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a b s t r a c t

Let Gn,p denote the random graph on n labeled vertices, where each edge is included with
probability p independent of the others. We show that for all constant p

χ(Gn,p) ≥
n

2 log 1
1−p
n− 2 log 1

1−p
log 1

1−p
n− 2 log 1

1−p
2+ o(1)

holds with high probability. This improves the best known lower bound for the chromatic
number of dense random graphs and shows in particular that the estimate χ(Gn,p) ≥
n

α(Gn,p)
, where α denotes the independence number, is not tight.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let Gn,p denote the random graph on n labeled vertices, where each edge is included independently of the others with
probability p. The chromatic number χ(Gn,p), which is the minimum number of colors needed to color the vertices of the
graph Gn,p, such that no two adjacent vertices are colored the same, is one of the most studied parameters in the theory of
random graphs, see e.g. [8,11,3,12].
While it is easy to show that the chromatic number of a random graph Gn,p satisfies with high probability1 n/(2 logb n) ≤

χ(Gn,p) ≤ (n + o(n))/ logb n, where we shall abbreviate in the remainder of the paper b = 1/(1 − p), the asymptotic gap
between lower and upper bound was only closed in 1988 in a celebrated paper by Bollobás [3], who proved that the correct
asymptotic answer is given by the lower bound. Here we state a theorem by McDiarmid, who slightly refined Bollobás’s
proof of the upper bound.

Theorem 1.1 ([6,12]). Let 0 < p < 1 be fixed and denote by α(Gn,p) the independence number of the random graph Gn,p. Define
the auxiliary function

rp(n) = 2 logb n− 2 logb logb n+ 2 logb(e/2),

where b = 1
1−p . With high probability it holds that⌊

rp(n)+ 1−
2 logb logb n
logb n

⌋
≤ α(Gn,p) ≤

⌊
rp(n)+ 1+

2 logb logb n
logb n

⌋
and

n
rp(n)+ 1+ o(1)

≤ χ(Gn,p) ≤
n

rp(n)− 1
2 −

1
1−
√
1−p + o(1)

.
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The lower bound in the above theorem is obtained by the estimate χ(G) ≥ d|V (G)|/α(G)e, which is valid for all graphs
G = (V , E). The upper bound is much harder to obtain – in order to prove it, Bollobás showed that in every sufficiently large
subset of the vertices of the random graph, an independent set of appropriate size can be found with high probability.
The bounds given in Theorem 1.1 characterize precisely the order of magnitude of the chromatic number of the random

graph. On the other hand, if we subtract the lower bound from the upper bound, an easy calculation yields that the remaining
gap is of order Θ

(
n(log n)−2

)
. This shows that the bounds from Theorem 1.1 – that are still the best known bounds – are

far from best possible, as it was shown by Shamir and Spencer [13] that the chromatic number of the random graph is
concentrated in an interval of size roughly O(

√
n). More precisely, they showed that

Pr
[∣∣χ(Gn,p)− E

[
χ(Gn,p)

]∣∣ ≥ ωn · √n] ≤ e−Θ(ω2n),
where ωn is a function such that ωn → ∞ when n → ∞. Therefore, we know that the chromatic number takes with
high probability less than 2ωn

√
n different values. In fact, in a recent paper Bollobás [5] asks about the concentration of

the chromatic number and speculates that it might well be possible that the chromatic number of a random graphs Gn,p is
concentrated within an interval of size log n or less.
Note that the above results concern dense random graphs, i.e. the case that the edge probability p is a fixed constant.

For sparse random graphs much more is known. For example, Achlioptas and Naor [1] proved that for every d > 0, the
chromatic number of the random graph Gn,d/n is with high probability either k or k+ 1, where k is the smallest integer such
that 2k log k > d. For slightly larger p = p(n) it is known from work of Łuczak [10] and Alon and Krivelevich [2] that for all
p � n−1/2 the chromatic number of Gn,p is concentrated on an interval of length two, without specifying, however, where
this intervalmight be located. For p ≤ n−3/4−δ , where δ > 0 is an arbitrary constant, Coja-Oghlan, Panagiotou, and Steger [7]
determined a set of three consecutive integers that contain this interval.
When p is very small, for instance dn , where d > 1, it can easily be seen that the general lower bound

⌈
n/α(Gn,p)

⌉
cannot

be tight. Indeed, note that Gn,d/n has whp roughly e−dn isolated vertices, and it thus follows that the largest independent
set in Gn,d/n contains substantially more vertices than the largest independent set in the remaining graph. The lower bound
d|V (G)|/α(G)e for the chromatic number thus fails to give a satisfactory estimate in this case. On the other hand, such a
situation does not occur in the case of dense random graphs: due to the result of Bollobás [3], any sufficiently large subset
of the vertices of Gn,p has a large independent set. It therefore seems quite plausible that the bound d|V (G)|/α(G)e actually
does provide a good lower bound in the case of dense random graphs. In this paper we show that this, however, is not true.
More precisely, in this work we improve the lower bound of Theorem 1.1, which in turn implies that the estimate

χ(G) ≥ d|V (G)|/α(G)e is not tight for dense random graphs.

