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a b s t r a c t

In this paper we determine the positive integers n and k for which there exists a
homogeneous factorisation of a complete digraph on n vertices with k ‘common circulant’
factors. This means a partition of the arc set of the complete digraph Kn into k circulant
factor digraphs, such that a cyclic group of order n acts regularly on the vertices of each
factor digraph whilst preserving the edges, and in addition, an overgroup of this permutes
the factor digraphs transitively amongst themselves. This determination generalises a
previous result for self-complementary circulants.
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1. Introduction

In this paperwe determine the positive integers n and k for which there exists a homogeneous factorisation of a complete
digraph on n vertices with k ‘common circulant’ factors, that is, there is a cyclic group of order n that acts regularly
on the vertices and preserves the edges of each factor. This determination, in Theorem 2, generalises for homogeneous
factorisations a result of Fronček, Rosa, and Širáň in [3] about self-complementary circulants, in much the same way that
the result [7, Theorem 1.1] (which motivated our work) generalised a theorem of Muzychuk [11] characterising orders of
self-complementary vertex-transitive graphs. In Theorem 3 we draw from these results a characterisation of integers n for
which there exists a homogeneous factorisation of a complete digraph on n vertices, and those integers n for which there
exists a common circulant such factorisation. We also determine the analogous results for the complete (undirected) graph.
In the remainder of this introductory sectionwe introduce the concepts of homogeneous factorisation and common circulant
homogeneous factorisation, and state our main results.

1.1. Homogeneous factorisations

A digraph or directed graph,Γ = (VΓ , AΓ ) consists of a set of vertices VΓ , and a set of arcs AΓ , where an arc is an ordered
pair of distinct vertices. Thus AΓ ⊆ VΓ (2)

= {(α, β) | α, β ∈ VΓ , α 6= β}. A factorisation of a digraph Γ is a partition
P = {P1, . . . , Pk} of the arc set with at least two parts. This gives rise to factor digraphs, Γi = (VΓ , Pi). A homogeneous
factorisation of a digraph Γ on vertex setΩ , is a factorisation P such that the following conditions hold.

1. There exist transitive permutation groupsM and GwithM < G ≤ Aut(Γ ) ≤ Sym(Ω).
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Fig. 1. The factor digraphs of a homogeneous factorisation of degree 3 and index 2.

2. P is G-invariant (that is, for each P ∈ P , the image Pg := {(αg , βg) : (α, β) ∈ P} is also a part of P ), and the induced
action of G on P is transitive.

3. The groupM fixes setwise each part of P (or equivalently, the induced action ofM on P is trivial).

Since M fixes Pi setwise we have M ≤ Aut(Γi) for each i, and thus the factor digraphs Γi are M-vertex transitive. Also
because G acts transitively onP , the factor digraphs are pairwise isomorphic. A homogeneous factorisation can be denoted
by a quadruple, (M,G,Γ ,P ). The complete digraph, Kn, is a digraph with n vertices and AΓ = VΓ (2). In this paper we
consider factorisations of the complete digraph, and we denote the homogeneous factorisation by (M,G,Ω,P ), whereΩ
is the vertex set of the complete digraph under consideration.
The degree of a homogeneous factorisation (M,G,Γ ,P ) is the number of vertices of the digraph Γ . The number of

parts in P is called the index of the factorisation. In particular, in a homogeneous factorisation of a complete digraph of
degree n and index 2, the factor digraphs are vertex-transitive self-complementary digraphs on n vertices. A homogeneous
factorisation of a complete digraph of degree n and index k is a generalisation of this. We illustrate this concept, as we will
do for subsequent concepts, with the smallest example.

Example 1. See Fig. 1. Let Ω = {0, 1, 2}, P1 = {(0, 1), (1, 2), (2, 0)}, P2 = {(0, 2), (2, 1), (1, 0)}, M = 〈(012)〉,
G = 〈M, (12)〉, and P = {P1, P2}. Then (M,G,Ω,P ) is a homogeneous factorisation of degree 3 and index 2.

