A new Bartholdi zeta function of a digraph II

Hirobumi Mizuno ${ }^{\text {a }}$, Iwao Sato ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Iond University, Tokyo, Japan
${ }^{\text {b }}$ Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan

ARTICLE INFO

Article history:

Received 7 November 2007
Received in revised form 5 September 2008
Accepted 7 September 2008
Available online 25 October 2008

Keywords:

Zeta function
Digraph covering
L-function

Abstract

We introduce a new type of the Bartholdi zeta function of a digraph D. Furthermore, we define a new type of the Bartholdi L-function of D, and give a determinant expression of it. We show that this L-function of D is equal to the L-function of D defined in [H. Mizuno, I. Sato, A new Bartholdi zeta function of a digraph, Linear Algebra Appl. 423 (2007) 498-511]. As a corollary, we obtain a decomposition formula for a new type of the Bartholdi zeta function of a group covering of D by new Bartholdi L-functions of D.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graphs treated here are finite. Let $G=(V(G), E(G))$ be a connected graph (possibly multiple edges and loops) with the set $V(G)$ of vertices and the set $E(G)$ of unoriented edges $u v$ joining two vertices u and v. For $u v \in E(G)$, an $\operatorname{arc}(u, v)$ is the oriented edge from u to v. Set $R(G)=\{(u, v),(v, u) \mid u v \in E(G)\}$. For $e=(u, v) \in R(G)$, set $u=o(e)$ and $v=t(e)$. Furthermore, let $\mathrm{e}^{-1}=(v, u)$ be the inverse of $e=(u, v)$.

A path P of length n in G is a sequence $P=\left(e_{1}, \ldots, e_{n}\right)$ of n arcs such that $e_{i} \in R(G), t\left(e_{i}\right)=o\left(e_{i+1}\right)(1 \leq i \leq n-1)$, where indices are treated mod n. Set $|P|=n, o(P)=o\left(e_{1}\right)$ and $t(P)=t\left(e_{n}\right)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P=\left(e_{1}, \ldots, e_{n}\right)$ has a backtracking if $\mathrm{e}_{i+1}^{-1}=e_{i}$ for some $i(1 \leq i \leq n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v=w$. The inverse cycle of a cycle $C=\left(e_{1}, \ldots, e_{n}\right)$ is the cycle $C^{-1}=\left(\mathrm{e}_{n}^{-1}, \ldots, e_{1}^{-1}\right)$.

We introduce an equivalence relation between cycles. Two cycles $C_{1}=\left(e_{1}, \ldots, e_{m}\right)$ and $C_{2}=\left(f_{1}, \ldots, f_{m}\right)$ are said to be equivalent if there exists k such that $f_{j}=e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let B^{r} be the cycle obtained by going r times around a cycle B. Such a cycle is called a power of B. A cycle C is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is not a power of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the fundamental group $\pi_{1}(G, v)$ of G at a vertex v of G.

The Ihara zeta function of a graph G is a function of $t \in \mathbf{C}$ with $|t|$ sufficiently small, defined by

$$
\mathbf{Z}(G, t)=\mathbf{Z}_{G}(t)=\prod_{[C]}\left(1-t^{|C|}\right)^{-1},
$$

where [C] runs over all equivalence classes of prime, reduced cycles of G (see [7]).
Ihara zeta functions of graphs originated from Ihara zeta functions of regular graphs by Ihara [7]. Originally, Ihara presented p-adic Selberg zeta functions of discrete groups. Let Γ be a torsion-free discrete cocompact subgroup of $P G L\left(2, k_{p}\right)$, where k_{p} is a p-adic number field over a finite field. Ihara defined a zeta function associated with Γ as an analogue of the

[^0]Selberg zeta function for a discrete cocompact subgroup of $\operatorname{PGL}(2, \mathbf{R})$, and showed that its reciprocal is an explicit polynomial. Serre [17] pointed out that the Ihara zeta function is the zeta function of the quotient T / Γ (a finite regular graph) of the onedimensional Bruhat-Tits building T (an infinite regular tree) associated with $G L\left(2, k_{p}\right)$. Furthermore, in [8], Ihara discovered an identity between the zeta function of T / Γ and a certain Shimura curve reduced modulo the prime number p.

A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [19,20]. Hashimoto [5] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial.

Theorem 1 (Bass). Let G be a connected graph. Then the reciprocal of the zeta function of G is given by

$$
\mathbf{Z}(G, t)^{-1}=\left(1-t^{2}\right)^{r-1} \operatorname{det}\left(\mathbf{I}-t \mathbf{A}(G)+t^{2}(\mathbf{D}-\mathbf{I})\right)
$$

where r and $\mathbf{A}(G)$ are the Betti number and the adjacency matrix of G, respectively, and $\mathbf{D}=\left(d_{i j}\right)$ is the diagonal matrix with $d_{i i}=\operatorname{deg} v_{i}$ where $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$.

Various proofs of Bass' theorem were given by Stark and Terras [18], Foata and Zeilberger [3], Kotani and Sunada [9], Hoffman [6] and Northshield [13].

Let G be a connected graph. We say that a path $P=\left(e_{1}, \ldots, e_{n}\right)$ has a bump at $t\left(e_{i}\right)$ if $e_{i+1}=\mathrm{e}_{i}^{-1}(1 \leq i \leq n)$. The cyclic bump count $\operatorname{cbc}(\pi)$ of a cycle $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is

$$
\operatorname{cbc}(\pi)=\left|\left\{i=1, \ldots, n \mid \pi_{i}=\pi_{i+1}^{-1}\right\}\right|
$$

where $\pi_{n+1}=\pi_{1}$. Then the Bartholdi zeta function of G is a function of $u, t \in \mathbf{C}$ with $|u|,|t|$ sufficiently small, defined by

$$
\zeta_{G}(u, t)=\zeta(G, u, t)=\prod_{[C]}\left(1-u^{c b c(C)} t^{|C|}\right)^{-1}
$$

where [C] runs over all equivalence classes of prime cycles of G (see [1]). If $u=0$, then the Bartholdi zeta function of G is the Ihara zeta function of G.

Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.
Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented edges. Then the reciprocal of the Bartholdi zeta function of G is given by

$$
\zeta(G, u, t)^{-1}=\left(1-(1-u)^{2} t^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}-t \mathbf{A}(G)+(1-u)(\mathbf{D}-(1-u) \mathbf{I}) t^{2}\right)
$$

In the case of $u=0$, Theorem 2 implies Theorem 1.
Mizuno and Sato [12] considered a new zeta function of a digraph, and defined a new zeta function of a digraph by using not an infinite product but a determinant.

Let D be a connected graph with n vertices v_{1}, \ldots, v_{n} and m arcs. Then we consider an $n \times n$ matrix $\mathbf{W}=\mathbf{W}(D)=$ $\left(w_{i j}\right)_{1 \leq i, j \leq n}$ with the $i j$ entry the complex variable $w_{i j}$ if $\left(v_{i}, v_{j}\right) \in A(D)$, and $w_{i j}=0$ otherwise. The matrix $\mathbf{W}=\mathbf{W}(D)$ is called the weighted matrix of D. Furthermore, let $w\left(v_{i}, v_{j}\right)=w_{i j}, v_{i}, v_{j} \in V(D)$ and $w(e)=w_{i j}, e=\left(v_{i}, v_{j}\right) \in A(D)$. Then $w: A(D) \longrightarrow \mathbf{C}$ is called a weight of D. For each path $P=\left(e_{1}, \ldots, e_{r}\right)$ of G, the norm $w(P)$ of P is defined as follows: $w(P)=w\left(e_{1}\right) \ldots w\left(e_{r}\right)$.

Let D be a connected digraph with n vertices and m arcs, and $\mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D. Two $m \times m$ matrices $\mathbf{B}=\mathbf{B}(D)=\left(\mathbf{B}_{e, f}\right)_{e, f \in A(D)}$ and $\mathbf{J}_{0}=\mathbf{J}_{0}(D)=\left(\mathbf{J}_{e, f}\right)_{e, f \in A(D)}$ are defined as follows:

$$
\mathbf{B}_{e, f}=\left\{\begin{array}{ll}
w(f) & \text { if } t(e)=o(f), \\
0 & \text { otherwise },
\end{array} \quad \mathbf{J}_{e, f}= \begin{cases}1 & \text { if } f=\mathrm{e}^{-1} \\
0 & \text { otherwise }\end{cases}\right.
$$

Then a weighted Bartholdi zeta function of D is defined by

$$
\zeta_{1}(D, w, u, t)=\operatorname{det}\left(\mathbf{I}_{n}-t\left(\mathbf{B}-(1-u) \mathbf{J}_{0}\right)\right)^{-1}
$$

If $w=1$, i.e., $w(e)=1$ for any $e \in A(D)$, then the weighted Bartholdi zeta function of D is the Bartholdi zeta function of D (see [11]). If $u=0$ and $D=D_{G}$ is the symmetric digraph corresponding to a graph G, then the weighted Bartholdi zeta function of D is the zeta function $\mathbf{Z}_{1}(G, w, t)$ of G (see [15]). Furthermore, in the case of $D=D_{G}$, we have $\zeta_{1}\left(D_{G}, \mathbf{1}, u, t\right)=\zeta(G, u, t)$ and $\zeta_{1}\left(D_{G}, \mathbf{1}, 0, t\right)=\mathbf{Z}(G, t)$.

We define two $n \times n$ matrices $\mathbf{W}_{1}=\mathbf{W}_{1}(D)=\left(a_{u v}\right)$ and \mathbf{W}_{0} as follows:

$$
a_{u v}= \begin{cases}w(u, v) & \text { if both }(u, v) \text { and }(v, u) \in A(D) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\mathbf{W}_{0}=\mathbf{W}_{0}(D)=\mathbf{W}(D)-\mathbf{W}_{1} .
$$

Let $V(D)=\left\{v_{1}, \ldots, v_{n}\right\}$. Then an $n \times n$ matrix $\mathbf{S}=\left(s_{i j}\right)$ is the diagonal matrix defined by

$$
s_{i i}=\sum_{e, \mathrm{e}^{-1} \in A(D) ; o(e)=v_{i}} w(e) .
$$

Set

$$
s\left(v_{i}\right)=s_{i i}, \quad 1 \leq i \leq n .
$$

Theorem 3 (Mizuno and Sato). Let D be a connected digraph, and let $\mathbf{W}=\mathbf{W}(D)$ be a weighted matrix of D. Furthermore, let $m_{1}=\left|\left\{e \in A(D) \mid \mathrm{e}^{-1} \in A(D)\right\}\right| / 2$. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

$$
\begin{aligned}
\zeta_{1}(D, w, u, t)^{-1}= & \left(1-(1-u)^{2} t^{2}\right)^{m_{1}-n} \\
& \times \operatorname{det}\left(\mathbf{I}_{n}-t \mathbf{W}_{1}(D)-\left(1-(1-u)^{2} t^{2}\right) t \mathbf{W}_{0}(D)+(1-u) t^{2}\left(\mathbf{S}-(1-u) \mathbf{I}_{n}\right)\right)
\end{aligned}
$$

where $n=|V(D)|$.
In Section 2, we define a new type of the Bartholdi zeta function of a digraph D, and give a decomposition formula of a new type of the Bartholdi zeta function of a group covering of D. In Section 3, we define a new type of the Bartholdi L-function of D, and present a determinant expression for a new type of the Bartholdi L-function of D. Furthermore, we show that this L-function of D is equal to the L-function of D defined in [12]. As a corollary, we show that a new type of the Bartholdi zeta function of a group covering of D is a product of new Bartholdi L-functions of D.

For a general theory of the representation of groups and graph coverings, the reader is referred to [16,4], respectively.

