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a b s t r a c t

We introduce a new type of the Bartholdi zeta function of a digraph D. Furthermore, we
define a new type of the Bartholdi L-function of D, and give a determinant expression of it.
We show that this L-function of D is equal to the L-function of D defined in [H. Mizuno,
I. Sato, A new Bartholdi zeta function of a digraph, Linear Algebra Appl. 423 (2007)
498–511]. As a corollary,we obtain a decomposition formula for a new type of the Bartholdi
zeta function of a group covering of D by new Bartholdi L-functions of D.
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1. Introduction

Graphs treated here are finite. Let G = (V (G), E(G)) be a connected graph (possibly multiple edges and loops) with the
set V (G) of vertices and the set E(G) of unoriented edges uv joining two vertices u and v. For uv ∈ E(G), an arc (u, v) is
the oriented edge from u to v. Set R(G) = {(u, v), (v, u) | uv ∈ E(G)}. For e = (u, v) ∈ R(G), set u = o(e) and v = t(e).
Furthermore, let e−1 = (v, u) be the inverse of e = (u, v).
A path P of length n in G is a sequence P = (e1, . . . , en) of n arcs such that ei ∈ R(G), t(ei) = o(ei+1)(1 ≤ i ≤ n − 1),

where indices are treated mod n. Set |P| = n, o(P) = o(e1) and t(P) = t(en). Also, P is called an (o(P), t(P))-path. We say
that a path P = (e1, . . . , en) has a backtracking if e−1i+1 = ei for some i(1 ≤ i ≤ n − 1). A (v,w)-path is called a v-cycle (or
v-closed path) if v = w. The inverse cycle of a cycle C = (e1, . . . , en) is the cycle C−1 = (e−1n , . . . , e

−1
1 ).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, . . . , em) and C2 = (f1, . . . , fm) are said to
be equivalent if there exists k such that fj = ej+k for all j. The inverse cycle of C is in general not equivalent to C . Let [C]
be the equivalence class which contains a cycle C . Let Br be the cycle obtained by going r times around a cycle B. Such a
cycle is called a power of B. A cycle C is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is not a power
of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique
conjugacy class of the fundamental group π1(G, v) of G at a vertex v of G.
The Ihara zeta function of a graph G is a function of t ∈ Cwith |t| sufficiently small, defined by

Z(G, t) = ZG(t) =
∏
[C]

(1− t |C |)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G (see [7]).
Ihara zeta functions of graphs originated from Ihara zeta functions of regular graphs by Ihara [7]. Originally, Ihara

presented p-adic Selberg zeta functions of discrete groups. LetΓ be a torsion-free discrete cocompact subgroup of PGL(2, kp),
where kp is a p-adic number field over a finite field. Ihara defined a zeta function associated with Γ as an analogue of the
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Selberg zeta function for a discrete cocompact subgroup of PGL(2,R), and showed that its reciprocal is an explicit polynomial.
Serre [17] pointed out that the Ihara zeta function is the zeta function of the quotient T/Γ (a finite regular graph) of the one-
dimensional Bruhat–Tits building T (an infinite regular tree) associated with GL(2, kp). Furthermore, in [8], Ihara discovered
an identity between the zeta function of T/Γ and a certain Shimura curve reduced modulo the prime number p.
A zeta function of a regular graphG associatedwith a unitary representation of the fundamental group ofGwas developed

by Sunada [19,20]. Hashimoto [5] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara’s result
on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial.

Theorem 1 (Bass). Let G be a connected graph. Then the reciprocal of the zeta function of G is given by

Z(G, t)−1 = (1− t2)r−1 det(I− tA(G)+ t2(D− I)),

where r and A(G) are the Betti number and the adjacency matrix of G, respectively, and D = (dij) is the diagonal matrix with
dii = deg vi where V (G) = {v1, . . . , vn}.