A factorisation is symmetric if for each factor Pi, we have (α, β) ∈ Pi if and only if (β, α) ∈ Pi. A digraph Γ is undirected,
or simply a graph when (α, β) ∈ AΓ if and only if (β, α) ∈ AΓ . Then the arcs (α, β) and (β, α) can be considered as an
unordered pair {α, β}, called an edge. Thus in a symmetric factorisation, the factor digraphs are considered undirected and
this is equivalent to a factorisation of the edge set of a graph.

Remark 1. A homogeneous factorisation of the complete digraph corresponds to a transitive orbital decomposition or
k-TOD, as described by Li and Praeger in [7]. They give many results about k-TODs which can be translated into the
language of homogeneous factorisations. One key result is the following, which is used in our proofs below. If there exists
a homogeneous factorisation of degree n and index k, then by [7, Lemma 2.5] we have that n ≡ 1 (mod k). If there exists a
symmetric homogeneous factorisation of degree n and index k, then by [7, Lemma 2.5] we have that n ≡ 1 (mod 2k). Note
that Fig. 1 is not symmetric, and the degree and index satisfy the first condition, that is 3 ≡ 1 (mod 2), but by the second
condition there is no symmetric homogeneous factorisation of degree 3.

1.2. Cyclic homogeneous factorisations

If (M,G,Ω,P ) is a symmetric homogeneous factorisation of degree n and index 2, with P = {P1, P2}, then GP ∼= Z2
and Γi := (Ω, Pi), for i = 1, 2, are a pair of vertex-transitive, self-complementary (undirected) graphs on n vertices. In
1998Muzychuk [11] proved that such a factorisation exists if and only if the following condition Hom(n, 4) holds, where nr
denotes the r-part of n, for a prime r dividing n, namely the highest power of r dividing n.

Hom(n, 4) : ∀ primes r dividing n, nr ≡ 1 (mod 4).

To prove his result, Muzychuk devised a technique of reducing the self-complementary graphs Γi to a set of so-called
Sylow subgraphs, which were also vertex-transitive and self-complementary, and had a prime power number of vertices. In
2003 Li and Praeger extended this result for cyclic homogeneous factorisations of arbitrary index k, that is, for homogeneous
factorisations (M,G,Ω,P ) of index k such that the induced group GP ∼= Zk. Their result involved the following extension
of Muzychuk’s condition, namely, for a positive integer k,

Hom(n, k) : ∀ primes r dividing n, nr ≡ 1 (mod k).

The following theorem is their result stated in the language of homogeneous factorisations.

Theorem 1 ([7, Theorem 1.1]). Let n and k be integers such that n ≥ 3 and k ≥ 2.

1. There exists a cyclic homogeneous factorisation of degree n and index k if and only if Hom(n, k) holds.
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Fig. 2. The factor graphs of a symmetric homogeneous factorisation of degree 4 and index 3.

2. There exists a symmetric cyclic homogeneous factorisation of degree n and index k if and only if Hom(n/n2, 2k) holds with
n2 ≡ 1 (mod k).

Note that, if n is odd, then the condition in the symmetric case is equivalent to the condition that Hom(n, 2k) holds.
Muzychuk’s result corresponds to the symmetric case with index 2. Example 2 gives the smallest symmetric cyclic
homogeneous factorisation.

Example 2. See Fig. 2. Let Ω = {0, 1, 2, 3}, P1 = {{0, 1}, {2, 3}}, P2 = {{0, 3}, {1, 2}}, P3 = {{0, 2}, {1, 3}}, M =
{(01)(23), (02)(13), (03)(12)},G = 〈M, (123)〉 ∼= A4, andP = {P1, P2, P3}. ThenGP ∼= Z3 and (M,G,Ω,P ) is a symmetric
cyclic homogeneous factorisation of degree 4 and index 3.