2. New Bartholdi zeta functions of digraphs

We consider a new zeta function of a digraph, and define a new zeta function of a digraph by using not an infinite product but a determinant.

Let D be a connected graph with n vertices v_{1}, \ldots, v_{n} and m arcs, and let $w: A(D) \longrightarrow \mathbf{C}$ be a weight of D.
Let $\mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D. An $m \times m$ matrix $\mathbf{B}^{\prime}=\mathbf{B}^{\prime}(D)=\left(\mathbf{B}_{e, f}^{\prime}\right)_{e, f \in A(D)}$ is defined as follows:

$$
\mathbf{B}_{e, f}^{\prime}= \begin{cases}w(e) & \text { if } t(e)=o(f) \\ 0 & \text { otherwise }\end{cases}
$$

Then a weighted Bartholdi zeta function of D is defined by

$$
\zeta_{2}(D, w, u, t)=\operatorname{det}\left(\mathbf{I}_{n}-t\left(\mathbf{B}^{\prime}-(1-u) \mathbf{J}_{0}\right)\right)^{-1}
$$

We can generalize the notion of a Γ-covering of a graph to a simple digraph. Let D be a connected digraph and Γ a finite group. Then a mapping $\alpha: A(D) \longrightarrow \Gamma$ is called a pseudo-ordinary voltage assignment if $\alpha(v, u)=\alpha(u, v)^{-1}$ for each $(u, v) \in A(D)$ such that $(v, u) \in A(D)$. The pair (D, α) is called an ordinary voltage digraph. The derived digraph D^{α} of the ordinary voltage digraph (D, α) is defined as follows: $V\left(D^{\alpha}\right)=V(D) \times \Gamma$ and $((u, h),(v, k)) \in A\left(D^{\alpha}\right)$ if and only if $(u, v) \in A(D)$ and $k=h \alpha(u, v)$. The digraph D^{α} is called a Γ-covering of D. Note that a Γ-covering of the symmetric digraph corresponding to a graph G is a Γ-covering of G (c.f., [4]).

Let D be a connected digraph, Γ a finite group and $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. In the Γ-covering D^{α}, set $v_{g}=(v, g)$ and $e_{g}=(e, g)$, where $v \in V(D), e \in A(D), g \in \Gamma$. For $e=(u, v) \in A(D)$, the arc e_{g} emanates from u_{g} and terminates at $v_{g \alpha(e)}$.

Let $\mathbf{W}=\mathbf{W}(D)$ be a weighted matrix of D. Then we define the weighted matrix $\tilde{\mathbf{W}}=\mathbf{W}\left(D^{\alpha}\right)=\left(\tilde{w}\left(u_{g}, v_{h}\right)\right)$ of D^{α} derived from \mathbf{W} as follows:

$$
\tilde{w}\left(u_{g}, v_{h}\right):= \begin{cases}w(u, v) & \text { if }(u, v) \in A(D) \text { and } h=g \alpha(u, v) \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{M}_{s}$ be the block diagonal sum of square matrices $\mathbf{M}_{1}, \ldots, \mathbf{M}_{s}$. If $\mathbf{M}_{1}=\mathbf{M}_{2}=\cdots=\mathbf{M}_{s}=\mathbf{M}$, then we write $s \circ \mathbf{M}=\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{M}_{s}$. The Kronecker product $\mathbf{A} \otimes \mathbf{B}$ of matrices \mathbf{A} and \mathbf{B} is considered as the matrix \mathbf{A} having the element $a_{i j}$ replaced by the matrix $a_{i j} \mathbf{B}$.

We give a decomposition formula for the weighted Bartholdi zeta function ζ_{2} of a group covering of a digraph D.
Let D be a connected digraph, Γ a finite group and $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. Let $w: A(D) \longrightarrow \mathbf{C}$ be a weight of D. Then two matrices $\tilde{\mathbf{B}}=\mathbf{B}\left(D^{\alpha}\right)=\left(\tilde{b}\left(e_{g}, f_{h}\right)\right)$ and $\tilde{\mathbf{J}}=\mathbf{J}\left(D^{\alpha}\right)=\left(\tilde{c}\left(e_{g}, f_{h}\right)\right)$ of D^{α} are given by

$$
\tilde{b}\left(e_{g}, f_{h}\right):=\left\{\begin{array}{ll}
w(e) & \text { if } t\left(e_{g}\right)=o\left(f_{h}\right), \\
0 & \text { otherwise, }
\end{array} \quad \tilde{c}\left(e_{g}, f_{h}\right):= \begin{cases}1 & \text { if } \mathrm{e}_{g}^{-1}=f_{h} \\
0 & \text { otherwise }\end{cases}\right.
$$

For $g \in \Gamma$, let the matrix $\mathbf{B}_{g}=\left(b_{e f}^{(g)}\right)$ be defined by

$$
b_{e f}^{(g)}:= \begin{cases}w(e) & \text { if } \alpha(e)=g \text { and } t(e)=o(f), \\ 0 & \text { otherwise } .\end{cases}
$$

Furthermore, let the matrix $\mathbf{J}_{g}=\left(c_{e f}^{(g)}\right)$ be defined by

$$
c_{e f}^{(g)}:= \begin{cases}1 & \text { if } \alpha(e)=g \text { and } \mathrm{e}^{-1}=f \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 4. Let D be a connected graph with $l \operatorname{arcs}, \mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D, Γ a finite group and $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. Furthermore, let $\rho_{1}=1, \rho_{2}, \ldots, \rho_{k}$ be all inequivalent irreducible representations of Γ, and f_{i} the degree of ρ_{i} for each i, where $f_{1}=1$. Suppose that the Γ-covering D^{α} of D is connected. Then the reciprocal of the weighted Bartholdi zeta function of D^{α} is

$$
\zeta_{2}\left(D^{\alpha}, \tilde{w}, u, t\right)^{-1}=\zeta_{2}(D, w, u, t)^{-1} \cdot \prod_{i=2}^{k} \operatorname{det}\left(\mathbf{I}_{l f_{i}}-t \sum_{h \in \Gamma} \rho_{i}(h) \bigotimes\left(\mathbf{B}_{h}-(1-u) \mathbf{J}_{h}\right)\right)^{f_{i}}
$$

