correlated with respect to Dn . Therefore,
wv0 ∈ Dn


Rn(0)


. By Fact 23, we get that

wv0 ∈ Dn

Rn(0)


⊆ D


Hu0


Rn(0)


.

Summing up, we conclude that

(z1, . . . , zd , v) =

Φ1(u1), . . . ,Φd(ud), wv0


∈ D.

The proof of Theorem 2 is thus completed.

6. Comments

Using a standard compactness argument we get the following finite version of Theorem 2.

Theorem 26. For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all i ∈ {1, . . . , d},
every integer k > 1, every real 0 < ε 6 1 and every infinite subset M = {m0 < m1 < · · ·}

of N there exists an integer N with the following property. If T = (T1, . . . , Td) is a vector
homogeneous tree with bT = (b1, . . . , bd) and D is a subset of the level product of (T1, . . . , Td)

satisfyingD ∩

T1(mn) × · · · × Td(mn)

 > ε|T1(mn) × · · · × Td(mn)|

for every n 6 N, there exists a finite vector strong subtree S of T of height k such that the
level product of S is a subset of D. The least integer N with this property will be denoted by
DHL(b1, . . . , bd |k, ε, M).
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Notice, however, that the reduction of Theorem 26 to Theorem 2 via compactness is nonef-
fective and gives no estimate for the numbers DHL(b1, . . . , bd |k, ε, M). The natural problem of
getting explicit upper bounds for the “density Halpern–Läuchli numbers” is studied in [10].
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