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a b s t r a c t

The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation
of a complete c-partite graph.
In 1999, Yeo conjectured that each regular c-partite tournament D with c ≥ 4 and

|V (D)| ≥ 10 contains a pair of vertex disjoint directed cycles of lengths 5 and |V (D)| − 5.
In this paper we shall confirm this conjecture using a computer program for some cases.

© 2008 Elsevier B.V. All rights reserved.

1. Terminology

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. If x is a vertex of multipartite
tournament D, then V (x) is the partite set of D such that x ∈ V (x). A tournament is a c-partite tournament with exactly
c vertices. By a cycle or pathwe mean a directed cycle or directed path.
In this paper all digraphs are finitewithout loops ormultiple arcs. The vertex set and the arc set of a digraphD are denoted

by V (D) and E(D), respectively. For a vertex set X of D, we define D[X] as the subdigraph induced by X .
If xy is an arc of a digraph D, then we write x → y and say x dominates y. If X and Y are two disjoint subsets of V (D)

or subdigraphs of D such that every vertex of X dominates every vertex of Y , then we say that X dominates Y , denoted by
X → Y . Furthermore, X ⇒ Y denotes the property that there is no arc from Y to X . By d+(X, Y ) we define the number of
arcs going from X to Y .
The out-neighborhood N+D (x) = N+(x) of a vertex x is the set of vertices dominated by x, and the in-neighborhood

N−D (x) = N
−(x) is the set of vertices dominating x. The numbers d+D (x) = d

+(x) = |N+(x)| and d−D (x) = d
−(x) = |N−(x)| are

the outdegree and indegree of x, respectively. The minimum outdegree and the minimum indegree of D are denoted by δ+(D)
and δ−(D), and themaximum outdegree and themaximum indegree of D are denoted by∆+(D) and∆−(D), respectively.
The global irregularity of a digraph D is defined by

ig(D) = max{max(d+(x), d−(x))−min(d+(y), d−(y))|x, y ∈ V (D)},

and the local irregularity by il(D) = max |d+(x)− d−(x)| over all vertices x of D. If ig(D) ≤ 1, then D is called almost regular,
and if ig(D) = 0, then D is regular.
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Fig. 1. The 3-regular 4-partite tournament D∗4,2 .

A cycle of length m is an m-cycle. A cycle or a path in a digraph D is Hamiltonian if it includes all the vertices of D. A set
X ⊆ V (D) of vertices is independent if the induced subdigraph D[X] has no arcs. The independence number α(D) = α is the
maximum size among the independent sets of vertices of D.
A digraph D is strongly connected or strong if, for each pair of vertices u and v, there is a path from u to v in D. A digraph D

with at least k+ 1 vertices is k-connected if for any set A of at most k− 1 vertices, the subdigraph D−A obtained by deleting
A is strong. The connectivity of D, denoted by κ(D), is then defined to be the largest value of k such that D is k-connected.
A cycle-factor of a digraph D is a spanning subdigraph consisting of disjoint cycles. A cycle-factor with the minimum

number of cycles is called aminimal cycle-factor. If x is a vertex of a cycle C , then the predecessor and the successor of x on C
are denoted by x− and x+, respectively. If we replace every arc xy of D by yx, then we call the resulting digraph, denoted by
D−1, the converse digraph of D.

2. Introduction and Preliminary Results

A digraphD is called cycle complementary if there exist two vertex disjoint cycles C and C ′ such that V (D) = V (C)∪V (C ′).
The problem of complementary cycles in tournaments was almost completely solved by Reid [4] in 1985 and by Z. Song [5]
in 1993. These authors proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of
length t and |V (T )| − t for all t ∈ {3, 4, . . . , |V (T )| − 3}. For c-partite tournaments with c ≥ 3, there exist the following
two conjectures.

Conjecture 2.1 ([14]). A regular c-partite tournament D with c ≥ 4 and |V (D)| ≥ 8 has a pair of vertex disjoint cycles of length
t and |V (D)| − t for all t ∈ {3, 4, . . . , |V (D)| − 3}.

Conjecture 2.2 ([6]). Let D be a multipartite tournament. If κ(D) ≥ α(D) + 1, then D is cycle complementary, unless D is a
member of a finite family of multipartite tournaments.

In 2005, Volkmann [8] confirmed the first conjecture for t = 3, unless D is isomorphic to two fixed regular 4-partite
tournament with two vertices in each partite set. In addition, Volkmann [7] showed that Conjecture 2.1 is also valid for
t = 4 when c ≥ 5 or c ≥ 4 and α(D) ≥ 4. Example 2.3 below by Volkmann [7] demonstrates that Yeo’s conjecture is not
true in general for t = 4 when c = 4 and α(D) = 2. In this paper we will show that Conjecture 2.1 is valid for t = 5, where
we use a computer program for some cases.

Example 2.3 ([7]). LetD∗4,2 be the 3-regular 4-partite tournament presented in Fig. 1. Then it is straightforward to verify that
D∗4,2 does not contain two 4-cycles C4 and C

∗

4 such that V (D
∗

4,2) = V (C4) ∪ V (C
∗

4 ).

A computer program (cf. the Appendix) has shown that D∗4,2 is the only regular 4-partite tournament with two vertices
in each partite sets that does not contain two complementary cycles of length 4. Hence one can conclude from Volkmann’s
paper [8] that Conjecture 2.1 is valid for t = 4 with exception of D∗4,2.
The following results play an important role in our investigations. We start with a well-known fact about regular

multipartite tournaments.

Lemma 2.4. If D is a regular c-partite tournament with the partite sets V1, V2, . . . , Vc , then α(D) = |V1| = |V2| = · · · = |Vc |.

Theorem 2.5 ([3]). Let T be a strongly connected tournament. Then, every vertex of T is contained in an m-cycle for each m
between 3 and |V (T )|.
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Theorem 2.6 ([1]). Each strongly connected c-partite tournament contains an m-cycle for each m ∈ {3, 4, . . . , c}.

Theorem 2.7 ([4,5]). If T is a 2-connected tournament with |V (T )| ≥ 8, then T contains two complementary cycles of length t
and |V (T )| − t for all 3 ≤ t ≤ |V (T )|/2.

Theorem 2.8 ([13]). If D is a multipartite tournament, then

κ(D) ≥
⌈
|V (D)| − 2il(D)− α(D)

3

⌉
.

Theorem 2.9 ([10]). Let D be a multipartite tournament. If α(D) is odd, then

κ(D) ≥
⌈
|V (D)| − 2il(D)− α(D)+ 1

3

⌉
.

Theorem 2.10 ([12]). Let D be a (bq/2c + 1)-connected multipartite tournament such that α(D) ≤ q. If D has a cycle-factor,
then D is Hamiltonian.

Theorem 2.11 ([15]). Let V1, V2, . . . , Vc be the partite sets of a c-partite tournament D such that |V1| ≤ |V2| ≤ · · · ≤ |Vc |. If

ig(D) ≤
|V (D)| − |Vc−1| − 2|Vc | + 2

2
,

then D is Hamiltonian.

Lemma 2.12 ([15,2]).A digraphD has no cycle-factor if and only if its vertex set V (D) can be partitioned into four subsets Y , Z, R1,
and R2 such that

R1 ⇒ Y , (R1 ∪ Y )⇒ R2, and |Y | > |Z |, (1)

where Y is an independent set.

Theorem 2.13 ([12]). Let D be a multipartite tournament having a cycle-factor but no Hamiltonian cycle. Then there exists a
partite set V ∗ of D and an indexing C1, C2, . . . , Ct of the cycles of some minimal cycle-factor of D such that for all arcs yx from
Cj to C1 for 2 ≤ j ≤ t, it holds {y+, x−} ⊆ V ∗.

Theorem 2.14 ([11]). Let D be an almost regular c-partite tournament with c ≥ 5. Then D contains a strongly connected
subtournament of order p for every p ∈ {3, 4, . . . , c}.

