Discrete Mathematics 309 (2009) 3424-3426

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note
Automorphism groups of finite posets

Jonathan Ariel Barmak, Elias Gabriel Minian *

Departamento de Matemdtica, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

ARTICLE INFO ABSTRACT

Article history: For any finite group G, we construct a finite poset (or equivalently, a finite Tp-space) X,

Received 29 April 2008 whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r

ss(c)eglved inrevised form 11 September generators, X has n(r+2) points. This construction improves previous results by G. Birkhoff
and M.C. Thornton. The relationship between automorphisms and homotopy types is also

Accepted 12 September 2008

Available online 14 October 2008 analyzed.

© 2008 Elsevier B.V. All rights reserved.

Keywords:
Automorphisms

Posets

Finite topological spaces

1. Introduction

It is well known that any finite group G can be realized as the automorphism group of a finite poset. In 1946 Birkhoff [1]
proved that if the order of G is n, G can be realized as the automorphisms of a poset with n(n + 1) points. In 1972 Thornton
[2] improved slightly Birkhoff's result: He obtained a poset of n(2r + 1) points, when the group is generated by r elements.
Following Birkhoff's and Thornton’s ideas, we exhibit here a simple proof of the following fact which improves their results.

Theorem. Given a group G of finite order n with r generators, there exists a poset X with n(r + 2) points such that Aut(X) ~ G.

The proof of the theorem uses basic topology. Recall that there exists a one-to-one correspondence between finite posets
and finite Tp-topological spaces. Given a finite poset X, the subsets Uy = {y € X | y < X} constitute a basis for a topology on
the set X. Conversely, given a To-topology on the set X, one can define a partial order given by x < y if x is contained in every
open set which contains y. It is easy to see that these applications are mutually inverse. Therefore we regard finite posets
and finite Tp-spaces as the same objects. Order preserving functions correspond to continuous maps and lower sets to open
sets. A finite poset is connected if and only if it is connected as a topological space. For further details see [3].

2. The proof

Let {h1, hy, ..., h;} be a set of r generators of G. We define the poset X = G x {—1,0, ..., r} with the following order:
e (g =@pif-1<i<j=<r,
o (ghi, -1 =@ pifl<i<j=r.

Define ¢ : G — Aut(X) by ¢(g)(h,i) = (gh, i). It is easy to see that ¢(g) : X — X is order preserving and that it is
an automorphism with inverse ¢(g ). Therefore ¢ is a well defined homomorphism. Clearly ¢ is a monomorphism since

¢(g) = limplies (g, —1) = ¢(g)(e, —1) = (e, —1).
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Fig. 1. U(gﬁr).

It remains to show that ¢ is an epimorphism. Let f : X — X be an automorphism. Since (e, —1) is minimal in X, so is
f(e, —1) and therefore f (e, —1) = (g, —1) for some g € G. We will prove that f = ¢(g).

LetY = {x € X | f(x) = ¢(g)(x)}. Y is non-empty since (e, —1) € Y. We prove first that Y is an open subspace of X.
Suppose x = (h, i) € Y. Then the restrictions

Flugs @@y, 2 Ux = Upy

are isomorphisms. On the other hand, there exists a unique automorphism U, — U, since the unique chain of i+ 2 elements
must be fixed by any such automorphism. Thus, f |§X1 ¢(g)|y, = 1y,, and then f|y, = ¢(g)|u,, which proves that Uy C Y.
Similarly we see that Y C X is closed. Assume x = (h, i) € Y. Since f € Aut(X), it preserves the height ht(y) of any point
y. In particular ht (f (x)) = ht(x) = i + 1 and therefore f (x) = (k, i) = ¢(kh™!)(x) for some k € G. Moreover k # gh since
x ¢ Y. As above, f|y, = ¢(kh™")|y,, and since kh~! # g we conclude that Uy NY = f.

We prove now that X is connected. It suffices to show that any two minimal elements of X are in the same
connected component. Given h,k € G we have h = khyh;,...h;, for some 1 < iy,i,...,in, < r.0On the
other hand, (kh; h;, ...h;, —1) and (kh hy, ... h;_,, —1) are connected via (kh; hy, ... hi, —1) < (khyhg, ... b, 1) >
(kh by, .. by, —1). ThlS implies that (k —1) and (h, —1) are in the same connected component.

Finally, since X is connected and Y is closed, open and non-empty, Y = X, i.e. f = ¢(g). Therefore ¢ is an epimorphism,
and then G >~ Aut(X). O

3. Homotopy types

If the generators hy, hy, ..., h, are non-trivial, the open sets U, r look as in Fig. 1. In that case it is not hard to prove that
the finite space X constructed above is weak homotopy equivalent to a wedge of n(r — 1) + 1 circles, or in other words,
that the order complex of X is homotopy equivalent to a wedge of n(r — 1) + 1 circles. The space X deformation retracts
to the subspace Y = G x {—1, r} of its minimal and maximal points. A retraction is given by the map f : X — Y, defined
asf(g,i) = (g, r)ifi > 0and f(g, —1) = (g, —1). Now, the order complex K (Y) of Y is a connected simplicial complex
of dimension 1, so its homotopy type is completely determined by its Euler characteristic. This complex has 2n vertices and
n(r 4+ 1) edges, which means that it has the homotopy type of a wedge of 1 — x (K (Y)) = n(r — 1) 4+ 1 circles.

On the other hand, note that in general, the automorphism group of a finite space does not say much about its homotopy
type as we state in the following

Remark. Given a finite group G and a finite space X, there exists a finite space Y which is homotopy equivalent to X and
such that Aut(Y) ~ G.

We make this construction in two steps. First, we find a finite Ty-space X homotopy equivalent to X and such that
Aut(f() = 0. To do this, assume that X is To and consider a linear extension x1, x5, .. s Xn of the poset X. Now, for each
1 < k < n attach a chain of length kn to X with minimum x,,_1. The resultmg space X deformation retracts to X and
every automorphlsm f: X — X must fix the unique chain C; of length n? (with minimum x1) Therefore f restricts to a
homeomorphism X~ C —> X~ C; which must fix the unique chain C, oflength nn-—1) of X ~ C; (with minimum x,).
Applying this reasoning repeatedly, we conclude that f fixes every point of X. On the other hand, we know that there exists
a finite Ty-space Z such that Aut(Z) >~ G

Now the space Y is constructed as follows. Take one copy of X and of Z, and put every element of Z under x; € X. Clearly
Y deformation retracts to X. Moreover, if f:Y— Yisan automorphlsm f(x1) & Z since f(x;) cannot be comparable with
x; and distinct from it. Since there is only one chain of n® elements in X, it must be fixed by f. In particular f (x;) = x1, and
thenf|; : Z — Z.Thus f restricts to automorphisms of X and of Z and therefore Aut(Y) >~ Aut(Z) ~ G.
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