Remark 2. We thank Aleksandar Ivić for his interest in these results. In particular he asked about the density of positive
integers n for which these kinds of homogeneous factorisations exist: for example, the density of integers n for which there
exists a symmetric cyclic homogeneous factorisation of Kn. Determining the density seems a difficult problem. However Ivić
has kindly informed us of the solution when the index is restricted to k = 2.
For a positive real number x, letM(x) denote the cardinality of the set of positive integers n ≤ x such that there exists a

vertex-transitive self-complementary graph of order n, that is to say, Hom(n, 4) holds. Ivić has computed the asymptotics
ofM(x). In particular he has shown [4] that

M(x) =
cx

(log x)1/2
+ O

(
x

(log x)3/2

)
where c = 0.5403868 . . . .

1.3. Common circulant homogeneous factorisations

For a group X and a subset S ⊆ X \ {1X }, the Cayley digraph of X with respect to S is the digraph which has vertex set X
such that (x, y) is an arc if and only if yx−1 ∈ S. A permutation group X on a setΩ is said to be regular if X is transitive and
only the identity element fixes a point. Moreover, if X is a regular permutation group onΩ , then we may identify the point
setΩ with X in such a way that the permutation group X acts by right multiplication. We use X̂ to denote this subgroup of
Sym(X), that is X̂ = {̂x | x ∈ X, where x̂ : y 7→ yx for all y ∈ X}. In particular, every Cayley digraph of a group X admits X̂ as
a regular group of automorphisms. Conversely for a graph Γ , if Aut(Γ ) contains a regular subgroup X , then Γ ∼= Cay(X, S),
where S := {x|(α, αx) ∈ AΓ } for any α ∈ VΓ . A graph Γ is called a circulant if Aut(Γ ) contains a cyclic regular subgroup,
or equivalently if Γ is a Cayley graph of a cyclic group. A Cayley graph Cay(M, S) is undirected when the connection set S
has the property S = S−1.
We call a homogeneous factorisation (M,G,Ω,P ) common circulant if M contains a cyclic regular subgroup. Thus in a

common circulant homogeneous factorisation, all of the factor digraphs Γi are circulants relative to the same cyclic regular
subgroup, X say where X ≤ M , and we may identify the vertex set with X in such a way that each Γi is a Cayley digraph
of X .
We now give an example of a common circulant homogeneous factorisation, where the factors are circulants relative to

Zn. We use additive notation for Zn (so Ẑn = {̂x | x ∈ Zn, where x̂ : y 7→ y+ x for all y ∈ Zn}). For a subset S ⊆ Zn and an
integerm, letm · S := {m · s | s ∈ S}. If gcd(m, n) = 1, then multiplication bym is an automorphism of Zn, which we denote
by σm.

Example 3. We make use of the element σ7 of Aut(Z25) which is of order 4 and acts semi-regularly on Z25 \ {0}. Let
S = {1, 2, 3, 5, 6, 9} (then S consists of one element of each orbit of σ7 on Z25 \ {0}). For i ∈ {1, 2, 3, 4}, let Si = Sσ7

i−1
, so

S1 = S, S2 = 7 · S = {7, 10, 13, 14, 17, 21} etc. For each i, let Γi = Cay(Z25, Si), and let Pi = AΓi. Let P = {P1, P2, P3, P4}.
Then (̂Z25, 〈̂Z25, σ7〉,Z25,P ) is a common circulant cyclic homogeneous factorisation of degree 25 and index 4.
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The main result of this paper is the following theorem, which involves the condition below. It is interesting to compare
the conditions of Theorems 1 and 2.

CommonCirc(n, k) : ∀ primes r dividing n, r ≡ 1 (mod k).

Theorem 2. Let n and k be integers such that n ≥ 3 and k ≥ 2.

