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a b s t r a c t

The games considered aremixtures of Searching andCops andRobber. The cops havepartial
information provided viawitnesseswho report ‘‘sightings’’ of the robber. Thewitnesses are
able to provide information about the robber’s position but not the direction in which he
is moving. The robber has perfect information. In the case when sightings occur at regular
intervals, we present a recognition theorem for graphs on which a single cop suffices to
guarantee a win. In a special case, this recognition theorem provides a characterization.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The game of Cops and Robber is a pursuit game played on a reflexive graph, i.e. a graph with a loop at every vertex.
There are two opposing sides, a set of k > 0 cops and a single robber. The cops begin the game by each choosing a vertex
to occupy, and then the robber chooses a vertex. The two sides move alternately, where a move is to slide along an edge
or along a loop. The latter is equivalent to passing were the game played on a loopless graph. There is perfect information,
and the cops win if any of the cops and the robber occupy the same vertex at the same time, after a finite number of moves.
Graphs on which one cop suffices to win are called copwin graphs. The game has been considered on infinite graphs but,
here, we only consider finite graphs.
In this paper, a variation of the Cops and Robber game is introduced inwhich the cops no longer have perfect information,

but rather receive information about the robber’s position intermittently fromwitnesses. The robber continues to play with
perfect information. In Sections 3 and 4, the cops’ information is provided at regular intervals, say every k units of time.
A graph on which a single cop can guarantee a win with such information will be said to be k-winnable. More generally,
this problem can be considered when ‘‘sightings’’ are reported at irregular intervals. Some preliminary results are given in
Section 2. Note that witnesses provide information about the robber’s position only, and are not able to give an indication of
the direction inwhich he ismoving. Note also that witness informationwill be thought to be relayed to the cop immediately,
so that the cop has the information in time for his next move. Finally, we will assume that the cop has information about
the robber’s first move since, otherwise, the cop can pass on all moves available to him before he receives news of the first
sighting.
A copwin graph G can be recognized in polynomial time via a decomposition algorithm that relies only on knowledge of

the neighbours of the vertices of G. In fact, copwin graphs have been completely characterized in this way. We present this
characterization in the next few paragraphs. A similar decomposition algorithm exists for recognizing tandem-win graphs
(a class of graphs onwhich two cops suffice to win) although, unlike with copwin graphs, it is not a characterization. See [5].
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The motivation for this paper lies in attempting to discover a similar, or any, recognition algorithm for k-winnable graphs.
This is Theorem 6. Theorem 9 shows that, in a special case, our recognition theorem is a characterization.
We now introduce our notation and basic definitions. Recall that, for us, all graphs will be finite, connected and reflexive.

For a graph G, we let V (G) denote the set of vertices of G and E(G), the set of edges. For a, b ∈ V (G), we use a ∼ b to indicate
that a and b are adjacent (a 6= b), and a ' b if a is adjacent or equal to b. For x ∈ V (G), N(x) = {y | y ∼ x} is the open
neighbourhood of x and N[x] = N(x)∪ {x} is the closed neighbourhood. Forw, z ∈ V (G), the distance betweenw and z is the
minimum number of edges on aw− z path and is denoted by d(w, z). If Y ⊆ V (G), then G− Y is the graph induced in G by
the vertex set V (G) \ Y .
Amapping f : V (G)→ V (H) is a homomorphism if, for x, y ∈ V (G), f (x) ' f (y)whenever x ∼ y. A subgraphH of a graph

G is a retract of G if there is a homomorphism f : V (G) → V (H) such that f (x) = x, for all x ∈ V (H). Note that, since G is
reflexive, a homomorphism can send two adjacent vertices to the same vertex. Sometimeswe need to consider the situation
where the cops are playing on a retract H , while the robber is playing on the full graph G. If r is the vertex occupied by the
robber and f is a fixed retraction map of G onto H then, by a small abuse of notation and terminology, we refer to f (r) as the
robber’s image.
A vertex u of a graph G is a corner, or irreducible (so named because of the similarities between copwin graphs and