Theorem 2.15 ([9]). Let V1, V2, . . . , Vc be the partite sets of a c-partite tournament D with no cycle-factor such that |V1| ≤
|V2| ≤ · · · ≤ |Vc |. According to Lemma 2.12, the vertex set V (D) can be partitioned into subsets Y , Z, R1, R2 satisfying (1)
such that |Z | + k + 1 ≤ |Y | ≤ |Vc | − t with integers k, t ≥ 0. Let Vi be the partite set with the property that Y ⊆ Vi. If
Q = V (D)− Z − Vi, Q1 = Q ∩ R1, and Q2 = Q ∩ R2, then

il(D) ≥ |V (D)| − 3|Vc | + 2t + 2k+ 2 and

ig(D) ≥
|V (D)| − |Vc−1| − 2|Vc | + 3k+ 3

2
if Q1 = ∅ or Q2 = ∅ and

ig(D) ≥ il(D) ≥
|V (D)| − |Vc−1| − 2|Vc | + 3k+ 3+ t

2
if Q1 6= ∅ and Q2 6= ∅.

Lemma 2.16. Each regular 4-partite tournament contains a 5-cycle through all partite sets.

Proof. Let D be a regular 4-partite tournament with the partite sets V1, V2, V3, V4. In view of Lemma 2.4, we have |V1| =
|V2| = |V3| = |V4| = r . Since D is regular, we note that r ≥ 2. Suppose that D does not contain any 5-cycle through all
partite sets. To derive a contradiction we distinguish two cases.
Case 1. Assume that D contains a strongly connected subtournament T4 of order 4. If V (T4) = {v1, v2, v3, v4} such that,
without loss of generality, v1 → v2 → v3 → v4 → v1, v3 → v1 and v4 → v2, then we assume, without loss of generality,
that vi ∈ Vi for i ∈ {1, 2, 3, 4}. Let us define the sets A = N+(v1)− V (T4), B = N−(v1)− V (T4), V ′i = Vi ∩ A and V

′′

i = Vi ∩ B
for i = 2, 3, 4.
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If there is a vertex a ∈ A such that a → v2, then v1av2v3v4v1 is a 5-cycle containing vertices of all partite sets, a
contradiction. Hence we assume in the following that v2 ⇒ A.
If there is a vertex a ∈ A such that a → v4, then v1av4v2v3v1 is a 5-cycle through all partite sets, a contradiction. Thus

we assume in the following that v4 ⇒ A. This implies that V ′4 6= ∅, since otherwise we obtain the contradiction

d+(v1) = d+(v4) ≥ |A| + 2 = d+(v1)+ 1.

If there is a vertex v′4 ∈ V
′

4 such that v
′

4 → v3, then v1v2v′4v3v4v1 is a 5-cycle containing vertices of 4 partite sets, a
contradiction. Hence we assume that v3 → V ′4.
If there is a vertex b ∈ Bwith the property that v4 → b, then the 5-cycle v1v2v3v4bv1 leads to a contradiction. Hence we

assume that B⇒ v4.
If there is a vertex v′′2 ∈ V

′′

2 such that v3 → v′′2 , then the cycle v1v2v3v
′′

2v4v1 yields a contradiction. It remains the case
that V ′′2 → v3.
This yields V ′′2 → V ′4, since otherwise we arrive at the contradiction that v1v

′

4v
′′

2v3v4v1 is a 5-cycle through all partite
sets, where v′4 ∈ V

′

4 and v
′′

2 ∈ V
′′

2 such that v
′

4 → v′′2 .
If there are vertices v′4 ∈ V

′

4 and v
′′

3 ∈ V
′′

3 such that v
′

4 → v′′3 , then we find the 5-cycle v1v2v3v
′

4v
′′

3v1, a contradiction.
Thus assume in the following that V ′′3 → V ′4.
Summarizing some of our results we deduce that

(V ′′2 ∪ V
′′

3 ∪ {v1, v2, v3})→ V ′4 6= ∅.

This implies that V ′′4 6= ∅, since otherwise, for each v
′

4 ∈ V
′

4 we arrive at the contradiction

d−(v1) = d−(v′4) ≥ |B| + 3 = d
−(v1)+ 1.

Similarly, we conclude that for each vertex v′4 ∈ V
′

4 there is a vertex v
′

1 ∈ V1 − {v1} such that v
′

4 → v′1. Now we choose two
fix vertices v′4 ∈ V

′

4 and v
′

1 ∈ V1 − {v1} such that v
′

4 → v′1.
If there is a vertex v′′3 ∈ V

′′

3 such that v
′

1 → v′′3 , then v1v2v
′

4v
′

1v
′′

3v1 is a 5-cycle, a contradiction. Hence assume that
V ′′3 → v′1.
If there is a vertex v′′2 ∈ V

′′

2 with the property that v
′

1 → v′′2 , then v1v
′

4v
′

1v
′′

2v3v1 is a cycle through all partite sets, a
contradiction. Hence assume that V ′′2 → v′1.
If v′1 → v2, then v1v′4v

′

1v2v3v1 is a 5-cycle containing vertices of all partite sets, a contradiction. Thus assume in the
following that v2 → v′1.
Furthermore we conclude that v3 → v′1, since otherwise v1v2v

′

1v3v4v1 is a cycle through all partite sets, a contradiction.
If there is a vertex v′′4 ∈ V

′′

4 such that v
′

1 → v′′4 , then v1v2v3v
′

1v
′′

4v1 is a 5-cycle, a contradiction. It remains the case that
V ′′4 → v′1.
Altogether, we obtain the contradiction

d−(v1) = d−(v′1) ≥ |B| + |{v2, v3, v
′

4}| = d
−(v1)+ 1.

Case 2. Suppose thatDdoes not contain any strong subtournament of order 4. By the hypothesis thatD is regular, Theorem2.8
yields that D is strongly connected. Hence, according to Theorem 2.6, there exists a 3-cycle C = v1v2v3v1 in D. Assume,
without loss of generality, that vi ∈ Vi for i ∈ {1, 2, 3}.
If there exists a vertex v4 ∈ V4 having an in- and an out-neighbor in V (C), then D[{v1, v2, v3, v4}] is a strong

subtournament of order 4, a contradiction to our assumption. Hence we can decompose V4 into two subsets V ′4 and V
′′

4 such
that V ′′4 → V (C)→ V ′4. Assume, without loss of generality, that V

′

4 6= ∅. In addition, let v
′

4 ∈ V
′

4 and define U = N
+(v′4).

Subcase 2.1. Assume that V ′′4 6= ∅ and let v
′′

4 ∈ V
′′

4 . Suppose that v
′′

4 → U = N+(v′4). Using the fact that V
′′

4 → V (C), we
arrive at the contradiction

d+(v′′4 ) ≥ |N
+(v′4)| + |V (C)| = d

+(v′4)+ 3.

Thus there is a vertex u ∈ U ∩ (V1 ∪ V2 ∪ V3) such that u → v′′4 . If u ∈ Vi, then D[(V (C) − {vi}) ∪ {v
′

4, v
′′

4 , u}] contains a
5-cycle through all partite sets, a contradiction.

Subcase 2.2. Assume that V ′′4 = ∅ and thus V
′

4 = V4. If there are vertices u ∈ U and vj ∈ V (C) such that u → vj, then
uvjvj+1vj+2v′4u is a 5-cycle through all partite sets, a contradiction. Thus it remains the case that V (C) ⇒ U . But now we
arrive at the contradiction

d+(v′4) = d
+(v1) ≥ |{v2}| + |V4| + |U − V (v1)|

≥ 1+ r + d+(v′4)− (r − 1) = d
+(v′4)+ 2,

and the proof of this lemma is complete. �



Z. He et al. / Discrete Mathematics 309 (2009) 3131–3149 3135

3. Main result

Theorem 3.1. If D is a regular c-partite tournament with c ≥ 4 and |V (D)| ≥ 10, then D contains two complementary cycles
of length 5 and |V (D)| − 5.

