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a b s t r a c t

For a graphG, let P(G, λ)be its chromatic polynomial. TwographsG andH are chromatically
equivalent, denoted G ∼ H , if P(G, λ) = P(H, λ). A graph G is chromatically unique if
P(H, λ) = P(G, λ) implies that H ∼= G. In this paper, we shall determine all chromatic
equivalence classes of 2-connected (n, n+ 4)-graphs with three triangles and one induced
4-cycle, under the equivalence relation ‘ ∼’. As a by product of these, we obtain various
new families of chromatically-equivalent graphs and chromatically-unique graphs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let P(G, λ) (or simply P(G)) denote the chromatic polynomial of a simple graph G. Two graphs G and H are chromatically
equivalent (simply χ-equivalent), denoted G ∼ H , if P(G) = P(H). A graph G is chromatically unique (simply χ-unique)
if P(H) = P(G) implies that H ∼= G. Let 〈G〉 denote the equivalence class determined by the graph G under ∼. Clearly, G
is χ-unique if and only if 〈G〉 = {G}. A graph H is called a relative of G if there is a sequence of non-isomorphic graphs
G = H1,H2, . . . ,Hk = H , such that each Hi is a Kri-gluing of some graphs (say Xi and Yi) and that Hi+1 is obtained from Hi
by forming a Kri-gluing of Xi and Yi for 1 ≤ i ≤ k− 1. We say H is a graph of type G if H is a relative of G or H ∼= G. A family
S of graphs is said to be relative-closed (simply χr -closed) if

(i) no two graphs in S are relative of each other; and
(ii) for any graph G ∈ S, P(H, λ) = P(G, λ) implies that H ∈ S or H is a relative of a graph in S.

If S is a relative-closed family, then the chromatic equivalence class of each graph G in S can be determined by studying the
chromaticity of each graph G in S.
If G is a graph of order n and size m, we say G is an (n,m)-graph. The chromatic equivalence classes of 2-connected

(n, n + i)-graph have been fully determined for i = 0, 1 in [2,6], and partially determined for i = 2, 3 in [3,4,8]. Peng and
Lau have also characterized and classified all chromatic equivalence classes of 2-connected (n, n + 4)-graph with at least
four triangles in [7]. In this paper, we determine all equivalence classes of 2-connected (n, n+4)-graphswith three triangles
and one induced 4-cycle. As a by-product of these, we obtain various new families of χ-equivalent graphs and χ-unique
graphs. The readers may refer to [1] for terms and notation used but not defined here.
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2. Notation and basic results

Let Cn (or n-cycle) be the cycle of order n. An induced 4-cycle is the cycle C4 without chords. The following are some useful
known results and techniques for determining the chromatic polynomial of a graph. Throughout this paper, all graphs are
assumed to be connected unless stated otherwise.

Lemma 2.1 (Fundamental Reduction Theorem (Whitney [10])). Let G be a graph and e an edge of G. Then

P(G) = P(G− e)− P(G · e)

where G− e is the graph obtained from G by deleting e, and G · e is the graph obtained from G by identifying the end vertices of e.

Let G1 and G2 be graphs, each containing a complete subgraph Kp with p vertices. If G is the graph obtained from G1 and
G2 by identifying the two subgraphs Kp, then G is called a Kp-gluing of G1 and G2. Note that a K1-gluing and a K2-gluing are
also called a vertex-gluing and an edge-gluing, respectively.

Lemma 2.2 (Zykov[11]). Let G be a Kr -gluing of G1 and G2. Then

P(G) =
P(G1)P(G2)
P(Kr)

.

Lemma 2.2 implies that all Kr -gluing of G1 and G2 are χ-equivalent. It follows from Lemma 2.2 that if H is a relative of G,
then H ∼ G.
The following necessary conditions for two graphs G and H to be χ-equivalence are well known (see for example [4]).

Lemma 2.3. Let G and H be two χ-equivalent graphs. Then G and H have, respectively, the same number of vertices, edges and
triangles. If both G and H do not contain K4, then they have the same number of induced 4-cycles.

A generalized θ-graph is a 2-connected graph, consisting of three edge-disjoint paths between two vertices of degree 3.
All other vertices have degree two. These paths have lengths x, y and z respectively, where x ≥ y ≥ z. The graph denoted
by θx,y,z is of order x+ y+ z − 1 and size x+ y+ z (see [6]). We shall denote K2 as C2 for convenience.

Lemma 2.4.

(i) P(Cn) = (λ− 1)n + (−1)n(λ− 1), n ≥ 2.

(ii) P(θx,y,z) =


P(Cx+1)P(Cy+1)P(Cz+1)

λ2(λ− 1)2
+
P(Cx)P(Cy)P(Cz)

λ2
if z 6= 1

P(Cx+1)P(Cy+1)
λ(λ− 1)

if z = 1.

For integers x, y, z, n and λ, let us write

Qn(λ) =
n−2∑
i=0

(−1)i(λ− 1)n−2−i

and

Mx,y,z(λ) = Qx+1(λ)Qy+1(λ)Qz+1(λ)+ (λ− 1)2Qx(λ)Qy(λ)Qz(λ).

Note that when λ = 1, we have Qn(1) = (−1)n and Mx,y,z(1) = (−1)x+y+z+1. Lemma 2.4 can then be written as the
following lemma.

Lemma 2.5 ([4]).

(i) P(Cn) = λ(λ− 1)Qn(λ).
(ii) P(θx,y,z) = λ(λ− 1)Mx,y,z(λ).

We also need the following lemma.

Lemma 2.6 (Whitehead and Zhao [9]). A graph G contains a cut-vertex if and only if (λ− 1)2 | P(G).

Lemma 2.6 also implies that if H ∼ G, then H is 2-connected if and only if G is so.
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Table 1
24 types of 2-connected (n, n+ 4)-graphs with exactly three triangles and one induced 4-cycle

The light lines of the graphs refer to the paths of indicated length.

