Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A new Bartholdi zeta function of a digraph II

Hirobumi Mizuno^a, Iwao Sato^{b,*}

^a Iond University, Tokyo, Japan

^b Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan

ARTICLE INFO

Article history: Received 7 November 2007 Received in revised form 5 September 2008 Accepted 7 September 2008 Available online 25 October 2008

Keywords: Zeta function Digraph covering L-function

ABSTRACT

We introduce a new type of the Bartholdi zeta function of a digraph *D*. Furthermore, we define a new type of the Bartholdi *L*-function of *D*, and give a determinant expression of it. We show that this *L*-function of *D* is equal to the *L*-function of *D* defined in [H. Mizuno, I. Sato, A new Bartholdi zeta function of a digraph, Linear Algebra Appl. 423 (2007) 498–511]. As a corollary, we obtain a decomposition formula for a new type of the Bartholdi zeta function of *D* by new Bartholdi *L*-functions of *D*.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graphs treated here are finite. Let G = (V(G), E(G)) be a connected graph (possibly multiple edges and loops) with the set V(G) of vertices and the set E(G) of unoriented edges uv joining two vertices u and v. For $uv \in E(G)$, an arc (u, v) is the oriented edge from u to v. Set $R(G) = \{(u, v), (v, u) \mid uv \in E(G)\}$. For $e = (u, v) \in R(G)$, set u = o(e) and v = t(e). Furthermore, let $e^{-1} = (v, u)$ be the *inverse* of e = (u, v).

A path *P* of length *n* in *G* is a sequence $P = (e_1, \ldots, e_n)$ of *n* arcs such that $e_i \in R(G)$, $t(e_i) = o(e_{i+1})(1 \le i \le n-1)$, where indices are treated mod *n*. Set |P| = n, $o(P) = o(e_1)$ and $t(P) = t(e_n)$. Also, *P* is called an (o(P), t(P))-path. We say that a path $P = (e_1, \ldots, e_n)$ has a backtracking if $e_{i+1}^{-1} = e_i$ for some $i(1 \le i \le n-1)$. A (v, w)-path is called a *v*-cycle (or *v*-closed path) if v = w. The inverse cycle of a cycle $C = (e_1, \ldots, e_n)$ is the cycle $C^{-1} = (e_n^{-1}, \ldots, e_n^{-1})$.

v-closed path) if v = w. The *inverse cycle* of a cycle $C = (e_1, \ldots, e_n)$ is the cycle $C^{-1} = (e_n^{-1}, \ldots, e_n^{-1})$. We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, \ldots, e_m)$ and $C_2 = (f_1, \ldots, f_m)$ are said to be *equivalent* if there exists *k* such that $f_j = e_{j+k}$ for all *j*. The inverse cycle of *C* is in general not equivalent to *C*. Let [*C*] be the equivalence class which contains a cycle *C*. Let *B*^{*r*} be the cycle obtained by going *r* times around a cycle *B*. Such a cycle is called a *power* of *B*. A cycle *C* is *reduced* if *C* has no backtracking. Furthermore, a cycle *C* is *prime* if it is not a power of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph *G* corresponds to a unique conjugacy class of the fundamental group $\pi_1(G, v)$ of *G* at a vertex *v* of *G*.

The *lhara zeta function* of a graph G is a function of $t \in \mathbf{C}$ with |t| sufficiently small, defined by

$$\mathbf{Z}(G, t) = \mathbf{Z}_{G}(t) = \prod_{[C]} (1 - t^{|C|})^{-1}$$

where [C] runs over all equivalence classes of prime, reduced cycles of G (see [7]).

Ihara zeta functions of graphs originated from Ihara zeta functions of regular graphs by Ihara [7]. Originally, Ihara presented *p*-adic Selberg zeta functions of discrete groups. Let Γ be a torsion-free discrete cocompact subgroup of $PGL(2, k_p)$, where k_p is a *p*-adic number field over a finite field. Ihara defined a zeta function associated with Γ as an analogue of the

^{*} Corresponding author. Tel.: +81 285 20 2176; fax: +81 285 20 2880. *E-mail address:* isato@oyama-ct.ac.jp (I. Sato).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.09.030

Selberg zeta function for a discrete cocompact subgroup of $PGL(2, \mathbf{R})$, and showed that its reciprocal is an explicit polynomial. Serre [17] pointed out that the Ihara zeta function is the zeta function of the quotient T/Γ (a finite regular graph) of the onedimensional Bruhat–Tits building T (an infinite regular tree) associated with $GL(2, k_p)$. Furthermore, in [8], Ihara discovered an identity between the zeta function of T/Γ and a certain Shimura curve reduced modulo the prime number p.

A zeta function of a regular graph *G* associated with a unitary representation of the fundamental group of *G* was developed by Sunada [19,20]. Hashimoto [5] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial.

Theorem 1 (Bass). Let G be a connected graph. Then the reciprocal of the zeta function of G is given by

$$\mathbf{Z}(G, t)^{-1} = (1 - t^2)^{r-1} \det(\mathbf{I} - t\mathbf{A}(G) + t^2(\mathbf{D} - \mathbf{I})),$$

where *r* and $\mathbf{A}(G)$ are the Betti number and the adjacency matrix of *G*, respectively, and $\mathbf{D} = (d_{ij})$ is the diagonal matrix with $d_{ii} = \deg v_i$ where $V(G) = \{v_1, \ldots, v_n\}$.

Various proofs of Bass' theorem were given by Stark and Terras [18], Foata and Zeilberger [3], Kotani and Sunada [9], Hoffman [6] and Northshield [13].