Proof. Let V1, V2, . . . , Vc be the partite sets of D and let r = α(D). Then it follows from Lemma 2.4 that |V1| = |V2| = · · · =
|Vc | = α(D) = r and |V (D)| = cr . According to Theorem 2.8, we have

κ(D) ≥
⌈
|V (D)| − α(D)

3

⌉
=

⌈
(c − 1)r
3

⌉
. (2)

If r = 1, that means that D is a tournament, then |V (D)| = c ≥ 10 and (2) yield κ(D) ≥ 3. The desired result follows from
Theorem 2.7.
Therefore, it remains the case that r ≥ 2. In view of Lemma 2.16 and Theorem 2.6, there exists a 5-cycle C5 through

exactly 4 partite sets when c = 4. According to Theorem 2.14, there is a 5-cycle C5 through exactly 5 partite sets when
c ≥ 5. If we define the c-partite tournament H by H = D − V (C5), then |V (H)| = cr − 5. Let V ′1, V

′

2, . . . , V
′
c be the partite

sets of H such that |V ′1| ≤ |V
′

2| ≤ · · · ≤ |V
′
c |.

A. Assume that c = 4. As D is regular and |V (D)| ≥ 10, it follows that r ≥ 4 is even |V ′3| ≤ r − 1, and |V
′

4| ≤ r − 1 and
ig(H) ≤ 4. If r ≥ 8, then we deduce that

ig(H) ≤ 4 ≤
r
2
=
4r − 5− (r − 1)− 2(r − 1)+ 2

2
≤
|V (H)| − |V ′3| − 2|V

′

4| + 2
2

.

Applying Theorem 2.11, we conclude that H has a Hamiltonian cycle C , and so we have found two complementary cycles C
and C5, where C5 has length five. If c = 4, there remain the cases r = 4, 6.

B. Assume that c = 5. Since C5 contains vertices from 5 partite sets, we deduce that ig(H) ≤ 4 and |V ′i | = r − 1 for
1 ≤ i ≤ 5. If r ≥ 4, then we deduce that

ig(H) ≤ 4 ≤
2r
2
=
5r − 5− (r − 1)− 2(r − 1)+ 2

2
=
|V (H)| − |V ′4| − 2|V

′

5| + 2
2

.

Applying Theorem 2.11, we conclude that H has a Hamiltonian cycle C , and we obtain the desired complementary cycles.
Thus there remain the cases c = 5 and r = 2, 3.

C. Assume that c = 6. It follows that r is even. Since C5 contains vertices from 5 partite sets, we observe that |V ′5| ≤ r−1
and ig(H) ≤ 5. If r ≥ 4, then we deduce that

ig(H) ≤ 5 ≤
3r − 2
2
=
6r − 5− (r − 1)− 2r + 2

2
=
|V (H)| − |V ′5| − 2|V

′

6| + 2
2

.

Applying Theorem 2.11, we obtain the desired complementary cycles. Thus there remains the case that c = 6 and r = 2.
D. Assume that c ≥ 7. With exception of the four cases c = 7 and r = 2, 3, c = 8, and r = 2, as well as c = 9 and r = 2,

we have

ig(H) ≤ 5 ≤
(c − 3)r − 3

2
=
cr − 5− r − 2r + 2

2
=
|V (H)| − |V ′c−1| − 2|V

′
c | + 2

2
.

Again, Theorem 2.11 leads to the desired complementary cycles.
Case 1. Assume that c = 9 and r = 2. Then D is 8-regular and α(H) = 2. In addition, Theorem 2.8 yields κ(D) ≥ 6 and thus
κ(H) ≥ 1.
Subcase 1.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C ′1, C

′

2, . . . , C
′
t be a

minimal cycle-factor of H with the properties described in Theorem 2.13. Because of |V ∗| ≤ 2, it follows from Theorem 2.13
that there is at most one arc from H − V (C ′1) to C

′

1. As κ(H) ≥ 1, we see that there is exactly one arc from H − V (C
′

1) to C
′

1.
Since |V (H)| = 13, we can assume, without loss of generality, that |V (C ′1)| ≤ 6, because we consider the inverse digraph
D−1 when |V (C ′1)| ≥ 7. This implies that there are at least two vertices x1, x2 ∈ V (C

′

1) such that d
−

D[V (C ′1)]
(xi) ≤ 2 for i = 1, 2

and thus d−D (x1) ≤ 7 or d
−

D (x2) ≤ 7, a contradiction to the 8-regularity of D.
Subcase 1.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V (H) can be partitioned
into subsets Y , Z, R1, R2 such that R1 ⇒ Y , (R1 ∪ Y ) ⇒ R2, |Y | > |Z |, and Y is an independent set. Since κ(H) ≥ 1 and
α(H) = 2, we see that 1 = |Z | < |Y | = 2. Let, without loss of generality, Y = V ′9 and |R1| ≤ |R2|. Since D is 8-regular, we
see that d+H (x), d

−

H (x) ≥ 3 for every x ∈ V (H) and d
+

H (x), d
−

H (x) ≥ 4 for x ∈ (V
′

1 ∪ V
′

2 ∪ V
′

3 ∪ V
′

4 ∪ V
′

5).
If R1 = ∅, then V ′9 = Y → R2 leads to the contradiction d−H (y) ≤ 1 for y ∈ Y . If 1 ≤ |R1| ≤ 4, then there exists a vertex

x ∈ R1 such that d−H (x) ≤ 2, a contradiction. In the remaining case |R1| = 5, we arrive at the contradiction that there exists a
vertex x ∈ R1 such that d−H (x) ≤ 2 or the induced subdigraph H[R1] is a 2-regular tournament. In the second case, we obtain
the contradiction d−H (x) ≤ 3 for some vertex x ∈ R1 ∩ (V

′

1 ∪ V
′

2 ∪ V
′

3 ∪ V
′

4 ∪ V
′

5).
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Case 2. Assume that c = 8 and r = 2. Then D is 7-regular and α(H) = 2. Let V ′1 = {a}, V
′

2 = {b}, V
′

3 = {c}, V
′

4 = {d}, V
′

5 =

{z}, V ′6 = {u1, u2}, V
′

7 = {v1, v2}, and V
′

8 = {w1, w2} be the partite sets of H andW = {a, b, c, d, z}

Subcase 2.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C ′1, C
′

2, . . . , C
′
t be a

minimal cycle-factor with the properties described in Theorem 2.13. Because of |V ∗| ≤ 2, it follows from Theorem 2.13 that
there is atmost one arc fromH−V (C ′1) to C

′

1. Since |V (H)| = 11, we can assume, without loss of generality, that |V (C
′

1)| ≤ 5.
If |V (C ′1)| ≤ 4, then there are at least two vertices x1, x2 ∈ V (C

′

1) such that d
−

D[V (C ′1)]
(xi) = 1 for i = 1, 2. This implies

d−D (x1) ≤ 6 or d
−

D (x2) ≤ 6, a contradiction to the 7-regularity of D.
Assume now that |V (C ′1)| = 5. If there exist at least two vertices x1, x2 ∈ V (C

′

1) such that d
−

D[V (C ′1)]
(xi) = 1 for i = 1, 2,

then we arrive at a contradiction as in the case |V (C ′1)| ≤ 4. Otherwise, the digraph D[V (C
′

1)] is 4- or 5-partite. If D[V (C
′

1)] is
4-partite, then there exists a vertex x1 ∈ V (C ′1) such that d

−

D[V (C ′1)]
(x1) = 1, and there are vertices x ∈ V (C5) and y ∈ V (C ′1)

which are not adjacent. This leads to the contradiction d−D (x1) ≤ 6 or d
−

D (y) ≤ 6. If D[V (C
′

1)] is 5-partite, then there exist
x1, x2 ∈ V (C5) and y1, y2 ∈ V (C ′1) such that xi and yi are not adjacent for i = 1, 2, andwe arrive analogously at a contradiction
to the 7-regularity of D.

