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1. Introduction

Graphs treated here are finite. Let G = (V(G), E(G)) be a connected graph (possibly multiple edges and loops) with the
set V(G) of vertices and the set E(G) of unoriented edges uv joining two vertices u and v. For uv € E(G), an arc (u, v) is
the oriented edge from u to v. Set R(G) = {(u, v), (v,u) | uv € E(G)}. Fore = (u, v) € R(G), setu = o(e) and v = t(e).
Furthermore, let e~! = (v, u) be the inverse of e = (u, v).

A path P of length nin G is a sequence P = (e, ..., e,) of n arcs such that e; € R(G), t(e;) = o(eji+1)(1 <i <n—1),
where indices are treated mod n. Set |P| = n, o(P) = o(eq) and t(P) = t(ey). Also, P is called an (o(P), t(P))-path. We say
that a path P = (eq, ..., ey) has a backtracking if e,-;l] = e; forsomei(1 <i <n—1).A (v, w)-path is called a v-cycle (or
v-closed path) if v = w. The inverse cycle of a cycle C = (e, ..., e,) is the cycle C~! = (en”, S, el_l).

We introduce an equivalence relation between cycles. Two cycles C; = (ey,...,en) and G = (f1, ..., fin) are said to
be equivalent if there exists k such that fj = ej; for all j. The inverse cycle of C is in general not equivalent to C. Let [C]
be the equivalence class which contains a cycle C. Let B" be the cycle obtained by going r times around a cycle B. Such a
cycle is called a power of B. A cycle C is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is not a power
of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique
conjugacy class of the fundamental group 771 (G, v) of G at a vertex v of G.

The Ihara zeta function of a graph G is a function of t € C with |t| sufficiently small, defined by

ZG.0) =Zc(t) = [ [ =),
[C]
where [C] runs over all equivalence classes of prime, reduced cycles of G (see [7]).
Thara zeta functions of graphs originated from lhara zeta functions of regular graphs by Ihara [7]. Originally, Ihara
presented p-adic Selberg zeta functions of discrete groups. Let I" be a torsion-free discrete cocompact subgroup of PGL(2, kp),
where kj, is a p-adic number field over a finite field. Ihara defined a zeta function associated with I" as an analogue of the
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Selberg zeta function for a discrete cocompact subgroup of PGL(2, R), and showed that its reciprocal is an explicit polynomial.
Serre [17] pointed out that the Thara zeta function is the zeta function of the quotient T /I" (a finite regular graph) of the one-
dimensional Bruhat-Tits building T (an infinite regular tree) associated with GL(2, k;). Furthermore, in [8], Ihara discovered
an identity between the zeta function of T/I" and a certain Shimura curve reduced modulo the prime number p.

Azeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed
by Sunada [19,20]. Hashimoto [5] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara’s result
on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial.

Theorem 1 (Bass). Let G be a connected graph. Then the reciprocal of the zeta function of G is given by
Z(G, )" = (1= t>) " detd — tA(G) + t*(D — 1)),

where r and A(G) are the Betti number and the adjacency matrix of G, respectively, and D = (dj) is the diagonal matrix with
dii = degv; where V(G) = {v1, ..., vy}

Various proofs of Bass’ theorem were given by Stark and Terras [18], Foata and Zeilberger [3], Kotani and Sunada [9],
Hoffman [6] and Northshield [13].

Let G be a connected graph. We say that a path P = (eq, ..., e;) hasa bump at t(e;) ife; 1 = ei_1 (1 <i < n).The cyclic
bump count cbc(xr) ofacyclewr = (i, ..., my) is

che(m)=i=1,....n|m=n}},
where 7,1 = 1. Then the Bartholdi zeta function of G is a function of u, t € C with |u], |t| sufficiently small, defined by

Go(u, ) = ¢(Gu, t) = [ [ —u® @D,

[C]

where [C] runs over all equivalence classes of prime cycles of G (see [1]). If u = 0, then the Bartholdi zeta function of G is
the Thara zeta function of G.
Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented edges. Then the reciprocal of the Bartholdi
zeta function of G is given by

G u, )T =1 -1 —wi?)™ " detd — tAG) + (1 —u)(D — (1 —w)t?).

In the case of u = 0, Theorem 2 implies Theorem 1.

Mizuno and Sato [12] considered a new zeta function of a digraph, and defined a new zeta function of a digraph by using
not an infinite product but a determinant.