Let *G* be a connected graph. We say that a path $P = (e_1, \ldots, e_n)$ has a *bump* at $t(e_i)$ if $e_{i+1} = e_i^{-1}$ $(1 \le i \le n)$. The cyclic *bump count cbc*(π) of a cycle $\pi = (\pi_1, \ldots, \pi_n)$ is

$$cbc(\pi) = |\{i = 1, ..., n \mid \pi_i = \pi_{i+1}^{-1}\}|,$$

where $\pi_{n+1} = \pi_1$. Then the Bartholdi zeta function of *G* is a function of $u, t \in \mathbf{C}$ with |u|, |t| sufficiently small, defined by

$$\zeta_G(u,t) = \zeta(G,u,t) = \prod_{[C]} (1 - u^{cbc(C)}t^{[C]})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of G (see [1]). If u = 0, then the Bartholdi zeta function of G is the Ihara zeta function of G.

Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented edges. Then the reciprocal of the Bartholdi zeta function of G is given by

$$\zeta(G, u, t)^{-1} = (1 - (1 - u)^2 t^2)^{m-n} \det(\mathbf{I} - t\mathbf{A}(G) + (1 - u)(\mathbf{D} - (1 - u)\mathbf{I})t^2).$$

In the case of u = 0, Theorem 2 implies Theorem 1.

Mizuno and Sato [12] considered a new zeta function of a digraph, and defined a new zeta function of a digraph by using not an infinite product but a determinant.

Let *D* be a connected graph with *n* vertices v_1, \ldots, v_n and *m* arcs. Then we consider an $n \times n$ matrix $\mathbf{W} = \mathbf{W}(D) = (w_{ij})_{1 \le i, j \le n}$ with the *ij* entry the complex variable w_{ij} if $(v_i, v_j) \in A(D)$, and $w_{ij} = 0$ otherwise. The matrix $\mathbf{W} = \mathbf{W}(D)$ is called the *weighted matrix* of *D*. Furthermore, let $w(v_i, v_j) = w_{ij}, v_i, v_j \in V(D)$ and $w(e) = w_{ij}, e = (v_i, v_j) \in A(D)$. Then $w : A(D) \longrightarrow \mathbf{C}$ is called a *weight* of *D*. For each path $P = (e_1, \ldots, e_r)$ of *G*, the *norm* w(P) of *P* is defined as follows: $w(P) = w(e_1) \ldots w(e_r)$.

Let *D* be a connected digraph with *n* vertices and *m* arcs, and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*. Two $m \times m$ matrices $\mathbf{B} = \mathbf{B}(D) = (\mathbf{B}_{e,f})_{e,f \in A(D)}$ and $\mathbf{J}_0 = \mathbf{J}_0(D) = (\mathbf{J}_{e,f})_{e,f \in A(D)}$ are defined as follows:

$$\mathbf{B}_{e,f} = \begin{cases} w(f) & \text{if } t(e) = o(f), \\ 0 & \text{otherwise,} \end{cases} \qquad \mathbf{J}_{e,f} = \begin{cases} 1 & \text{if } f = e^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then a weighted Bartholdi zeta function of D is defined by

$$\zeta_1(D, w, u, t) = \det(\mathbf{I}_n - t(\mathbf{B} - (1 - u)\mathbf{J}_0))^{-1}.$$

If w = 1, i.e., w(e) = 1 for any $e \in A(D)$, then the weighted Bartholdi zeta function of D is the Bartholdi zeta function of D (see [11]). If u = 0 and $D = D_G$ is the symmetric digraph corresponding to a graph G, then the weighted Bartholdi zeta function of D is the zeta function $\mathbf{Z}_1(G, w, t)$ of G (see [15]). Furthermore, in the case of $D = D_G$, we have $\zeta_1(D_G, \mathbf{1}, u, t) = \zeta(G, u, t)$ and $\zeta_1(D_G, \mathbf{1}, 0, t) = \mathbf{Z}(G, t)$.

We define two $n \times n$ matrices $\mathbf{W}_1 = \mathbf{W}_1(D) = (a_{uv})$ and \mathbf{W}_0 as follows:

$$a_{uv} = \begin{cases} w(u, v) & \text{if both } (u, v) \text{ and } (v, u) \in A(D), \\ 0 & \text{otherwise} \end{cases}$$

and

 $\mathbf{W}_0 = \mathbf{W}_0(D) = \mathbf{W}(D) - \mathbf{W}_1.$

Let $V(D) = \{v_1, \ldots, v_n\}$. Then an $n \times n$ matrix $\mathbf{S} = (s_{ij})$ is the diagonal matrix defined by

$$s_{ii} = \sum_{e,e^{-1} \in A(D); o(e) = v_i} w(e).$$

Set

 $s(v_i) = s_{ii}, \quad 1 \le i \le n.$

Theorem 3 (*Mizuno and Sato*). Let *D* be a connected digraph, and let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of *D*. Furthermore, let $m_1 = |\{e \in A(D) \mid e^{-1} \in A(D)\}|/2$. Then the reciprocal of the weighted Bartholdi zeta function of *D* is given by

$$\zeta_1(D, w, u, t)^{-1} = (1 - (1 - u)^2 t^2)^{m_1 - n} \\ \times \det(\mathbf{I}_n - t\mathbf{W}_1(D) - (1 - (1 - u)^2 t^2)t\mathbf{W}_0(D) + (1 - u)t^2(\mathbf{S} - (1 - u)\mathbf{I}_n)).$$

where n = |V(D)|.