Subcase 2.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V (H) can be partitioned
into subsets Y , Z, R1, R2 such that R1 ⇒ Y , (R1 ∪ Y )⇒ R2, |Y | > |Z |, and Y is an independent set. Since D is 7-regular, we
see that d+H (x), d

−

H (x) ≥ 2 for every x ∈ V (H) and d
+

H (x), d
−

H (x) ≥ 3 for every x ∈ W . This easily implies that Z = ∅ is not
possible. Thus let now 1 = |Z | < |Y | = 2 and let, without loss of generality, Y = V ′8 = {w1, w2} and |R1| ≤ |R2|.
If R1 = ∅, then Y ⇒ R2 leads to the contradiction d−H (y) ≤ 1 for y ∈ Y . If 1 ≤ |R1| ≤ 2, then there exists a vertex x ∈ R1

such that d−H (x) ≤ 1, a contradiction. If |R1| = 3, we arrive at the contradiction that there exists a vertex x ∈ R1 such that
d−H (x) ≤ 1 or the induced subdigraph H[R1] is a 3-cycle. In the second case, we obtain the contradiction d

−

H (x) ≤ 3 for some
vertex x ∈ R1 ∩W .
In the remaining case that |R1| = 4, we deduce that |R2| = 4. If there is a vertex y ∈ R1 with d−H[R1](y) = 0 or a vertex

y ∈ R2 with d+H[R2](y) = 0, then we obtain a contradiction to d
+

H (x), d
−

H (x) ≥ 2 for every x ∈ V (H). Thus we assume in the
following that d−H[R1](x) ≥ 1 for every x ∈ R1 and d

+

H[R2]
(x) ≥ 1 for every x ∈ R2. Now we distinguish 3 cases.

Assume thatH[R1] is a bipartite tournament. It follows thatR1 = V ′6 ∪ V
′

7. Hence there exists at least one vertex x ∈ R2∩W
such that d+H (x) ≤ 2, a contradiction.
Assume that H[R1] is a 3-partite tournament but not bipartite. Let, without loss of generality, V ′7 ⊂ R1. In the case that

R1 ∩ V ′6 = ∅, we arrive at the contradiction that there exists a vertex x ∈ R1 ∩W such that d
−

H (x) ≤ 2. In the remaining case
that R1 ∩ V ′6 6= ∅, we arrive at the contradiction that there exists at least one vertex x ∈ R2 ∩W such that d

+

H (x) ≤ 2.
Assume that H[R1] is a tournament. If H[R2] is not a tournament, then we arrive at a contradiction similar to the two

cases above. Furthermore, we obtain a contradiction or we deduce that, without loss of generality, R1 = {u1, v1, a, b},
R2 = {u2, v2, c, d} and Z = {z} such that Z → R1 → Y → R2 → Z and R1 ⇒ R2 so that d+H (x) = 7 for every x ∈ R1 and
d−H (y) = 7 for every y ∈ R2. If C5 = x1x2x3x4x5x1, then the 7-regularity of D implies that R2 ⇒ C5 ⇒ R1. Hence there exists
the new 5-cycle C∗5 = v1w1u2x1x2v1. If we assume, without loss of generality, that a→ b and c → d, then there exists the
complementary cycle x3x4x5u1w2cdzabv2x3.

Case 3. Assume that c = 7 and r = 3. Then D is 9-regular and α(H) = 3. In addition, Theorem 2.9 yields κ(D) ≥ 7 and thus
κ(H) ≥ 2. If H has a cycle factor, then Theorem 2.10 shows that H is Hamiltonian, and we are done.
Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V (H) can be partitioned into

subsets Y , Z, R1, R2 such that R1 ⇒ Y , (R1∪Y )⇒ R2, |Y | > |Z |, and Y is an independent set. Since κ(H) ≥ 2 and α(H) = 3,
we see that 2 = |Z | < |Y | = 3. Let, without loss of generality, Y = V ′7 and |R1| ≤ |R2|. Since D is 9-regular, we see that
d+H (x), d

−

H (x) ≥ 4 for every x ∈ V (H) and d
+

H (x), d
−

H (x) ≥ 5 for x ∈ (V
′

1 ∪ V
′

2 ∪ V
′

3 ∪ V
′

4 ∪ V
′

5).
If R1 = ∅, then Y → R2 leads to the contradiction d−H (y) ≤ 2 for y ∈ Y . If 1 ≤ |R1| ≤ 4, then there exists a vertex x ∈ R1

such that d−H (x) ≤ 3, a contradiction. In the remaining case |R1| = 5, we arrive at the contradiction that there exists a vertex
x ∈ R1 such that d−H (x) ≤ 3 or the induced subdigraph H[R1] is a 2-regular tournament. In the second case, we obtain the
contradiction d−H (x) ≤ 4 for some vertex x ∈ R1 ∩ (V

′

1 ∪ V
′

2 ∪ V
′

3 ∪ V
′

4 ∪ V
′

5).

Case 4. Assume that c = 7 and r = 2. Then D is 6-regular and α(H) = 2. Let V ′1 = {a}, V
′

2 = {b}, V
′

3 = {c}, V
′

4 = {d}, V
′

5 =

{z}, V ′6 = {u1, u2}, and V
′

7 = {v1, v2} be the partite sets of H andW = {a, b, c, d, z}. Since D is 6-regular, we observe that
d+H (x), d

−

H (x) ≥ 1 for every x ∈ V (H) and d
+

H (x), d
−

H (x) ≥ 2 for every x ∈ W . In addition, let C5 = x1x2x3x4x5x1.

Subcase 4.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C ′1, C
′

2, . . . , C
′
t be a

minimal cycle-factor with the properties described in Theorem 2.13. Because of |V ∗| ≤ 2, it follows from Theorem 2.13 that
there is at most one arc from H − V (C ′1) to C

′

1.
If C ′1 is a 3-cycle, then we arrive at a contradiction with exception of the case that C

′

1 has, without loss of generality, the
form C ′1 = au1v1a, and there is an arc fromH−V (C

′

1) to a. In addition, we deduce that T6 = H−V (C
′

1) is a strong tournament
and C5 → v1. According to Theorem 2.5, there exists a 5-cycle C∗5 containing u2 in T6. Now let y ∈ (V (T6)−V (C

∗

5 )). SinceD is
6-regular, there exists an arc from y to C5, say y→ x1. This implies that x1x2x3x4x5v1au1yx1 is a complementary cycle of C∗5 .
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Subcase 4.1.1. Assume that C ′1 is a 4-cycle and that there is no arc from the 5-cycle C
′

2 to C
′

1. It follows that V (C
′

1) ∩ V
′

6 6= ∅

and V (C ′1) ∩ V
′

7 6= ∅. We distinguish the three cases that H[V (C
′

1)] is 4-partite, 3-partite or bipartite.
Subcase 4.1.1.1. Assume that H[V (C ′1)] is 4-partite. This implies, without loss of generality, that C

′

1 = av1u1ba such that
v1 → b and u1 → a. It follows that C5 ⇒ C ′1. Next let, without loss of generality, C

′

2 = v2y2y3y4y5v2. Since T5 = D[V (C5)]
is a strong tournament, we conclude from Theorem 2.5 that either there are at least three distinct verticesw1, w2, w3 in T5
such that T5 − wi is strong for i = 1, 2, 3 or we suppose that xj → xi for 1 ≤ i < j ≤ 5 and j− i ≥ 2.
If T5 − wi is strong for i = 1, 2, 3, then it follows that v2 → w1 or v2 → w2 or v2 → w3, say v2 → w1 = x1.

Since y5 dominates at least one vertex of T5 − x1, say y5 → x2, we arrive at the complementary cycles x1u1bav2x1 and
x2x3x4x5v1y2y3y4y5x2.
If xj → xi for 1 ≤ i < j ≤ 5 and j − i ≥ 2, then C ′2 → x5 and y5 dominates at least one vertex of T5 − x5, say y5 → x1.

Now we arrive at the complementary cycles x5u1bav2x5 and x1x2x3x4v1y2y3y4y5x1.
Subcase 4.1.1.2. Assume that H[V (C ′1)] is 3-partite. This implies, without loss of generality, that C

′

1 = au1v1u2a such that
v1 → a. It follows that C5 ⇒ C ′1. Next let, without loss of generality, C

′

2 = v2y2y3y4y5v2. As above, the strong connectivity
of T5 = D[V (C5)] implies that either there are at least three distinct verticesw1, w2, w3 in T5 such that T5 −wi is strong for
i = 1, 2, 3 or we suppose that xj → xi for 1 ≤ i < j ≤ 5 and j− i ≥ 2.
If T5 − wi is strong for i = 1, 2, 3, then it follows that v2 → w1 or v2 → w2 or v2 → w3, say v2 → w1 = x1.

