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a b s t r a c t

Brendan McKay gave the following formula relating the average distance between pairs of
vertices in a tree T and the eigenvalues of its Laplacian:

dT =
2
n− 1

n∑
i=2

1
λi
.

By modifying Mohar’s proof of this result, we prove that for any graph G, its average
distance, dG, between pairs of vertices satisfies the following inequality:

dG ≥
2
n− 1

n∑
i=2

1
λi
.

This solves a conjecture of Graffiti. We also present a generalization of this result to the
average of suitably defined distances for k subsets of a graph.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We only consider undirected simple graphs in this paper. For vertices u and v of a graph G, let dG(u, v) be the distance in
G from u to v. Let dG be the average of dG(u, v), that is

dG
1
=

(n
2

)−1 ∑
{u,v}⊆V (G),u6=v

dG(u, v).

Brendan McKay (see Mohar and Poljak [5]) gave the following remarkable formula connecting the average distance
between vertices of a tree and the eigenvalues of its Laplacian (see [3,4] for a proof). (The definition of the Laplacian of
a graph is given in Section 2.)

Theorem 1. Let T be a tree on n vertices and let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of its Laplacian. Then,

dT =
2
n− 1

n∑
i=2

1
λi
. (1)

In this paper, we modify a proof of this theorem from [4], and derive the following theorem for general graphs.
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Theorem 2. Let G be a connected graph on n vertices and let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of its Laplacian. Then,

dG ≥
2
n− 1

n∑
i=2

1
λi
.

Equality holds if and only if G is a tree.

A weaker statement, with 1
n−1 instead of

2
n−1 is Conjecture 167 in [7, page 68].

In the next section, we present the definitions, notation and facts that we use in our proofs. In Section 3, we recall the
proof of Theorem 1 fromMohar [4]. In Section 4, we consider general graphs and prove Theorem 2, and finally, in Section 5,
we obtain a generalization concerning the average over the

( n
k

)
suitably defined distances for a k subset of the graph.

2. Preliminaries

Let M be an n × n real and symmetric matrix. For S ⊆ {1, 2, . . . , n}, let MS be the matrix obtained by omitting from M
all rows and columns whose indices appear in S.

Proposition 1. Let M be an n × n real, symmetric matrix. The coefficient of xk in charM(x)
1
= det(xI − M) is

(−1)n−k
∑
S∈
(
[n]
k

) det(MS).
Proof. We refer the reader to [2, page 196, Eq. 33] for a proof of this proposition. �

The Laplacian of a graph: Let G be an undirected simple graph with n vertices. The adjacency matrix of G, denoted by A(G),
is the n × n symmetric matrix [auv]u,v∈V (G), whose entry auv is 1 if {u, v} ∈ E(G) and 0 otherwise. Let D(G) = [duv]u,v∈V (G)
be the diagonal n × n matrix with the degrees of the vertices along the diagonal, that is, dvv = degG(v). The Laplacian of
G, denoted by L(G), is the symmetric matrix D(G)− A(G). The characteristic polynomial of L(G), denoted by charG(x), is the
polynomial in one variable xwith real coefficients, given by det(xI− L(G)). The matrix L(G), is positive semidefinite and has
n real eigenvalues (i.e. roots of charG(x)): λ1 ≤ λ2 ≤ · · · ≤ λn. It is easy to see that λ1 = 0 and λ2 > 0 if and only if G
is connected (see Mohar and Poljak [5, Section 2.2]). Thus, charG(x) = x ·

∏n
i=2(x − λi). For S ⊆ V (G), let FS be the set of

spanning forests of G that contain exactly |S| trees, where each component contains a different vertex of S. Let F be the set
of all spanning trees of G.

Proposition 2. (a) For 2 ≤ k ≤ n, the coefficient of xk in charG(x) is

(−1)n−k
∑

S∈
(
{2,3,...,n}
k−1

)
∏

j∈{2,3,...,n}−S

λj.

(b) For S ⊆ V (G)(S 6= ∅),

|FS | = det(LS).