1. There exists a common circulant homogeneous factorisation of degree n and index k if and only if CommonCirc(n, k) holds.
2. There exists a symmetric common circulant homogeneous factorisation of degree n and index k if and only if
CommonCirc(n, 2k) holds.

In 1996 Fronček, Rosa and Širáň [3] proved that there exists a self-complementary (undirected) circulant of order n if
and only if CommonCirc(n, 4) holds, and in 1999 Alspach, Morris and Vilfred [1] gave a different proof of the same result.
A self-complementary (undirected) circulant corresponds to a symmetric common circulant homogeneous factorisation of
the complete digraph of index 2. Therefore Theorem 2 generalises Fronček, Rosa and Širáň’s result.

Remark 3. (a) The factorisation in Example 1 is a common circulant cyclic factorisation, because 〈(012)〉 = M = Aut(Γ1) =
Aut(Γ2). The degree and the index satisfy the relation above, i.e. CommonCirc(3, 2) holds.

(b) Example 2 is not a common circulant factorisation, even though the factor graphs are circulants: although 〈(0213)〉 <
Aut(Γ1), 〈(0132)〉 < Aut(Γ2), and 〈(0123)〉 < Aut(Γ3), there are no groupsX ≤ M ≤ G ≤ Sym(Ω) such thatX is a cyclic
regular subgroup ofM , and (M,G,Ω,P ) is a homogeneous factorisation. Note that the degree 4 = 22 and the index 3
fail to satisfy the condition in Theorem 2. In fact it is easy to verify that there are no common circulant factorisations of
degree 4.

1.4. Commentary on homogeneous factorisations

Theorems 1 and 2 provide necessary and sufficient conditions on the pair (n, k) for existence of cyclic, or common
circulant homogeneous factorisations, respectively, of degree n and index k. In Theorem 3 we make a different comparison
by determining when homogeneous factorisations (which are not necessarily cyclic) of degree n exist, for some unspecified
index.

Theorem 3. Let n be an integer such that n ≥ 3.

1. There exists a homogeneous factorisation of degree n if and only if Hom(n, p) holds for some prime p; and there exists a
common circulant homogeneous factorisation of degree n if and only if n is odd.

2. There exists a symmetric homogeneous factorisation of degree n if and only if Hom(n/n2, 2p) holds for some prime p with
n2 ≡ 1 (mod p); there exists a symmetric common circulant factorisation of degree n if and only if CommonCirc(n, 2p) holds
for some prime p.

Before giving a proof, we first state a theorem of Li and Praeger in the language of homogeneous factorisations.

Theorem 4 ([7, Theorem 3.6]). Let (M,G,Ω,P ) be a homogeneous factorisation of degree n and index k, with M normal in G.
Then there exists a cyclic homogeneous factorisation (M,H,Ω,Q) of degree n and index p for some prime divisor p of k, and
some partitionQ refined by P , where H = 〈M, τ 〉 with τ ∈ Gω \Mω for some ω ∈ Ω .

Note that for a homogeneous factorisation (M,G,Ω,P ) of degree n and index k, if K is the kernel of the action of G onP ,
then (K ,G,Ω,P ) is also a homogeneous factorisation of degree n and index k. Thus, replacingM with the normal closure of
M in G if necessary, we may assume thatM C G. If the original factorisation is cyclic or common circulant, these properties
are preserved under such a replacement ofM .

Proof of Theorem 3. (1) First suppose that there exists a homogeneous factorisation (M,G,Ω,P ) of degree n and index
k, for some k. Then by Theorem 4, there exists a cyclic homogeneous factorisation (M,H,Ω,Q) of degree n and index
p for some prime p dividing k, and hence, by Theorem 1, Hom(n, p) holds. The converse statement follows immediately
from Theorem 1. Next suppose that (M,G,Ω,P ) is common circulant, that is, M contains a cyclic regular subgroup.
Then (M,H,Ω,Q) is also common circulant, and hence CommonCirc(n, p) holds by Theorem 2. This means that for any
prime divisor r of n, r ≡ 1 (mod p), so r ≥ 3 and n is odd. Conversely, if n is odd, then CommonCirc(n, 2) holds and,
again by Theorem 2, there exists a common circulant factorisation of degree n and index 2.