3. Classification of graphs

LetG denote the χr -closed family of 2-connected (n, n+4)-graphs with exactly 3 triangles and one induced C4. In [5], we
classified all the 24 types of graph G ∈ G as shown in Table 1. Since the approach used to classify all the graphs G is rather
long and repetitive, we shall not discuss it here. The reader may refer to Theorems 1 and 2 in [5] for detail derivation of the
graphs.
We are now ready to study the chromaticity of all types of 2-connected (n, n+ 4)-graphs having exactly three triangles

and one induced C4. We first note that if H ∼ Gi(1 ≤ i ≤ 24) in Table 1, then H must be of type Gj for some 1 ≤ j ≤ 24 in
Table 1 as well. For convenience, we shall say that the graph Gi, or any of its relatives, is of type (i).
We now present our main result in the following theorem.

Theorem 3.1. For a graph G, let 〈G〉 = {H | H ∼ G}. We have
1. H ∈ 〈G1(a)〉 if and only if H is of type G1(a).
2. H ∈ 〈G2(b)〉 if and only if H is of type G2(b).
3. H ∈ 〈G3(c)〉 if and only if H is of type G3(c).
4. H ∈ 〈G4(d)〉 if and only if H is of type G4(d).
5. H ∈ 〈G5(e)〉 if and only if H is of type G5(e).
6. 〈G6(f )〉 = {G6(f ),G18(f )}.
7. 〈G7(g)〉 = {G7(g),G20(g)}.
8. H ∈ 〈G8(h)〉 if and only if H ∼= G8(h) or G22(φ, γ ) with φ + γ = h− 1, or H is of type G24(h).
9. G9(j) is χ-unique.
10. 〈G10(k)〉 = {G10(k),G21(k)}.
11. G11(m) is χ-unique.
12. H ∈ 〈G12(n)〉 if and only if H is of type G12(n) or G19(n).
13. H ∈ 〈G13(p)〉 if and only if H is of type G13(p).
14. H ∈ 〈G14(q)〉 if and only if H is of type G14(q).
15. 〈G15(r, s)〉 = {G15(r ′, s′) with r ′ + s′ = r + s}.
16. H ∈ 〈G16(t, u)〉 if and only if H is of type G16(t ′, u′) with t + u = t ′ + u′.
17. G17(v) is χ-unique.
18. 〈G18(w)〉 = {G6(w),G18(w)}.
19. H ∈ 〈G19(x)〉 if and only if H is of type G12(x) or G19(x).
20. 〈G20(y)〉 = {G7(y),G20(y)}.
21. 〈G21(z)〉 = {G10(z),G21(z)}.
22. H ∈ 〈G22(φ, γ )〉 if and only if H ∼= G8(φ + γ + 1) or G22(φ′, γ ′) with φ′ + γ ′ = φ + γ , or H is of type G24(φ + γ + 1).
23. G23(ψ) is χ-unique.
24. H ∈ 〈G24(ρ)〉 if and only if H ∼= G8(ρ) or G22(φ, γ ) with φ + γ = ρ − 1, or H is of type G24(ρ).
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4. Chromatic polynomials of the graphs

Before proving our main result, we present here some useful information about the chromatic polynomial of Gi (1 ≤
i ≤ 24). Let W (n, k) be the graph of order n obtained from the wheel Wn by deleting all but k consecutive spokes. Using
Lemma 2.1, we have P(W (n, 4)) = (λ− 2)(λ− 3)P(Cn−2)+ (λ− 2)P(Cn−3) and P(W (n, 3)) = (λ− 2)[P(Cn−1)− P(Cn−2)]
which will be used in computing the chromatic polynomials of the graphs in Table 1.

Lemma 4.1.

(1) P(G1) = P(Ca+1)P(W (6, 4))/λ(λ− 1)
= λ(λ− 1)(λ− 2)(λ3 − 6λ2 + 13λ− 11)Qa+1(λ)
= λ(λ− 1)N1(λ),

where N1(λ) = (λ− 2)(λ3 − 6λ2 + 13λ− 11)Qa+1(λ)
and N1(1) = (−1)(1− 6+ 13− 11)(−1)a+1 = 3(−1)a+1.
(2) P(G2) = P(C4)P(W (b+ 4, 4))/λ(λ− 1)

= P(C4)[(λ− 2)(λ− 3)P(Cb+2)+ (λ− 2)P(Cb+1)]/λ(λ− 1)
= λ(λ− 1)(λ− 2)(λ2 − 3λ+ 3)[(λ− 3)Qb+2(λ)+ Qb+1(λ)]
= λ(λ− 1)N2(λ),

where N2(λ) = (λ− 2)(λ2 − 3λ+ 3)[(λ− 3)Qb+2(λ)+ Qb+1(λ)]
and N3(1) = (−1)(1− 3+ 3)[(−2)(−1)b+2 + (−1)b+1] = 3(−1)b.
(3) P(G3) = [(λ− 2)2P(Cc+2)P(C4)/λ(λ− 1)] − [(λ− 2)2P(Cc+1)P(C4)/λ(λ− 1)]

= λ(λ− 1)(λ− 2)2(λ2 − 3λ+ 3)[Qc+2(λ)− Qc+1(λ)]
= λ(λ− 1)N3(λ),

where N3(λ) = (λ− 2)2(λ2 − 3λ+ 3)[Qc+2(λ)− Qc+1(λ)]
and N3(1) = (−1)2(1− 3+ 3)[(−1)c+2 − (−1)c+1] = 2(−1)c .
(4) P(G4) = (λ− 2)3P(θd,2,2)

= λ(λ− 1)(λ− 2)3Md,2,2(λ)
= λ(λ− 1)N4(λ),

where N4(λ) = (λ− 2)3Md,2,2(λ)

and N4(1) = (−1)3(−1)d+5 = (−1)d.
(5) P(G5) = (λ− 2)3P(Ce+1)P(C4)/λ(λ− 1)

= (λ− 2)3(λ2 − 3λ+ 3)P(Ce+1)
= λ(λ− 1)(λ− 2)3(λ2 − 3λ+ 3)Qe+1(λ)
= λ(λ− 1)N5(λ),

where N1(λ) = (λ− 2)3(λ2 − 3λ+ 3)Qe+1(λ)
and N5(1) = (−1)3(1− 3+ 3)(−1)e+1 = (−1)e.
(6) P(G6) = (λ− 2)2P(θf ,2,2)− (λ− 2)2P(Cf+2)+ (λ− 2)(λ− 3)P(Cf+1)

