
Discrete Mathematics 309 (2009) 3318–3322

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A remark on Haas’ method
Alain Plagne
Centre de Mathématiques Laurent Schwartz, UMR 7640 du CNRS, École polytechnique, 91128 Palaiseau Cedex, France

a r t i c l e i n f o

Article history:
Received 11 February 2008
Received in revised form 2 August 2008
Accepted 19 September 2008
Available online 18 November 2008

Keywords:
Covering codes

a b s t r a c t

We introduce a refinement in the method proposed some time ago by Haas for obtaining
new lower bounds for the cardinality of codes with covering radius 1. As an application, we
show that the minimal cardinality of a binary code in dimension 27 with covering radius 1
is at least K2(27, 1) ≥ 4 794 174.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let An be the nth power of a finite alphabet A with two elements, equipped with the Hamming distance d. Recall that
the covering radius R of a code C defined onAn is

R = min{r ≥ 0 such that ∪c∈C Br(c) = An},

whereBr(c) denotes the ball centered in c with radius r . In what follows, we restrict ourselves to the case R = 1.We denote
by K2(n, 1) the minimal cardinality of a code with covering radius 1 onAn (it is not required that such a covering code with
minimal cardinality be linear but in some specific situations, this may well happen).
Establishing good estimates on this function is the simplest (binary, R = 1) case of the basic problem of the theory of

covering codes. Up to now, only very few exact values of K2(n, 1) are known. Indeed, such exact values are known only for
small dimensions n (namely n ≤ 9, the case n = 9 using heavy computational means [5]) and for some n having a special
arithmetic property (like, for instance, being a power of 2). In general, only upper and lower bounds have been achieved.
The reader is referred to the book [1], to read a complete account on the whole theory of covering codes. By now, the bounds
contained in the tables of this book have been in general largely improved. An up-to-date table [4] is available on thewebsite
maintained by G. Kéri. It contains, in particular, bounds in the cases of interest of this paper.
In 2002, Haas proposed a method [2] which, in particular, can be used to obtain good lower bounds on the function

K2(n, 1). Haas’ method builds on the classical method of linear inequalities of a code. Loosely speaking, a parameter k is
introduced and An is partitioned into 2k parallel (n − k)-dimensional subspaces. Then the distribution of the number of
elements of the code in each subspace of the partition is studied (cf. the quantity nσ below) and a general bound l(k, s) is
obtained (this is Theorem 2 in the above-quoted paper) depending on this parameter k and yet another integral parameter
s. Finally the parameters k and s have to be chosen so as to obtain a lower bound on K2(n, 1) which is as good as possible.
Although it is not clear how the parameters should be chosen so as to maximize l(k, s) numerically, it is always possible to
do so since there is only a finite number of possible choices. It has been observed experimentally by Haas that the choice
k = [(n − 1)/2] always led to the largest possible numerical value of l(k, s). Unfortunately, however, the choice of the
parameters k and s is not completely free since some restrictions apply in order to make the bound valid. In particular,
a numerical condition (this is condition (15) in Haas’ Theorem 2) has to be checked to ensure that some remaining term
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is positive (strictly speaking, this term is hidden in Haas’ Theorem). As stated in the first paragraph of Section 3 of [2], this
condition does not seemvery natural and sometimes prevents frommaking an optimal choice of the parameters, in the above
sense. In his paper [2], Haas underlines in particular the case n = 27 where the potentially optimal choice of parameters is
not allowed, due to the above-mentioned numerical constraint. Making a ‘‘suboptimal’’ but allowed choice only leads to the
lower bound

K2(27, 1) ≥ 4 793 959
while the forbidden choice of parameters would yield 4 794 248 instead.
Roughly speaking, the goal of this article is to show that it is always possible to make an optimal choice of parameters.

Indeed, following closely Haas’ method, it is possible to make it precise enough to obtain an explicit form for the remaining
term. Even when this term is not positive (that is, in the cases when Haas’ theorem is not available), it is possible to control
its size and thus optimize Haas’ approach. The price to be paid, however, is that the bound derived is slightly less good than
what was to be expected if there would be no remaining term (that is, if Haas’ Theorem 2was valid with no restriction) since
a small negative contribution must be added. Nevertheless, when this negative contribution is not too large, a good bound
(at least, better than the one obtained with a suboptimal choice of parameters) can still be obtained.
As an application, we consider the case n = 27, which is indeed the only case listed in Haas’ paper where an optimal

choice (in the above sense) of parameters is not allowed. As reported in [4] (at the end of 2007), the best that is known in
this case is