Since y5 dominates at least one vertex of T5 − x1, say y5 → x2, we arrive at the complementary cycles x1v1au1v2x1 and
x2x3x4x5u2y2y3y4y5x2.
If xj → xi for 1 ≤ i < j ≤ 5 and j − i ≥ 2, then C ′2 → x5 and y5 dominates at least one vertex of T5 − x5, say y5 → x1.

Now we have the complementary cycles x5v1au1v2x5 and x1x2x3x4u2y2y3y4y5x1.
Subcase 4.1.1.3. Assume that H[V (C ′1)] is bipartite. This implies, without loss of generality, that C

′

1 = u1v1u2v2u1 and that
C5 → C ′1. Next let C

′

2 = y1y2y3y4y5y1. It follows that D[V (C
′

2)] as well as D[V (C5)] are 2-regular tournaments and that
D[V (C5)] − xi is strong for each 1 ≤ i ≤ 5. If we assume, without loss of generality, that y1 → x1, then we can assume,
without loss of generality, that y5 → x2. Now we have the complementary cycles x1u2v2u1y1x1 and x2x3x4x5v1y2y3y4y5x2.
Subcase 4.1.2. Assume that C ′1 = p1p2p3p4p1 is a 4-cycle such that there is an arc, say y1p1 from the 5-cycle C

′

2 = y1y2y3y4y5y1
to C ′1. If, without loss of generality, V

∗
= V ′7 = {v1, v2}, then Theorem 2.13 shows that, without loss of generality, p4 = v1

and y2 = v2.
Subcase 4.1.2.1. Assume that V (C ′1)∩V

′

6 = ∅. The 6-regularity ofD leads to p1 → p3 and v1 → p2. Thus y1p1p3v1p2v2y3y4y5y1
is a complementary cycle of C5.
Subcase 4.1.2.2. Assume that V (C ′1) ∩ V

′

6 = {u1} and u1 = p1. The 6-regularity of D leads to u1 → p3 and v1 → p2. Thus
y1u1p3v1p2v2y3y4y5y1 is a complementary cycle of C5.
Subcase 4.1.2.3. Assume that V (C ′1) ∩ V

′

6 = {u1} and u1 = p2. The 6-regularity of D leads to p1 → p3. If v1 → u1, then
y1p1p3v1u1v2y3y4y5y1 is a complementary cycle of C5.
Assume next that u1 → v1. The 6-regularity of D leads to C5 ⇒ {p1, p3} and C5 → u1. We assume, without loss of

generality, that v1 → x1 and thus {x2, x3, x4, x5} → v1. If x5 → p1, then we have the two complementary cycles C ′2 and
v1x1x2x3x4x5p1u1p3v1. Hence there remains the case that V (x5) = V (p1). Because of

∑5
i=1 d

−

H (yi) = 27, there are at least
two vertices yi and yj in C ′2 such that {yi, yj} ⇒ C5. We distinguish the following subcases where the subscripts are taken
modulo 5.
Subcase 4.1.2.3.1. Assume that yj = yi+1.
If yi+1 6= v2 and V (yi) 6= V (x4), then x5x1x2v1yi+1x5 and x3x4p1u1p3yi−3yi−2yi−1yix4 are complementary cycles.
If yi+1 = v2 and V (yi) 6= V (x4), then x2x3v1p1yi+1x2 and x4x5x1u1p3yi−3yi−2yi−1yix4 are complementary cycles.
If yi+1 6= v2 and V (yi) = V (x4), then x4x5u1v1yi+1x4 and x1x2x3p1p3yi−3yi−2yi−1yix1 are complementary cycles.
If yi+1 = v2 and V (yi) = V (x4), then x4x5v1p1yi+1x4 and x1x2x3u1p3yi−3yi−2yi−1yix1 are complementary cycles.

Subcase 4.1.2.3.2. Assume that yj = yi+2.
If yi+1 → yi+3, thenwe are in the same situation as in Subcase 4.1.2.3.1whenweuse yi+2 instead of yi+1 and yi+1yi+3yi+4yi

instead of yi−3yi−2yi−1yi.
If yi+4 → yi+1, thenwe are in the same situation as in Subcase 4.1.2.3.1whenweuse yi instead of yi+1 and yi+3yi+4yi+1yi+2

instead of yi−3yi−2yi−1yi.
In the remaining case that yi+3 → yi+1 and yi+1 → yi+4, we use in Subcase 4.1.2.3.1 yi+2 instead of yi+1 and yi+3yi+1yi+4yi

instead of yi−3yi−2yi−1yi.
Subcase 4.1.2.4. Assume that V (C ′1) ∩ V

′

6 = {u1} and u1 = p3. The 6-regularity of D leads to v1 → p2. If p1 → u1, then
y1p1u1v1p2v2y3y4y5y1 is a complementary cycle of C5. Otherwise we have u1 → p1, and the 6-regularity of D leads to
C5 → v1. If, without loss of generality, p1 → x1, then there exist the complementary cycles C ′2 and p1x1x2x3x4x5v1p2u1p1.
Subcase 4.1.2.5. Assume that V (C ′1) ∩ V

′

6 = {u1, u2}. This implies, without loss of generality, that C
′

1 = u1p2u2v1u1. The 6-
regularity of D leads to v1 → p2 and thus C5 ⇒ p2 and C5 → {v1, u2}. We assume, without loss of generality, that u1 → x1
and thus {x2, x3, x4, x5} → u1. If x5 → p2, then we have the two complementary cycles C ′2 and u1x1x2x3x4x5p2u2v1u1. Hence
there remains the case that V (x5) = V (p2). Because of

∑5
i=1 d

−

H (yi) = 28, there are at least two vertices yi and yi+1 in C
′

2
such that {yi, yi+1} ⇒ C5.
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If yi+1 6= v2 and V (yi) 6= V (x4), then x5x1x2v1yi+1x5 and x3x4u1p2u2yi−3yi−2yi−1yix4 are complementary cycles.
If yi+1 = v2 and V (yi) 6= V (x4), then x2x3v1u1yi+1x2 and x4x5x1p2u2yi−3yi−2yi−1yix4 are complementary cycles.
If yi+1 6= v2 and V (yi) = V (x4), then x4x5u2v1yi+1x4 and x1x2x3u1p2yi−3yi−2yi−1yix1 are complementary cycles.
If yi+1 = v2 and V (yi) = V (x4), then x4x5v1u1yi+1x4 and x1x2x3p2u2yi−3yi−2yi−1yix1 are complementary cycles.