= λ(λ− 1)(λ− 2)[(λ− 2)Mf ,2,2(λ)− (λ− 2)Qf+2(λ)+ (λ− 3)Qf+1(λ)]
= λ(λ− 1)N6(λ),

where N6(λ) = (λ− 2)[(λ− 2)Mf ,2,2(λ)− (λ− 2)Qf+2(λ)+ (λ− 3)Qf+1(λ)]

and N6(1) = (−1)[(−1)(−1)f+5 − (−1)(−1)f+2 + (−2)(−1)f+1] = 4(−1)f+1.
(7) P(G7) = (λ− 2)2P(θg+1,3,1)− [(λ− 3)P(θg+1,3,1)+ P(θg,2,2)]

= (λ2 − 5λ+ 7)P(θg+1,3,1)− P(θg,2,2)
= λ(λ− 1)[(λ2 − 5λ+ 7)Mg+1,3,1(λ)−Mg,2,2(λ)]
= λ(λ− 1)N7(λ),

where N7(λ) = (λ2 − 5λ+ 7)Mg+1,3,1(λ)−Mg,2,2(λ)

and N7(1) = (1− 5+ 7)(−1)g+6 − (−1)g+5 = 4(−1)g .
(8) P(G8) = (λ− 2)2P(θh+1,2,2)− [(λ− 3)P(θh+1,2,2)+ P(θh,3,1)]

= (λ2 − 5λ+ 7)P(θh+1,2,2)− P(θh,3,1)
= λ(λ− 1)[(λ2 − 5λ+ 7)Mh+1,2,2(λ)−Mh,3,1(λ)]
= λ(λ− 1)N8(λ),
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where N8(λ) = (λ2 − 5λ+ 7)Mh+1,2,2(λ)−Mh,3,1(λ)

and N8(1) = (1− 5+ 7)(−1)h+6 − (−1)h+5 = 4(−1)h.
(9) P(G9) = (λ− 2)[P(θj+1,2,2)− P(θj,3,1)] − [P(θj+1,2,2)− P(θj,3,1)− (λ− 2)2P(Cj+1)]

= (λ− 3)[P(θj+1,2,2)− P(θj,3,1)] + (λ− 2)2P(Cj+1)
= λ(λ− 1)(λ− 3)[Mj+1,2,2(λ)−Mj,3,1(λ)] + λ(λ− 1)(λ− 2)2Qj+1(λ)
= λ(λ− 1)N9(λ),

where N9(λ) = (λ− 3)[Mj+1,2,2(λ)−Mj,3,1(λ)] + (λ− 2)2Qj+1(λ)

and N9(1) = (−2)[(−1)j+6 − (−1)j+5] + (−1)2(−1)j+1 = 5(−1)j+1.
(10) P(G10) = [P(C4)P(W (k+ 4, 3))/λ(λ− 1)] − (λ− 1)P(W (k+ 4, 3))+ P(W (k+ 4, 4))

= (λ− 2)(λ2 − 3λ+ 3)[P(Ck+3)− P(Ck+2)] − (λ− 1)(λ− 2)[P(Ck+3)
− P(Ck+2)] + (λ− 2)(λ− 3)P(Ck+2)+ (λ− 2)P(Ck+1)

= (λ− 2)3[P(Ck+3)− P(Ck+2)] + (λ− 2)(λ− 3)P(Ck+2)+ (λ− 2)P(Ck+1)
= λ(λ− 1)(λ− 2)[(λ− 2)2Qk+3(λ)− (λ2 − 5λ+ 7)Qk+2(λ)+ Qk+1(λ)]
= λ(λ− 1)N10(λ),

where N10(λ) = (λ− 2)[(λ− 2)2Qk+3(λ)− (λ2 − 5λ+ 7)Qk+2(λ)+ Qk+1(λ)]
and N10(1) = (−1)[(−1)2(−1)k+3 − (1− 5+ 7)(−1)k+2 + (−1)k+1] = 5(−1)k.
(11) P(G11) = (λ− 2)P(W (m+ 5, 3))− (λ− 2)P(W (m+ 4, 4))

= (λ− 2)2P(Cm+4)− (λ− 2)2P(Cm+3)− (λ− 2)2(λ− 3)P(Cm+2)− (λ− 2)2P(Cm+1)
= λ(λ− 1)(λ− 2)2[Qm+4(λ)− Qm+3(λ)− (λ− 3)Qm+2(λ)− Qm+1(λ)]
= λ(λ− 1)N11(λ),

where N11(λ) = (λ− 2)2[Qm+4(λ)− Qm+3(λ)− (λ− 3)Qm+2(λ)− Qm+1(λ)]
and N11(1) = (−1)2[(−1)m+4 − (−1)m+3 − (−2)(−1)m+2 − (−1)m+1] = 5(−1)m.
(12) P(G12) = (λ− 2)[P(θn+2,2,2)− P(θn+1,3,1)] − (λ− 2)2P(θn,3,1)

= λ(λ− 1)(λ− 2)[Mn+2,2,2(λ)−Mn+1,3,1(λ)− (λ− 2)Mn,3,1(λ)]
= λ(λ− 1)N12(λ),

where N12(λ) = (λ− 2)[Mn+2,2,2(λ)−Mn+1,3,1(λ)− (λ− 2)Mn,3,1(λ)]

and N12(1) = (−1)[(−1)n+7 − (−1)n+6 − (−1)(−1)n+5] = 3(−1)n.
(13) P(G13) = (λ− 2)[P(θp+2,2,2)− P(θp+1,3,1)] − (λ− 2)2P(θp,2,2)

= λ(λ− 1)(λ− 2)[Mp+2,2,2(λ)−Mp+1,3,1(λ)− (λ− 2)Mp,2,2(λ)]
= λ(λ− 1)N13(λ),

where N13(λ) = (λ− 2)[Mp+2,2,2(λ)−Mp+1,3,1(λ)− (λ− 2)Mp,2,2(λ)]

and N13(1) = (−1)[(−1)p+7 − (−1)p+6 − (−1)(−1)p+5] = 3(−1)p.
(14) P(G14) = (λ− 2)2[P(θq+1,2,2)− P(θq,3,1)]