Various proofs of Bass’ theorem were given by Stark and Terras [18], Foata and Zeilberger [3], Kotani and Sunada [9],
Hoffman [6] and Northshield [13].
Let G be a connected graph. We say that a path P = (e1, . . . , en) has a bump at t(ei) if ei+1 = e−1i (1 ≤ i ≤ n). The cyclic

bump count cbc(π) of a cycle π = (π1, . . . , πn) is

cbc(π) = |{i = 1, . . . , n | πi = π−1i+1}|,

where πn+1 = π1. Then the Bartholdi zeta function of G is a function of u, t ∈ Cwith |u|, |t| sufficiently small, defined by

ζG(u, t) = ζ (G, u, t) =
∏
[C]

(1− ucbc(C)t |C |)−1,

where [C] runs over all equivalence classes of prime cycles of G (see [1]). If u = 0, then the Bartholdi zeta function of G is
the Ihara zeta function of G.
Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented edges. Then the reciprocal of the Bartholdi
zeta function of G is given by

ζ (G, u, t)−1 = (1− (1− u)2t2)m−n det(I− tA(G)+ (1− u)(D− (1− u)I)t2).

In the case of u = 0, Theorem 2 implies Theorem 1.
Mizuno and Sato [12] considered a new zeta function of a digraph, and defined a new zeta function of a digraph by using

not an infinite product but a determinant.
Let D be a connected graph with n vertices v1, . . . , vn and m arcs. Then we consider an n × n matrix W = W(D) =

(wij)1≤i,j≤n with the ij entry the complex variable wij if (vi, vj) ∈ A(D), and wij = 0 otherwise. The matrixW = W(D) is
called the weighted matrix of D. Furthermore, let w(vi, vj) = wij, vi, vj ∈ V (D) and w(e) = wij, e = (vi, vj) ∈ A(D). Then
w : A(D) −→ C is called a weight of D. For each path P = (e1, . . . , er) of G, the norm w(P) of P is defined as follows:
w(P) = w(e1) . . . w(er).
Let D be a connected digraph with n vertices and m arcs, andW = W(D) a weighted matrix of D. Two m × mmatrices

B = B(D) = (Be,f )e,f∈A(D) and J0 = J0(D) = (Je,f )e,f∈A(D) are defined as follows:

Be,f =
{
w(f ) if t(e) = o(f ),
0 otherwise, Je,f =

{
1 if f = e−1,
0 otherwise.

Then a weighted Bartholdi zeta function of D is defined by

ζ1(D, w, u, t) = det(In − t(B− (1− u)J0))
−1.

If w = 1, i.e., w(e) = 1 for any e ∈ A(D), then the weighted Bartholdi zeta function of D is the Bartholdi zeta
function of D (see [11]). If u = 0 and D = DG is the symmetric digraph corresponding to a graph G, then the weighted
Bartholdi zeta function of D is the zeta function Z1(G, w, t) of G (see [15]). Furthermore, in the case of D = DG, we have
ζ1(DG, 1, u, t) = ζ (G, u, t) and ζ1(DG, 1, 0, t) = Z(G, t).
We define two n× nmatricesW1 = W1(D) = (auv) andW0 as follows:

auv =
{
w(u, v) if both (u, v) and (v, u) ∈ A(D),
0 otherwise

and

W0 = W0(D) = W(D)−W1.
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Let V (D) = {v1, . . . , vn}. Then an n× nmatrix S = (sij) is the diagonal matrix defined by

sii =
∑

e,e−1∈A(D);o(e)=vi

w(e).

Set

s(vi) = sii, 1 ≤ i ≤ n.

Theorem 3 (Mizuno and Sato). Let D be a connected digraph, and let W = W(D) be a weighted matrix of D. Furthermore, let
m1 = |{e ∈ A(D) | e−1 ∈ A(D)}|/2. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

ζ1(D, w, u, t)−1 = (1− (1− u)2t2)m1−n

× det(In − tW1(D)− (1− (1− u)2t2)tW0(D)+ (1− u)t2(S− (1− u)In)).

where n = |V (D)|.