In Section 2, we define a new type of the Bartholdi zeta function of a digraph *D*, and give a decomposition formula of a new type of the Bartholdi zeta function of a group covering of *D*. In Section 3, we define a new type of the Bartholdi *L*-function of *D*, and present a determinant expression for a new type of the Bartholdi *L*-function of *D*. Furthermore, we show that this *L*-function of *D* is equal to the *L*-function of *D* defined in [12]. As a corollary, we show that a new type of the Bartholdi zeta function of a group covering of *D* is a product of new Bartholdi *L*-functions of *D*.

For a general theory of the representation of groups and graph coverings, the reader is referred to [16,4], respectively.

2. New Bartholdi zeta functions of digraphs

We consider a new zeta function of a digraph, and define a new zeta function of a digraph by using not an infinite product but a determinant.

Let *D* be a connected graph with *n* vertices v_1, \ldots, v_n and *m* arcs, and let $w : A(D) \longrightarrow C$ be a weight of *D*. Let $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*. An $m \times m$ matrix $\mathbf{B}' = \mathbf{B}'(D) = (\mathbf{B}'_{e,f})_{e,f \in A(D)}$ is defined as follows:

$$\mathbf{B}'_{e,f} = \begin{cases} w(e) & \text{if } t(e) = o(f), \\ 0 & \text{otherwise.} \end{cases}$$

Then a weighted Bartholdi zeta function of D is defined by

$$\zeta_2(D, w, u, t) = \det(\mathbf{I}_n - t(\mathbf{B}' - (1 - u)\mathbf{J}_0))^{-1}.$$

We can generalize the notion of a Γ -covering of a graph to a simple digraph. Let D be a connected digraph and Γ a finite group. Then a mapping $\alpha : A(D) \longrightarrow \Gamma$ is called a *pseudo-ordinary voltage assignment* if $\alpha(v, u) = \alpha(u, v)^{-1}$ for each $(u, v) \in A(D)$ such that $(v, u) \in A(D)$. The pair (D, α) is called an *ordinary voltage digraph*. The *derived digraph* D^{α} of the ordinary voltage digraph (D, α) is defined as follows: $V(D^{\alpha}) = V(D) \times \Gamma$ and $((u, h), (v, k)) \in A(D^{\alpha})$ if and only if $(u, v) \in A(D)$ and $k = h\alpha(u, v)$. The digraph D^{α} is called a Γ -covering of D. Note that a Γ -covering of the symmetric digraph corresponding to a graph G is a Γ -covering of G (c.f., [4]).

Let *D* be a connected digraph, Γ a finite group and α : $A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. In the Γ -covering D^{α} , set $v_g = (v, g)$ and $e_g = (e, g)$, where $v \in V(D)$, $e \in A(D)$, $g \in \Gamma$. For $e = (u, v) \in A(D)$, the arc e_g emanates from u_g and terminates at $v_{g\alpha(e)}$.

Let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of D. Then we define the weighted matrix $\mathbf{W} = \mathbf{W}(D^{\alpha}) = (\tilde{w}(u_g, v_h))$ of D^{α} derived from \mathbf{W} as follows:

$$\tilde{w}(u_g, v_h) := \begin{cases} w(u, v) & \text{if } (u, v) \in A(D) \text{ and } h = g\alpha(u, v), \\ 0 & \text{otherwise.} \end{cases}$$

Let $\mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_s$ be the block diagonal sum of square matrices $\mathbf{M}_1, \ldots, \mathbf{M}_s$. If $\mathbf{M}_1 = \mathbf{M}_2 = \cdots = \mathbf{M}_s = \mathbf{M}$, then we write $s \circ \mathbf{M} = \mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_s$. The Kronecker product $\mathbf{A} \otimes \mathbf{B}$ of matrices \mathbf{A} and \mathbf{B} is considered as the matrix \mathbf{A} having the element a_{ij} replaced by the matrix $a_{ij}\mathbf{B}$.

We give a decomposition formula for the weighted Bartholdi zeta function ζ_2 of a group covering of a digraph D.

Let *D* be a connected digraph, Γ a finite group and α : $A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. Let $w : A(D) \longrightarrow \mathbf{C}$ be a weight of *D*. Then two matrices $\tilde{\mathbf{B}} = \mathbf{B}(D^{\alpha}) = (\tilde{b}(e_g, f_h))$ and $\tilde{\mathbf{J}} = \mathbf{J}(D^{\alpha}) = (\tilde{c}(e_g, f_h))$ of D^{α} are given by

$$\tilde{b}(e_g, f_h) := \begin{cases} w(e) & \text{if } t(e_g) = o(f_h), \\ 0 & \text{otherwise,} \end{cases} \quad \tilde{c}(e_g, f_h) := \begin{cases} 1 & \text{if } e_g^{-1} = f_h, \\ 0 & \text{otherwise.} \end{cases}$$