Theorem 1.2. Let 0 < p < 1 be fixed and let b = 1
1−p . With high probability it holds that

χ(Gn,p) ≥
n

2 logb n− 2 logb logb n− 2 logb 2+ o(1)
=

n
rp(n)− logb e+ o(1)

, (1.1)

where rp(n) is defined in Theorem 1.1.

Note that although Theorem 1.2 narrows the gap between the known bounds for the values that the chromatic number
of the random graph can take with high probability, the size of this gap is still of orderΘ

(
n(log n)−2

)
. It therefore remains

an interesting question to investigate if the bounds in Theorem 1.1 can be further sharpened, cf. also Bollobás [5].

2. The proof

In order to prove Theorem 1.2 we apply the first moment method, which states that if a random variable X attains only
non-negative values, then Pr [X > 0] ≤ E [X]. We refer the reader to the excellent books [4,9] for a general exposition and
numerous applications of the first moment method. In our application, X will be the number of `-partitions of Gn,p that
induce valid colorings, for some ` = `(n). The main part of the proof consists of carefully estimating the asymptotic value
of E [X] so that we can then show that this value tends to zero for some specifically chosen value of ` = `(n).
In the following we shall assumewithout loss of generality that ` = o(n). We can write any partition that induces a valid

coloring as a partition (V1, . . . , V`) of the vertex set of Gn,p with the property that Vi ∩ Vj = ∅ for all i 6= j and Vi 6= ∅ for all
i. Note that with this notation, every coloring corresponds to precisely `! distinct partitions (as there are precisely `! ways
to permute the colors). Now, by setting ni := |Vi| for 1 ≤ i ≤ `, the expectation of X can be written as

E [X] =
1
`!
·

∑
n1+···+n`=n
∀i:ni>0

(
n

n1, . . . , n`

)
· (1− p)

∑̀
i=1

(
ni
2

)
, (2.1)

where the multinomial coefficient counts the number of partitions with the given sizes of the (color) classes, the exponent
of (1−p) counts the number of edges which cannot be included in the graph, as they would connect two vertices belonging
to the same independent set, and finally the `! accounts for the fact that in the sum we have counted each coloring (resp.
ordered partition) for all permutations of the colors.
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Let β = β(n, `) =
⌊ n
`

⌋
, and let r = r(n, `) = n− β` denote the remainder of n and `. Moreover, let

D(n, `) =

{
(d1, . . . , d`)

∣∣∣∣∣∑̀
i=1

di = r and ∀1 ≤ i ≤ ` : 0 < di + β ≤ n

}
.

Note that the di are allowed to obtain negative values in the above definition. For a given partition (V1, . . . , V`), write
ni = β + di and let d = (d1, . . . , d`). Observe that this mapping is a bijection between the setsD(n, `) and {(n1, . . . , n`) |∑`
i=1 ni = n and ni > 0}. With this notation, as∑

1≤i≤`

(ni
2

)
=

∑
1≤i≤`

(
β + di
2

)
=
1
2

(
−n+

∑
1≤i≤`

(β2 + 2βdi + d2i )

)
= −

n
2
+
n2 − r2

2`
+
1
2

∑
1≤i≤`

d2i ,

we can rewrite (2.1) as

E [X] =
1
`!

∑
d∈D(n,`)

(
n

β + d1, . . . , β + d`

)
· (1− p)

n2−r2
2` −

n
2+

1
2
∑̀
i=1
d2i
. (2.2)

In order to obtain anupper bound for the above expression,we first observe that themultinomial coefficient ismaximized
for d∗ = (1, . . . , 1, 0, . . . , 0), which has ones at the first r positions. Furthermore, if ` = o(n), by using Stirling ’s formula
for the approximation of the factorial function

xxe−x
√
2πx ≤ x! ≤ xxe−x

√
2πx · e

1
12x ,

valid for all natural numbers x, we obtain with
⌊ n
`

⌋
=
n−r
`(

n
β + d∗1, . . . , β + d

∗

`

)
≤ 2`n+`/2(2πn)−

`−1
2 ·

∏
1≤i≤`

1

(1− r+`d∗i
n )β+d

∗
i +1/2

≤ `n+
`
2 (2πn)−

`−1
2 · 2O(`). (2.3)