dismantlable, partially-ordered sets), if there exists a vertex v in G such that N[u] ⊆ N[v]; also we say that v dominates u.
A vertex ordering (x1, x2, . . . , xn) on G is a domination elimination ordering [2,3] if, for each i ∈ {1, 2, . . . , n − 1}, there is
a ji > i such that Ni(xi) ⊆ Ni[xji ] in Gi = G − {x1, x2, . . . , xi−1}. If, in addition, for each i, xi ∼ xji , then this domination
elimination ordering is a copwin ordering [11]. A main result of [11,13–15] is that: a finite graph G is copwin if and only if G
has a copwin ordering. Structurally, this means that G is copwin if and only if it can be reduced to a singleton by a series of
retractions and, in each retraction, there is exactly one vertex that is not fixed and it is irreducible.
Let (x1, x2, . . . , xn) be a copwin ordering of G. For j = 1, 2, . . . , n − 1, define fj : V (Gj) → V (Gj+1) to be the retraction

map from Gj to Gj+1. The corresponding copwin spanning tree Sxn is a spanning tree, rooted at xn, with the property that, for
vertices x, y ∈ V (G), xy ∈ E(Sxn) if and only if fj(x) = y or fj(y) = x, for some j. Wewill use this definition in the first example
in Section 3.
We conclude our introduction by noting that some preliminary work has been done on a version of the Cops and Robber

game in which the cops play with no information. See [10,16]. This model is closely related to the game of searching, first
introduced by Parsons in [12] and later surveyed in [1,9]. Consider a strategy that can be used successfully by the cops towin
when playing Cops and Robber with no information. We will refer to such a strategy as a searching strategy. In general, any
cop strategy that has a cop move during a turn in which he has no information will be said to have a searching component.
Otherwise, a strategy will be said to be search-free.
Finally, other variations of the Cops and Robber game in which the cops play with imperfect information have been

studied in [4,6–8].

2. Irregular sightings

We begin by considering the most general version of the witness Cops and Robber game, the version in which the cops
receive information about the robber’s position from witnesses intermittently and do not know when the next piece of
information will be available to them. (We note that the time between sightings will be assumed to be finite.) One primary
objective is the characterization of the graphs on which a single cop can guarantee a win. We will call such graphswinnable
with irregular information.

Theorem 1. Let T be a tree. Then T is winnable with irregular information.

Proof. Clearly, a single cop can guarantee a win on any tree, regardless of the pattern of sightings. With every sighting, the
cop can make at least one move toward the robber along the unique path connecting their positions. When the cop’s move
is unclear due to a lack of information, the cop passes and waits for the next sighting. The cop wins (eventually) since the
robber has no means of moving past the cop and thus will be caught on a leaf, if not sooner, since all graphs considered are
finite. �

More generally, the proof of Theorem 1 may be used to show that: If G is a graph in which every block is a clique, then G is
winnable with irregular information.

Theorem 2. A graph G that is winnable with irregular information is copwin.

Proof. The cop simply ignores any information unnecessary in his winning strategy for playing with irregular information.
�
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3. k-regular information

In this section, we suppose that the cops receive information about the robber’s position at regular intervals, say (at
least!) every k units of time. Recall that a graph onwhich a single cop can guarantee a win with k-regular information is said
to be k-winnable.
Consider a similar version of the Cops and Robber game in which the robber is permitted to make up to kmoves during

a turn while the cop continues to move at most once during a turn. (There is perfect information on both sides.) We call the
set of all graphs on which a single cop can guarantee a win in this way the set of (k, 1)-win graphs, and note that the set of
(k, 1)-win graphs is contained in the set of k-winnable graphs. (In general, if the robber is permitted to make up tommoves
during a turn, and the cop nmoves, the graphs on which the cop can guarantee a win are (m, n)-win.) In the witness version
of the Cops and Robber game, playing with these rules is equivalent to assuming that the cop moves only on turns when
he has information. Essentially, this means that the cop’s winning strategy on a k-winnable graph is search-free, and thus
captures the robber on a cop move immediately following a sighting.
We begin by noting that the results given in Section 2 for irregular information hold for k-regular information. In

particular, as shown in Theorem 2, a k-winnable graph is copwin. Clearly, as the following example shows, the converse
does not hold. There are copwin graphs G that are not winnable by one cop with only witness information.