For $g \in \Gamma$, let the matrix $\mathbf{B}_g = (b_{ef}^{(g)})$ be defined by

$$b_{ef}^{(g)} := \begin{cases} w(e) & \text{if } \alpha(e) = g \text{ and } t(e) = o(f), \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, let the matrix $\mathbf{J}_{g} = (c_{ef}^{(g)})$ be defined by

$$c_{ef}^{(g)} \coloneqq \begin{cases} 1 & \text{if } \alpha(e) = g \text{ and } e^{-1} = f, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4. Let *D* be a connected graph with *l* arcs, $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*, Γ a finite group and $\alpha : A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. Furthermore, let $\rho_1 = 1, \rho_2, \ldots, \rho_k$ be all inequivalent irreducible representations of Γ , and f_i the degree of ρ_i for each *i*, where $f_1 = 1$. Suppose that the Γ -covering D^{α} of *D* is connected. Then the reciprocal of the weighted Bartholdi zeta function of D^{α} is

$$\zeta_2(D^{\alpha}, \tilde{w}, u, t)^{-1} = \zeta_2(D, w, u, t)^{-1} \cdot \prod_{i=2}^k \det\left(\mathbf{I}_{l_i} - t \sum_{h \in \Gamma} \rho_i(h) \bigotimes (\mathbf{B}_h - (1-u)\mathbf{J}_h)\right)^{J_i}.$$

Proof. Let $A(D) = \{e_1, \ldots, e_l\}$ and $\Gamma = \{1 = g_1, g_2, \ldots, g_m\}$. Arrange arcs of D^{α} in *m* blocks: $(e_1, 1)$, $\ldots, (e_l, 1); (e_1, g_2), \ldots, (e_l, g_2); \cdots; (e_1, g_m), \ldots, (e_l, g_m)$. We consider the matrix $\tilde{\mathbf{B}} - \tilde{\mathbf{J}}$ under this order. For $h \in \Gamma$, let $\mathbf{P}_h = (p_{ij}^{(h)})$ be the permutation matrix of *h*. Suppose that $p_{ij}^{(h)} = 1$, i.e., $g_j = g_ih$. Then $t(e, g_i) = o(f, g_j)$ if and only if t(e) = o(f) and $(o(f), g_j) = o(f, g_j) = t(e, g_i) = (t(e), g_i\alpha(e))$, i.e., $\alpha(e) = g_i^{-1}g_j = g_i^{-1}g_ih = h$. Thus we have

$$\tilde{\mathbf{B}} - (1-u)\tilde{\mathbf{J}} = \sum_{h\in\Gamma} \mathbf{P}_h \bigotimes (\mathbf{B}_h - (1-u)\mathbf{J}_h).$$

Let ρ be the right regular representation of Γ . Furthermore, let $\rho_1 = 1, \rho_2, \ldots, \rho_k$ be all inequivalent irreducible representations of Γ , and f_i the degree of ρ_i for each i, where $f_1 = 1$. Then we have $\rho(h) = \mathbf{P}_h$ for $h \in \Gamma$. Furthermore, there exists a nonsingular matrix \mathbf{P} such that $\mathbf{P}^{-1}\rho(h)\mathbf{P} = (1) \oplus f_2 \circ \rho_2(h) \oplus \cdots \oplus f_k \circ \rho_k(h)$ for each $h \in \Gamma$ (see [16]). Putting $\mathbf{F} = (\mathbf{P}^{-1} \bigotimes \mathbf{I}_l)(\tilde{\mathbf{B}} - (1 - u)\tilde{\mathbf{J}})(\mathbf{P} \bigotimes \mathbf{I}_l)$, we have

$$\mathbf{F} = \sum_{h \in \Gamma} \{ (1) \oplus f_2 \circ \rho_2(h) \oplus \cdots \oplus f_k \circ \rho_k(h) \} \bigotimes (\mathbf{B}_h - (1-u)\mathbf{J}_h)$$

Note that $\mathbf{B}' - (1-u)\mathbf{J}_0 = \sum_{h \in \Gamma} (\mathbf{B}_h - (1-u)\mathbf{J}_h)$ and $1 + f_2^2 + \cdots + f_k^2 = m$. Therefore it follows that

$$\begin{aligned} \zeta_2(D^{\alpha}, \tilde{w}, u, t)^{-1} &= \det(\mathbf{I}_{lm} - t(\tilde{\mathbf{B}} - (1 - u)\tilde{\mathbf{J}})) \\ &= \det(\mathbf{I}_l - t(\mathbf{B}' - (1 - u)\mathbf{J}_0)) \prod_{i=2}^k \det\left(\mathbf{I}_{lf_i} - t\sum_h \rho_i(h)\bigotimes(\mathbf{B}_h - (1 - u)\mathbf{J}_h)\right)^{f_i}. \quad \Box \end{aligned}$$

3. L-functions of digraphs

Let *D* be a connected graph with *n* vertices and *l* arcs, $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*, Γ a finite group and $\alpha : A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. For each path $P = (e_1, \ldots, e_r)$ of *G*, set $\alpha(P) = \alpha(e_1) \cdots \alpha(e_r)$. This is called the *net voltage* of *P*. Furthermore, let ρ be a unitary representation of Γ and *d* its degree.

The *L*-function of *D* associated with ρ and α is defined by

$$\zeta_2(D, w, u, t, \rho, \alpha) = \det\left(\mathbf{I}_{ld} - t \sum_{h \in \Gamma} \rho(h) \bigotimes (\mathbf{B}_h - (1 - u)\mathbf{J}_h)\right)^{-1}.$$

If $\rho = 1$ (the identity representation of Γ), then the *L*-function of *D* is the weighted Bartholdi zeta function $\zeta_2(D, w, u, t)$ of *D*.