Let D be a connected graph with n vertices vy, ..., v, and m arcs. Then we consider an n x n matrix W = W(D) =
(wij)1<ij<n With the ij entry the complex variable wj; if (v, v;) € A(D), and w; = 0 otherwise. The matrix W = W(D) is
called the weighted matrix of D. Furthermore, let w(v;, vj) = wy;, v;, v; € V(D) and w(e) = wy, e = (v;, vj) € A(D). Then
w : A(D) —> Cis called a weight of D. For each path P = (eq, ..., e;) of G, the norm w(P) of P is defined as follows:
wP) = w(ey)...w(e).

Let D be a connected digraph with n vertices and m arcs, and W = W(D) a weighted matrix of D. Two m x m matrices
B = B(D) = (Bef)eseam) and Jo = Jo(D) = (Je.f)eseap) are defined as follows:

BE,f:{w(f) if t(e) = o(f), Je’f:{l iff =e,

0 otherwise, 0 otherwise.
Then a weighted Bartholdi zeta function of D is defined by
¢ (D, w, u, t) = det(l, — t(B— (1 —wJ,)) .

Ifw = 1,ie, we) = 1forany e € A(D), then the weighted Bartholdi zeta function of D is the Bartholdi zeta
function of D (see [11]). If u = 0 and D = Dg is the symmetric digraph corresponding to a graph G, then the weighted
Bartholdi zeta function of D is the zeta function Z; (G, w, t) of G (see [15]). Furthermore, in the case of D = D, we have
;1 (DG, 1, u, t) = {(G, u, t) and ;1 (DG, 1, 0, t) = Z(G, t).
We define two n x n matrices W; = W;(D) = (a,,) and Wy as follows:
_ Jw(u,v) ifboth (u,v)and (v, u) € A(D),
G =10 otherwise

and

W, = W (D) = W(D) — W.
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Let V(D) = {v1, ..., vp}. Thenann x n matrix S = (sy) is the diagonal matrix defined by

Sii = Z w(e).

e,e~1eA(D);0(e)=v;

Set

Theorem 3 (Mizuno and Sato). Let D be a connected digraph, and let W = W(D) be a weighted matrix of D. Furthermore, let
m; = |{e € A(D) | e~ € A(D)}|/2. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

;1(D1 w, u, f)_] = (] _ (] _ u)2t2)m1—n
x det(I, — tW; (D) — (1 — (1 — )23 tWo (D) + (1 — W)t (S — (1 — W,)).

wheren = |V(D)|.

In Section 2, we define a new type of the Bartholdi zeta function of a digraph D, and give a decomposition formula of a
new type of the Bartholdi zeta function of a group covering of D. In Section 3, we define a new type of the Bartholdi L-function
of D, and present a determinant expression for a new type of the Bartholdi L-function of D. Furthermore, we show that this
L-function of D is equal to the L-function of D defined in [12]. As a corollary, we show that a new type of the Bartholdi zeta
function of a group covering of D is a product of new Bartholdi L-functions of D.

For a general theory of the representation of groups and graph coverings, the reader is referred to [16,4], respectively.

2. New Bartholdi zeta functions of digraphs

We consider a new zeta function of a digraph, and define a new zeta function of a digraph by using not an infinite product
but a determinant.

Let D be a connected graph with n vertices vy, ..., v, and m arcs, and let w : A(D) —> C be a weight of D.

Let W = W(D) a weighted matrix of D. An m x m matrix B' = B'(D) = (B, ;)¢ sea(n) is defined as follows:

. {w(E) ift(e) = o(f),

ef — 10 otherwise.
Then a weighted Bartholdi zeta function of D is defined by
&(D, w,u, t) = det(l, — (B — (1= w)o) ™.

We can generalize the notion of a I'-covering of a graph to a simple digraph. Let D be a connected digraph and I" a
finite group. Then a mapping « : A(D) — I is called a pseudo-ordinary voltage assignment if a(v, u) = a(u, v)~! for
each (u, v) € A(D) such that (v, u) € A(D). The pair (D, @) is called an ordinary voltage digraph. The derived digraph D*
of the ordinary voltage digraph (D, «) is defined as follows: V(D*) = V(D) x I" and ((u, h), (v, k)) € A(D*) if and only if
(u, v) € A(D) and k = ha(u, v). The digraph D” is called a I"-covering of D. Note that a I"-covering of the symmetric digraph
corresponding to a graph G is a I"-covering of G (c.f,, [4]).

Let D be a connected digraph, I" a finite group and @ : A(D) — I a pseudo-ordinary voltage assignment. In the
I'-covering D%, set v, = (v,g) and e, = (e,g), wherev € V(D),e € A(D),g € I".Fore = (u,v) € A(D), the arc e,
emanates from ug and terminates at vgq e).