Subcase 4.1.3. Assume that C ′1 is a 5- or 6-cycle. Using the converse D
−1 of D, we obtain the desired results by the cases

discussed above.
Subcase 4.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V (H) can be partitioned
into subsets Y , Z, R1, R2 such that R1 ⇒ Y , (R1 ∪ Y )⇒ R2, |Y | > |Z |, and Y is an independent set. Assume, without loss of
generality, that |R1| ≤ |R2|.
Subcase 4.2.1. Assume that Z = ∅. If R1 = ∅, then we arrive at the contradiction d+H (y) ≥ 7 for every y ∈ Y . If 1 ≤ |R1| ≤ 3,
then we obtain the contradiction d−H (x) = 0 for a vertex x ∈ R1 or d

−

H (x) ≤ 1 for a vertex x ∈ R1 ∩W . In the remaining case
that |R1| = |R2| = 4 and |Y | = 1, we receive at a contradiction or, without loss of generality, the subdigraph H[R1] consists
of the 4-cycle u1v1abu1 such that u1 → a and v1 → b and the subdigraph H[R2] consists of the 4-cycle u2v2cdu2 such that
c → u2 and d → v2 or H[R2] consists of the 4-cycle v2u2cdv2 such that c → v2 and d → u2 and Y = {z}. In addition, we
deduce that R2 ⇒ C5 ⇒ R1. In the first case, we obtain the complementary cycles x1v1abu2x1 and x2x3x4x5u1zcdv2x2 and in
the second case x1v1abv2x1 and x2x3x4x5u1zcdu2x2.
Subcase 4.2.2. Assume that Z 6= ∅. It follows that 1 = |Z | < |Y | = 2. Assume, without loss of generality, that
Y = V ′7 = {v1, v2}. It follows that R1 → Y → R2.
Subcase 4.2.2.1. Assume that R1 = ∅. This implies that Z → Y and C5 → Y . Let R2 = {y1, y2, y3, y4, y5, y6}.
Subcase 4.2.2.1.1. Assume that Z ⊂ W , say Z = {z}. Since D is 6-regular, we see that there are at least two vertices in R2, say
y1 and y2, such that {y1, y2} → z.
Subcase 4.2.2.1.1.1. Assume that {y1, y2} = {u1, u2}. Let, without loss of generality, y3y4y5y6 be a Hamiltonian path of the
tournament induced by this vertex set. If yi → uj for i = 4, 5, 6 and j = 1, 2, then there exists the 5-cycle yi−1yiujzv1yi−1.
If p1p2p3 is a Hamiltonian path of the remaining vertices in R2 such that, without loss of generality, p3 → x1, then
x1x2x3x4x5v2p1p2p3x1 is a complementary cycle. Therefore we can assume in the following that {u1, u2} → {y4, y5, y6}.
If yi → z for i = 5, 6, then there exists the 5-cycle u1yi−1yizv1u1, and analogously to above also a complementary cycle.
So we assume now that z → {y5, y6}. This implies that {y5, y6} → y3. As above we receive to two desired complementary
cycles or {u1, u2} → y3. It follows that y3 → z and as before we obtain the desired complementary cycles.
Subcase 4.2.2.1.1.2. Assume that {y1, y2} 6= {u1, u2}. Assume, without loss of generality, that y1 → y2.
If there is a vertex in R2, say y3, such that y3 → y1, then there is the 5-cycle y3y1y2zv1y1 and a complementary 9-cycle,

with exception of the cases that {y4, y5, y6} = {u1, u2, y6} such that {u1, u2} → y6 or y6 → {u1, u2}. Assume first that
{u1, u2} → y6. If y6 → yi for an i = 1, 2, then there exists the 5-cycle u1y6yizv1u1 and a complementary 9-cycle. Otherwise,
we have {y1, y2} → y6 and thus y6 → z. If y1 → u1, then there is the 5-cycle y1u1y6zv1y1 and also a complementary cycle.
In the other case u1 → y1, there is the 5-cycle u1y1y2zv1u1 and a complementary cycle. The second case that y6 → {u1, u2}
is similar. It remains the case that y1 ⇒ {y3, y4, y5, y6}.
Subcase 4.2.2.1.1.2.1. Assume that y1 = u1 and let, without loss of generality, y3 = u2. If yi → y2 for an i = 4, 5, 6,
then there is the 5-cycle u1yiy2zv1u1 and a complementary cycle. It remains the case that y2 → {y4, y5, y6}. Because of
Subcase 4.2.2.1.1.1, we can assume that z → u2. If yi → z for an i = 4, 5, 6, then there is the 5-cycle u1y2yizv1u1 and
a complementary cycle. Otherwise we have z → {y4, y5, y6}, and the 6-regularity shows, without loss of generality, that
y4 → y5 → y6 → y4. Thus we obtain {y4, y5, y6} → u2 → C5, If, without loss of generality, y6 → x4, then we arrive at the
complementary cycles x1x2x3v2u2x1 and x4x5v1u1y2zy4y5y6x4.
Subcase 4.2.2.1.1.2.2. Assume that y2 = u1 and let, without loss of generality, y3 = u2. If yi → u1 for an i = 4, 5, 6,
then there is the 5-cycle y1yiu1zv1y1 and a complementary cycle. It remains the case that u1 → {y4, y5, y6}. Because of
Subcase 4.2.2.1.1.1, we can assume that z → u2. If yi → z for an i = 4, 5, 6, then there is the 5-cycle y1u1yizv1y1 and
a complementary cycle. Otherwise we have z → {y4, y5, y6}, and the 6-regularity shows, without loss of generality, that
y4 → y5 → y6 → y4. Thus we obtain {y4, y5, y6} → u2, and hence the contradiction d−(u2) ≥ 7.
Subcase 4.2.2.1.1.2.3. Assume that {y1, y2} ⊂ W and let, without loss of generality, y3 = u1 and y4 = u2. In addition, we
assume, without loss of generality, that z → u1 and y5 → y6. If ui → y2 for an i = 1, 2, then there is the 5-cycle y1uiy2zv1y1
and a complementary cycle. Otherwise we have y2 → {u1, u2}. If u2 → z, then there is the 5-cycle y1y2u2zv1y1 and a
complementary cycle. It remains the case that z → u2.
Assume next that y6 → y2. If ui → y6 for an i = 1, 2, then there is the 5-cycle uiy6y2zv1ui and a complementary cycle.

Otherwise we have y6 → {u1, u2}, and this implies that u1 → C5 and u2 → y5. If, without loss of generality, y6 → x4, then
we arrive at the complementary cycles x1x2x3v2u1x1 and x4x5v1y1y2zu2y5y6x4.
Assume now that y2 → y6 and y5 → y2. If ui → y5 for an i = 1, 2, then there is the 5-cycle uiy5y2zv1ui and a

complementary cycle. Otherwise we have y5 → {u1, u2}, and this implies that {u1, u2} → y6. This yields the contradiction
d−(y6) ≥ 7.
Finally, assume that y2 → y6 and y2 → y5. The 6-regularity of D shows that y6 → u1 or y6 → u2, say y6 → u1. This

implies u1 → y5. If y5 → z, then there is the 5-cycle y1u1y5zv1y1 and a complementary cycle. Otherwise we have z → y5.
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It follows that y5 → u2 and thus u2 → y6 and so y6 → z. This finally leads to the complementary cycles u1y5y6zv1u1 and
x1x2x3x4x5v2y1y2u2x1.
Subcase 4.2.2.1.2. Assume that Z ⊂ V ′6, say Z = {u1}. Since D is 6-regular, there is at least one vertex in R2, say y1, such that
y1 → u1.
Subcase 4.2.2.1.2.1. Assume that there exists a vertex in R2, say y2, such that y2 → y1. If yi → y2 for an i = 3, 4, 5, 6,
then there is the 5-cycle yiy2y1u1v1yi and a complementary cycle. Hence it remains the case that y2 → {y3, y4, y5, y6}. If
yi → y1 for an i = 3, 4, 5, 6, then there is the 5-cycle y2yiy1u1v1yi and a complementary cycle. Hence it remains the case
that y1 → {y3, y4, y5, y6}.
Assume that y2 = u2. If yi → u1 for an i = 3, 4, 5, 6, then the same arguments as above lead to two desired

complementary cycles. It remains the case that u1 → {y3, y4, y5, y6}. This leads to the contradiction d−(yi) ≥ 7 for at
least two i ∈ {3, 4, 5, 6}.
Assume that y2 6= u2 and, without loss of generality, that y6 = u2. If yi → u1 for an i = 3, 4, 5, then the same arguments

as above lead to two desired complementary cycles. It remains the case that u1 → {y3, y4, y5}. It follows, without loss of
generality, that y3 → y4 → y5 → y3 and thus {y3, y4, y5} → u2, and we arrive at the contradiction d−(u2) ≥ 7.
Subcase 4.2.2.1.2.2. Assume that y1 → {y2, y3, y4, y5, y6} and let, without loss of generality, y6 = u2. With respect to
Subcase 4.2.2.1.2.1, we can assume that u1 → {y2, y3, y4, y5}. This implies that C5 → u1. For the tournament induced
by {y2, y3, y4, y5}, we have, without loss of generality, the following two possibilities.
1. Possibility. Assume that y2 → {y3, y4, y5} and y3 → y4 → y5 → y3. This implies {y3, y4, y5} → u2 and thus

u2 → y2, u2 → C5 and {y3, y4, y5} ⇒ C5. If, without loss of generality, y5 → x4, then we arrive at the complementary
cycles x1x2x3v1u2x1 and x4x5v2y1u1y2y3y4y5x4.
2. Possibility. Assume that y2 → y3 → y4 → y5 → y2, y2 → y4, and y3 → y5. This implies {y4, y5} → u2 and