4 793 959 ≤ K2(27, 1) ≤ 5 767 168.
The upper bound is due to Östergård and Kaikkonen [6] while the lower bound follows from [2]. Our present result implies

K2(27, 1) ≥ 4 794 174. (1)
As explained earlier, it is not as good as the conjectural value 4 794 248, which is the best possible value obtainable by Haas’
method, but it is better than the previous best lower bound (which followed from a suboptimal choice of parameters). As
almost always in this area of research, the improvement is modest. Nevertheless, it is a positive sign that the methods are
still in progress.
We now give some notation. In what follows, we consider a fixed binary codeC inAn (n a positive integer) with covering

radius R = 1.
We first choose several integers that will be considered as fixed from now on. Let 1 ≤ k ≤ n and r be two such fixed

positive integers.
For any σ ∈ Ak, we define
nσ = |{c ∈ C : (c1, . . . , ck) = σ }|

that is, the number of codewords having σ as its beginning. For any (possibly negative) integer i ≤ r , we put
Wi = {σ ∈ Ak : nσ = r − i}

and
Ni = |Wi|.

For any integer ε ≤ r , we define

W (ε)
= {σ ∈ Ak : nσ ≤ r − ε} =

r⋃
i=ε

Wi.

We denote by S(x) the sphere of radius 1 centered in x (the space in which the sphere is to be considered is clearly the
one where x lives).
Here is our main result.

Theorem. Let n be a positive integer. Let k, r and s be three positive integers satisfying the inequalities 1 ≤ k ≤ n and

s ≤ 2n−k − (n+ 1)r.

If C is a code with covering radius 1 inAn then

|C| ≥

(
r +

s
s+ k

)
2k +

1
s+ k

r∑
i=1

((
s(n− k+ 1)

k
+ n+ 1− s− 2k

)
i+
s(s− k)
k

)
Ni.

Here, similarly as in Haas’ theorem, the lower bound depends on a dimensional parameter k and Haas’ parameter s. A
third parameter r which can be seen as a ‘‘reference’’ value for the number of codewords belonging to a given intervening
(n − k)-dimensional subspace enters the picture. (See the last paragraph of Section 3 for an empirical discussion on how
these parameters can be chosen).
The proof of this theorem will be given in Section 2. For the reader’s convenience, we shall give a self-contained account

of the argument (trying to follow the main lines of [2]), using only well-known inequalities.
In Section 3, we show how the lower bound (1) can be derived from this theorem.
In Section 4, we discuss a possible improvement of the method.
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2. Proof of the theorem

Again, a code C in An with covering radius R = 1 and the integers k, r and s subject to the restrictions given in the
theorem are considered as fixed.
We shall use the following two equalities which follow by definition. This first one, namely∑

i≤r

Ni = 2k, (2)

is immediate (here and in what follows, seemingly infinite sums always contain in fact a finite number of non-zero terms
and are therefore well defined) while the second one

|C| = r2k −
∑
i≤r

iNi (3)

follows from the following simple counting argument∑
i≤r

iNi =
∑
i≤r

i|{σ ∈ Ak : nσ = r − i}| =
∑
σ∈Ak

(r − nσ ) = r2k −
∑
σ∈Ak

nσ = r2k − |C|.

Moreover, as shown by Habsieger [3], the projection of the sphere covering bound yields (this is for instance Lemma 1
in [2]), for any µ ∈ Ak,∑

σ∈S(µ)

nσ ≥ 2n−k − (n− k+ 1)nµ. (4)

Here is now a lemma which contains several computations included in Haas’ argument.

Lemma. Let ε = 0 or 1. We have

k
+∞∑
j=1

(j− ε)N−j ≥ (s− εk)
r∑
i=ε

Ni + (n− k+ 1)
r∑
i=ε

iNi.

Proof of the Lemma. We have the following chain of computations

k
+∞∑
j=1

(j− ε)N−j = k

+∞∑
j=1

∑
σ∈W−j

(j− ε)+
∑
j≤0

∑
σ∈W−j

0


= k

∑
σ∈Ak

max(nσ − r − ε, 0)

=

∑
σ∈Ak

max(nσ − r − ε, 0)|S(σ )|

≥

∑
σ∈Ak

max(nσ − r − ε, 0)|S(σ ) ∩W (ε)
|

=

∑
σ ,µ∈Ak, nµ≤r−ε, d(σ ,µ)=1

max(nσ − r − ε, 0)