Let W = W(D) be a weighted matrix of D. Then we define the weighted matrix W= W(D%) = (w(ug, vy)) of D* derived
from W as follows:

- _ Jw(,v) if(u,v) € A(D)and h = ga(u, v),
w(tg, vp) = {0 otherwise.
Let M1 @ - - - @& M; be the block diagonal sum of square matrices My, ..., M. If M; = M, = --- = M; = M, then we

writes o M = M; @ - - - ® M;. The Kronecker product A (X) B of matrices A and B is considered as the matrix A having the
element g;; replaced by the matrix a;;B.

We give a decomposition formula for the weighted Bartholdi zeta function ¢, of a group covering of a digraph D.

Let D be a connected digraph, I" a finite group and @« : A(D) —> I’ a pseudo-ordinary voltage assignment. Let
w : A(D) —> C be a weight of D. Then two matrices B = B(D*) = (E(eg,fh)) andj = J(D*) = (c(eq, fp)) of D* are
given by

o fw(e) it =0, . . [1 ife' =
bleg.fu) = {0 otherwise, (- fi) =10 otherwise,
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For g € I', let the matrix B, = (bs,}g)) be defined by

pe . Jwie) ifale) =gandt(e) = o(f),
f 10 otherwise.

Furthermore, let the matrix J, = (cé}g) ) be defined by

@ . |1 ifa(e) =gande™' =,
¢ "~ 10 otherwise.

Theorem 4. Let D be a connected graph with | arcs, W = W(D) a weighted matrix of D, I" a finite group and « : A(D) — I
a pseudo-ordinary voltage assignment. Furthermore, let p1 = 1, p, ..., px be all inequivalent irreducible representations of I,
and f; the degree of p; for each i, where fi = 1. Suppose that the I'-covering D* of D is connected. Then the reciprocal of the
weighted Bartholdi zeta function of D* is

k fi
(0% b, ) = 0, w,u, )7 [ ] det (lm —t > pilh) R By — (1— u)Jh)> :
i=2

her
Proof. Let AD) = H{ey,...,e}and I' = {1 = g,&,...,8n} Arrangg arcs of D* in m blocks: (eq, 1),
o (e 1) (e1,82), ..., (e1,82); -5 (€1, 8m)s - - ., (61, 8m). We consider the matrix B — J under this order. For h € I, let

P, = (p,-(jh)) be the permutation matrix of h. Suppose that p,g-h) = 1,ie, g = gh. Then t(e, g&) = o(f, g) if and only if
t(e) = o(f) and (o(f), g) = o(f, &) = t(e. &) = (t(e), g (e)), i.e, a(e) = g 'g; = g 'gih = h. Thus we have
B—(1-—wj=) P,Q)By— (1—w)y).
her

Let p be the right regular representation of I'. Furthermore, let p; = 1, pa, ..., px be all inequivalent irreducible
representations of I", and f; the degree of p; for each i, where f; = 1. Then we have p(h) = P, for h € I". Furthermore, there
exists a nonsingular matrix P such that P~ p (WP = (1) ® f» 0 po(h) & - - - @ fi o p(h) for each h € I (see [16]). Putting

F=P 'QI)B— (1—w))(P]I), we have
F=)Y {()@®fHopth) @ &fiomh}R)Br— (1—w)y).

her

Note that B’ — (1 —w)Jo = > . By — (1 —w)Jy) and 1 + f7 + - - - + f2 = m. Therefore it follows that
L%, ,u, )" = det(ly — t(B — (1—w)))

P fi
= det(l; — t(B' — (1 —w}y)) | [ det (lm — ) pilh) QB — (1 —u)Jh)> . O
i=2 h

3. L-functions of digraphs

Let D be a connected graph with n vertices and [ arcs, W = W(D) a weighted matrix of D, I" a finite group and
o : A(D) —> I apseudo-ordinary voltage assignment. For each pathP = (eq, ..., e;) of G, seta(P) = a(ey) - - - a(e;). This
is called the net voltage of P. Furthermore, let p be a unitary representation of I" and d its degree.

The L-function of D associated with p and « is defined by

-1
&, w,u,t, p, @) = det (IM —ty p) QB — (1 - u)Jh>) :

her

If p = 1(the identity representation of I"), then the L-function of D is the weighted Bartholdi zeta function ¢, (D, w, u, t)
of D.