Let $1 \le i, j \le n$. Then, the (i, j)-block $\mathbf{F}_{i,j}$ of a $dn \times dn$ matrix \mathbf{F} is the submatrix of \mathbf{F} consisting of $d(i-1) + 1, \ldots, di$ rows and $d(j-1) + 1, \ldots, dj$ columns. Two $ld \times ld$ matrices $\mathbf{B}_{\rho} = ((\mathbf{B}_{\rho})_{e,f})_{e,f \in A(D)}$ and $\mathbf{J}_{\rho} = ((\mathbf{J}_{\rho})_{e,f})_{e,f \in A(D)}$ are defined as follows:

$$(\mathbf{B}_{\rho})_{e,f} = \begin{cases} w(e)\rho(\alpha(e)) & \text{if } t(e) = o(f), \\ \mathbf{0}_{d} & \text{otherwise,} \end{cases} \qquad (\mathbf{J}_{\rho})_{e,f} = \begin{cases} \rho(\alpha(e)) & \text{if } f = e^{-1}, \\ \mathbf{0}_{d} & \text{otherwise.} \end{cases}$$

For $g \in \Gamma$, the matrix $\mathbf{W}_{0,g} = (a_{uv}^{(g)})$ is defined as follows:

$$a_{uv}^{(g)} := \begin{cases} w(u, v) & \text{if } (u, v) \in A(D), (v, u) \notin A(D) \text{ and } \alpha(u, v) = g, \\ 0 & \text{otherwise.} \end{cases}$$

For $g \in \Gamma$, the matrix $\mathbf{W}_{1,g} = (b_{uv}^{(g)})$ is defined as follows:

$$b_{uv}^{(g)} \coloneqq \begin{cases} w(u, v) & \text{if } (u, v), (v, u) \in A(D) \text{ and } \alpha(u, v) = g, \\ 0 & \text{otherwise.} \end{cases}$$

A determinant expression for the *L*-function of *D* associated with ρ and α is given as follows.

Theorem 5. Let D be a connected digraph with v vertices and ϵ arcs, Γ a finite group, α : $A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of D. Set $\epsilon_1 = |\{e \in A(D) \mid e^{-1} \in A(D)\}|/2$. Furthermore, let ρ be a representation of Γ , and d the degree of ρ . Then the reciprocal of the L-function of D associated with ρ and α is

$$\zeta_{2}(D, w, u, t, \rho, \alpha)^{-1} = \det(\mathbf{I}_{\epsilon d} - (\mathbf{B}_{\rho} - (1-u)\mathbf{J}_{\rho})t) = (1 - (1-u)^{2}t^{2})^{(\epsilon_{1}-\nu)d} \det\left(\mathbf{I}_{\nu d} - t\sum_{h\in\Gamma}\rho(h)\bigotimes \mathbf{W}_{1,h}\right) - (1 - (1-u)^{2}t^{2})t\sum_{h\in\Gamma}\rho(h)\bigotimes \mathbf{W}_{0,h} + (1-u)t^{2}\left(\mathbf{I}_{d}\bigotimes(\mathbf{S} - (1-u)\mathbf{I}_{\nu})\right).$$

Proof. The argument is an analogue of Bass' method [2].

At first, since $\mathbf{B}_{\rho} = \sum_{g \in \Gamma} \mathbf{B}_g \bigotimes \rho(g)$ and $\mathbf{J}_{\rho} = \sum_{g \in \Gamma} \mathbf{J}_g \bigotimes \rho(g)$, we have

$$\det(\mathbf{I}_{\epsilon d} - (\mathbf{B}_{\rho} - (1-u)\mathbf{J}_{\rho})t) = \det\left(\mathbf{I}_{\epsilon d} - t\sum_{g\in\Gamma}\rho(g)\bigotimes(\mathbf{B}_{g} - (1-u)\mathbf{J}_{g})\right).$$

Let $V(D) = \{v_1, \ldots, v_{\nu}\}$ and, let $A(D) = \{e_1, \ldots, e_{\epsilon_0}, e_{\epsilon_0+1}, \ldots, e_{\epsilon_0+\epsilon_1}, e_{\epsilon_0+\epsilon_1+1}, \ldots, e_{\epsilon_0+2\epsilon_1}\}$ such that $e_i^{-1} \notin A(D)$ for $1 \le i \le \epsilon_0$ and $e_{\epsilon_0+\epsilon_1+j} = e_{\epsilon_0+j}^{-1}$ for $1 \le j \le \epsilon_1$. Note that $\epsilon = \epsilon_0 + 2\epsilon_1$. Let $\mathbf{K} = (\mathbf{K}_{i,j})_{1 \le i \le \epsilon; 1 \le j \le \nu}$ be the $\epsilon d \times \nu d$ matrix defined by

$$\mathbf{K}_{i,j} \coloneqq \begin{cases} w(e_i)\rho(\alpha(e_i)) \mathbf{I}_d & \text{if } t(e_i) = v_j, \\ \mathbf{0}_d & \text{otherwise.} \end{cases}$$

Define the $\epsilon d \times \nu d$ matrix $\mathbf{L} = (\mathbf{L}_{i,j})_{1 \le i \le \epsilon; 1 \le j \le \nu}$ by

$$\mathbf{L}_{i,j} := \begin{cases} \mathbf{I}_d & \text{if } o(e_i) = v_j, \\ \mathbf{0}_d & \text{otherwise.} \end{cases}$$

Then we have

$$\mathbf{K}^{t}\mathbf{L} = \mathbf{B}_{\rho} = \sum_{g \in \Gamma} \mathbf{B}_{g} \bigotimes \rho(g)$$
(1)

and

$${}^{t}\mathbf{L}\mathbf{K} = \sum_{g \in \Gamma} (\mathbf{W}_{0,g} + \mathbf{W}_{1,g}) \bigotimes \rho(g) = \mathbf{W}_{0,\rho} + \mathbf{W}_{1,\rho},$$
(2)

where

$$\mathbf{W}_{i,\rho} = \sum_{g \in \Gamma} \mathbf{W}_{i,g} \bigotimes \rho(g) \text{ for } i = 0, 1.$$