(2) Suppose that the homogeneous factorisation (M,G,Ω,P ) above is symmetric (but not necessarily common circulant).
Then, the cyclic homogeneous factorisation (M,H,Ω,Q) of degree n and index p is also symmetric since the partition
Q of Theorem 4 is refined byP . Thus by Theorem 1, Hom(n/n2, 2p) holds with n2 ≡ 1 (mod p). The converse statement
follows immediately from Theorem 1. Finally suppose that (M,G,Ω,P ) is symmetric and common circulant. Then
(M,H,Ω,Q) is also symmetric and common circulant of index p, and hence CommonCirc(n, 2p) holds by Theorem 2.
The converse statement follows immediately from Theorem 2. �
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1.5. Comment on the proof of Theorem 2 and Zibin’s conjecture

A proof of the necessity conditions of Theorem 2was given in [13], and two proofs were also given there for the necessity
conditions of a slightly weaker version of Theorem 2 (concerning common circulant homogeneous factorisations which are
also cyclic). Only the first of these three proofs is included in this paper. It uses ‘Zibin’s conjecture’, which is known to be true,
as discussed below. The second proof uses the technique of reducing the factorisation to a common ciruclant factorisation of
the same index but on the vertices which comprise a single orbit of a Sylow subgroup of our group G. This is a method of Li
and Praeger devised in [7], which is a generalisation of Muzychuk’s method which he used for self-complementary vertex-
transitive digraphs in [11]. The third proof uses induction, and relies on the classification of finite primitive permutation
groups containing a cyclic regular subgroup which was published independently by Li in 2003 [6] and Jones in 2002 [5], and
which itself depends on the classification of finite simple groups.
Zibin’s conjecture was developed from Ádám’s conjecture, which was published in 1967, and was shown to be false in

general in 1970.

Conjecture 5 (Ádám’s Conjecture). Suppose Cay(Zn, S) and Cay(Zn, T ) are two isomorphic circulants. Then there exists an
element σ ∈ Aut(Zn) such that Sσ = T .

In 1987, Pálfy proposed a corrected form of Ádám’s conjecture. He suggested the values of n for which Ádám’s conjecture
holds (namely, when n is not divisible by 8 or a square of an odd prime). In 1995/1997 Muzychuck proved that Pálfy’s
formulation was correct [9,10], using group theory and Schur rings. Zibin’s conjecture is a similar result, but it holds for all
integers n. Let d be a divisor of a positive integer n, and for S ⊆ Zn let S(d) := {x ∈ S | gcd(x, n) = d}.

Theorem 6 (Zibin’s Conjecture). If Cay(Zn, S) and Cay(Zn, T ) are isomorphic Cayley digraphs, then for each divisor d of n, there
exists an element m ∈ Zn, such that gcd(m, n) = 1 and m · S(d) = T (d).

According to [12], D.K. Zibin is an expert in technical cybernetics, and his conjecture was proposed in 1975 as an empirical
observation based on the analysis of results of his computer experiments. Zibin’s conjecture was proved in 1999 by
Muzychuk, Pöschel and Klin, using Schur rings [12, Theorem 5.1]. Independently (although their paper did not appear until
2002), Dobson and Morris proved Toida’s conjecture (which was proposed in 1977 and is the particular case of Zibin’s
conjecture where d = 1) in [2, Corollary 2.7], see also [8, Chapter 3], and then proved in [2, Corollary 2.9] that Toida’s
conjecture in fact implies Zibin’s conjecture. Their proof of Toida’s conjecture relies on the classification of finite simple
groups.
In the second section of this paper, we give in Section 2.1 a general construction that proves the sufficiency conditions