Proof. Let $A(D)=\left\{e_{1}, \ldots, e_{l}\right\}$ and $\Gamma=\left\{1=g_{1}, g_{2}, \ldots, g_{m}\right\}$. Arrange arcs of D^{α} in m blocks: $\left(e_{1}, 1\right)$, $\ldots,\left(e_{l}, 1\right) ;\left(e_{1}, g_{2}\right), \ldots,\left(e_{l}, g_{2}\right) ; \cdots ;\left(e_{1}, g_{m}\right), \ldots,\left(e_{l}, g_{m}\right)$. We consider the matrix $\tilde{\mathbf{B}}-\tilde{\mathbf{J}}$ under this order. For $h \in \Gamma$, let $\mathbf{P}_{h}=\left(p_{i j}^{(h)}\right)$ be the permutation matrix of h. Suppose that $p_{i j}^{(h)}=1$, i.e., $g_{j}=g_{i} h$. Then $t\left(e, g_{i}\right)=o\left(f, g_{j}\right)$ if and only if $t(e)=o(f)$ and $\left(o(f), g_{j}\right)=o\left(f, g_{j}\right)=t\left(e, g_{i}\right)=\left(t(e), g_{i} \alpha(e)\right)$, i.e., $\alpha(e)=g_{i}^{-1} g_{j}=g_{i}^{-1} g_{i} h=h$. Thus we have

$$
\tilde{\mathbf{B}}-(1-u) \tilde{\mathbf{J}}=\sum_{h \in \Gamma} \mathbf{P}_{h} \bigotimes\left(\mathbf{B}_{h}-(1-u) \mathbf{J}_{h}\right)
$$

Let ρ be the right regular representation of Γ. Furthermore, let $\rho_{1}=1, \rho_{2}, \ldots, \rho_{k}$ be all inequivalent irreducible representations of Γ, and f_{i} the degree of ρ_{i} for each i, where $f_{1}=1$. Then we have $\rho(h)=\mathbf{P}_{h}$ for $h \in \Gamma$. Furthermore, there exists a nonsingular matrix $\underset{\sim}{\mathbf{P}}$ such that $\mathbf{P}^{-1} \rho(h) \mathbf{P}=(1) \oplus f_{2} \circ \rho_{2}(h) \oplus \cdots \oplus f_{k} \circ \rho_{k}(h)$ for each $h \in \Gamma$ (see [16]). Putting $\mathbf{F}=\left(\mathbf{P}^{-1} \otimes \mathbf{I}_{l}\right)(\tilde{\mathbf{B}}-(1-u) \tilde{\mathbf{J}})\left(\mathbf{P} \otimes \mathbf{I}_{l}\right)$, we have

$$
\mathbf{F}=\sum_{h \in \Gamma}\left\{(1) \oplus f_{2} \circ \rho_{2}(h) \oplus \cdots \oplus f_{k} \circ \rho_{k}(h)\right\} \bigotimes\left(\mathbf{B}_{h}-(1-u) \mathbf{J}_{h}\right)
$$

Note that $\mathbf{B}^{\prime}-(1-u) \mathbf{J}_{0}=\sum_{h \in \Gamma}\left(\mathbf{B}_{h}-(1-u) \mathbf{J}_{h}\right)$ and $1+f_{2}^{2}+\cdots+f_{k}^{2}=m$. Therefore it follows that

$$
\begin{aligned}
\zeta_{2}\left(D^{\alpha}, \tilde{w}, u, t\right)^{-1} & =\operatorname{det}\left(\mathbf{I}_{l m}-t(\tilde{\mathbf{B}}-(1-u) \tilde{\mathbf{J}})\right) \\
& =\operatorname{det}\left(\mathbf{I}_{l}-t\left(\mathbf{B}^{\prime}-(1-u) \mathbf{J}_{0}\right)\right) \prod_{i=2}^{k} \operatorname{det}\left(\mathbf{I}_{l_{i}}-t \sum_{h} \rho_{i}(h) \bigotimes\left(\mathbf{B}_{h}-(1-u) \mathbf{J}_{h}\right)\right)^{f_{i}} .
\end{aligned}
$$

3. L-functions of digraphs

Let D be a connected graph with n vertices and l arcs, $\mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D, Γ a finite group and $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. For each path $P=\left(e_{1}, \ldots, e_{r}\right)$ of G, set $\alpha(P)=\alpha\left(e_{1}\right) \cdots \alpha\left(e_{r}\right)$. This is called the net voltage of P. Furthermore, let ρ be a unitary representation of Γ and d its degree.

The L-function of D associated with ρ and α is defined by

$$
\zeta_{2}(D, w, u, t, \rho, \alpha)=\operatorname{det}\left(\mathbf{I}_{l d}-t \sum_{h \in \Gamma} \rho(h) \bigotimes\left(\mathbf{B}_{h}-(1-u) \mathbf{J}_{h}\right)\right)^{-1}
$$

If $\rho=1$ (the identity representation of Γ), then the L-function of D is the weighted Bartholdi zeta function $\zeta_{2}(D, w, u, t)$ of D.