Let 1 < i,j < n.Then, the (i, j)-block F; j of a dn x dn matrix F is the submatrix of F consisting of d(i — 1) + 1, ..., di
rowsand d(j — 1) + 1, ..., dj columns. Two Id x Id matrices B, = ((By)e)esecap) andJ, = (J,)ef)eseam are defined as
follows:

B,).; = |w@p@@) ift@=of), _ [peE) iff=e",
plef = 10y otherwise, plef = 0, otherwise.

For g € I', the matrix Wy ; = (a¥)) is defined as follows:

@ . Jw(,v) if (u,v) € AD),(v,u) € A(D) and o (u, v) = g,
%iv =10 otherwise.
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Forg € I', the matrix W ; = (bfﬁ}) is defined as follows:

pe® — w(u,v) if (u,v), (v,u) € AD)and a(u, v) = g,
w 0 otherwise.

A determinant expression for the L-function of D associated with p and « is given as follows.

Theorem 5. Let D be a connected digraph with v vertices and € arcs, I" a finite group, @ : A(D) —> I’ a pseudo-ordinary
voltage assignment and W = W(D) a weighted matrix of D. Set €¢; = |{e € A(D) | e~! € A(D)}|/2. Furthermore, let p be a
representation of I", and d the degree of p. Then the reciprocal of the L-function of D associated with p and « is

LD, w,u,t, p, )" = det(leg — (B, — (1 —wJ,)0) = (1 — (1 —w?’e*) @™ det (lvd —t ) p(h) QWin

her

— (A= QA=w>t Y ph) Q) Won + (1 —u)t? (ld QRs— - u)lv)>) )

her

Proof. The argument is an analogue of Bass’ method [2].
Atfirst, since B, =}, - B; @ p(g) and], = > .. J; & p(g), we have

det(Ieq — (B, — (1 —w)],)t) = det (lea - tZ pE) ®(Bg -(1- u)Jg)> .

gerl’
Let V(D) = {v1,...,v,} and,let A(D) = {e1, ..., €y, Ceyt1s - - - » Cegter» Ceprer+1s - - - » Cegt2¢, } SUCh that ei’1 & A(D) for

1<i<eandeq = ee_olﬂ for 1 <j < €. Note that € = €y + 2¢;.

Let K = (K;;)1<i<e:1<j<v be the ed x vd matrix defined by

K — w(e)p(ale)) Iy ift(e) =vj,
LT 10y otherwise.
Define the ed x vd matrix L = (L j) 1<i<e; 1<j<v DY

L. — Iy ifo(ei) =Vj
%7104 otherwise.

Then we have

KL=B, =) B, (X o (1)

gerl’
and
WK =) (Wog +Wig) (X)p(g) =Wo, +Wi,, @)
ge[‘
where
Wi, = Zwi,g ® p(g) fori=0,1.
gel’

Let H = (H;j)1<i<e:1<j<v De the ed x vd matrix:

(1—utly ifo(e;) = vjande; ' ¢ A(D),
Hij = {p(a(e;))  ift(e) =vjande; ' € A(D),

04 otherwise.
Then we have
‘HK =S ® I+ (1 —u)tWo,,, 3)
where ‘H is the conjugate transpose of H.
Now, let
0 0 0
M= |0 0 w(fy Do) @ - & w(, o))
0 wf)p@) '® - dw,)pllf)) ™ 0
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and
N=B,-M,
where f; = e. 4 for 1 < i < €;. Furthermore, let
Mo = ((1 — u)tlegg @ Oz ;a) +1],-
Then we have
K'H = NMo + (050 ® w(eeys )y @ - - - ® wlege) o).

We introduce two (¢ + v)d x (e + v)d matrices as follows:

p— |:(1—(1—u)2t2)l,,d —‘L+(1—u)ttHj| and Q= [Iud ‘L—(1—wt'H ]

(] I tK (11— (1—u)?tD)ly
By (2) and (3), we have
PQ = (1= (1 =w?t )y — t LK+ (1 — u)t? 'HK 0
- tK (1—(1—u)??)ly
0= =) = W + Wo )+ (1= ) (S@ e+ (1= )t W) 0
tK (1-1-w?Ply |
Furthermore,
p_ | (1= =Wty 0
Q= t1—1-w?)K —tKL+ 1 —-wt?KH+ (1 -1 —uw)?tDHlg|"