of Theorem 2, and then in Section 2.2 we apply elementary group theory and use Zibin’s conjecture to prove the necessity
condition.
We give a final example, this time of a common circulant homogeneous factorisation which demonstrates a failure

of Ádám’s conjecture. In the example, for each distinct pair i, j with i, j ∈ {1, 2, 3}, the factor graphs Cay(Z49, Si) and
Cay(Z49, Sj) are isomorphic circulants, but there is no element of Aut(Z49)which maps Si to Sj.

Example 4. We make use of an element σ19 of Aut(Z49) which is of order 6 and acts semi-regularly on Z49 \ {0}. If x ∈ Z49
such that x ≡ 1 (mod 7), then xσ19 = 19 · x ≡ 5 (mod 7), xσ

2
19 = 192 · x ≡ 4 (mod 7), xσ

3
19 = 193 · x ≡ 6 (mod 7) and so

on. Let S = {x ∈ Z49 | x ≡ 1 (mod 7)} = {1, 8, 15, 22, 29, 36, 43} and let T = {7}. Define

S1 = S ∪ Sσ19 ∪ T ∪ T σ
3
19 ,

S2 = Sσ
2
19 ∪ Sσ

3
19 ∪ T σ19 ∪ T σ

4
19 ,

S3 = Sσ
4
19 ∪ Sσ

5
19 ∪ T σ

2
19 ∪ T σ

5
19 .

Recall the notation given just before Theorem 6. For example S1(7) = {x ∈ S1 | gcd(x, 49) = 7} = {7, 42} = T ∪ T σ
3
19

and S2(7) = {14, 35}. Then σ19 maps S1(7) to S2(7) to S3(7) and back again to S1(7). Furthermore σ 219 maps S1(1) to S2(1) to
S3(1) and back again to S1(1). Now let τ ∈ Sym(Z49) be defined as follows: τ : x 7→ xσ19 if x ∈ Z49(7), and τ : x 7→ xσ

2
19 if

x ∈ Z49(1). Then τ maps S1 to S2 to S3 to S1.
For i ∈ {1, 2, 3}, let Γi = Cay(Z49, Si), and let Pi = AΓi. Let P = {P1, P2, P3}. Then (̂Z49, 〈̂Z49, τ 〉,Z49,P ) is a common

circulant cyclic homogeneous factorisation of degree 49 and index 3. It is not symmetric as, for example, (0, 1) is an arc of
Γ1 while (1, 0) is an arc of Γ3.
An automorphism of Z49 is σm for some m such that gcd(m, 49) = 1. Suppose that S

σm
1 = S2. Since 1 ∈ S1 it follows

that m = 1σm ∈ S2. Thus m ≡ 4 (mod 7) or m ≡ 6 (mod 7). Also since 7 ∈ S1, then 7σm ∈ S2. If m ≡ 4 (mod 7) then
7σm = m · 7 ≡ 28 (mod 49), and if m ≡ 6 (mod 7) then 7σm = m · 7 ≡ 42 (mod 49). However 28 ∈ S3 and 42 ∈ S1, so
there is no automorphism of Z49 which maps S1 to S2.
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2. Proof of Theorem 2

2.1. Proof of the sufficiency condition

We use Cayley digraphs to give a construction of a common circulant homogeneous factorisation, and thereby provide a
proof of Proposition 7, the sufficiency condition of our main result Theorem 2. This construction is from [14], see also [13].

Proposition 7. Let n and k be integers such that n ≥ 3 and k ≥ 2.
1. If CommonCirc(n, k) holds then there exists a common circulant homogeneous factorisation of degree n and index k.
2. If CommonCirc(n, 2k) holds then there exists a symmetric common circulant homogeneous factorisation of degree n and
index k.