Let $1 \leq i, j \leq n$. Then, the (i, j)-block $\mathbf{F}_{i, j}$ of a $d n \times d n$ matrix \mathbf{F} is the submatrix of \mathbf{F} consisting of $d(i-1)+1, \ldots, d i$ rows and $d(j-1)+1, \ldots, d j$ columns. Two $l d \times l d$ matrices $\mathbf{B}_{\rho}=\left(\left(\mathbf{B}_{\rho}\right)_{e, f}\right)_{e, f \in A(D)}$ and $\mathbf{J}_{\rho}=\left(\left(\mathbf{J}_{\rho}\right)_{e, f}\right)_{e, f \in A(D)}$ are defined as follows:

$$
\left(\mathbf{B}_{\rho}\right)_{e, f}=\left\{\begin{array}{ll}
w(e) \rho(\alpha(e)) & \text { if } t(e)=o(f), \\
\mathbf{0}_{d} & \text { otherwise, }
\end{array} \quad\left(\mathbf{J}_{\rho}\right)_{e, f}= \begin{cases}\rho(\alpha(e)) & \text { if } f=\mathrm{e}^{-1} \\
\mathbf{0}_{d} & \text { otherwise }\end{cases}\right.
$$

For $g \in \Gamma$, the matrix $\mathbf{W}_{0, g}=\left(a_{u v}^{(g)}\right)$ is defined as follows:

$$
a_{u v}^{(g)}:= \begin{cases}w(u, v) & \text { if }(u, v) \in A(D),(v, u) \notin A(D) \text { and } \alpha(u, v)=g \\ 0 & \text { otherwise }\end{cases}
$$

For $g \in \Gamma$, the matrix $\mathbf{W}_{1, g}=\left(b_{u v}^{(g)}\right)$ is defined as follows:

$$
b_{u v}^{(g)}:= \begin{cases}w(u, v) & \text { if }(u, v),(v, u) \in A(D) \text { and } \alpha(u, v)=g, \\ 0 & \text { otherwise. }\end{cases}
$$

A determinant expression for the L-function of D associated with ρ and α is given as follows.
Theorem 5. Let D be a connected digraph with v vertices and ϵ arcs, Γ a finite group, $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment and $\mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D. Set $\epsilon_{1}=\left|\left\{e \in A(D) \mid \mathrm{e}^{-1} \in A(D)\right\}\right| / 2$. Furthermore, let ρ be a representation of Γ, and d the degree of ρ. Then the reciprocal of the L-function of D associated with ρ and α is

$$
\begin{aligned}
\zeta_{2}(D, w, u, t, \rho, \alpha)^{-1}= & \operatorname{det}\left(\mathbf{I}_{\epsilon d}-\left(\mathbf{B}_{\rho}-(1-u) \mathbf{J}_{\rho}\right) t\right)=\left(1-(1-u)^{2} t^{2}\right)^{\left(\epsilon_{1}-v\right) d} \operatorname{det}\left(\mathbf{I}_{v d}-t \sum_{h \in \Gamma} \rho(h) \bigotimes \mathbf{w}_{1, h}\right. \\
& \left.-\left(1-(1-u)^{2} t^{2}\right) t \sum_{h \in \Gamma} \rho(h) \bigotimes \mathbf{w}_{0, h}+(1-u) t^{2}\left(\mathbf{I}_{d} \bigotimes\left(\mathbf{S}-(1-u) \mathbf{I}_{v}\right)\right)\right)
\end{aligned}
$$

Proof. The argument is an analogue of Bass' method [2].
At first, since $\mathbf{B}_{\rho}=\sum_{\mathbf{g} \in \Gamma} \mathbf{B}_{g} \bigotimes \rho(g)$ and $\mathbf{J}_{\rho}=\sum_{g \in \Gamma} \mathbf{J}_{g} \otimes \rho(g)$, we have

$$
\operatorname{det}\left(\mathbf{I}_{\epsilon d}-\left(\mathbf{B}_{\rho}-(1-u) \mathbf{J}_{\rho}\right) t\right)=\operatorname{det}\left(\mathbf{I}_{\epsilon d}-t \sum_{g \in \Gamma} \rho(g) \bigotimes\left(\mathbf{B}_{g}-(1-u) \mathbf{J}_{g}\right)\right)
$$

Let $V(D)=\left\{v_{1}, \ldots, v_{\nu}\right\}$ and, let $A(D)=\left\{e_{1}, \ldots, e_{\epsilon_{0}}, e_{\epsilon_{0}+1}, \ldots, e_{\epsilon_{0}+\epsilon_{1}}, e_{\epsilon_{0}+\epsilon_{1}+1}, \ldots, e_{\epsilon_{0}+2 \epsilon_{1}}\right\}$ such that $\mathrm{e}_{i}^{-1} \notin A(D)$ for $1 \leq i \leq \epsilon_{0}$ and $e_{\epsilon_{0}+\epsilon_{1}+j}=\mathrm{e}_{\epsilon_{0}+j}^{-1}$ for $1 \leq j \leq \epsilon_{1}$. Note that $\epsilon=\epsilon_{0}+2 \epsilon_{1}$.

Let $\mathbf{K}=\left(\mathbf{K}_{i, j}\right)_{1 \leq i \leq \epsilon ; 1 \leq j \leq \nu}$ be the $\epsilon d \times v d$ matrix defined by

$$
\mathbf{K}_{i, j}:= \begin{cases}w\left(e_{i}\right) \rho\left(\alpha\left(e_{i}\right)\right) \mathbf{I}_{d} & \text { if } t\left(e_{i}\right)=v_{j} \\ \mathbf{0}_{d} & \text { otherwise }\end{cases}
$$

Define the $\epsilon d \times \nu d$ matrix $\mathbf{L}=\left(\mathbf{L}_{i, j}\right)_{1 \leq i \leq \epsilon ; 1 \leq j \leq \nu}$ by

$$
\mathbf{L}_{i, j}:= \begin{cases}\mathbf{I}_{d} & \text { if } o\left(e_{i}\right)=v_{j} \\ \mathbf{0}_{d} & \text { otherwise }\end{cases}
$$

Then we have

$$
\begin{equation*}
\mathbf{K}^{t} \mathbf{L}=\mathbf{B}_{\rho}=\sum_{g \in \Gamma} \mathbf{B}_{g} \bigotimes \rho(g) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{t} \mathbf{L K}=\sum_{g \in \Gamma}\left(\mathbf{W}_{0, g}+\mathbf{W}_{1, g}\right) \bigotimes \rho(g)=\mathbf{W}_{0, \rho}+\mathbf{W}_{1, \rho}, \tag{2}
\end{equation*}
$$

where

$$
\mathbf{W}_{i, \rho}=\sum_{g \in \Gamma} \mathbf{w}_{i, g} \bigotimes \rho(g) \quad \text { for } i=0,1
$$