In Section 2, we define a new type of the Bartholdi zeta function of a digraph D, and give a decomposition formula of a
new type of the Bartholdi zeta function of a group covering ofD. In Section 3,we define a new type of the Bartholdi L-function
of D, and present a determinant expression for a new type of the Bartholdi L-function of D. Furthermore, we show that this
L-function of D is equal to the L-function of D defined in [12]. As a corollary, we show that a new type of the Bartholdi zeta
function of a group covering of D is a product of new Bartholdi L-functions of D.
For a general theory of the representation of groups and graph coverings, the reader is referred to [16,4], respectively.

2. New Bartholdi zeta functions of digraphs

We consider a new zeta function of a digraph, and define a new zeta function of a digraph by using not an infinite product
but a determinant.
Let D be a connected graph with n vertices v1, . . . , vn andm arcs, and letw : A(D) −→ C be a weight of D.
LetW = W(D) a weighted matrix of D. Anm×mmatrix B′ = B′(D) = (B′e,f )e,f∈A(D) is defined as follows:

B′e,f =
{
w(e) if t(e) = o(f ),
0 otherwise.

Then a weighted Bartholdi zeta function of D is defined by

ζ2(D, w, u, t) = det(In − t(B′ − (1− u)J0))
−1.

We can generalize the notion of a Γ -covering of a graph to a simple digraph. Let D be a connected digraph and Γ a
finite group. Then a mapping α : A(D) −→ Γ is called a pseudo-ordinary voltage assignment if α(v, u) = α(u, v)−1 for
each (u, v) ∈ A(D) such that (v, u) ∈ A(D). The pair (D, α) is called an ordinary voltage digraph. The derived digraph Dα
of the ordinary voltage digraph (D, α) is defined as follows: V (Dα) = V (D) × Γ and ((u, h), (v, k)) ∈ A(Dα) if and only if
(u, v) ∈ A(D) and k = hα(u, v). The digraphDα is called aΓ -covering ofD. Note that aΓ -covering of the symmetric digraph
corresponding to a graph G is a Γ -covering of G (c.f., [4]).
Let D be a connected digraph, Γ a finite group and α : A(D) −→ Γ a pseudo-ordinary voltage assignment. In the

Γ -covering Dα , set vg = (v, g) and eg = (e, g), where v ∈ V (D), e ∈ A(D), g ∈ Γ . For e = (u, v) ∈ A(D), the arc eg
emanates from ug and terminates at vgα(e).
LetW = W(D) be a weighted matrix of D. Then we define the weighted matrix W̃ = W(Dα) = (w̃(ug , vh)) of Dα derived

fromW as follows:

w̃(ug , vh) :=
{
w(u, v) if (u, v) ∈ A(D) and h = gα(u, v),
0 otherwise.

Let M1 ⊕ · · · ⊕ Ms be the block diagonal sum of square matrices M1, . . . ,Ms. If M1 = M2 = · · · = Ms = M, then we
write s ◦ M = M1 ⊕ · · · ⊕ Ms. The Kronecker product A

⊗
B of matrices A and B is considered as the matrix A having the

element aij replaced by the matrix aijB.
We give a decomposition formula for the weighted Bartholdi zeta function ζ2 of a group covering of a digraph D.
Let D be a connected digraph, Γ a finite group and α : A(D) −→ Γ a pseudo-ordinary voltage assignment. Let

w : A(D) −→ C be a weight of D. Then two matrices B̃ = B(Dα) = (b̃(eg , fh)) and J̃ = J(Dα) = (c̃(eg , fh)) of Dα are
given by

b̃(eg , fh) :=
{
w(e) if t(eg) = o(fh),
0 otherwise, c̃(eg , fh) :=

{
1 if e−1g = fh,
0 otherwise.
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For g ∈ Γ , let the matrix Bg = (b
(g)
ef ) be defined by

b(g)ef :=
{
w(e) if α(e) = g and t(e) = o(f ),
0 otherwise.