= λ(λ− 1)(λ− 2)2[Mq+1,2,2(λ)−Mq,3,1(λ)]
= λ(λ− 1)N14(λ),

where N14(λ) = (λ− 2)2[Mq+1,2,2(λ)−Mq,3,1(λ)]

and N14(1) = (−1)2[(−1)q+6 − (−1)q+5] = 2(−1)q.
(15) P(G15) = (λ− 2)2P(θr+s+2,2,2)− (λ− 2)P(θr+s+2,2,2)+ (λ− 2)P(θr+s+1,2,2)

= (λ− 2)(λ− 3)P(θr+s+2,2,2)+ (λ− 2)P(θr+s+1,2,2)
= λ(λ− 1)(λ− 2)[(λ− 3)Mr+s+2,2,2(λ)+Mr+s+1,2,2(λ)]
= λ(λ− 1)N15(λ),

where N15(λ) = (λ− 2)[(λ− 3)Mr+s+2,2,2(λ)+Mr+s+1,2,2(λ)]

and N15(1) = (−1)[(−2)(−1)r+s+7 + (−1)r+s+6] = 3(−1)r+s+1.
(16) P(G16) = (λ− 2)2P(θt+u+2,2,2)− (λ− 2)2P(θt+u+1,2,2)

= λ(λ− 1)(λ− 2)2[Mt+u+2,2,2(λ)−Mt+u+1,2,2(λ)]
= λ(λ− 1)N16(λ),

where N16(λ) = (λ− 2)2[Mt+u+2,2,2(λ)−Mt+u+1,2,2(λ)]

and N16(1) = (−1)2[(−1)t+u+7 − (−1)t+u+6] = 2(−1)t+u+1.



Y.H. Peng, G.C. Lau / Discrete Mathematics 309 (2009) 3092–3101 3097

(17) P(G17) = (λ− 2)2P(θv,2,2)− (λ− 2)P(θv,2,2)+ (λ− 2)2P(Cv+1)
= (λ− 2)(λ− 3)P(θv,2,2)+ (λ− 2)2P(Cv+1)
= λ(λ− 1)(λ− 2)[(λ− 3)Mv,2,2(λ)+ (λ− 2)Qv+1(λ)]
= λ(λ− 1)N17(λ),

where N17(λ) = (λ− 2)[(λ− 3)Mv,2,2(λ)+ (λ− 2)Qv+1(λ)]

and N17(1) = (−1)[(−2)(−1)v+5 + (−1)(−1)v+1] = 3(−1)v+1.
(18) P(G18) = [P(C4)P(W (w + 3, 3))/λ(λ− 1)] − (λ− 1)P(W (w + 3, 3))+ [P(K4)P(Cw+1)/λ(λ− 1)]

= [(λ2 − 3λ+ 3)− (λ− 1)]P(W (w + 3, 3))+ (λ− 2)(λ− 3)P(Cw+1)
= (λ− 2)2[P(θw,2,2)− P(Cw+2)] + (λ− 2)(λ− 3)P(Cw+1)
= λ(λ− 1)(λ− 2)[(λ− 2)Mw,2,2(λ)− (λ− 2)Qw+2(λ)+ (λ− 3)Qw+1(λ)]
= λ(λ− 1)N18(λ),

where N18(λ) = (λ− 2)[(λ− 2)Mw,2,2(λ)− (λ− 2)Qw+2(λ)+ (λ− 3)Qw+1(λ)]

and N18(1) = (−1)[(−1)(−1)w+5 − (−1)(−1)w+2 + (−2)(−1)w+1] = 4(−1)w+1.
(19) P(G19) = (λ− 2)[P(θx+2,2,2)− P(θx+1,3,1)− (λ− 2)P(θx,3,1)]

= λ(λ− 1)(λ− 2)[Mx+2,2,2(λ)−Mx+1,3,1(λ)− (λ− 2)Mx,3,1(λ)]
= λ(λ− 1)N19(λ),

where N19(λ) = (λ− 2)[Mx+2,2,2(λ)−Mx+1,3,1(λ)− (λ− 2)Mx,3,1(λ)]

and N19(1) = (−1)[(−1)x+7 − (−1)x+6 − (−1)(−1)x+5] = 3(−1)x.
(20) P(G20) = (λ− 2)2P(θy+1,3,1)− [(λ− 3)P(θy+1,3,1)+ P(θy,2,2)]

= (λ2 − 5λ+ 7)P(θy+1,3,1)− P(θy,2,2)
= λ(λ− 1)[(λ2 − 5λ+ 7)My+1,3,1(λ)−My,2,2(λ)]
= λ(λ− 1)N20(λ),

where N20(λ) = (λ2 − 5λ+ 7)My+1,3,1(λ)−My,2,2(λ)

and N20(1) = (1− 5+ 7)(−1)y+6 − (−1)y+5 = 4(−1)y.
(21) P(G21) = [P(C4)P(W (z + 4, 3))/λ(λ− 1)] − (λ− 1)P(W (z + 4, 3))+ P(W (z + 4, 4))

= (λ− 2)(λ2 − 3λ+ 3)[P(Cz+3)− (λ− 1)(λ− 2)[P(Cz+3)− P(Cz+2)]
+ P(Cz+2)] − (λ− 2)(λ− 3)P(Cz+2)+ (λ− 2)P(Cz+1)

= (λ− 2)3[P(Cz+3)− P(Cz+2)] + (λ− 2)(λ− 3)P(Cz+2)+ (λ− 2)P(Cz+1)
= λ(λ− 1)(λ− 2)[(λ− 2)2Qz+3(λ)− (λ2 − 5λ+ 7)Qz+2(λ)+ Qz+1(λ)]
= λ(λ− 1)N21(λ),

where N21(λ) = (λ− 2)[(λ− 2)2Qz+3(λ)− (λ2 − 5λ+ 7)Qz+2(λ)+ Qz+1(λ)]
and N21(1) = (−1)[(−1)2(−1)z+3 − (1− 5+ 7)(−1)z+2 + (−1)z+1] = 5(−1)z .
(22) P(G22) = (λ− 2)[P(θφ+γ+3,2,2)− P(θφ+γ+2,3,1)− P(θφ+γ+2,3,1)+ P(θφ+γ+1,2,2)]