Proof. For a proof of part (a), take the coefficient of xk in the expansion of x ·
∏n
i=2(x− λi).

For part (b), we give a proof for completeness. The casewhen |S| = 2 is [1, ex 3, page 303]. It is known (see for example [6,
Theorem 2.2.12]) that L(G) = In × Int where In is a |V | × |E| oriented incidence matrix. Our proof of part (b) is similar to
the Binet–Cauchy Theorem (see statement below) based proof of the Matrix Tree Theorem given in [6, Theorem 2.2.12].

Theorem 3 (Binet–Cauchy Theorem (see [6, Ex 8.6.19])). Let C = AB where A and B are n×m and m× n matrices respectively.
Given S ⊆ [m] of size n, let AS be the n× n matrix whose columns are those columns of A, indexed by S and let BS be the n× n
matrix whose rows are those rows of B indexed by S. Then det(C) =

∑
S det(AS) det(BS)where the summation is over all n-sized

subsets of [m].

To apply Binet–Cauchy’s Theorem towards proving part (b), we note that we remove |S| = k vertices. Thus we need to
find all F ⊆ E, with n − k edges such that the (n − k) × (n − k) matrix InV−S,F (which is the submatrix of In whose rows
omit those rows of In indexed by S and whose columns contain the edges in F ) has a non-zero determinant.
Let S = {u1, u2, . . . , uk}. Let V − S = {v1, v2, . . . , vn−k}. We claim that such sets F are precisely those corresponding

to elements of FS . Let F = {e1, e2, . . . , en−k} be a subset such that det(InV−S,F ) 6= 0. We first note that no edge ei ∈ F
can be adjacent to two vertices in S, as then the column in InV−S,F corresponding to ei will only have zeroes and thus force
det(InV−S,F ) = 0. It is simple to see that the graph GF = (V , F) induced on the edges F cannot have cycles if we want
det(InV−S,F ) 6= 0. Thus each component of GF is a tree and since GF has n − k edges and n vertices, it has has precisely k
connected components (i.e. precisely k trees). We show that no two distinct vertices ui, uj ∈ S, where i 6= j can be in the
same component if wewant det(InV−S,F ) 6= 0. This is provedwill imply that only those F ∈ FS give a non-zero determinant.
Suppose p = 〈f1, f2, . . . , fr〉 is a path from ui to uj contained in GF . We can assume that all intermediate vertices (that is,

vertices other than ui and uj) are not in S (if not, we could choose an initial prefix of p with this property). Since no edge in
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GF connects two vertices in S, it is clear that each fi, except f1 and fr , has both its endpoints in V − S. Consider the (n− k)× r
submatrix of InV−S,F corresponding to the edges in p. By adding the column vectors of this submatrix (in the same order as
the path p) with appropriate signs, we can clearly get the zero vector and thus det(InV−S,F ) = 0.
Thus, only the edge sets F ∈ FS have non-zero det(InV−S,F ) value. It is easy to see by induction on the number of edges in

E that this non-zero value is±1. Thus, by the Binet–Cauchy Theorem, det(LS) =
∑
F∈FS

(±1)2 = |FS |. The proof is complete.
�

Corollary 1 (Matrix Tree Theorem). Let S ⊆ V be a singleton set. Thus, S = {v} for some v ∈ V and for brevity, we write Lv
instead of L{v}. Let F be the set of all spanning trees of G. Applying Proposition 2(b) for this S, we get |F | = det(Lv) for all
v ∈ V .

Just as we write Lv instead of L{v}, we also write Luv instead of L{u,v}.