Let $\mathbf{H}=\left(\mathbf{H}_{i, j}\right)_{1 \leq i \leq \epsilon ; 1 \leq j \leq \nu}$ be the $\epsilon d \times \nu d$ matrix:

$$
\mathbf{H}_{i, j}:= \begin{cases}(1-u) t \mathbf{I}_{d} & \text { if } o\left(e_{i}\right)=v_{j} \text { and } \mathrm{e}_{i}^{-1} \notin A(D) \\ \rho\left(\alpha\left(e_{i}\right)\right) & \text { if } t\left(e_{i}\right)=v_{j} \text { and } \mathrm{e}_{i}^{-1} \in A(D), \\ \mathbf{0}_{d} & \text { otherwise }\end{cases}
$$

Then we have

$$
\begin{equation*}
{ }^{t} \overline{\mathbf{H}} \mathbf{K}=\mathbf{S} \bigotimes \mathbf{I}_{d}+(1-u) t \mathbf{W}_{0, \rho} \tag{3}
\end{equation*}
$$

where ${ }^{t} \overline{\mathbf{H}}$ is the conjugate transpose of \mathbf{H}.
Now, let

$$
\mathbf{M}=\left[\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & w\left(f_{1}^{-1}\right) \rho\left(\alpha\left(f_{1}\right)\right) \oplus \cdots \oplus w\left(f_{\epsilon_{1}}^{-1}\right) \rho\left(\alpha\left(f_{\epsilon_{1}}\right)\right) \\
\mathbf{0} & w\left(f_{1}\right) \rho\left(\alpha\left(f_{1}\right)\right)^{-1} \oplus \cdots \oplus w\left(f_{\epsilon_{1}}\right) \rho\left(\alpha\left(f_{\epsilon_{1}}\right)\right)^{-1} & \mathbf{0}
\end{array}\right]
$$

and

$$
\mathbf{N}=\mathbf{B}_{\rho}-\mathbf{M},
$$

where $f_{i}=e_{\epsilon_{0}+i}$ for $1 \leq i \leq \epsilon_{1}$. Furthermore, let

$$
\mathbf{M}_{0}=\left((1-u) t \mathbf{I}_{\epsilon_{0} d} \oplus \mathbf{0}_{2 \epsilon_{1} d}\right)+\mathbf{J}_{\rho} .
$$

Then we have

$$
\begin{equation*}
\mathbf{K}^{t} \overline{\mathbf{H}}=\mathbf{N} \mathbf{M}_{0}+\left(\mathbf{0}_{\epsilon_{0} d} \oplus w\left(e_{\epsilon_{0}+1}\right) \mathbf{I}_{d} \oplus \cdots \oplus w\left(e_{2 \epsilon_{1}}\right) \mathbf{I}_{d}\right) . \tag{4}
\end{equation*}
$$

We introduce two $(\epsilon+\nu) d \times(\epsilon+\nu) d$ matrices as follows:

$$
\mathbf{P}=\left[\begin{array}{cc}
\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{v d} & -{ }^{t} \mathbf{L}+(1-u) t^{t} \overline{\mathbf{H}} \\
\mathbf{0} & \mathbf{I}_{\epsilon d}
\end{array}\right] \text { and } \mathbf{Q}=\left[\begin{array}{cc}
\mathbf{I}_{v d} & { }^{t} \mathbf{L}-(1-u) t^{t} \overline{\mathbf{H}} \\
t \mathbf{K} & \left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon d}
\end{array}\right] .
$$

By (2) and (3), we have

$$
\begin{aligned}
\mathbf{P Q} & =\left[\begin{array}{cc}
\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{v d}-t^{t} \mathbf{L K}+(1-u) t^{2} t \overline{\mathbf{H}} \mathbf{K} & \mathbf{0} \\
t \mathbf{K} & \left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon d}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{v d}-t\left(\mathbf{W}_{1, \rho}+\mathbf{W}_{0, \rho}\right)+(1-u) t^{2}\left(\mathbf{s} \bigotimes \mathbf{I}_{d}+(1-u) t \mathbf{W}_{0, \rho}\right) & \mathbf{0} \\
t \mathbf{K} & \left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon d}
\end{array}\right] .
\end{aligned}
$$

Furthermore,

$$
\mathbf{Q P}=\left[\begin{array}{lc}
\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{v d} & \mathbf{0} \\
t\left(1-(1-u)^{2} t^{2}\right) \mathbf{K} & -t \mathbf{K}^{t} \mathbf{L}+(1-u) t^{2} \mathbf{K}^{\mathbf{t}} \mathbf{H}+\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon d}
\end{array}\right] .
$$

Note that

$$
\mathbf{M M}_{0}=\mathbf{0}_{\epsilon_{0} d} \oplus w\left(e_{\epsilon_{0}+1}\right) \mathbf{I}_{d} \oplus \cdots \oplus w\left(e_{2 \epsilon_{1}}\right) \mathbf{I}_{d}
$$

and

$$
\mathbf{J}_{\rho} \mathbf{M}_{0}=\mathbf{0}_{\epsilon_{0} d} \oplus \mathbf{I}_{2 \epsilon_{1} d}
$$