Let **H** = (**H**_{*i*,*j*})_{1 \le i \le \epsilon; $1 \le j \le \nu$ be the $\epsilon d \times \nu d$ matrix:}

$$\mathbf{H}_{i,j} := \begin{cases} (1-u)t\mathbf{I}_d & \text{if } o(e_i) = v_j \text{ and } e_i^{-1} \notin A(D), \\ \rho(\alpha(e_i)) & \text{if } t(e_i) = v_j \text{ and } e_i^{-1} \in A(D), \\ \mathbf{0}_d & \text{otherwise.} \end{cases}$$

Then we have

$${}^{t}\overline{\mathbf{H}}\mathbf{K} = \mathbf{S}\bigotimes \mathbf{I}_{d} + (1-u)t\mathbf{W}_{0,\rho},$$

where ${}^{t}\overline{\mathbf{H}}$ is the conjugate transpose of **H**. Now, let

$$\mathbf{M} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & w(f_1)\rho(\alpha(f_1))^{-1} \oplus \cdots \oplus w(f_{\epsilon_1})\rho(\alpha(f_{\epsilon_1}))^{-1} & \mathbf{0} \end{bmatrix}$$

(3)

and

$$\mathbf{N}=\mathbf{B}_{\rho}-\mathbf{M},$$

where $f_i = e_{\epsilon_0+i}$ for $1 \le i \le \epsilon_1$. Furthermore, let

$$\mathbf{M}_0 = ((1-u)t\mathbf{I}_{\epsilon_0 d} \oplus \mathbf{0}_{2\epsilon_1 d}) + \mathbf{J}_{\rho}.$$

Then we have

$$\mathbf{K}^{t}\overline{\mathbf{H}} = \mathbf{N}\mathbf{M}_{0} + (\mathbf{0}_{\epsilon_{0}d} \oplus w(e_{\epsilon_{0}+1})\mathbf{I}_{d} \oplus \cdots \oplus w(e_{2\epsilon_{1}})\mathbf{I}_{d}).$$

We introduce two $(\epsilon + \nu)d \times (\epsilon + \nu)d$ matrices as follows:

$$\mathbf{P} = \begin{bmatrix} (1 - (1 - u)^2 t^2) \mathbf{I}_{\nu d} & -^t \mathbf{L} + (1 - u) t^t \overline{\mathbf{H}} \\ \mathbf{0} & \mathbf{I}_{\epsilon d} \end{bmatrix} \text{ and } \mathbf{Q} = \begin{bmatrix} \mathbf{I}_{\nu d} & {}^t \mathbf{L} - (1 - u) t^t \overline{\mathbf{H}} \\ t \mathbf{K} & (1 - (1 - u)^2 t^2) \mathbf{I}_{\epsilon d} \end{bmatrix}.$$

By (2) and (3), we have

$$\begin{aligned} \mathbf{PQ} &= \begin{bmatrix} (1 - (1 - u)^{2} t^{2}) \mathbf{I}_{vd} - t^{t} \mathbf{L} \mathbf{K} + (1 - u) t^{2 t} \overline{\mathbf{H}} \mathbf{K} & \mathbf{0} \\ t \mathbf{K} & (1 - (1 - u)^{2} t^{2}) \mathbf{I}_{ed} \end{bmatrix} \\ &= \begin{bmatrix} (1 - (1 - u)^{2} t^{2}) \mathbf{I}_{vd} - t (\mathbf{W}_{1,\rho} + \mathbf{W}_{0,\rho}) + (1 - u) t^{2} \left(\mathbf{S} \bigotimes \mathbf{I}_{d} + (1 - u) t \mathbf{W}_{0,\rho} \right) & \mathbf{0} \\ t \mathbf{K} & (1 - (1 - u)^{2} t^{2}) \mathbf{I}_{ed} \end{bmatrix}. \end{aligned}$$

Furthermore,

$$\mathbf{QP} = \begin{bmatrix} (1 - (1 - u)^2 t^2) \mathbf{I}_{vd} & \mathbf{0} \\ t(1 - (1 - u)^2 t^2) \mathbf{K} & -t \mathbf{K}^t \mathbf{L} + (1 - u) t^2 \mathbf{K}^t \overline{\mathbf{H}} + (1 - (1 - u)^2 t^2) \mathbf{I}_{ed} \end{bmatrix}.$$

Note that

$$\mathbf{MM}_0 = \mathbf{0}_{\epsilon_0 d} \oplus w(\mathbf{e}_{\epsilon_0+1})\mathbf{I}_d \oplus \cdots \oplus w(\mathbf{e}_{2\epsilon_1})\mathbf{I}_d$$

and

$$\mathbf{J}_{\rho}\mathbf{M}_{0}=\mathbf{0}_{\epsilon_{0}d}\oplus\mathbf{I}_{2\epsilon_{1}d},$$

By (1) and (4), we have

$$-t\mathbf{K}^{t}\mathbf{L} + (1-u)t^{2}\mathbf{K}^{t}\overline{\mathbf{H}} + (1-(1-u)^{2}t^{2})\mathbf{I}_{\epsilon d}$$