= (λ− 2)[P(θφ+γ+3,2,2)− 2P(θφ+γ+2,3,1)+ P(θφ+γ+1,2,2)]
= λ(λ− 1)(λ− 2)[Mφ+γ+3,2,2(λ)− 2Mφ+γ+2,3,1(λ)+Mφ+γ+1,2,2(λ)]
= λ(λ− 1)N22(λ),

where N22(λ) = (λ− 2)[Mφ+γ+3,2,2(λ)− 2Mφ+γ+2,3,1(λ)+Mφ+γ+1,2,2(λ)]

and N22(1) = (−1)[(−1)φ+γ+8 − 2(−1)φ+γ+7 + (−1)φ+γ+6] = 4(−1)φ+γ+1.
(23) P(G23) = (λ− 2)[P(θψ+2,3,1)− P(θψ+1,2,2)] − [P(θψ,3,3)− 2P(θψ+1,2,2)+ P(Cψ+3)]

= (λ− 2)P(θψ+2,3,1)− (λ− 4)P(θψ+1,2,2)− P(θψ,3,3)− P(Cψ+3)
= λ(λ− 1)[(λ− 2)Mψ+2,3,1(λ)− (λ− 4)Mψ+1,2,2(λ)−Mψ,3,3(λ)− Qψ+3(λ)]
= λ(λ− 1)N23(λ),

where N23(λ) = (λ− 2)Mψ+2,3,1(λ)− (λ− 4)Mψ+1,2,2(λ)−Mψ,3,3(λ)− Qψ+3(λ)

and N23(1) = (−1)(−1)ψ+7 − (−3)(−1)ψ+6 − (−1)ψ+7 − (−1)ψ+3 = 6(−1)ψ .
(24) P(G24) = (λ− 2)[P(θρ+2,2,2)− P(θρ+1,3,1)− P(θρ+1,3,1)+ P(θρ,2,2)]

= λ(λ− 1)(λ− 2)[Mρ+2,2,2(λ)− 2Mρ+1,3,1(λ)+Mρ,2,2(λ)]
= λ(λ− 1)N24(λ),

where N24(λ) = (λ− 2)[Mρ+2,2,2(λ)− 2Mρ+1,3,1(λ)+Mρ,2,2(λ)]

and N24(1) = (−1)[(−1)ρ+7 − 2(−1)ρ+6 + (−1)ρ+5] = 4(−1)ρ .

Proof. The computation of the chromatic polynomials in this lemma is straight-forward using Lemmas 2.1, 2.2, 2.4 and 2.5.
�
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Lemma 4.2. Let G1 = {G4,G5}, G2 = {G3,G14,G16}, G3 = {G1,G2,G12,G13,G15,G17,G19}, G4 = {G6,G7,G8,G18,G20,G22,
G24}, G5 = {G9,G10,G11,G21} and G6 = {G23}. Then, for each G ∈ Gi, i = 1, 2, 3, 4, 5, 6, H ∼ G implies that H must be of type
G or G′ for a G′ in Gi.

Proof. It follows directly from Lemma 4.1 that if i 6= j, Gp ∈ Gi and Gq ∈ Gj, then |Np(1)| = i 6= j = |Nq(1)|. Note that Np(λ)
and Nq(λ) are as defined in Lemma 4.1 �

From Lemma 4.1, we can also get the following useful information.

Lemma 4.3. (1) G6(f ) ∼ G18(w) if and only if f = w.
(2) G7(g) ∼ G20(y) if and only if g = y.
(3) G10(k) ∼ G21(z) if and only if k = z.
(4) G12(n) ∼ G19(x) if and only if n = x.
(5) G22(φ, γ ) ∼ G24(ρ) if and only if ρ − 1 = φ + γ .

Proof. The sufficiency of each part above follows directly from Lemma 4.1. To prove the necessity, we note that if Gi ∼ Gj
for each part above, then both Gi and Gjmust have the same order. It can then be checked that each of the above claims hold.

�

Lemma 4.4. (1) (a) P(G3) 6= P(G14), (b) P(G3) 6= P(G16).
(2) P(G4) 6= P(G5).
(3) (a) P(G7) 6= P(G8), (b) P(G8) 6= P(G20).
(4) (a) P(G10) 6= P(G11), (b) P(G11) 6= P(G21).

Proof. (1) P(G3) = (λ− 1)2(λ− 2)P(W (c + 3, 3))− (λ− 2)2P(W (c + 3, 3)),
P(G14) = (λ− 1)(λ− 2)3P(Cq+2)− (λ− 2)2P(W (q+ 3, 3)). and
P(G16) = (λ− 1)(λ− 2)P(W (t + u+ 5, 3))− (λ− 2)2P(W (t + u+ 4, 3))
(a) If P(G3) = P(G14), Lemma 2.3 implies that c = q. So, (λ − 1)P(W (c + 3, 3)) = (λ − 2)2P(Cc+2), a contradiction
since (λ− 2)2P(Cc+2) is divisible by (λ− 2)2 but not (λ− 1)P(W (c + 3, 3)).

(b) If P(G3) = P(G16), Lemma 2.3 implies that c−1 = t+u. So, (λ−1)P(W (c+3, 3)) = P(W (c+4, 3)), a contradiction
since (λ− 1)P(W (c + 3, 3)) is divisible by (λ− 1)2 but not P(W (c + 4, 3))

(2) P(G4) = (λ − 2)3P(θd,2,2) and P(G5) = (λ − 2)3P(θe,3,1). If P(G4) = P(G5), Lemma 2.3 implies that d = e. So,
P(θe,3,1) = P(θe,2,2), a contradiction since both θe,3,1 and θe,2,2 are χ-unique graphs that are not isomorphic.

(3) P(G7) = (λ− 1)(λ− 2)3P(Cg+2)− P(W (g + 5, 5)) and
P(G8) = (λ− 1)P(W (h+ 5, 4))− P(W (h+ 5, 5)).
(a) If P(G7) = P(G8), by Lemma 2.3, g = h. So, (λ−2)3P(Cg+2) = P(W (g+5, 4)), a contradiction since (λ−2)3P(Cg+2)
is divisible by (λ− 2)3 but not P(W (g + 5, 4)).