{y4, y5} ⇒ C5. If, without loss of generality, u2 → x1, then we arrive at the complementary cycles x1x2x3v1u2x1 and
x4x5v2y1u1y2y3y4y5x4 when V (y5) 6= V (x4) or x4x5v2y1u1y5y2y3y4x4 when V (y5) = V (x4).
Subcase 4.2.2.2. Assume that |R1| = 1. We deduce, without loss of generality, that R1 = {u1} and Z = {z}. This implies that
z → u1 and C5 → u1. Let R2 = {y1, y2, y3, y4, y5}.
Subcase 4.2.2.2.1. Assume that there is an arc from Z to Y , say z → v1. This implies that there exists an arc from R2 to Z , say
y1 → z.
Assume that there is an arc yi → y1, say y2 → y1. If there is a further arc, say y3 → y2, then there is the 5-cycle

y3y2y1zv1y3. If, without loss of generality, y4 → y5 → x1, then there exists the complementary cycle x1x2x3x4x5u1v2y4y5x1.
Otherwise we have y2 → {y3, y4, y5}. If yi → y1 for an i = 3, 4, 5, then we find the desired complementary cycles as in
the last case. Thus assume that y1 → {y3, y4, y5}. If yi → z for an i = 3, 4, 5, then we obtain our complementary cycles as
above. However, if z → {y3, y4, y5}, then we arrive at a contradiction to the 6-regularity of D.
Next assume that y1 → {y2, y3, y4, y5}. If yi → z for an i = 2, 3, 4, 5, then we are in a situation as discussed before.

However, the case z → {y2, y3, y4, y5}, leads to a contradiction to the 6-regularity of D.
Subcase 4.2.2.2.2. Assume that Y → z. It follows that C5 → Y . If there is an arc from R2 to Z , say y1 → z and an
arc, say y2 → y1, then there is the 5-cycle y2y1zu1v1y2. Since C5 → v2 it is easy to find a complementary cycle. If
y1 → z and y1 → {y2, y3, y4, y5}, then we arrive at a contradiction to the 6-regularity as above. Therefore it remains
the case that z → R2. Let, without loss of generality, y5 = u2. If the tournament induced by the vertices y1, y2, y3, y4
is transitive, then we obtain a contradiction to the 6-regularity of D. Hence there exists a 3-cycle, say y1y2y3y1. If we
assume, without loss of generality, that y4 → y5 → x1, then there is the 5-cycle x1x2v1y4y5x1. In addition, we observe
that y1 → x3 or y2 → x3 or y3 → x3. If not, then we arrive at the contradiction x3 → {x4, v1, v2, u1, y1, y2, y3} or
x3 → {x4, v1, v2, u1, z, y2, y3} when V (x3) = V (y1) for example. If, without loss of generality, y1 → x3, then there is
the complementary cycle x3x4x5v2zu1y2y3y1x3.
Subcase 4.2.2.3. Assume that |R1| = 2. In this case we distinguish two cases.
Subcase 4.2.2.3.1. Assume that R1 = {u1, u2}. This implies, without loss of generality, that Z = {a} and Z → R1 and thus
C5 → R1. Since D is 6-regular, there are at least two vertices, say d and z, in R2 such that {d, z} → a and {d, z} ⇒ C5. If we
assume, without loss of generality, that d→ z, then we deduce that {b, c} → d and c → z. It follows that z → b. Next we
assume, without loss of generality, that V (z) 6= V (x1) and x2 → v1.
If b→ a and V (d) 6= V (x3), then there are the complementary cycles x1x2v1czx1 and x3x4x5u1v2bau2dx3.
If b→ a and V (d) = V (x3), then there are the complementary cycles x1x2v1cdx1 and x3x4x5u1v2bau2zx3.
If a → b, then we observe that b ⇒ C5. If V (b) 6= V (x3), then there are the complementary cycles x1x2v1czx1 and

x3x4x5u1v2dau2bx3.
It remains the case that V (b) = V (x3). If x3 → v1 and V (d) 6= V (x1), then there are the complementary cycles

x1x2x3v1dx1 and x4x5u1v2czau2bx4. If x3 → v1 and V (d) = V (x1), then there are the complementary cycles x2x3v1cdx2
and x4x5x1u1v2zau2bx4. Otherwise v1 → x3, and we arrive at the complementary cycles v1x3x4x5u1v1 and x1x2u2v2cdzabx1.
Subcase 4.2.2.3.2. Assume, without loss of generality, that R1 = {b, u1} and Z = {a} such that u1 → b and a→ {b, u1}. This
implies that C5 ⇒ b and C5 → u1. Let R2 = {y1, y2, y3, y4}.
Assume that there exists an arc from R2 to Z , say y1 → a. If there is an arc yi → y1, say y2 → y1, thenwe have the 5-cycle

y2y1abv1y2. If, without loss of generality, y3 → y4 → x1, then there exists the complementary cycle x1x2x3x4x5u1v2y3y4x1.
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Otherwise we have y1 → {y2, y3, y4}. If yi → a for an i = 2, 3, 4, then we obtain our complementary cycles as in the case
before. However, if a → {y2, y3, y4}, then we arrive at a contradiction to the 6-regularity of D. In the remaining case that
a→ {y1, y2, y3, y4}, there is a vertex yi ∈ R2 with d−(yi) ≥ 7, a contradiction.
Subcase 4.2.2.4. Assume that |R1| = |R2| = 3. Under this condition we discuss three cases. In the remaining cases we obtain
the desired result by using the converse D−1 of D.
Subcase 4.2.2.4.1. Assume that R1 = {b, u1, u2}. This implies, without loss of generality, that Z = {a}, u1 → b, c → d →
z → c , R2 → a, and R2 ⇒ C5. Now we distinguish two cases.
Assume first that u2 → b. It follows that C5 → {u1, u2} and a→ {u1, u2}. If we assume, without loss of generality, that

x3 → v2 and V (x1) 6= V (c), then there are the complementary cycles x1x2x3v2cx1 and x4x5u2bv1dau1zx4 when V (z) 6= V (x4)
or x4x5u2bv1zau1dx4 when V (z) = V (x4).
Assume second that b → u2. It follows that C5 → u1 and a → {u1, b}. If we assume, without loss of generality, that

x3 → v2 and V (x1) 6= V (c), then there are the complementary cycles x1x2x3v2cx1 and x4x5u1v1dabu2zx4 when V (z) 6= V (x4)
or x4x5u1v1zabu2dx4 when V (z) = V (x4).
Subcase 4.2.2.4.2. Assume that R1 = {b, c, u1} and Z = {u2}. It follows, without loss of generality, that a → d → z → a,
R2 → u2, and R2 ⇒ C5. If, without loss of generality, b → c , then we conclude that u2 → {b, c}, c → u1 → b, and
C5 → u1. If we assume, without loss of generality, that x3 → v2 and V (x1) 6= V (a), then there are the complementary
cycles x1x2x3v2ax1 and x4x5u1v1du2bczx4 when V (z) 6= V (x4) or x4x5u1v1zu2bcdx4 when V (z) = V (x4).
Subcase 4.2.2.4.3. Assume that R1 = {b, c, u1} and, without loss of generality, Z = {a}. If, without loss of generality, b→ c
and d→ z, then we deduce that {a, u1} → b and z → {a, u2}. It follows that z ⇒ C5 ⇒ b. Now there remain the four cases
that c → u1 and d→ u2, c → u1 and u2 → d, u1 → c and d→ u2, as well as u1 → c and u2 → d.
Weonly discuss the case that c → u1 andu2 → d, the other cases are similar. It follows that d⇒ C5 ⇒ c and d→ a→ c.