= $\mathbf{I}_{\epsilon d} - t(\mathbf{N} + \mathbf{M}) + (1-u)t^{2}(\mathbf{N}\mathbf{M}_{0} + \mathbf{M}\mathbf{M}_{0}) - (1-u)t(\mathbf{M}_{0} - \mathbf{J}_{\rho}) - (1-u)^{2}t^{2}\mathbf{J}_{\rho}\mathbf{M}_{0}$
= $(\mathbf{I}_{\epsilon d} - t(\mathbf{N} + \mathbf{M} - (1-u)\mathbf{J}_{\rho}))(\mathbf{I}_{\epsilon d} - (1-u)t\mathbf{M}_{0}).$

Thus,

$$\mathbf{QP} = \begin{bmatrix} (1 - (1 - u)^2 t^2) \mathbf{I}_{vd} & \mathbf{0} \\ t(1 - (1 - u)^2 t^2) \mathbf{K} & (\mathbf{I}_{\epsilon d} - t(\mathbf{N} + \mathbf{M} - (1 - u) \mathbf{J}_{\rho})) (\mathbf{I}_{\epsilon d} - (1 - u)t \mathbf{M}_0) \end{bmatrix}$$

Since $det(\mathbf{PQ}) = det(\mathbf{QP})$, we have

$$(1 - (1 - u)^{2} t^{2})^{\epsilon d} \det \left(\mathbf{I}_{\nu d} - t \, \mathbf{W}_{1,\rho} - (1 - (1 - u)^{2} t^{2}) t \mathbf{W}_{0,\rho} + (1 - u) \left(\mathbf{S} \bigotimes \mathbf{I}_{d} - (1 - u) \mathbf{I}_{\nu d} \right) t^{2} \right)$$

= $(1 - (1 - u)^{2} t^{2})^{\nu d} \det (\mathbf{I}_{\epsilon d} - t (\mathbf{B}_{\rho} - (1 - u) \mathbf{J}_{\rho})) \det (\mathbf{I}_{\epsilon d} - (1 - u) t \, \mathbf{M}_{0}).$

Now,

$$det(\mathbf{I}_{\epsilon d} - (1 - u)t \, \mathbf{M}_{0}) = det \begin{pmatrix} \begin{bmatrix} \mathbf{I}_{\epsilon_{0} d} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{\epsilon_{1} d} & (1 - u)t\{\rho(\alpha(f_{1})) \oplus \cdots \oplus \rho(\alpha(f_{\epsilon_{1}}))\} \end{bmatrix} \end{pmatrix} det \left((1 - (1 - u)^{2}t^{2})\mathbf{I}_{\epsilon_{0} d} \\ \oplus \begin{bmatrix} & \mathbf{I}_{\epsilon_{1} d} & -(1 - u)t\{\rho(\alpha(f_{1})) \oplus \cdots \oplus \rho(\alpha(f_{\epsilon_{1}}))\} \end{bmatrix} \\ -(1 - u)t\{\rho(\alpha(f_{1}))^{-1} \oplus \cdots \oplus \rho(\alpha(f_{\epsilon_{1}}))^{-1}\} & \mathbf{I}_{\epsilon_{1} d} \end{bmatrix} \end{pmatrix} = det \begin{pmatrix} \begin{bmatrix} (1 - (1 - u)^{2}t^{2})\mathbf{I}_{\epsilon_{0} d} & \mathbf{0} \\ \mathbf{0} & (1 - (1 - u)^{2}t^{2})\mathbf{I}_{\epsilon_{1} d} & \mathbf{0} \\ \mathbf{0} & * & \mathbf{I}_{\epsilon_{1} d} \end{bmatrix} \end{pmatrix} = (1 - (1 - u)^{2}t^{2})^{(\epsilon_{0} + \epsilon_{1})d}.$$

3202

(4)

Therefore it follows that

$$(1 - (1 - u)^{2} t^{2})^{\epsilon d} \det \left(\mathbf{I}_{\nu d} - t \, \mathbf{W}_{1,\rho} - (1 - (1 - u)^{2} t^{2}) t \mathbf{W}_{0,\rho} + (1 - u) \left(\mathbf{S} \bigotimes \mathbf{I}_{d} - (1 - u) \mathbf{I}_{\nu d} \right) t^{2} \right)$$

= $(1 - (1 - u)^{2} t^{2})^{(\epsilon_{0} + \epsilon_{1} + \nu)d} \det (\mathbf{I}_{\epsilon d} - t (\mathbf{B}_{\rho} - (1 - u) \mathbf{J}_{\rho})).$

Hence

$$\det(\mathbf{I}_{\epsilon d} - t(\mathbf{B}_{\rho} - (1 - u)\mathbf{J}_{\rho})) = (1 - (1 - u)^{2}t^{2})^{(\epsilon_{1} - v)d} \det\left(\mathbf{I}_{\nu d} - t\sum_{g \in \Gamma} \rho(g)\bigotimes \mathbf{W}_{1,g} - (1 - (1 - u)^{2}t^{2})t\sum_{g \in \Gamma} \rho(g)\bigotimes \mathbf{W}_{0,g} + (1 - u)t^{2}\left(\mathbf{I}_{d}\bigotimes(\mathbf{S} - (1 - u)\mathbf{I}_{\nu})\right)\right). \quad \Box$$

By Theorem 5 and [12, Theorem 8], the following result holds.

Corollary 1. Let *D* be a connected digraph, Γ a finite group, α : $A(D) \rightarrow \Gamma$ a pseudo-ordinary voltage assignment and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*. Furthermore, let ρ be a representation of Γ . Then the *L*-function of *D* is equal to that of *D* defined in [12]:

 $\zeta_2(D, w, u, t, \rho, \alpha) = \zeta_1(D, w, u, t, \rho, \alpha).$

If $\rho = 1$ then by Theorems 3 and 5, we have the following result.