Let q = 1− p and note that b = q−1; in order to handle the remaining terms in (2.2), we estimate

∑
d∈D(n,`)

q
1
2
∑̀
i=1
d2i
≤

∑
d∈Z`

b
−
1
2
∑̀
i=1
d2i
= S(p)`,

where S denotes the rapidly converging sum
∑
d∈Z b

−d2/2. By putting everything together, and using again Stirling’s formula
to estimate the `!-term, we obtain the following upper bound on E [X] from (2.2).

E [X] ≤
( e
`

)`√
2π` · `n+

`
2 (2πn)−

`−1
2 · q

n2−r2
2` −

n
2 · S` · 2O(`)

= `n−
`
2 n−

`
2 · b−

n2
2`+

n
2 · 2Θ(`). (2.4)

We now show that for the claimed values of ` the above bound for the expected number of colorings of the random graph
Gn,p with ` colors tends to zero, i.e. χ(Gn,p) > ` holds with high probability. This will complete the proof of the theorem.
Define the function αp(n) = 2 logb n − 2 logb logb n − C , where we assume C = Θ(1), and let ` = n

αp(n)
. With this

notation, we obtain from (2.4) the upper bound

logb E [X] ≤
(
n−

`

2

)
logb `−

` logb n
2

−
nαp(n)− n

2
+Θ(`),

which can be bounded from above by(
n−

n
2αp(n)

)
(logb n− logb αp(n))−

n logb n
2αp(n)

− n
(
logb n− logb logb n−

C + 1
2

)
+Θ(`).

But this simplifies with logb(αp(n)) = logb logb n+ logb 2−Θ
(
log log n
log n

)
to

logb E [X] ≤ −n
(
logb 2+

logb n
αp(n)

−
C + 1
2

)
+ o (n) ≤ −n

(
logb 2−

C
2

)
+ o(n).

Therefore, whenever C ≤ 2 logb 2− o(1) the expected number of colorings of Gn,p goes to zero.

Acknowledgement

First author was partially supported by the SNF, grant number: 20021-107880/1.



K. Panagiotou, A. Steger / Discrete Mathematics 309 (2009) 3420–3423 3423

References

[1] D. Achlioptas, A. Naor, The two possible values of the chromatic number of a random graph, Ann. of Math. (2) 162 (3) (2005) 1335–1351.
[2] N. Alon, M. Krivelevich, The concentration of the chromatic number of random graphs, Combinatorica 17 (3) (1997) 303–313.
[3] B. Bollobás, The chromatic number of random graphs, Combinatorica 8 (1) (1988) 49–55.
[4] B. Bollobas, Random Graphs, Cambridge University Press, 2001.
[5] B. Bollobás, How large is the concentration of the chromatic number? Combin. Probab. Comput. 13 (1) (2004) 115–117.
[6] B. Bollobás, P. Erdős, Cliques in random graphs, Math. Proc. Cambridge Philos. Soc. 80 (3) (1976) 419–427.
[7] A. Coja-Oghlan, K. Panagiotou, A. Steger, On the chromatic number of random graphs, in: Proceedings of the 34th International Colloquium on
Automata, Languages and Programming, ICALP ’07, pp. 777–788, 2007.

[8] G.R. Grimmett, C.J.H. McDiarmid, On colouring random graphs, Math. Proc. Cambridge Philos. Soc. 77 (1975) 313–324.
[9] S. Janson, T. Łuczak, A. Rucinski, Random graphs, in: Wiley-Interscience Series in Discrete Mathematics and Optimization., Wiley-Interscience, New
York, 2000.

[10] T. Łuczak, The chromatic number of random graphs, Combinatorica 11 (1) (1991) 45–54.
[11] D.W. Matula, Expose-and-merge exploration and the chromatic number of a random graph, Combinatorica 7 (3) (1987) 275–284.
[12] C. McDiarmid, On the method of bounded differences, in: Surveys in Combinatorics, 1989 (Norwich, 1989), in: London Math. Soc. Lecture Note Ser.,

vol. 141, Cambridge Univ. Press, Cambridge, 1989, pp. 148–188.
[13] E. Shamir, J. Spencer, Sharp concentration of the chromatic number on random graphs Gn,p , Combinatorica 7 (1) (1987) 121–129.


	A note on the chromatic number of a dense random graph
	Introduction
	The proof
	Acknowledgement
	References


