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a b s t r a c t

Coja-Oghlan and Taraz [Amin Coja-Oghlan, Anusch Taraz, Exact and approximative
algorithms for coloring G(n, p), Random Structures and Algorithms 24 (3) (2004) 259–278]
presented a graph coloring algorithm that has expected linear running time for random
graphswith edge probability p satisfying np ≤ 1.01. In this work, we develop their analysis
by exploiting generating function techniques. We show that, in fact, their algorithm colors
Gn,p with the minimal number of colors and has expected linear running time, provided
that np ≤ 1.33.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Deciding whether the chromatic number of a graph G is smaller than a given value ` is an NP-complete problem.
Furthermore, Feige and Kilian [5] showed that, unless ZPP = NP, there is no polynomial-time algorithm that colors an
input graph on n vertices, and has approximation ratio less than n1−ε , for all ε > 0. Considering these worst-case results, a
natural question arises: is there an algorithm that performs well on random instances?
In this work our focus is on the well-known and well-studied binomialmodel of random graphs [4,6]. In this model, an

edge is included in the resulting graph with probability p, independently of the presence or absence of other edges. We
shall denote by Gn,p a random graph drawn according to this distribution. Karp [7] asked the following question: Is there an
algorithm that has expected polynomial running time for Gn,p and always finds an optimal coloring?
Coja-Oghlan and Taraz [3] affirmatively answered this question, provided that p is not too large, namely np ≤ 1.01.

However, they remarked that their analysis was not tight, and asked whether their result could hold for larger values of p.
For np ≥ 3.35, a random graph Gn,p has a 3-core of linear size almost surely [9], causing the algorithm of Coja-Oghlan and
Taraz to run in exponential time only. In this work, we develop their analysis by exploiting generating function techniques,
and show the following result.

Theorem 1. There exists an algorithm that colors Gn,p with the minimal number of colors and has expected linear running time,
provided that np ≤ 1.33.

Lemma 1, which bounds the number of graphs with minimum degree k on ν nodes and µ edges, contributes the main
improvement of [3] and is also of independent interest.

1.1. Algorithm

The algorithm of Beigel and Eppstein [1] decides whether a graph is 3-colorable in time O(1.3289n). Define τ3 := 1.329.
The algorithm of Lawler [8] determines the chromatic number of a graph in time O((1+ 3√3)n). Define τ4 := 2.443.
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The k-core of a graph G = (V , E) is the maximum subgraph with minimum degree k. The algorithm of Coja-Oghlan and
Taraz [3] optimally colors a graph as follows: the 3-core is built by repeatedly removing verticeswith deg(v) < 3 and putting
them on a stack. Next, the algorithm of Beigel and Eppstein [1] is applied on the 3-core and if it is 3-colorable, the core is
colored. Otherwise, it builds the 4-core by further removing vertices with deg(v) < 4 and putting them on the stack. Then,
the algorithm optimally colors the core using Lawler’s algorithm [8]. Finally, the vertices from the stack are added one by
one to the graph again and they are assigned the smallest color available. For an exposition of the algorithm we refer to [3].

2. Proof

DefineC(k; ν, µ) to be the set of graphs having a k-core of size ν withµ edges and G(k; ν, µ) to be the set of graphs with
ν nodes, µ edges and minimal degree k. Every G ∈ C(k; ν, µ) has a subgraph from G(k; ν, µ).
The expected running time (up to a constant factor and linear processing time to build the core) is, for all ν, µ, at most

the probability that the graph has a k-corewith ν vertices andµ edgesmultipliedwith the exponential running time needed
for the core, i.e.,∑

k∈{3,4}

n∑
ν=k

( ν2 )∑
µ= k2 ν

Pr[Gn,p ∈ C(k; ν, µ)] · (τk)ν .

The probability that Gn,p, where p = c
n , has a k-core of size ν with µ edges is bounded as follows:

Pr[Gn,p ∈ C(k; ν, µ)] ≤
(n
ν

)
·

( c
n

)µ
· |G(k; ν, µ)|

≤ 2h(ν/n)·n ·
( c
n

)µ
· |G(k; ν, µ)|,

where h(p) := −p log2 p− (1− p) log2(1− p) denotes the binary entropy.
We split the proof into two cases for µ = k

2ν + λ. Set η = 0.7.

Case I: (Many Edges,µ ≥ k
2ν+ην): The number of graphs with a core of size ν and at leastµ edges |G(k; ν, µ)| is bounded

by the number of ways to choose µ edges among the
(
ν

2

)
pairs of nodes in the core.

|G(k; ν, µ)| ≤
(( ν

2

)
µ

)
≤

(
eν2

2µ

)µ
.