=

∑
µ∈Ak, nµ≤r−ε

∑
σ∈S(µ)

max(nσ − r − ε, 0)

≥

∑
µ∈Ak, nµ≤r−ε

∑
σ∈S(µ)

(nσ − r − ε)

=

∑
µ∈W (ε)

(( ∑
σ∈S(µ)

nσ

)
− k(r + ε)

)
.
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Using (4) we then derive

k
+∞∑
j=1

(j− ε)N−j ≥
∑
µ∈W (ε)

(
2n−k − (n− k+ 1)nµ − k(r + ε)

)
=

r∑
i=ε

(
2n−k − (n− k+ 1)(r − i)− k(r + ε)

)
Ni

= (2n−k − (n+ 1)r − εk)
r∑
i=ε

Ni + (n− k+ 1)
r∑
i=ε

iNi.

By definition of s, the result follows. �

Applying the lemma with ε = 0 and using (2) gives

k
+∞∑
j=1

jN−j ≥ s

(
2k −

+∞∑
j=1

N−j

)
+ (n− k+ 1)

r∑
i=0

iNi.

It follows

s2k ≤ k
+∞∑
j=1

jN−j + s
+∞∑
j=1

N−j − (n− k+ 1)
r∑
i=1

iNi

= (s+ k)

(
+∞∑
j=1

jN−j −
r∑
i=1

iNi

)
− s

+∞∑
j=1

(j− 1)N−j + (s+ 2k− n− 1)
r∑
i=1

iNi

and using (3)

s2k ≤ (s+ k)
(
|C| − r2k

)
− s

+∞∑
j=1

(j− 1)N−j + (s+ 2k− n− 1)
r∑
i=1

iNi. (5)

We now apply again the lemma but with the value ε = 1. We obtain

k
+∞∑
j=1

(j− 1)N−j ≥ (s− k)
r∑
i=1

Ni + (n− k+ 1)
r∑
i=1

iNi. (6)

Injecting (6) in (5) yields

s2k ≤ (s+ k)
(
|C| − r2k

)
−
s
k

(
(s− k)

r∑
i=1

Ni + (n− k+ 1)
r∑
i=1

iNi

)
+ (s+ 2k− n− 1)

r∑
i=1

iNi

which is equivalent to the inequality proposed in the statement of the theorem.

3. Proof of the lower bound (1)

Let n = 27. We choose the following parameters k = 13, r = 585, s = 4 and check that s = 2n−k − (n+ 1)r .
Let C be a code with covering radius 1. By the theorem, we have

|C| ≥

(
585+

4
17

)
213 +

1
221

r∑
i=1

(34i− 36)Ni ≥
(
585+

4
17

)
213 −

2
221
N1.

Since N1 ≤ 2k, it follows that

|C| ≥

(
585+

4
17
−
2
221

)
213 = 4 794 173+

87
221

that is

|C| ≥ 4 794 174

as announced.
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The parameters used here can be easily determined in an experimental fashion since there is only a finite number of
possible sets of values to check. However, it is noticeable that, as in Haas’ article, k is taken equal to (n− 1)/2. On the more,
the value of r appears to be some kind of mean value since

r =
[
2n−k

n+ 1

]
.

(Recall that the sphere covering bound yields |C| ≥ 2n/(n+ 1) and that the method uses a partition of the Hamming space
into 2k parallel (n − k)-dimensional spaces). Finally s is chosen as large as possible subject to the numerical constraint it
has to satisfy: this can be understood as being the choice which maximizes the main term, namely (r + s/(s+ k))2k in our
theorem.

4. A final remark

Having in mind the shape of the inequality of our theorem, it is clear that a better knowledge on the distribution of the
Ni’s would certainly be very useful.
For instance, in our proof of a lower bound for K2(27, 1) we have used the trivial N1 ≤ 8192. A better upper bound for

N1 would lead to a better lower bound for K2(27, 1).
Another,maybemore important remark, is that a precise knowledge of theNi’s wouldmake the presentmethod usable in

a much more general context. Indeed, very often, the additional contribution of our theorem compared to Haas’ Theorem 2
is positive because it is a weighted sum of Ni’s with positive weights. If something is known on the Ni’s then a lower bound
for the additional contribution can be derived which in turn implies an improvement of the lower bound on K2(n, 1).
It is likely that precise information on the distribution of the Ni’s is rather difficult to obtain. However, either the Ni’s

have good properties with respect to the present discussion and we may improve the method, or this is not the case, but in
this case this fact might be reinjected into another argument which in turn may lead to another good lower bound.
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