Note that
MM, = oeod @ w(eeo+1)ld ®---D w(ek])ld

and
JoMo = 0cpq @ Ieya,
By (1) and (4), we have
—tK'L+ (1 —wt’K'H+ (1 — (1 —u)’tH)ly
=1Ig — t(N+ M) + (1 — u)t*(NMo + MMp) — (1 — u)t(Mo —J,,) — (1 —u)’t* ], Mo
=(leg —t(N+M— (1 —u)],))(Iea — (1 — u)tMo).
Thus,

QP _ (1 - (1 - u)ztz)lvd 0
Tt - A -wrHK dg—tN+M— (1 —w],) (g — (1 —uw)t M) |

Since det(PQ) = det(QP), we have
(1= (1= u)t®)< det (Ivd Wi, — (1= (1 — w2 tWo, + (1 —u) <S®ld —(- u)lvd) t2>
=(1—(1—w’t®"det(ly — t(B, — (1 —u)]J,)) det(leq — (1 — u)t Mo).
Now,

det(Ig — (1 — u)t Mp)

Ieod 0 0 7]
= det ([ 0 I, (A-wt{p()® - & pla(fe))} ) det (1 = (1 = w)*tH)lega

0 0 Ield _
®|: Ield -1 _u)t{p(a(fl))@"‘@p(a(fe]))}])
—(1=wt{p@f@) "' @ plalfy) ) |
(1= (1= w2y 0 0|
= det 0 =1 -w'Plge 0 || =0-Q—wHorar

0 * lqd_
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Therefore it follows that
(1= (1= u)??) det (lud —tWi, — (1= (1 — W)W, + (1 —u) (S®Id —(- u)lvd> t2>
=(1— (1—uw?t) @i ety — t(B, — (1 —w)j,)).
Hence

det(lg — t(B, — (1= w)],)) = (1— (1 — w)’t*) 1" det (lvd —t) p(&) QWi

gerl’

— A= -w?de Y p@) Q) Wo, + (1—ut? (Id Xs-a- u)l‘,))) . O

gerl’
By Theorem 5 and [12, Theorem 8], the following result holds.

Corollary 1. Let D be a connected digraph, I" a finite group, « : A(D) —> I a pseudo-ordinary voltage assignment and
W = W(D) a weighted matrix of D. Furthermore, let p be a representation of I". Then the L-function of D is equal to that of D
defined in [12]:

LD, w,u, t, p, ) = 51(D, w, u, t, p, ).
If p = 1 then by Theorems 3 and 5, we have the following result.

Corollary 2. Let D be a connected digraph with n vertices, and W = W(D) a weighted matrix of D. Set m; = |{e € A(D) | e ! €
A(D)}|/2. Then the reciprocal of the weighted Bartholdi zeta function of D is given by
LD, w,u, )7 = (1= (1 —w?)m™"
x det(I, — tW;(D) — (1 — (1 — w)*t3)tWo(D) + (1 — w)t*(S — (1 — w)l,))
=D, w,u, t)7"

By Theorems 4 and 5, the following result holds.

Corollary 3. Let D be a connected digraph, I" a finite group, « : A(D) —> I a pseudo-ordinary voltage assignment and
W = W(D) a weighted matrix of D. Then we have

(D%, b, u, ) = 5D, @, u, 1) = [ 2@, w, u, t, p, ),
P

where p runs over all inequivalent irreducible representations of I'.

In the case that w(e) = 1for each e € A(D), we obtain a decomposition formula for the Bartholdi zeta function of a group
covering of a digraph by Sato [14].

Corollary 4 (Sato). Let D be a connected digraph, I" a finite group and o : A(D) —> I" a pseudo-ordinary voltage assignment.
Suppose that the I'-covering D* of D is connected. Then we have

¢ u,0) = [ [ oo, t, p, )7,
P

where p runs over all inequivalent irreducible representations of I'.

Ifu = 0 and D = Dg is the symmetric digraph corresponding to a graph G, then, we obtain a decomposition formula for
the zeta function of a regular covering of a graph by Sato [15].

Corollary 5 (Sato). Let G be a connected graph, W(G) a weighted matrix of G, I" a finite group and « : R(G) —> I an ordinary
voltage assignment. Then we have

Zi(G,,t) = [ [2:(G, w, t, p, )5,
P

where p runs over all inequivalent irreducible representations of I'.

If w = 1and D = Dg, then we obtain a decomposition formula for the Bartholdi zeta function of a regular covering of a
graph G (see [10]).
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Corollary 6 (Mizuno and Sato). Let G be a connected graph, I a finite group and o : R(G) — I an ordinary voltage
assignment. Then we have

(G u 0 =[]eG u e, p, ),
P
where p runs over all inequivalent irreducible representations of I.
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