It remains to show that

2h(ν/n)·n ·
( c
n

)µ
· |G(k; ν, µ)| ≤ (τk)−ν .

We write ν = xνn and λ = xλxνn. (xν ∈ (0, 1], xλ ≥ η)

2h(ν/n)n · (τk)ν ·
(
eν2c
2µn

)µ
< 1

⇔2h(xν )n · (τk)xνn ·

(
e(xνn)2c

2( k2xνn+ xλxνn)n

) k
2 xνn+xλxνn

< 1

⇐ 2h(xν ) · (τk)xν ·
(
exνc
k+ 2η

)xν ( k2+η)
< 1.

The condition above holds for all xν ∈ (0, 1].
Case II: (Few Edges, µ < k

2ν + ην): Let e(ξ , k) denote the Euler series starting at k, i.e., e(ξ , k) := e
ξ
−
∑k−1
i=0 ξ

i/i! =∑
i≥k ξ

i/i!.
We bound the number of graphs with minimal degree k. This lemma is also of independent interest.

Lemma 1 (Number of Graphs with Minimal Degree k). The number of graphs with minimal degree k on ν vertices andµ edges is
bounded as follows: There is a constant C > 0 such that for any ξ > 0

|G(k; ν, µ)| ≤ C ·
(
2µ
ξ 2e

)µ
· e(ξ , k)ν .

Proof. Given a degree sequence Ed = (d1, d2, . . . , dν) with
∑ν
i=1 di = 2µ, according to Bollobás’ configuration model [2],

there are at most

(2µ)!

µ! · 2µ ·
ν∏
i=1
di!
≤ C ·

(
2µ
e

)µ
·

ν∏
i=1

1
di!
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labelled graphs on ν vertices and µ edges such that the ith vertex has degree di. Define D(k; ν, µ) to be the set of degree
sequences of ν nodes with µ edges and all degrees at least k, i.e.,

D(k; ν, µ) :=

{
Ed = (d1, d2, . . . , dν) :

ν∑
i=1

di = 2µ,∀j : dj ≥ k

}
.

To obtain the bound, we sum over all possible degree sequences, i.e., all Ed ∈ D(k; ν, µ). The next step, essentially,
performs the difference. Coja-Oghlan and Taraz [3] bound the sumby ( 2k! )

ν
·( 2k+1 )

2µ−νk. We give a bound utilising generating
functions. For f (ξ) =

∑
i≥0 aiξ

i let [ξ i]f (ξ) := ai. We claim that∑
Ed∈D(k;ν,µ)

ν∏
i=1

1
di!
= [ξ 2µ]e(ξ , k)ν .

Proof is by induction over ν. Base case (ν = 1):∑
Ed∈D(k;1,µ)

1∏
i=1

1
di!
=

1
(2µ)!

= [ξ 2µ]e(ξ , k).

Inductive step (ν − 1→ ν):

[ξ 2µ]e(ξ , k)ν =
2µ∑
δ≥k

[ξ δ]e(ξ , k) · [ξ 2µ−δ]e(ξ , k)ν−1

=

2µ∑
δ≥k

1
δ!
·

∑
Ev∈D(k;ν−1,µ−δ/2)

ν−1∏
i=1

1
di!

=

∑
Ev∈D(k;ν,µ)

ν∏
i=1

1
di!
.

Furthermore, for f (ξ) =
∑
i≥0 aiξ

i with ai ≥ 0

f (ξ)
ξ 2µ
=

∑
i≥0

aiξ i

ξ 2µ
≥ a2µ = [ξ 2µ] f (ξ).

Therefore, since ai ≥ 0, for any ξ > 0,

[ξ 2µ]e(ξ , k)ν ≤
e(ξ , k)ν

ξ 2µ
. �

Using the bound from Lemma 1 we can now continue the proof of the main theorem, case II (few edges). For any ξ > 0,
|G(k; ν, µ)| is bounded as follows.

|G(k; ν, µ)| ≤ C ·
(
2µ
ξ 2e

)µ
· e(ξ , k)ν .

It remains to show that

2h(ν/n)·n ·
( c
n

)µ
· |G(k; ν, µ)| ≤ (τk)−ν .

We write ν = xνn and λ = xλxνn. (xν ∈ (0, 1], xλ < η)

C · 2h(ν/n)n · (τk · e(ξ , k))ν ·
(
2µc
ξ 2en

)µ
< 1

⇐ 2h(xν ) · (τk · e(ξ , k))xν ·
(
cxν(k+ 2xλ)

ξ 2e

)xν ( k2+xλ)
< 1.

Set ξ = 1.85. The condition above holds for all xν ∈ (0, 1] and xλ ∈ (0, η). �
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