(b) If P(G8) = P(G20), by Lemma 2.3, h = y. By Lemma 4.3 and the above result, we conclude that P(G8) 6= P(G20).
(4) P(G10) = (λ− 1)(λ− 2)P(W (k+ 4, 3))− P(W (k+ 5, 4))+ (λ− 2)P(W (k+ 3, 3)) and
P(G11) = (λ− 1)P(W (m+ 5, 4))− P(W (m+ 5, 4))+ (λ− 2)P(W (m+ 3, 3)).
(a) If P(G10) = P(G11), by Lemma 2.3, k = m. So, (λ − 2)P(W (m + 4, 3)) = P(W (m + 5, 4)), a contradiction since

(λ− 2)P(W (m+ 4, 3)) is divisible by (λ− 2)2 but not P(W (m+ 5, 4)).
(b) If P(G11) = P(G21), by Lemma2.3,m = z. By Lemma4.3 and the above result, we conclude that P(G11) 6= P(G21). �

Let ω = λ − 1 and [ωn]P(Gi) be the coefficient of ωn in P(Gi). Using Lemmas 2.4 and 4.1, and Software Maple, we then
have the following straight-forward lemma.

Lemma 4.5.

(1) P(G1) = (λ− 2)(λ3 − 6λ2 + 13λ− 11)P(Ca+1)
= ω(ω − 1)(ω3 − 3ω2 + 4ω − 3)(ωa + (−1)a+1)

and [ω2]P(G1) = 7(−1)a.
(2) P(G2) = (λ− 2)(λ2 − 3λ+ 3)[(λ− 3)P(Cb+2)+ P(Cb+1)]

= ω(ω − 1)(ω2 − ω + 1)[(ω − 2)(ωb+1 + (−1)b)+ (ωb + (−1)b+1)]

and [ω2]P(G2) = 7(−1)b+1.
(3) P(G6) = (λ− 2)2P(θf ,2,2)− (λ− 2)2P(Cf+2)+ (λ− 2)(λ− 3)P(Cf+1)

= (λ− 2)4P(Cf+1)+ (λ− 1)2(λ− 2)2P(Cf )− (λ− 2)2P(Cf+2)+ (λ− 2)(λ− 3)P(Cf+1)
= ω(ω − 1)4(ωf + (−1)f+1)+ ω3(ω − 1)2(ωf−1 + (−1)f )
−ω(ω − 1)2(ωf+1 + (−1)f )+ ω(ω − 1)(ω − 2)(ωf + (−1)f+1)

and [ω2]P(G6) = 9(−1)f .
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(4) P(G7) = (λ2 − 5λ+ 7)P(θg+1,3,1)− P(θg,2,2)
= (λ2 − 5λ+ 7)(λ2 − 3λ+ 3)P(Cg+2)− (λ− 2)2P(Cg+1)− (λ− 1)2P(Cg)
= ω(ω2 − 3ω + 3)(ω2 − ω + 1)(ωg+1 + (−1)g)− ω(ω − 1)2(ωg + (−1)g+1)− ω3(ωg−1 + (−1)g)

and [ω2]P(G7) = 8(−1)g+1.
(5) P(G8) = (λ2 − 5λ+ 7)P(θh+1,2,2)− P(θh,3,1)

= (λ2 − 5λ+ 7)[(λ− 2)2P(Ch+2)+ (λ− 1)2P(Ch+1)] − (λ2 − 3λ+ 3)P(Ch+1)
= ω(ω − 1)2(ω2 − 3ω + 3)(ωh+1 + (−1)h)+ ω3(ω2 − 3ω + 3)
× (ωh + (−1)h+1)− ω(ω2 − ω + 1)(ωh + (−1)h+1)

= ωh+6 − 4ωh+5 + 7ωh+4 − 7ωh+3 + 4ωh+2 − ωh+1 + 2ω4(−1)h+1

+ 8ω3(−1)h + 10ω2(−1)h+1 + 4ω(−1)h.

and [ω2]P(G8) = 10(−1)h+1.
(6) P(G12) = (λ− 2)[P(θn+2,2,2)− P(θn+1,3,1)] − (λ− 2)2P(θn,3,1)

= (λ− 2)3P(Cn+3)+ (λ− 1)2(λ− 2)P(Cn+2)
− (λ− 2)(λ2 − 3λ+ 3)P(Cn+2)− (λ− 2)2(λ2 − 3λ+ 3)P(Cn+1)

= (λ− 2)3P(Cn+3)+ (λ− 2)2P(Cn+2)− (λ− 2)2(λ2 − 3λ+ 3)P(Cn+1)
= ω(ω − 1)3(ωn+2 + (−1)n+1)+ ω(ω − 1)2(ωn+1 + (−1)n)
−ω(ω − 1)2(ω2 − ω + 1)(ωn + (−1)n+1)

and [ω2]P(G12) = 8(−1)n+1.
(7) P(G13) = (λ− 2)[P(θp+2,2,2)− P(θp+1,3,1)] − (λ− 2)2P(θp,2,2)

= (λ− 2)3P(Cp+3)+ (λ− 1)2(λ− 2)P(Cp+2)− (λ− 2)(λ2 − 3λ+ 3)
× P(Cp+2)− (λ− 2)4P(Cp+1)− (λ− 1)2(λ− 2)2P(Cp)

= (λ− 2)3P(Cp+3)+ (λ− 2)2P(Cp+2)− (λ− 2)4P(Cp+1)− (λ− 1)2(λ− 2)2P(Cp)
= ω(ω − 1)3(ωp+2 + (−1)p+1)+ ω(ω − 1)2(ωp+1 + (−1)p)
−ω(ω − 1)4(ωp + (−1)p+1)− ω3(ω − 1)2(ωp−1 + (−1)p)

and[ω2]P(G13) = 9(−1)p+1.
(8) P(G15) = (λ− 2)(λ− 3)P(θr+s+2,2,2)+ (λ− 2)P(θr+s+1,2,2)

= (λ− 2)3(λ− 3)P(Cr+s+3)+ (λ− 1)2(λ− 2)(λ− 3)P(Cr+s+2)
+ (λ− 2)3P(Cr+s+2)+ (λ− 1)2(λ− 2)P(Cr+s+1)

