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a b s t r a c t

For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X ,
whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r
generators, X has n(r+2) points. This construction improves previous results by G. Birkhoff
and M.C. Thornton. The relationship between automorphisms and homotopy types is also
analyzed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that any finite group G can be realized as the automorphism group of a finite poset. In 1946 Birkhoff [1]
proved that if the order of G is n, G can be realized as the automorphisms of a poset with n(n+ 1) points. In 1972 Thornton
[2] improved slightly Birkhoff’s result: He obtained a poset of n(2r + 1) points, when the group is generated by r elements.
Following Birkhoff’s and Thornton’s ideas, we exhibit here a simple proof of the following fact which improves their results.

Theorem. Given a group G of finite order n with r generators, there exists a poset X with n(r + 2) points such that Aut(X) ' G.

The proof of the theorem uses basic topology. Recall that there exists a one-to-one correspondence between finite posets
and finite T0-topological spaces. Given a finite poset X , the subsets Ux = {y ∈ X | y ≤ x} constitute a basis for a topology on
the set X . Conversely, given a T0-topology on the set X , one can define a partial order given by x ≤ y if x is contained in every
open set which contains y. It is easy to see that these applications are mutually inverse. Therefore we regard finite posets
and finite T0-spaces as the same objects. Order preserving functions correspond to continuous maps and lower sets to open
sets. A finite poset is connected if and only if it is connected as a topological space. For further details see [3].

2. The proof

Let {h1, h2, . . . , hr} be a set of r generators of G. We define the poset X = G× {−1, 0, . . . , r}with the following order:

• (g, i) ≤ (g, j) if−1 ≤ i ≤ j ≤ r ,
• (ghi,−1) ≤ (g, j) if 1 ≤ i ≤ j ≤ r .

Define φ : G → Aut(X) by φ(g)(h, i) = (gh, i). It is easy to see that φ(g) : X → X is order preserving and that it is
an automorphism with inverse φ(g−1). Therefore φ is a well defined homomorphism. Clearly φ is a monomorphism since
φ(g) = 1 implies (g,−1) = φ(g)(e,−1) = (e,−1).
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Fig. 1. U(g,r) .

It remains to show that φ is an epimorphism. Let f : X → X be an automorphism. Since (e,−1) is minimal in X , so is
f (e,−1) and therefore f (e,−1) = (g,−1) for some g ∈ G. We will prove that f = φ(g).
Let Y = {x ∈ X | f (x) = φ(g)(x)}. Y is non-empty since (e,−1) ∈ Y . We prove first that Y is an open subspace of X .

Suppose x = (h, i) ∈ Y . Then the restrictions
f |Ux , φ(g)|Ux : Ux → Uf (x)

are isomorphisms. On the other hand, there exists a unique automorphismUx → Ux since the unique chain of i+2 elements
must be fixed by any such automorphism. Thus, f |−1Ux φ(g)|Ux = 1Ux , and then f |Ux = φ(g)|Ux , which proves that Ux ⊆ Y .
Similarly we see that Y ⊆ X is closed. Assume x = (h, i) 6∈ Y . Since f ∈ Aut(X), it preserves the height ht(y) of any point
y. In particular ht(f (x)) = ht(x) = i + 1 and therefore f (x) = (k, i) = φ(kh−1)(x) for some k ∈ G. Moreover k 6= gh since
x 6∈ Y . As above, f |Ux = φ(kh

−1)|Ux , and since kh
−1
6= g we conclude that Ux ∩ Y = ∅.

We prove now that X is connected. It suffices to show that any two minimal elements of X are in the same
connected component. Given h, k ∈ G, we have h = khi1hi2 . . . him for some 1 ≤ i1, i2, . . . , im ≤ r . On the
other hand, (khi1hi2 . . . his ,−1) and (khi1hi2 . . . his+1 ,−1) are connected via (khi1hi2 . . . his ,−1) < (khi1hi2 . . . his , r) >
(khi1hi2 . . . his+1 ,−1). This implies that (k,−1) and (h,−1) are in the same connected component.
Finally, since X is connected and Y is closed, open and non-empty, Y = X , i.e. f = φ(g). Therefore φ is an epimorphism,

and then G ' Aut(X). �

3. Homotopy types

If the generators h1, h2, . . . , hr are non-trivial, the open sets U(g,r) look as in Fig. 1. In that case it is not hard to prove that
the finite space X constructed above is weak homotopy equivalent to a wedge of n(r − 1) + 1 circles, or in other words,
that the order complex of X is homotopy equivalent to a wedge of n(r − 1) + 1 circles. The space X deformation retracts
to the subspace Y = G × {−1, r} of its minimal and maximal points. A retraction is given by the map f : X → Y , defined
as f (g, i) = (g, r) if i ≥ 0 and f (g,−1) = (g,−1). Now, the order complexK(Y ) of Y is a connected simplicial complex
of dimension 1, so its homotopy type is completely determined by its Euler characteristic. This complex has 2n vertices and
n(r + 1) edges, which means that it has the homotopy type of a wedge of 1− χ(K(Y )) = n(r − 1)+ 1 circles.
On the other hand, note that in general, the automorphism group of a finite space does not say much about its homotopy

type as we state in the following

Remark. Given a finite group G and a finite space X , there exists a finite space Y which is homotopy equivalent to X and
such that Aut(Y ) ' G.
We make this construction in two steps. First, we find a finite T0-space X̃ homotopy equivalent to X and such that

Aut(X̃) = 0. To do this, assume that X is T0 and consider a linear extension x1, x2, . . . , xn of the poset X . Now, for each
1 ≤ k ≤ n attach a chain of length kn to X with minimum xn−k+1. The resulting space X̃ deformation retracts to X and
every automorphism f : X̃ → X̃ must fix the unique chain C1 of length n2 (with minimum x1). Therefore f restricts to a
homeomorphism X̃ r C1 → X̃ r C1 which must fix the unique chain C2 of length n(n − 1) of X̃ r C1 (with minimum x2).
Applying this reasoning repeatedly, we conclude that f fixes every point of X̃ . On the other hand, we know that there exists
a finite T0-space Z such that Aut(Z) ' G.
Now the space Y is constructed as follows. Take one copy of X̃ and of Z , and put every element of Z under x1 ∈ X̃ . Clearly

Y deformation retracts to X̃ . Moreover, if f : Y → Y is an automorphism, f (x1) 6∈ Z since f (x1) cannot be comparable with
x1 and distinct from it. Since there is only one chain of n2 elements in X̃ , it must be fixed by f . In particular f (x1) = x1, and
then f |Z : Z → Z . Thus f restricts to automorphisms of X̃ and of Z and therefore Aut(Y ) ' Aut(Z) ' G.
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