The proof is a direct consequence of the construction given below. This construction can be used to obtain our Example 3,
but not Example 4. First we give a brief summary of the theory required. Note that, if CommonCirc(n, k) holds, then n is odd.
Let n = rd11 . . . r

dm
m where the ri are distinct primes. Then Zn ∼= Z

r
d1
1
× · · · × Zrdmm , and so Aut(Zn)

∼= Aut(Zrd11
) ×

· · · × Aut(Zrdmm ). Now for positive integers r and d, where r is an odd prime, Aut(Zrd)
∼= Zrd−1(r−1), and Aut(Zrd) has

a cyclic subgroup of order r − 1 which acts semi-regularly on Zrd \ {0}. Suppose that CommonCirc(n, k) holds, and let
s = gcd {ri − 1 : i = 1, . . . ,m}. For i = 1, . . . ,m, let σi be a generator for the cyclic subgroup of Aut(Zrdii

) of order ri − 1

which acts semi-regularly onZ
r
di
i
\{0}. Then 〈σ (ri−1)/si 〉 also acts semi-regularly onZ

r
di
i
\{0}, with orbits of length s. In Aut(Zn),

there is therefore an element σ which corresponds to the element (σ (r1−1)/s1 , . . . , σ
(rm−1)/s
m ) of Aut(Z

r
d1
1
)× · · · × Aut(Zrdmm ),

and such that 〈σ 〉 acts semi-regularly on Zn \ {0}with orbits of length s. Our construction uses this element σ .

Construction 8. Let n = rd11 . . . r
dm
m , where the ri are distinct primes, di ≥ 1 and m ≥ 1, and suppose that CommonCirc(n, k)

holds. Let s = gcd {ri − 1 : i = 1, . . . ,m} (note that k divides s). Let σ be an element of Aut(Zn) of order s such that 〈σ 〉 acts
semi-regularly on Zn \ {0}. Take S to consist of one representative of each 〈σ 〉-orbit on Zn \ {0}. Let

S1 = {ασ
jk
: α ∈ S and j = 1, . . . , s/k},

and for l = 2, . . . , k, let Sl = Sσ
l−1

1 . Let

Pl = {(α, β) : α, β ∈ Zn and β − α ∈ Sl},

so Pl is the arc set of the digraph Γl = Cay(Zn, Sl). Let P = {P1, . . . , Pm}. Then (̂Zn, 〈̂Zn, σ 〉,Zn,P ) is a common circulant
homogeneous factorisation of degree n and index k.

It is straightforward to verify the assertions of the last sentence of Construction 8, thus proving part 1 of Proposition 7.
Concerning part 2 of Proposition 7, if CommonCirc(n, 2k) holds, then the factorisation obtained using Construction 8 is
symmetric, aswenowexplain. Recall that a Cayley graphCay(Zn, S) is undirectedwhen the connection set S has the property
S = −S (we are using additive notation for Zn). If CommonCirc(n, 2k) holds, then 2k divides s, and for each α ∈ S1, we also
haveασ

s/2
∈ S1. Nowασ

s/2
= −α because 〈σ 〉 acts semi-regularly onZn\{0}, so S1 = −S1, and the same is true for S2, . . . , Sk.

Therefore if CommonCirc(n, 2k) holds, the factor graphs are undirected, or equivalently, the factorisation is symmetric.

2.2. Proof of the necessity condition

The following corollary to Zibin’s conjecture is used in the proof of Proposition 11.

Corollary 9. Let Cay(Zn, S) and Cay(Zn, T ) be isomorphic Cayley digraphs.
1. For each divisor d of n, there exists an automorphism σm of Zn such that S(d)σm = T (d).
2. For each prime divisor r of n, S and T contain an equal number of elements of Zn of order r.

Proof. (1) This follows directly from Theorem 6, since multiplication by such an element m of Zn is the automorphism σm
of Zn which maps 1 7→ m.