Furthermore, let the matrix Jg = (c
(g)
ef ) be defined by

c(g)ef :=
{
1 if α(e) = g and e−1 = f ,
0 otherwise.

Theorem 4. Let D be a connected graph with l arcs,W = W(D) a weighted matrix of D, Γ a finite group and α : A(D) −→ Γ

a pseudo-ordinary voltage assignment. Furthermore, let ρ1 = 1, ρ2, . . . , ρk be all inequivalent irreducible representations of Γ ,
and fi the degree of ρi for each i, where f1 = 1. Suppose that the Γ -covering Dα of D is connected. Then the reciprocal of the
weighted Bartholdi zeta function of Dα is

ζ2(Dα, w̃, u, t)−1 = ζ2(D, w, u, t)−1 ·
k∏
i=2

det

(
Ilfi − t

∑
h∈Γ

ρi(h)
⊗

(Bh − (1− u)Jh)

)fi
.

Proof. Let A(D) = {e1, . . . , el} and Γ = {1 = g1, g2, . . . , gm}. Arrange arcs of Dα in m blocks: (e1, 1),
. . . , (el, 1); (e1, g2), . . . , (el, g2); · · · ; (e1, gm), . . . , (el, gm).We consider the matrix B̃ − J̃ under this order. For h ∈ Γ , let
Ph = (p(h)ij ) be the permutation matrix of h. Suppose that p

(h)
ij = 1, i.e., gj = gih. Then t(e, gi) = o(f , gj) if and only if

t(e) = o(f ) and (o(f ), gj) = o(f , gj) = t(e, gi) = (t(e), giα(e)), i.e., α(e) = g−1i gj = g
−1
i gih = h. Thus we have

B̃− (1− u)J̃ =
∑
h∈Γ

Ph
⊗

(Bh − (1− u)Jh).

Let ρ be the right regular representation of Γ . Furthermore, let ρ1 = 1, ρ2, . . . , ρk be all inequivalent irreducible
representations of Γ , and fi the degree of ρi for each i, where f1 = 1. Then we have ρ(h) = Ph for h ∈ Γ . Furthermore, there
exists a nonsingular matrix P such that P−1ρ(h)P = (1) ⊕ f2 ◦ ρ2(h) ⊕ · · · ⊕ fk ◦ ρk(h) for each h ∈ Γ (see [16]). Putting
F = (P−1

⊗
Il)(B̃− (1− u)J̃)(P

⊗
Il), we have

F =
∑
h∈Γ

{(1)⊕ f2 ◦ ρ2(h)⊕ · · · ⊕ fk ◦ ρk(h)}
⊗

(Bh − (1− u)Jh).

Note that B′ − (1− u)J0 =
∑
h∈Γ (Bh − (1− u)Jh) and 1+ f

2
2 + · · · + f

2
k = m. Therefore it follows that

ζ2(Dα, w̃, u, t)−1 = det(Ilm − t(B̃− (1− u)J̃))

= det(Il − t(B′ − (1− u)J0))
k∏
i=2

det

(
Ilfi − t

∑
h

ρi(h)
⊗

(Bh − (1− u)Jh)

)fi
. �

3. L-functions of digraphs

Let D be a connected graph with n vertices and l arcs, W = W(D) a weighted matrix of D, Γ a finite group and
α : A(D) −→ Γ a pseudo-ordinary voltage assignment. For each path P = (e1, . . . , er) of G, set α(P) = α(e1) · · ·α(er). This
is called the net voltage of P . Furthermore, let ρ be a unitary representation of Γ and d its degree.
The L-function of D associated with ρ and α is defined by

ζ2(D, w, u, t, ρ, α) = det

(
Ild − t

∑
h∈Γ

ρ(h)
⊗

(Bh − (1− u)Jh)

)−1
.