= ω(ω − 1)3(ω − 2)(ωr+s+2 + (−1)r+s+1)+ ω3(ω − 1)(ω − 2)
× (ωr+s+1 + (−1)r+s)+ ω(ω − 1)3(ωr+s+1 + (−1)r+s)+ ω3(ω − 1)(ωr+s + (−1)r+s+1)

and [ω2]P(G15) = 10(−1)r+s.
(9) P(G17) = (λ− 2)(λ− 3)P(θv,2,2)+ (λ− 2)2P(Cv+1)

= (λ− 2)3(λ− 3)P(Cv+1)+ (λ− 1)2(λ− 2)(λ− 3)P(Cv)+ (λ− 2)2P(Cv+1)
= ω(ω − 1)3(ω − 2)(ωv + (−1)v+1)+ ω3(ω − 1)(ω − 2)
× (ωv−1 + (−1)v)+ ω(ω − 1)2(ωv + (−1)v+1)

and [ω2]P(G17) = 9(−1)v.
(10) P(G22) = (λ− 2)[P(θφ+γ+3,2,2)− 2P(θφ+γ+2,3,1)+ P(θφ+γ+1,2,2)]

= (λ− 2)3P(Cφ+γ+4)+ (λ− 1)2(λ− 2)P(Cφ+γ+3)− 2(λ− 2)(λ2 − 3λ+ 3)
× P(Cφ+γ+3)+ (λ− 2)3P(Cφ+γ+2)+ (λ− 1)2(λ− 2)P(Cφ+γ+1)

= (λ− 2)3P(Cφ+γ+4)− (λ− 2)(λ2 − 4λ+ 5)P(Cφ+γ+3)
+ (λ− 2)3P(Cφ+γ+2)+ (λ− 1)2(λ− 2)P(Cφ+γ+1)

= ω(ω − 1)3(ωφ+γ+3 + (−1)φ+γ )− ω(ω − 1)(ω2 − 2ω + 2)(ωφ+γ+2 + (−1)φ+γ+1)
+ω(ω − 1)3(ωφ+γ+1 + (−1)φ+γ )+ ω3(ω − 1)(ωφ+γ + (−1)φ+γ+1)

= ωφ+γ+7 − 4ωφ+γ+6 + 7ωφ+γ+5 − 7ωφ+γ+4 + 4ωφ+γ+3 − ωφ+γ+2 + 2ω4(−1)φ+γ

+ 8ω3(−1)φ+γ+1 + 10ω2(−1)φ+γ + 4ω(−1)φ+γ+1.

Lemma 4.6. G8 ∼ G22(φ, γ ) ∼ G22(φ′, γ ′) ∼ G24(ρ) if and only if h− 1 = φ + γ = φ′ + γ ′ = ρ − 1.

Proof. It follows directly from Lemmas 2.1 and 2.3, 4.3(5), 4.5(5) and 4.5(10). �
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5. Proof of the main theorem

We are now ready to prove our main theorem (Theorem 3.1).
(1) LetH ∼ G1(a). By Lemma 4.2,H must be of type (1), (2), (12), (13), (15), (17) or (19). IfH = G1(a′), Lemma 2.3 implies

that a′ = a. IfH = G2(b), Lemma2.3 implies that a = b+1.We note that P(G2) = (λ−2)(λ−3)P(θb+1,3,1)+(λ−2)P(θb,3,1),
whereas P(G1) = (λ−2)(λ−3)P(θa,3,1)+ (λ−2)P(θa,2,1). So, P(G2) = P(G1) implies that θb,3,1 ∼ θb+1,2,1, a contradiction
since both of θb,3,1 and θb+1,2,1 are χ-unique and non-isomorphic. Therefore, P(G2) 6= P(G1). Lemma 4.5 implies that
[ω2]P(G1) 6= [ω2]P(G12) or [ω2]P(G13) or [ω2]P(G15) or [ω2]P(G17). Thus, H cannot be of type (12), (13), (15) or (17). If
H = G19(x), Lemma 2.3 implies that a = x+ 1. Since Lemma 4.3 implies that G12(x) ∼ G19(x), we conclude that G1 6∼ G19.
Thus, H is of type G1.

(2) Let H ∼ G2(b). By Lemma 4.2 and the above result, H must be of type (2), (12), (13), (15), (17) or (19). If H = G2(b′),
Lemma 2.3 implies that b′ = b. Lemma 4.5 implies that [ω2]P(G2) 6= [ω2]P(G12) or [ω2]P(G13) or [ω2]P(G15) or [ω2]P(G17).
Thus, H cannot be of type (12), (13), (15) or (17). If H = G19(x), Lemma 2.3 implies that b = x. Since Lemma 4.3 implies that
G12(x) ∼ G19(x), we conclude that G2 6∼ G19. Thus, H is of type G2.

(3) Let H ∼ G3(c). By Lemma 4.2, H must be of type (3), (14) or (16). Lemma 4.4 further implies that H must be of type
(3). If H = G3(c ′), Lemma 2.3 implies that c ′ = c. Thus, H is of type G3.

(4) Let H ∼ G4(d). By Lemma 4.2, H is of type (4) or (5). If H = G4(d′), Lemma 2.3 implies that d′ = d. By Lemma 4.4,
P(G5) 6= P(G4). Thus, H is of type G4.

(5) LetH ∼ G5(e). By Lemma 4.2 and the above result,H must be of type (5). IfH = G5(e′), Lemma 2.3 implies that e′ = e.
Thus, H is of type G5.

(6) Let H ∼ G6(g). By Lemma 4.2, H must be of type (6), (7), (8), (18), (20), (22) or (24). If H = G6(f ′) or G18(w),
Lemmas 2.3 and 4.3 implies that f ′ = f = w. Suppose H = G7. Note that Lemma 4.5 implies that [ω2]P(G6) 6= [ω2]P(G7)
while Lemma 4.3 further implies that P(G7(g)) = P(G20(g)). Thus, H cannot be of type (7) or (20). If P(G6) = P(G8) =
P(G22) = P(G24), then Lemma 2.3 implies that f − 2 = h − 1 = ρ − 1 = φ + γ . However, Lemma 4.5 implies that
[ω2]P(G6) 6= [ω2]P(G8) and Lemma 4.6 implies that P(G8(h)) = P(G22(h)) = P(G24(φ, γ ))where φ+γ = h−1. Therefore,
H cannot be of type (8), (22) or (24). Hence, 〈G6(f )〉 = {G6(f ),G18(f )}.