Example. Consider the copwin graph shown in Fig. 1. One copwin spanning tree is shown in bold. This graph is not even
2-winnable since, to win, the cop must move onto the same branch (and vertex) as the robber. Even if the cop begins on the
root of the spanning tree, the cop has a choice of two branches after the robber’s first move, and he cannot ensure choosing
correctly. In this way, the game can continue indefinitely, as the cop will have a choice of moves following every unknown
robber move.

Fig. 1. A copwin graph that is not k-winnable, for any k.

We proceed by noting that not all subgraphs of a k-winnable graph are k-winnable. Consider the graph G shown in Fig. 2.
It is easy to see that this graph is 2-winnable. The cop begins on v. Since v is adjacent to all of the other vertices of G, the
cop will win on a move immediately following the first sighting. Now G contains C4 as a subgraph, but C4 is not copwin and
hence not 2-winnable. This is similar to, say, a wheel being copwin while a cycle (of length at least 4) is not. We will now
investigate a class of subgraphs that are k-winnable whenever the original graph is.

Theorem 3. Let G be a graph and let G′ be a retract of G. Then G′ is k-winnable if G is k-winnable.

Proof. Let f : V (G)→ V (G′) be the retraction map from G to G′. Since G is k-winnable, the cop has a winning strategy on G.
To win on G′, the cop simply plays his winning strategy as if he was playing on G. The actual moves he makes are the images
of these moves under f . Note that since f is a retraction map, if w, z ∈ V (G) and d(w, z) ≤ k in G, then d(f (w), f (z)) ≤ k
in G′. Using this strategy, the cop captures the image of the robber on G′. Since the robber is actually playing on G′ and f is
the identity map on G′, the robber’s image coincides with his actual position. Hence the robber is apprehended on G′ and,
therefore, G′ is a k-winnable graph. �

In particular, we have Corollary 4 which follows the necessary definitions.
Let z be a vertex of a graph G. Define Nk(z) = {w ∈ V (G)|∃ a z − w path of length k}. Further define Nk(z) = {w 6= z ∈

V (G)|d(z, w) ≤ k} so that Nk(z) = ∪ki=1 N
i(z), and Nk[z] = Nk(z) ∪ {z}. A vertex u of G is said to be a k-dominated vertex if

there exists a vertex v in G such that Nk[u] ⊆ N[v] and, in addition, ifw ∈ Nk(u), then N(w) ⊆ Nk[u]. The vertex v is said to
k-dominate u. We define a k-corner to be the subgraph induced by Nk[u] \ {v} for some u and v such that v k-dominates u.

Example. Consider the graph G shown in Fig. 2. The vertex u shown is a 2-dominated vertex with corresponding 2-
dominating vertex v. The graph C2 = G− v is a 2-corner.

Corollary 4. Let G be a graph and let Ck be a k-corner of G. Let G′ = G− Ck. Then G′ is k-winnable if G is k-winnable.
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Fig. 2. A graph Gwith 2-dominated vertex u and 2-dominating vertex v.

Proof. Suppose the k-corner Ck has k-dominated vertex u with corresponding k-dominating vertex v. Notice that G′ is a
retract of Gwith retraction map f defined as follows:

f (w) =

{
v, forw ∈ Nk[u]
w otherwise. (1)

The result follows by Theorem 3. �

Theorem 5. Let G be a graph and let Ck be a k-corner of G. Let G′ = G− Ck. If G′ is k-winnable via a search-free strategy, then
G is k-winnable.

Proof. As in the proof of Corollary 4, suppose the k-corner Ck has k-dominated vertex u with corresponding k-dominating
vertex v, and note again that G′ is a retract of Gwith retraction map f defined as in Eq. (1).
Since the game is being played on G, the cop’s winning strategy on G′ can be thought of as catching the image of the

robber. (Since this strategy is search-free, the cop will know when he has captured the robber’s image.) Now suppose this
image is caught on vertex z. If z 6= v, then the robber’s image on G′ corresponds to his actual position on G, since f is the
identity map on G′. The robber is apprehended! Otherwise, the robber’s image is apprehended on vertex v. Since it is known
that f (u) = f (w) = f (v) = v for w ∈ Nk(u), the robber is either on u or v in G, or on some w ∈ Nk(u). If he is on v, his
actual position corresponds to his image and he is caught. Otherwise he is onw ∈ Nk[u], and he will be caught after the next
sighting. �

We note that the proofs of Theorem 3, Corollary 4 and Theorem 5 may be used to show that: A graph G with k-corner Ck
is (k, 1)-win if and only if G− Ck is (k, 1)-win.
We note also that Theorem 5 does not hold in general, when all winning strategies on G′ involve a searching component.