If ρ = 1(the identity representation of Γ ), then the L-function of D is the weighted Bartholdi zeta function ζ2(D, w, u, t)
of D.
Let 1 ≤ i, j ≤ n. Then, the (i, j)-block Fi,j of a dn × dn matrix F is the submatrix of F consisting of d(i − 1) + 1, . . . , di

rows and d(j − 1) + 1, . . . , dj columns. Two ld × ldmatrices Bρ = ((Bρ)e,f )e,f∈A(D) and Jρ = ((Jρ)e,f )e,f∈A(D) are defined as
follows:

(Bρ)e,f =
{
w(e)ρ(α(e)) if t(e) = o(f ),
0d otherwise, (Jρ)e,f =

{
ρ(α(e)) if f = e−1,
0d otherwise.

For g ∈ Γ , the matrixW0,g = (a
(g)
uv ) is defined as follows:

a(g)uv :=
{
w(u, v) if (u, v) ∈ A(D),(v, u) 6∈ A(D) and α(u, v) = g ,
0 otherwise.
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For g ∈ Γ , the matrixW1,g = (b
(g)
uv ) is defined as follows:

b(g)uv :=
{
w(u, v) if (u, v), (v, u) ∈ A(D) and α(u, v) = g ,
0 otherwise.

A determinant expression for the L-function of D associated with ρ and α is given as follows.

Theorem 5. Let D be a connected digraph with ν vertices and ε arcs, Γ a finite group, α : A(D) −→ Γ a pseudo-ordinary
voltage assignment andW = W(D) a weighted matrix of D. Set ε1 = |{e ∈ A(D) | e−1 ∈ A(D)}|/2. Furthermore, let ρ be a
representation of Γ , and d the degree of ρ . Then the reciprocal of the L-function of D associated with ρ and α is

ζ2(D, w, u, t, ρ, α)−1 = det(Iεd − (Bρ − (1− u)Jρ)t) = (1− (1− u)
2t2)(ε1−ν)d det

(
Iνd − t

∑
h∈Γ

ρ(h)
⊗

W1,h

− (1− (1− u)2t2)t
∑
h∈Γ

ρ(h)
⊗

W0,h + (1− u)t2
(
Id
⊗

(S− (1− u)Iν)
))
.

Proof. The argument is an analogue of Bass’ method [2].
At first, since Bρ =

∑
g∈Γ Bg

⊗
ρ(g) and Jρ =

∑
g∈Γ Jg

⊗
ρ(g), we have

det(Iεd − (Bρ − (1− u)Jρ)t) = det

(
Iεd − t

∑
g∈Γ

ρ(g)
⊗

(Bg − (1− u)Jg)

)
.

Let V (D) = {v1, . . . , vν} and, let A(D) = {e1, . . . , eε0 , eε0+1, . . . , eε0+ε1 , eε0+ε1+1, . . . , eε0+2ε1} such that e
−1
i 6∈ A(D) for

1 ≤ i ≤ ε0 and eε0+ε1+j = e
−1
ε0+j
for 1 ≤ j ≤ ε1. Note that ε = ε0 + 2ε1.

Let K = (Ki,j)1≤i≤ε;1≤j≤ν be the εd× νdmatrix defined by

Ki,j :=
{
w(ei)ρ(α(ei)) Id if t(ei) = vj,
0d otherwise.

Define the εd× νdmatrix L = (Li,j)1≤i≤ε;1≤j≤ν by

Li,j :=
{
Id if o(ei) = vj,
0d otherwise.

Then we have

KtL = Bρ =
∑
g∈Γ

Bg
⊗

ρ(g) (1)

and
tLK =

∑
g∈Γ

(W0,g +W1,g)
⊗

ρ(g) = W0,ρ +W1,ρ, (2)

where

Wi,ρ =
∑
g∈Γ

Wi,g

⊗
ρ(g) for i = 0, 1.