By (1) and (4), we have

$$
\begin{aligned}
& -t \mathbf{K}^{t} \mathbf{L}+(1-u) t^{2} \mathbf{K}^{t} \mathbf{H}+\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon d} \\
& \quad=\mathbf{I}_{\epsilon d}-t(\mathbf{N}+\mathbf{M})+(1-u) t^{2}\left(\mathbf{N} \mathbf{M}_{0}+\mathbf{M M}_{0}\right)-(1-u) t\left(\mathbf{M}_{0}-\mathbf{J}_{\rho}\right)-(1-u)^{2} t^{2} \mathbf{J}_{\rho} \mathbf{M}_{0} \\
& \quad=\left(\mathbf{I}_{\epsilon d}-t\left(\mathbf{N}+\mathbf{M}-(1-u) \mathbf{J}_{\rho}\right)\right)\left(\mathbf{I}_{\epsilon d}-(1-u) t \mathbf{M}_{0}\right) .
\end{aligned}
$$

Thus,

$$
\mathbf{Q P}=\left[\begin{array}{cc}
\left(1-(1-u)^{2} t^{2} \mathbf{I}_{v d}\right. & \mathbf{0} \\
t\left(1-(1-u)^{2} t^{2}\right) \mathbf{K} & \left(\mathbf{I}_{\epsilon d}-t\left(\mathbf{N}+\mathbf{M}-(1-u) \mathbf{J}_{\rho}\right)\right)\left(\mathbf{I}_{\epsilon d}-(1-u) t \mathbf{M}_{0}\right)
\end{array}\right] .
$$

Since $\operatorname{det}(\mathbf{P Q})=\operatorname{det}(\mathbf{Q P})$, we have

$$
\begin{aligned}
& \left(1-(1-u)^{2} t^{2}\right)^{\epsilon d} \operatorname{det}\left(\mathbf{I}_{v d}-t \mathbf{W}_{1, \rho}-\left(1-(1-u)^{2} t^{2}\right) t \mathbf{W}_{0, \rho}+(1-u)\left(\mathbf{s} \bigotimes \mathbf{I}_{d}-(1-u) \mathbf{I}_{v d}\right) t^{2}\right) \\
& \quad=\left(1-(1-u)^{2} t^{2}\right)^{v d} \operatorname{det}\left(\mathbf{I}_{\epsilon d}-t\left(\mathbf{B}_{\rho}-(1-u) \mathbf{J}_{\rho}\right)\right) \operatorname{det}\left(\mathbf{I}_{\epsilon d}-(1-u) t \mathbf{M}_{0}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{I}_{\boldsymbol{\epsilon}}-(1-u) t \mathbf{M}_{0}\right) \\
& =\operatorname{det}\left([\begin{array} { c c c }
{ \begin{array} { c }
{ \mathbf { I } _ { 0 } d } \\
{ \mathbf { 0 } } \\
{ \mathbf { 0 } } \\
{ \mathbf { 0 } } \\
{ \mathbf { I } _ { \epsilon _ { 1 } d } } \\
{ \mathbf { 0 } }
\end{array} } & { (1 - u) t \{ \rho (\alpha (f _ { 1 })) \oplus \cdots \oplus \rho (\alpha (f _ { \epsilon _ { 1 } })) \} } \\
{ \mathbf { 0 } } & { \oplus } \\
{ \mathbf { I } _ { \epsilon _ { 1 } d } }
\end{array}] \operatorname { d e t } \left(\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon_{0} d}\right.\right. \\
& \left.\oplus\left[\begin{array}{cc}
\left.\substack{\mathbf{I}_{\epsilon_{1} d} \\
-(1-u) t\left\{\rho\left(\alpha\left(f_{1}\right)\right)^{-1}\right.} \cdots \oplus \rho\left(\alpha\left(f_{\epsilon_{1}}\right)\right)^{-1}\right\} & -(1-u) t\left\{\rho\left(\alpha\left(f_{1}\right)\right) \oplus \cdots \oplus \rho\left(\alpha\left(f_{\epsilon_{1}}\right)\right)\right\}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ccc}
\left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon_{0} d} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \left(1-(1-u)^{2} t^{2}\right) \mathbf{I}_{\epsilon_{1 d} d} & \mathbf{0} \\
\mathbf{0} & * & \mathbf{I}_{\epsilon_{1} d}
\end{array}\right]\right)=\left(1-(1-u)^{2} t^{2}\right)^{\left(\epsilon_{0}+\epsilon_{1}\right) d} .
\end{aligned}
$$

Therefore it follows that

$$
\begin{aligned}
& \left(1-(1-u)^{2} t^{2}\right)^{\epsilon d} \operatorname{det}\left(\mathbf{I}_{v d}-t \mathbf{W}_{1, \rho}-\left(1-(1-u)^{2} t^{2}\right) t \mathbf{W}_{0, \rho}+(1-u)\left(\mathbf{s} \bigotimes \mathbf{I}_{d}-(1-u) \mathbf{I}_{v d}\right) t^{2}\right) \\
& \quad=\left(1-(1-u)^{2} t^{2}\right)^{\left(\epsilon_{0}+\epsilon_{1}+v\right) d} \operatorname{det}\left(\mathbf{I}_{\epsilon d}-t\left(\mathbf{B}_{\rho}-(1-u) \mathbf{J}_{\rho}\right)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{I}_{\epsilon d}-t\left(\mathbf{B}_{\rho}-(1-u) \mathbf{J}_{\rho}\right)\right)= & \left(1-(1-u)^{2} t^{2}\right)^{\left(\epsilon_{1}-v\right) d} \operatorname{det}\left(\mathbf{I}_{\nu d}-t \sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{w}_{1, g}\right. \\
& \left.-\left(1-(1-u)^{2} t^{2}\right) t \sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{w}_{0, g}+(1-u) t^{2}\left(\mathbf{I}_{d} \bigotimes\left(\mathbf{S}-(1-u) \mathbf{I}_{v}\right)\right)\right)
\end{aligned}
$$