This is because it may be possible for the cop to capture the robber’s image during a move in which he has no information.
In such a case, the cop is unaware that he has captured the robber’s image (unless the image coincides with the actual
position!).
Theorem 5 leads to a main result.

Theorem 6. Let G be a graph which can be reduced to a singleton by a sequence of k-corner retractions. Then G is k-winnable.

Proof. Let G be a graph. We note that the cop is aware that he has captured the robber’s image after the robber’s first move,
and also that a winning strategy exists for a k-corner that does not involve a searching component. As a result, Theorem 5
applies and guarantees that if Ck is a k-corner of G, then G− Ck is k-winnable only if G is k-winnable. �

We note that the sequence of k-corner retractions given in the statement of Theorem 6 determines a copwin ordering.
Consider the k-corners in the order given by the sequence. For each k-corner Ci, let ui be the k-dominated vertex with
corresponding k-dominating vertex vi. In the copwin ordering, ui is retracted onto vi and then, for allw ∈ Nk(ui) in turn,w
is retracted onto vi. (See Fig. 4.) Note that, for ease of notation, we have dropped the subscript k from our k-corner notation.
We will continue to do so throughout the remainder of the paper as we instead use subscripts to index the k-corners in
sequences of k-corner retractions.
Consider a k-winnable graph G and a fixed sequence (C1, C2, . . . , Cp) of k-corners of G. Define induced subgraphs

Gj = G − {C1, C2, . . . , Cj−1}, where ui is the k-dominated vertex in Gi with k-dominating vertex vi. Further let fj be the
retraction from Gj to Gj+1.
The corresponding decomposition tree is the tree S on V (G), rooted at vp, with E(S) constructed as follows: for i =

1, 2, . . . , p, (1) uivi ∈ E(S) and, (2) if there does not exist l ∈ {i+ 1, i+ 2, . . . , p} such that vi = ul (in which case condition
(1) results in the inclusion of edge vivl), then there exists m ∈ {i + 1, i + 2, . . . , p} such that vi ∈ Nk(um) in Gm. Add edge
vivm to E(S).
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Example. Consider the 2-winnable graph G shown in Fig. 3. The decomposition tree corresponding to one sequence of 2-
corner retractions is shown in bold.

Fig. 3. A 2-winnable graph with decomposition tree shown in bold.

This concept of decomposition tree is analogous to that of copwin spanning tree introduced in [8] and tandem-win
decomposition tree introduced in [5]. Note that here, unlike with copwin and tandem-win trees (which involve one-point
retractions), we are considering retractions in whichmultiple vertices are not fixed. In addition, the decomposition tree will
normally not span G.

Example. Consider the 2-winnable graph G shown in Fig. 4. A decomposition tree is shown in bold in (a). In (b), the
corresponding copwin spanning tree of G is shown.

Fig. 4. A 2-winnable graph with (a) decomposition tree shown in bold and (b) corresponding copwin spanning tree shown in bold.

Suppose we have a sequence of k-corner retractions of a graph G that results in a singleton. We know that a single cop
has a winning strategy on G. We now make one such strategy explicit and prove that it is effective in capturing the robber.