(7) Let H ∼ G7(g). By Lemma 4.2 and the above result, H must be of type (7), (8), (20), (22) or (24). If H = G7(g ′) or
G20(y), Lemmas 2.3 and 4.3 imply that g ′ = g = y. Note that Lemma 4.5 implies that [ω2]P(G7) 6= [ω2]P(G8). By Lemma 4.6,
we conclude that H cannot be of type (8), (22) or (24). Hence, 〈G7(g)〉 = {G7(g),G20(g)}.

(8) Let H ∼ G8(h). By Lemma 4.2 and the above results, H must be of type (8), (22) or (24). The result then follows from
Lemma 4.6.

(9) Let H ∼ G9(j). By Lemma 4.2, H must be of type (9), (10), (11) or (21). If H = G9(j′), Lemma 2.3 implies that j′ = j. If
H = G10(k), Lemma 2.3 implies that k+1 = j. We note that P(G10) = (λ−3)[P(θk+2,3,1)−P(θk+1,2,2)]+(λ−2)P(θk,3,1) and
P(G9) = (λ− 3)[P(θj+1,3,1)− P(θj,2,2)] + (λ− 2)P(θj,2,1). So, P(G9) = P(G10) implies that θk,3,1 ∼ θk+1,2,1, a contradiction
since θk,3,1 and θk+1,2,1 are χ-unique and non-isomorphic. Lemma 4.3 further implies that H cannot be of type (21). If
H = G11(m), Lemma 2.3 implies thatm+1 = j. We note that P(G11) = (λ−3)[P(θm+2,3,1)−P(θm+1,2,2)]+(λ−2)P(θm,2,2).
So, P(G9) = P(G11) implies that θm,2,2 ∼ θm+1,2,1, a contradiction since θm,2,2 and θm+1,2,1 areχ-unique and non-isomorphic.
Thus, G9 is χ-unique.

(10) Let H ∼ G10(k). By Lemma 4.2 and the above result, H must be of type (10), (11) or (21). If H = G10(k′) or
G21(z), Lemma 2.3 and 4.3 imply that k′ = k = z. Lemma 4.4 further implies that P(G10) 6= P(G11). Thus, 〈G10(k)〉 =
{G10(k),G21(k)}.

(11) Let H ∼ G11(m). By Lemma 4.2 and the above results, we conclude that H must be of type (11). If H = G11(m′),
Lemma 2.3 implies thatm′ = m. Thus, G11 is χ-unique.

(12) Let H ∼ G12(n). By Lemma 4.2 and the above results, H must be of type (12), (13), (15), (17) or (19). If H = G12(p′) or
G19(x), Lemma 2.3 and 4.3 imply that n′ = n = x. Note that Lemma 4.5 implies that [ω2]P(G12) 6= [ω2]P(G13) or [ω2]P(G15)
or [ω2]P(G17). Thus, H cannot be of type (13), (15) or (17). Hence, H ∈ 〈G12(n)〉 if and only if H is of type G12(n) or G19(n).

(13) Let H ∼ G13(p). By Lemma 4.2 and the above results, H must be of type (13), (15) or (17). If H = G13(p′),
Lemma 2.3 implies that p′ = p. Lemma 4.5 implies that [ω2]P(G13) 6= [ω2]P(G15). Thus, H cannot be of type (15). If
H = G17(v), Lemma 2.3 implies that v = p + 1. Note that P(G13) = (λ − 2)(λ − 3)P(θp+1,2,2) + (λ − 2)P(θp,3,1) and
P(G17) = (λ− 2)(λ− 3)P(θv,2,2)+ (λ− 2)P(θv,2,1). So, P(G13) = P(G17) implies that θp+1,2,1 ∼ θp,3,1, a contradiction since
θp+1,2,1 and θp,3,1 are χ-unique and non-isomorphic. Thus, H is of type G13.

(14) LetH ∼ G14(q). By Lemma 4.2 and the above result,H must be of type (14) or (16). IfH = G14(q′), Lemma 2.3 implies
that q′ = q. If H = G16(q), Lemma 2.3 implies that q = t+ u+ 1 and Lemma 4.1(14) and (16) then imply that θq,2,2 ∼ θq,3,1,
a contradiction since both θq,2,2 and θq,3,1 are χ-unique and non-isomorphic. Thus, H is of type G14.

(15) Let H ∼ G15(r, s). By Lemma 4.2, H must be of type (15) or (17). If H = G15(r ′, s′), Lemma 2.3 implies that
r ′ + s′ = r + s. Using Lemma 2.1, it is easy to show that G15(r, s) ∼ G15(r ′, s′) if r ′ + s′ = r + s. Lemma 4.5 implies
that [ω2]P(G15) 6= [ω2]P(G17). Thus, H cannot be of type (17). Hence, 〈G15(r, s)〉 = {G15(r ′, s′) with r + s = r ′ + s′}.

(16) Let H ∼ G16(t, u). By Lemma 4.2 and the above results, H must be of type (16). If H = G16(t ′, u′), Lemma 2.3
implies that t ′ + u′ = t + u. Using Lemma 2.1, it is easy to show that G16(t, u) ∼ G16(t ′, u′) if t ′ + u′ = t + u. Hence,
〈G16(t, u)〉 = {G16(t ′, u′) with t + u = t ′ + u′}.
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(17) Let H ∼ G17(v). By Lemma 4.2 and the above results, H must be of type (17). If H = G17(v′), Lemma 2.3 implies that
v′ = v. Thus, G17 is χ-unique.

(18) The result follows from (6) above.
(19) The result follows from (12) above.
(20) The result follows from (7) above.
(21) The result follows from (10) above.
(22) The result follows from (8) above.
(23) Let H ∼ G23(ψ). By Lemma 4.2, H must be of type (23). If H = G23(ψ ′), Lemma 2.3 implies that ψ ′ = ψ . Thus,

G23(ψ) is χ-unique.
(24) The result follows from (8) above.
This completes the proof of our main theorem. �
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