(2) Now Zn(n/r) is the set of elements of Zn of order r . Thus S(n/r) and T (n/r) are the sets of elements of S and T
respectively of order r . By the above, there exists an automorphism σm ∈ Aut(Zn), such that S(n/r)σm = T (n/r). Since
automorphisms are 1–1, we have |S(n/r)| = |T (n/r)|, and so S and T contain an equal number of elements of Zn of
order r . �

Now suppose that (M,G,Ω,P ) is a homogeneous factorisation, and let X = 〈x〉 be a cyclic regular subgroup ofM so (by
definition) this factorisation is common circulant. Suppose that P = {P1, . . . , Pk}, so the index of the factorisation is k, and
for each i let Γi be the factor digraph with arc set Pi. Let ω ∈ Ω and for each Pi ∈ P let Pi(ω) = {α ∈ Ω : (ω, α) ∈ Pi}.
Finally let S = {S1, . . . , Sk}where Si = {j : ωx

j
∈ Pi(ω)}, and letΣi = Cay(Zn, Si).
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Lemma 10. S is a partition of Zn \ {0}, and furthermore Γi ∼= Σi for each i.

Proof. Letψ be the bijectionψ : Zn → Ω defined byψ : j 7→ ωx
j
. This is a bijection because X is regular. Then for all i, we

have ψ(Si) = Pi(ω). Since {P1(ω), . . . , Pk(ω)} partitionsΩ \ {ω}, it follows that {S1, . . . , Sk} partitions Zn \ {0}.
Now Zn = VΣi and Ω = VΓi, and note that (α, β) ∈ AΣi if and only if β − α ∈ Si if and only if ωx

β−α
∈ Pi(ω).

Moreover ωx
β−α
∈ Pi(ω) if and only if (ω, ωx

β−α
) ∈ Pi if and only if (ω, ωx

β−α
)x
α
∈ Pi = AΓi. Now (ω, ωx

β−α
)x
α

= (ωx
α
, ωx

β
) = (ψ(α), ψ(β)). Thus we have shown that (α, β) ∈ AΣi if and only if (ψ(α), ψ(β)) ∈ AΓi, and so

Γi ∼= Σi. �

Now the necessity assertions of Theorem2 follow as an application of Corollary 9 and Lemma 10. Recall that the condition
CommonCirc(n, k)means that for all prime divisors r of n, we have r ≡ 1 (mod k).

Proposition 11. Let n and k be integers such that n ≥ 3 and k ≥ 2.

1. If there exists a common circulant homogeneous factorisation of degree n and index k, then CommonCirc(n, k) holds.
2. If there exists a symmetric common circulant homogeneous factorisation of degree n and index k, then CommonCirc(n, 2k)
holds.

Proof. (1) Consider the common circulant homogeneous factorisation (M,G,Ω,P ) and the associated terms specified
above. Since the Γi are pairwise isomorphic, it follows that theΣi are pairwise isomorphic. Let r be a prime divisor of n.
Then by Corollary 9, all the Si contain an equal number of elements of Zn of order r . Now there are precisely r − 1 such
elements, namely Zn(n/r) = {n/r, 2n/r, . . . , (r − 1)n/r}, and Si(n/r) = Zn(n/r) ∩ Si. Thus |Si(n/r)| = (r − 1)/k, so k
divides r − 1, and r ≡ 1 (mod k).

(2) If the factorisation is symmetric, the factor digraphs are undirected, so Si = −Si for i = 1, . . . , k, and since an
element and its inverse have the same order, we have Si(n/r) = −Si(n/r). Also r must be odd since k ≥ 2 and
r ≡ 1 (mod k) implies that r > 2. This means that each element x of Si(n/r) is distinct from its inverse−x, and hence
since Si(n/r) = −Si(n/r), |Si(n/r)| is even. Then since |Si(n/r)| = (r − 1)/k, it follows that r ≡ 1 (mod 2k). �
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