Let H = (Hi,j)1≤i≤ε;1≤j≤ν be the εd× νdmatrix:

Hi,j :=

(1− u)tId if o(ei) = vj and e−1i 6∈ A(D),
ρ(α(ei)) if t(ei) = vj and e−1i ∈ A(D),
0d otherwise.

Then we have
tHK = S

⊗
Id + (1− u)tW0,ρ, (3)

where tH is the conjugate transpose of H.
Now, let

M =

0 0 0
0 0 w(f −11 )ρ(α(f1))⊕ · · · ⊕ w(f −1ε1 )ρ(α(fε1))
0 w(f1)ρ(α(f1))−1 ⊕ · · · ⊕ w(fε1)ρ(α(fε1))

−1 0
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and

N = Bρ −M,

where fi = eε0+i for 1 ≤ i ≤ ε1. Furthermore, let

M0 = ((1− u)tIε0d ⊕ 02ε1d)+ Jρ .

Then we have

KtH = NM0 + (0ε0d ⊕ w(eε0+1)Id ⊕ · · · ⊕ w(e2ε1)Id). (4)

We introduce two (ε + ν)d× (ε + ν)dmatrices as follows:

P =
[
(1− (1− u)2t2)Iνd −tL+ (1− u)t tH

0 Iεd

]
and Q =

[
Iνd tL− (1− u)t tH
tK (1− (1− u)2t2)Iεd

]
.

By (2) and (3), we have

PQ =
[
(1− (1− u)2t2)Iνd − t tLK+ (1− u)t2 tHK 0

tK (1− (1− u)2t2)Iεd

]
=

[
(1− (1− u)2t2)Iνd − t(W1,ρ +W0,ρ)+ (1− u)t2

(
S
⊗

Id + (1− u)t W0,ρ

)
0

tK (1− (1− u)2t2)Iεd

]
.

Furthermore,

QP =
[
(1− (1− u)2t2)Iνd 0
t(1− (1− u)2t2)K −tKtL+ (1− u)t2KtH+ (1− (1− u)2t2)Iεd

]
.

Note that

MM0 = 0ε0d ⊕ w(eε0+1)Id ⊕ · · · ⊕ w(e2ε1)Id

and

JρM0 = 0ε0d ⊕ I2ε1d,

By (1) and (4), we have

−tKtL+ (1− u)t2KtH+ (1− (1− u)2t2)Iεd
= Iεd − t(N+M)+ (1− u)t2(NM0 +MM0)− (1− u)t(M0 − Jρ)− (1− u)

2t2 JρM0
= (Iεd − t(N+M− (1− u)Jρ))(Iεd − (1− u)tM0).

Thus,

QP =
[
(1− (1− u)2t2)Iνd 0
t(1− (1− u)2t2)K (Iεd − t(N+M− (1− u)Jρ))(Iεd − (1− u)t M0)

]
.

Since det(PQ) = det(QP), we have

(1− (1− u)2t2)εd det
(
Iνd − t W1,ρ − (1− (1− u)2t2)tW0,ρ + (1− u)

(
S
⊗

Id − (1− u)Iνd
)
t2
)

= (1− (1− u)2t2)νd det(Iεd − t(Bρ − (1− u)Jρ)) det(Iεd − (1− u)t M0).