By Theorem 5 and [12, Theorem 8], the following result holds.
Corollary 1. Let D be a connected digraph, Γ a finite group, $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment and $\mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D. Furthermore, let ρ be a representation of Γ. Then the L-function of D is equal to that of D defined in [12]:

$$
\zeta_{2}(D, w, u, t, \rho, \alpha)=\zeta_{1}(D, w, u, t, \rho, \alpha)
$$

If $\rho=1$ then by Theorems 3 and 5 , we have the following result.
Corollary 2. Let D be a connected digraph with n vertices, and $\mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D. Set $m_{1}=\mid\left\{e \in A(D) \mid \mathrm{e}^{-1} \in\right.$ $A(D)\} \mid / 2$. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

$$
\begin{aligned}
\zeta_{2}(D, w, u, t)^{-1}= & \left(1-(1-u)^{2} t^{2}\right)^{m_{1}-n} \\
& \times \operatorname{det}\left(\mathbf{I}_{n}-t \mathbf{W}_{1}(D)-\left(1-(1-u)^{2} t^{2}\right) t \mathbf{W}_{0}(D)+(1-u) t^{2}\left(\mathbf{S}-(1-u) \mathbf{I}_{n}\right)\right) \\
= & \zeta_{1}(D, w, u, t)^{-1}
\end{aligned}
$$

By Theorems 4 and 5, the following result holds.
Corollary 3. Let D be a connected digraph, Γ a finite group, $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment and $\mathbf{W}=\mathbf{W}(D)$ a weighted matrix of D. Then we have

$$
\zeta_{1}\left(D^{\alpha}, \tilde{w}, u, t\right)=\zeta_{2}\left(D^{\alpha}, \tilde{w}, u, t\right)=\prod_{\rho} \zeta_{2}(D, w, u, t, \rho, \alpha)^{\operatorname{deg} \rho}
$$

where ρ runs over all inequivalent irreducible representations of Γ.
In the case that $w(e)=1$ for each $e \in A(D)$, we obtain a decomposition formula for the Bartholdi zeta function of a group covering of a digraph by Sato [14].

Corollary 4 (Sato). Let D be a connected digraph, Γ a finite group and $\alpha: A(D) \longrightarrow \Gamma$ a pseudo-ordinary voltage assignment. Suppose that the Γ-covering D^{α} of D is connected. Then we have

$$
\zeta\left(D^{\alpha}, u, t\right)=\prod_{\rho} \zeta_{D}(u, t, \rho, \alpha)^{\operatorname{deg} \rho},
$$

where ρ runs over all inequivalent irreducible representations of Γ.
If $u=0$ and $D=D_{G}$ is the symmetric digraph corresponding to a graph G, then, we obtain a decomposition formula for the zeta function of a regular covering of a graph by Sato [15].

Corollary 5 (Sato). Let G be a connected graph, $\mathbf{W}(G)$ a weighted matrix of G, Γ a finite group and $\alpha: R(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Then we have

$$
\mathbf{Z}_{1}\left(G^{\alpha}, \tilde{w}, t\right)=\prod_{\rho} \mathbf{Z}_{1}(G, w, t, \rho, \alpha)^{\operatorname{deg} \rho}
$$

where ρ runs over all inequivalent irreducible representations of Γ.
If $w=\mathbf{1}$ and $D=D_{G}$, then we obtain a decomposition formula for the Bartholdi zeta function of a regular covering of a graph G (see [10]).

Corollary 6 (Mizuno and Sato). Let G be a connected graph, Γ a finite group and $\alpha: R(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Then we have

$$
\zeta\left(G^{\alpha}, u, t\right)=\prod_{\rho} \zeta(G, u, t, \rho, \alpha)^{\operatorname{deg} \rho}
$$

where ρ runs over all inequivalent irreducible representations of Γ.

Acknowledgments

The authors would like to thank the referee for valuable comments and helpful suggestions.
The second author was supported by Grant-in-Aid for Science Research (C).

References

[1] L. Bartholdi, Counting paths in graphs, Enseign. Math. 45 (1999) 83-131.
[2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992) 717-797.
[3] D. Foata, D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999) 2257-2274.
[4] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
[5] K. Hashimoto, Zeta Functions of Finite Graphs and Representations of p-Adic Groups, in: Adv. Stud. Pure Math., vol. 15, Academic Press, New York, 1989, pp. 211-280.
[6] J. William Hoffman, Remarks on the zeta functions of a graph, in: Dynamical Systems and Differential Equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst. (2003) 413-422.
[7] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966) $219-235$.
[8] Y. Ihara, Discrete subgroups of $\operatorname{PGL}\left(2, k_{p}\right)$, in: Proc. Symp. Pure Math. IX, Am. Math. Soc., Providence, 1968, pp. 272-278.
[9] M. Kotani, T. Sunada, Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000) 7-25.
[10] H. Mizuno, I. Sato, Bartholdi zeta functions of graph coverings, J. Combin. Theory Ser. B. 89 (2003) 27-41.
[11] H. Mizuno, I. Sato, Bartholdi zeta functions of digraphs, European J. Combin. 24 (2003) 947-954.
[12] H. Mizuno, I. Sato, A new Bartholdi zeta function of a digraph, Linear Algebra Appl. 423 (2007) 498-511.
[13] S. Northshield, Two proofs of Ihara's theorem, in: Emerging Applications of Number Theory (Minneapolis, MN, 1996), in: IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 469-478.
[14] I. Sato, Bartholdi zeta functions of group coverings of digraphs, Far East J. Math. Sci. 18 (2005) 321-339.
[15] I. Sato, A new zeta function of a graph, preprint.
[16] J.-P. Serre, Linear Representations of Finite Group, Springer-Verlag, New York, 1977.
[17] J.-P. Serre, Trees, Springer-Verlag, New York, 1980.
[18] H.M. Stark, A.A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996) 124-165.
[19] T. Sunada, L-Functions in Geometry and Some Applications, in: Lecture Notes in Math., vol. 1201, Springer-Verlag, New York, 1986, pp. 266-284.
[20] T. Sunada, Fundamental Groups and Laplacians, Kinokuniya, Tokyo, 1988 (in Japanese).

[^0]: * Corresponding author. Tel.: +81 28520 2176; fax: +81 285202880 .

 E-mail address: isato@oyama-ct.ac.jp (I. Sato)