Algorithm (k-winnable Strategy). Let (C1, C2, . . . , Cp) represent the k-corners in a sequence of k-corner retractions that
reduces G to a singleton vp. Again, define the induced subgraphs Gi = Gi−1 − Ci−1, where G1 = G and Gp+1 = vp, and let
fi : V (Gi)→ V (Gi+1) be the retraction fromGi toGi+1. Further, if the robber is on vertex x, define Fi(x) = fi−1◦ fi−2◦· · ·◦ f1(x)
so that Fi is the robber’s image on Gi. The robber is always thought to be playing on the graph G, whereas the cop initially
moves on the subgraph Gp+1. The cop begins on vertex vp, the vertex onwhich the cop’s position coincides with the robber’s
image under the mapping Fp+1. The cop then wins by capturing Fi on Gi, for each i = p, p− 1, . . . , 1, in turn. We note that,
in this strategy, the cop does not move during turns for which he has no information; i.e. this strategy is search-free.
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Theorem 7. The k-winnable strategy is effective in capturing the robber.

Proof. Since the cop does not move during turns for which he has no information, we may assume that the cop and robber
move alternately, where the robber may make up to kmoves during a turn (i.e. we may consider a (k, 1)-game).
Suppose the robber occupies x ∈ V (G). By induction, the cop is occupying the robber’s image, i.e. Fj(x), on the subgraph

Gj and it is the robber’s turn to move. Suppose the robber moves to vertex y, where d(x, y) ≤ k. If Fj(x) = Fj−1(y), there is
nothing to prove. If Fj(x) 6= Fj−1(y) and the robber is not located on a vertex of Gj−1, then Fj−1(y) = vk, k < j − 1, with
vk ∈ V (Cj−1) and so Fj(x) ∼ Fj−1(y). Otherwise, the robber is playing on Gj−1 so that y ⊆ N[Fj(x)], and the robber is captured
immediately or on the cop’s next move. Thus, if the cop has captured the image on Gj, he can remain with the image on Gj−1
by making at most one move. �

We note that the proof shows that if the cop is playing on the subgraph Gi, then the robber cannot move to (and remain
on!) this subgraph without being apprehended immediately or after the next cop move. This is Corollary 8.

Corollary 8. Suppose the cop is playing the k-winnable strategy on the subgraph Gi, and is occupying the robber’s image under
the mapping Fi. The robber can never occupy a vertex of Gi after his final move before a sighting without the cop being on, or
immediately landing on, the same vertex.

As discussed following the proof of Theorem 5, it is not yet known if all k-winnable graphs can be reduced to a singleton
by a sequence of k-corner retractions. We now investigate a class of graphs that can be reduced in this way.

4. Triangle-free k-winnable graphs

A graph G is said to be triangle-free if it does not contain K3 as a subgraph. Below we give a characterization of triangle-
free k-winnable graphs, when there exists a search-freewinning strategy for the cop. Compare Theorems 9 and 10 herewith
Theorems 8 and 9 in [5].

Theorem 9. Let G be a triangle-free graph. Then G is k-winnable via a search-free strategy if and only if G can be reduced to a
singleton by a sequence of k-corner retractions.

Proof. Sufficiency of the given reduction scheme is guaranteed by Theorem 6, so we need only prove necessity. Suppose a
triangle-free graph G is k-winnable via a search-free strategy, and consider the final k robber moves in a game played on
G. Since the robber is captured during the cop’s next move if he passes on all k of his moves, the robber’s position r must
be adjacent to the cop’s position c. Since the robber is captured if he takes advantage of exactly i of the k opportunities to
move, i = 1, 2, . . . , k, then N i(r) ⊆ N[c]; i.e. ifw ∈ N i(r), thenw ' c. Ifw 6∈ N(r), then there exists u ∈ N i−1(r) such that
u ∼ w. But then w, u, and c form a triangle in G. (See Fig. 5.) Otherwise, w, r , and c form a triangle in G. And so N(r) = {c}
and N i(r) = ∅, for i = 2, 3, . . . , k. Since G− r is k-winnable via a search-free strategy and triangle-free, the result follows.

�

Fig. 5. The final moves made by the robber.

The final result follows easily.

Corollary 10. If G is triangle-free and k-winnable via a search-free strategy, then G is a tree.

Finally, we note that the proof of Theorem 9 establishes a characterization of triangle-free (k, 1)-win graphs, namely: A
triangle-free graph G is (k, 1)-win if and only if G can be reduced to a singleton by a sequence of k-corner retractions. It follows,
of course, that: A triangle-free (k, 1)-win graph is a tree.
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