3. Trees: Proof of Theorem 1

This proof is just a restatement of the proof in Mohar [4, page 63]. It will be convenient to rewrite the right hand side of
(1) as

(
2
n− 1

) n∑
i=2

n∏
j=2,j6=i

λj

n∏
i=2
λi

. (2)

We will show that
n∏
i=2

λi = n (3)

n∑
i=2

n∏
j=2,j6=i

λj =
∑

{u,v}⊆V (T ),u6=v

dT (u, v). (4)

The theorem follows immediately by combining (3) and (4) with (2). To show (3) and (4), we will use Propositions 1 and 2.
Proof of (3): By Proposition 2(a), (−1)n−1

∏n
i=2 λi is the coefficient of x in charT (x). By Proposition 1 this coefficient is equal

to the (−1)n−1
∑

v∈V (G) det(Lv(T )). By Corollary 1 det(Lv(T )) = 1 for all v ∈ V (T ). Thus,
n∏
i=2

λi =
∑
v∈V (G)

det(Lv(T )) = n.

Proof of (4): The coefficient of x2 in charT (x) is precisely (−1)n−2
∑n
i=2
∏n
j=2,j6=i λj. By Proposition 2(a), this is also the sum

over all
( n
2

)
pairs {u, v} ⊆ V (T ) of (−1)n−2 det(Luv(T )). By Proposition 2(b), det(Luv(T )) is equal to the number of spanning

forests that have two components, one containing u and the other containing v. In a tree the number of such spanning forests
is precisely the distance dT (u, v) between u and v. Thus,

n∑
i=2

n∏
j=2,j6=i

λj =
∑

{u,v}⊆V (T ),u6=v

det(Luv(T )) =
∑

{u,v}⊆V (T ),u6=v

dT (u, v). �

4. General graphs: Proof of Theorem 2

We again start with the expression (2). Instead of (3) and (4), we now have
n∏
i=2

λi = κ · n, (5)

n∑
i=2

n∏
j=2,j6=i

λj ≤ κ ·
∑

{u,v}⊆V (G),u6=v

dG(u, v), (6)

where κ is the number of spanning trees in G. The equality in (5) follows from Proposition 2(a) and (b), using arguments
similar to those used in the proof of (3). The proof of (6) is also similar. As before, using parts (a) and (b) of Proposition 2 we
compute the coefficient of x2 in charG(x) and conclude that

n∑
i=2

n∏
j=2,j6=i

λj =
∑

{u,v}⊆V (G),u6=v

κuv, (7)
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where κuv is the number of spanning forests of G that have two components, one containing u and the other containing v.
We only need to observe that κuv ≤ κ · dG(u, v). Let puv = 〈e1, e2, . . . , ed〉 (d = dG(u, v)) be the sequence of edges in a
shortest path from u to v. With each forest F ∈ Fuv let us associate a pair (T , i) ∈ F × {1, 2, . . . , dG(u, v)}, as follows. Note
that there is an edge in the sequence pwhose addition to F makes it connected. Let ei be the first such edge, and let T be the
spanning tree obtained by adding ei to F . It is easy to see that the map F 7→ (T , i) is one-to-one. We thus have

κuv = |Fuv| ≤ |F × {1, 2, . . . , dG(u, v)}| = κ · dG(u, v).

Only trees satisfy Theorem 2with equality:We have seen in Section 3 that trees satisfy the above inequality with equality.
We thus have to prove the only if part of the theorem. Suppose a connected graph satisfied Theorem 2 with equality, then
by the above derivation, for this graph G, for all unordered pairs of vertices {u, v}, κuv = κ · dG(u, v). This implies that the
graph is a tree.
This completes the proof of Theorem 2. �

5. A generalisation

For S ⊆ V and x ∈ V (G), let

dx(S) =
∑
u∈S

∏
v∈S−{u}

dG(x, v).

Let d(S) be theminimum value of dx(S) as x ranges over all vertices of G. Note that when S = {u, v}, dx(S) = dG(u, v)where
dG(u, v) is the shortest distance between u and v in the graph G. Let dk(G) be the average of d(S) as S ranges over all subsets
of V of size k.

Theorem 4. Let G be a connected graph on n vertices whose Laplacian has eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn. Then

dk(G) ≥ n
(n
k

)−1 ∑
S∈
(
{2,3,...,n}
k−1

)
∏
j∈S

1
λj
. (8)

Proof. As in the earlier proofs, we begin by rearranging the right hand side of (8):

n
(n
k

)−1
∑

S∈
(
{2,3,...,n}
k−1

) ∏
j∈{2,...,n}−S

λj

n∏
i=2
λi

.