Corollary 2. Let *D* be a connected digraph with *n* vertices, and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*. Set $m_1 = |\{e \in A(D) \mid e^{-1} \in A(D)\}|/2$. Then the reciprocal of the weighted Bartholdi zeta function of *D* is given by

$$\zeta_2(D, w, u, t)^{-1} = (1 - (1 - u)^2 t^2)^{m_1 - n} \\ \times \det(\mathbf{I}_n - t\mathbf{W}_1(D) - (1 - (1 - u)^2 t^2)t\mathbf{W}_0(D) + (1 - u)t^2(\mathbf{S} - (1 - u)\mathbf{I}_n)) \\ = \zeta_1(D, w, u, t)^{-1}.$$

By Theorems 4 and 5, the following result holds.

Corollary 3. Let *D* be a connected digraph, Γ a finite group, α : $A(D) \rightarrow \Gamma$ a pseudo-ordinary voltage assignment and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*. Then we have

$$\zeta_1(D^{\alpha}, \tilde{w}, u, t) = \zeta_2(D^{\alpha}, \tilde{w}, u, t) = \prod_{\rho} \zeta_2(D, w, u, t, \rho, \alpha)^{\deg \rho},$$

where ρ runs over all inequivalent irreducible representations of Γ .

In the case that w(e) = 1 for each $e \in A(D)$, we obtain a decomposition formula for the Bartholdi zeta function of a group covering of a digraph by Sato [14].

Corollary 4 (Sato). Let D be a connected digraph, Γ a finite group and $\alpha : A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. Suppose that the Γ -covering D^{α} of D is connected. Then we have

$$\zeta(D^{\alpha}, u, t) = \prod_{\rho} \zeta_D(u, t, \rho, \alpha)^{\deg \rho},$$

where ρ runs over all inequivalent irreducible representations of Γ .

If u = 0 and $D = D_G$ is the symmetric digraph corresponding to a graph *G*, then, we obtain a decomposition formula for the zeta function of a regular covering of a graph by Sato [15].

Corollary 5 (Sato). Let *G* be a connected graph, W(G) a weighted matrix of *G*, Γ a finite group and α : $R(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Then we have

$$\mathbf{Z}_{1}(G^{\alpha}, \tilde{w}, t) = \prod_{\rho} \mathbf{Z}_{1}(G, w, t, \rho, \alpha)^{\deg \rho},$$

where ρ runs over all inequivalent irreducible representations of Γ .

If w = 1 and $D = D_G$, then we obtain a decomposition formula for the Bartholdi zeta function of a regular covering of a graph *G* (see [10]).

Corollary 6 (Mizuno and Sato). Let G be a connected graph, Γ a finite group and α : $R(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Then we have

$$\zeta(G^{\alpha}, u, t) = \prod_{\rho} \zeta(G, u, t, \rho, \alpha)^{\deg \rho}$$

where ρ runs over all inequivalent irreducible representations of Γ .

Acknowledgments

The authors would like to thank the referee for valuable comments and helpful suggestions. The second author was supported by Grant-in-Aid for Science Research (C).

References

- [1] L. Bartholdi, Counting paths in graphs, Enseign. Math. 45 (1999) 83-131.
- [2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992) 717-797.
- [3] D. Foata, D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999) 2257-2274.
- [4] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987. [5] K. Hashimoto, Zeta Functions of Finite Graphs and Representations of p-Adic Groups, in: Adv. Stud. Pure Math., vol. 15, Academic Press, New York, 1989, pp. 211-280.
- [6] J. William Hoffman, Remarks on the zeta functions of a graph, in: Dynamical Systems and Differential Equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst. (2003) 413-422.
- Y. Ihara, On discrete subgroups of the two by two projective linear group over *p*-adic fields, J. Math. Soc. Japan 18 (1966) 219–235.
- [8] Y. Ihara, Discrete subgroups of PGL(2, k_p), in: Proc. Symp. Pure Math. IX, Am. Math. Soc., Providence, 1968, pp. 272–278.
 [9] M. Kotani, T. Sunada, Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000) 7–25.
- [10] H. Mizuno, I. Sato, Bartholdi zeta functions of graph coverings, J. Combin. Theory Ser. B. 89 (2003) 27-41.
- [11] H. Mizuno, I. Sato, Bartholdi zeta functions of digraphs, European J. Combin. 24 (2003) 947–954.
- [12] H. Mizuno, I. Sato, A new Bartholdi zeta function of a digraph, Linear Algebra Appl. 423 (2007) 498-511.
- [13] S. Northshield, Two proofs of Ihara's theorem, in: Emerging Applications of Number Theory (Minneapolis, MN, 1996), in: IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 469-478.
- [14] I. Sato, Bartholdi zeta functions of group coverings of digraphs, Far East J. Math. Sci. 18 (2005) 321–339.
- [15] I. Sato, A new zeta function of a graph, preprint.
- [16] J.-P. Serre, Linear Representations of Finite Group, Springer-Verlag, New York, 1977.
- [17] J.-P. Serre, Trees, Springer-Verlag, New York, 1980.
- [18] H.M. Stark, A.A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996) 124–165.
- [19] T. Sunada, L-Functions in Geometry and Some Applications, in: Lecture Notes in Math., vol. 1201, Springer-Verlag, New York, 1986, pp. 266–284.
- [20] T. Sunada, Fundamental Groups and Laplacians, Kinokuniya, Tokyo, 1988 (in Japanese).