Now,

det(Iεd − (1− u)t M0)

= det

([Iε0d 0 0
0 Iε1d (1− u)t{ρ(α(f1))⊕ · · · ⊕ ρ(α(fε1))}
0 0 Iε1d

])
det

(
(1− (1− u)2t2)Iε0d

⊕

[
Iε1d −(1− u)t{ρ(α(f1))⊕ · · · ⊕ ρ(α(fε1))}

−(1− u)t{ρ(α(f1))−1 ⊕ · · · ⊕ ρ(α(fε1))
−1
} Iε1d

])

= det

(1− (1− u)2t2)Iε0d 0 0
0 (1− (1− u)2t2)Iε1d 0
0 ∗ Iε1d

 = (1− (1− u)2t2)(ε0+ε1)d.
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Therefore it follows that

(1− (1− u)2t2)εd det
(
Iνd − t W1,ρ − (1− (1− u)2t2)tW0,ρ + (1− u)

(
S
⊗

Id − (1− u)Iνd
)
t2
)

= (1− (1− u)2t2)(ε0+ε1+ν)d det(Iεd − t(Bρ − (1− u)Jρ)).

Hence

det(Iεd − t(Bρ − (1− u)Jρ)) = (1− (1− u)
2t2)(ε1−ν)d det

(
Iνd − t

∑
g∈Γ

ρ(g)
⊗

W1,g

− (1− (1− u)2t2)t
∑
g∈Γ

ρ(g)
⊗

W0,g + (1− u)t2
(
Id
⊗

(S− (1− u)Iν)
))
. �

By Theorem 5 and [12, Theorem 8], the following result holds.

Corollary 1. Let D be a connected digraph, Γ a finite group, α : A(D) −→ Γ a pseudo-ordinary voltage assignment and
W = W(D) a weighted matrix of D. Furthermore, let ρ be a representation of Γ . Then the L-function of D is equal to that of D
defined in [12]:

ζ2(D, w, u, t, ρ, α) = ζ1(D, w, u, t, ρ, α).

If ρ = 1 then by Theorems 3 and 5, we have the following result.

Corollary 2. Let D be a connected digraph with n vertices, andW = W(D) a weighted matrix of D. Set m1 = |{e ∈ A(D) | e−1 ∈
A(D)}|/2. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

ζ2(D, w, u, t)−1 = (1− (1− u)2t2)m1−n

× det(In − tW1(D)− (1− (1− u)2t2)tW0(D)+ (1− u)t2(S− (1− u)In))
= ζ1(D, w, u, t)−1.

By Theorems 4 and 5, the following result holds.

Corollary 3. Let D be a connected digraph, Γ a finite group, α : A(D) −→ Γ a pseudo-ordinary voltage assignment and
W = W(D) a weighted matrix of D. Then we have

ζ1(Dα, w̃, u, t) = ζ2(Dα, w̃, u, t) =
∏
ρ

ζ2(D, w, u, t, ρ, α)deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ .

In the case thatw(e) = 1 for each e ∈ A(D), we obtain a decomposition formula for the Bartholdi zeta function of a group
covering of a digraph by Sato [14].

Corollary 4 (Sato). Let D be a connected digraph, Γ a finite group and α : A(D) −→ Γ a pseudo-ordinary voltage assignment.
Suppose that the Γ -covering Dα of D is connected. Then we have

ζ (Dα, u, t) =
∏
ρ

ζD(u, t, ρ, α)deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ .

If u = 0 and D = DG is the symmetric digraph corresponding to a graph G, then, we obtain a decomposition formula for
the zeta function of a regular covering of a graph by Sato [15].

Corollary 5 (Sato). Let G be a connected graph,W(G) a weighted matrix of G, Γ a finite group and α : R(G) −→ Γ an ordinary
voltage assignment. Then we have

Z1(Gα, w̃, t) =
∏
ρ

Z1(G, w, t, ρ, α)deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ .

If w = 1 and D = DG, then we obtain a decomposition formula for the Bartholdi zeta function of a regular covering of a
graph G (see [10]).
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Corollary 6 (Mizuno and Sato). Let G be a connected graph, Γ a finite group and α : R(G) −→ Γ an ordinary voltage
assignment. Then we have

ζ (Gα, u, t) =
∏
ρ

ζ (G, u, t, ρ, α)deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ .
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