We again bound the denominator and numerator separately and show
n∏
i=2

λi = κ · n (9)∑
S∈
(
{2,3,...,n}
k−1

)
∏

j∈{2,3,...,n}−S

λj ≤ κ ·
∑
S∈
(
V
k

) d(S) (10)

where, as before, κ is the number of spanning trees of the graph G.
Since (9) is the same as (5), we only need to prove (10).

Proof of (10): By Proposition 2(a), the expression in the left hand side of (10) is the coefficient of xk in charG(x). By
Proposition 1, this is precisely

∑
S⊆
(
V
k

) det(LS). By Proposition 2(b), det(LS) is the number of spanning forests of G with
k components such that each element of S lies in a different component. That is,∑

S∈
(
{2,3,...,n}
k−1

)
∏

j∈{2,3,...,n}−S

λj =
∑
S⊆
(
V
k

) det(LS) =
∑
S⊆
(
V
k

) |FS |. (11)

Wewill show a one-to-onemap from the setFS to the setF ×D, where D is a set of size at most d(S). Let S = {s1, s2, . . . sk}.
Fix a vertex x such that dx(S) = d(S) and fix shortest (x, sj)-paths pj, for j = 1, 2, . . . , k. Fix a forest F ∈ FS . Let x lie in the
same component as si. For j = 1, 2, . . . , k (j 6= i), we will identify an edge ej in pj using the following sequential algorithm.
Let ej be the first edge of pj that enters the component of sj in the graph F ∪ {e` : 1 ≤ ` < j, ` 6= i}. This way we obtain a
sequence of k − 1 edges e = 〈e` : ` 6= i〉. Note that F ∪ {e` : 1 ≤ ` ≤ k, ` 6= i} is a spanning tree of G. Note that the map
F 7→ (T , e) is a one-to-one map from the FS to F × D, where D =

⋃k
i=1
∏
j6=i pj. Clearly, |D| ≤ d(S). Thus,

|FS | ≤ |F × D| = κ · d(S)

The theorem follows by combining this with (11). �



3462 S. Sivasubramanian / Discrete Mathematics 309 (2009) 3458–3462

Acknowledgements

I thank Jaikumar Radhakrishnan for several useful discussions and for enhancing the presentation of thematerial. I thank
Siemion Fajtlowicz for very helpful emails. I also thank the anonymous referees for various suggestions which made the
paper more readable.

References

[1] Chris Godsil, Gordon Royle, Algebraic Graph Theory, Springer Verlag, 2001, GTM 207.
[2] Nathan Jacobson, Basic Algebra, vol. I, second ed., W H Freeman and Company, 1985.
[3] R. Merris, An edge version of the Matrix-Tree Theorem and the Wiener index, Linear Multilinear Algebra 25 (1989) 291–296.
[4] Bojan Mohar, Eigenvalues, Diameter and Mean Distance in graphs, Graphs Combin. 7 (1991) 53–64.
[5] BojanMohar, Svatopluk Poljak, Combinatorial and graph-theoretical problems in linear algebra, in: Eigenvalues in Combinatorial Optimisation, in: IMA
Volumes in Mathematics and Its Applications, vol. 50, 1993, pp. 107–151. Available at: http://www.fmf.uni-lj.si/~mohar/Papers/Poljak.pdf.

[6] Douglas B. West, Introduction to Graph Theory, second ed., Prentice Hall of India, 2001.
[7] Siemion Fajtlowicz, Graffiti, Written on the Wall, 2004. Available at: http://www.math.uh.edu/~clarson/wow-pre-840.ps.

http://www.fmf.uni-lj.si/~mohar/Papers/Poljak.pdf
http://arxiv.org///www.math.uh.edu/~clarson/wow-pre-840.ps

	Average distance in graphs and eigenvalues
	Introduction
	Preliminaries
	Trees: Proof of Theorem 1
	General graphs: Proof of Theorem 2
	A generalisation
	Acknowledgements
	References