Since u2 has at least 4 out-neighbors in C5, and u1 has at least 4 in-neighbors in C5, there exists an index i such that xi → u1
and u2 → xi+1 for 1 ≤ i ≤ 5. This leads to the complementary cycles dabcv1d and xi+1xi+2xi+3xi+4xiu1v2zu2xi+1.
Case 5. Assume that c = 6 and r = 2. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the
Appendix).
Case 6. Assume that c = 5 and r = 3. Then D is 6-regular and α(H) = 2. Let V1 = {a1, a2, a3}, V2 = {b1, b2, b3},
V3 = {c1, c2, c3}, V4 = {u1, u2, u3}, V5 = {v1, v2, v3} and, without loss of generality, C5 = a1b1c1u1v1a1. Since D is 6-regular,
we observe that d+H (x), d

−

H (x) ≥ 2 for every x ∈ V (H).
Subcase 6.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C ′1, C

′

2, . . . , C
′
t be a

minimal cycle-factor of H with the properties described in Theorem 2.13. Because of |V ∗| ≤ 2, it follows from Theorem 2.13
that there is at most one arc from H−V (C ′1) to C

′

1. If |V (C
′

1)| ≤ 4, then we conclude that there exists a vertex x ∈ V (C
′

1)with
d−H (x) ≤ 1, a contradiction. If |V (C

′

1)| ≥ 6, then we obtain similarly the contradiction that there exists a vertex x ∈ V (C
′

2)

with d+H (x) ≤ 1. It remains the case t = 2 such that C
′

1 and C
′

2 are 5-cycles.
Subcase 6.1.1. Assume that there does not exist an arc from C ′2 to C

′

1. This leads to a contradiction, with exception of the case
that C ′1 and C

′

2 induce 2-regular tournaments T1 and T2 such that C5 ⇒ C
′

1 ⇒ C
′

2 ⇒ C5. Now let C
∗

5 = a1b1c1xya1 be a new
5-cycle of D such that x ∈ (V (C ′1) ∩ V5) and y ∈ (V (C

′

2) ∩ V4). Since T1 and T2 are regular tournaments, we observe that
T1 − x and T2 − y contain Hamiltonian cycles x1x2x3x4x1 and y1y2y3y4y1, respectively. If, without loss of generality, x4 and
y1 belong to different partite sets, then u1v1x1x2x3x4y1y2y3y4u1 is a complementary cycle of C∗5 , and we are done.
Subcase 6.1.2. Assume that there exists an arc from C ′2 to C

′

1. If H[V (C
′

1)] is 3-partite, then it follows that there exists a vertex
x ∈ V (C ′1)with d

−

H (x) ≤ 1, a contradiction.
Subcase 6.1.2.1. Assume that H[V (C ′1)] is exactly 5-partite. This implies that H[V (C

′

2)] is also 5-partite. Let C
′

1 = x1x2x3x4x5x1
and C ′2 = y1y2y3y4y5y1 such that y1 → x1. Because of Theorem 2.13, we see that y2 and x5 belong to the same partite set V ∗.
If x5 → x2, then the 6-regularity implies that x3 → x5 and so x1 → x3. This yields the complementary cycle

y1x1x3x4x5x2y2y3y4y5y1.
If x2 → x5, then we deduce that x4 → x2 and thus x1 → x4. If x5 → x3, then we receive at the complementary cycle

y1x1x2x5x3x4y2y3y4y5y1. If x3 → x5, then it follows that x1 → x3. Thus it remains the situation that

x1 → x4 → x2 → x5 and x1 → x3 → x5.

Analogously one can show that there remains the case that

y2 → y5 → y3 → y1andy2 → y4 → y1.

The 6-regularity of D implies that

(C ′2 − y2)⇒ C5 ⇒ (C ′1 − x5).

Let in the following, without loss of generality, v1 ∈ V ∗. If x5 → a1, then we arrive at the complementary cycles C ′2 and
x5a1b1c1u1v1x1x2x3x4x5.
If a1 → x5, then we distinguish different cases.
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Assume that V (x1) 6= V (y3). We deduce that there exists the 5-cycle a1x5x1y3v1a1.
If V (u1) 6= V (x2) and V (y1) 6= V (b1), then we arrive at the complementary cycle b1c1u1x2x3x4y2y4y5y1b1.
If V (u1) 6= V (x2), V (y1) = V (b1) and V (y1) 6= V (x4), thenwe arrive at the complementary cycle b1c1u1x2x3x4y1y2y4y5b1.
If V (u1) 6= V (x2), V (y1) = V (b1) and V (y1) = V (x4), thenwe arrive at the complementary cycle b1c1u1x2x3x4y5y1y2y4b1.
If V (u1) = V (x2) and V (y1) 6= V (b1), then we arrive at the complementary cycle b1c1u1x3x4x2y2y4y5y1b1.
If V (u1) = V (x2), V (y1) = V (b1) and V (x2) 6= V (y1), thenwe arrive at the complementary cycle b1c1u1x3x4x2y1y2y4y5b1.
If V (u1) = V (x2), V (y1) = V (b1) and V (x2) = V (y1), thenwe arrive at the complementary cycle b1c1u1x3x4x2y5y1y2y4b1.
Assume that V (x1) = V (y3). We deduce that there exists the 5-cycle a1x5x1y4v1a1.
If V (u1) 6= V (x2) and V (y1) 6= V (b1), then we arrive at the complementary cycle b1c1u1x2x3x4y2y5y3y1b1.
If V (u1) 6= V (x2), V (y1) = V (b1), and V (x4) 6= V (y5), thenwe arrive at the complementary cycle b1c1u1x2x3x4y5y1y2y3b1.
If V (u1) 6= V (x2), V (y1) = V (b1), and V (x4) = V (y5), thenwe arrive at the complementary cycle b1c1u1x2x3x4y1y2y5y3b1.
If V (u1) = V (x2) and V (y1) 6= V (b1), then we arrive at the complementary cycle b1c1u1x3x4x2y2y5y3y1b1.
If V (u1) = V (x2), V (y1) = V (b1) and V (x2) 6= V (y3), thenwe arrive at the complementary cycle b1c1u1x3x4x2y3y1y2y5b1.
If V (u1) = V (x2), V (y1) = V (b1) and V (x2) = V (y3), thenwe arrive at the complementary cycle b1c1u1x3x4x2y1y2y5y3b1.

Subcase 6.1.2.2. Assume that H[V (C ′1)] is exactly 4-partite. This implies that H[V (C
′

2)] is also 4-partite. If there does not
exist an arc from C ′2 to C

′

1, then there exists at least one vertex x ∈ V (C
′

1) with d
−

H (x) ≤ 1, a contradiction. Let now
C ′1 = x1x2x3x4x5x1 and C

′

2 = y1y2y3y4y5y1 such that y1 → x1. Because of Theorem 2.13, we see that y2 and x5 belong
to the same partite set V ∗.
If V (y1) = V (y3), then it follows that y3 → y5 → y2 → y4 → y1 and we obtain the complementary cycle

y1x1x2x3x4x5y3y5y2y4y1.
If V (y1) = V (y4), then it follows that y4 → y2 → y5 → y3 → y1 and we obtain the complementary cycle

y1x1x2x3x4x5y4y2y5y3y1.
Next assume that V (y1) 6= V (yi) for i = 3, 4. Because of y2 ∈ V ∗, it remains the case that V (y3) = V (y5). This implies

that y5 → y2 → y4 → y1 and y3 → y1, and we arrive at the complementary cycle y1x1x2x3x4x5y4y5y2y3y1.
Subcase 6.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V (H) can be partitioned
into subsets Y , Z, R1, R2 such that R1 ⇒ Y , (R1 ∪ Y ) ⇒ R2, |Y | > |Z |, and Y is an independent set. Let, without loss of
generality, |R1| ≤ |R2|.
Assume first that Z = ∅. If R1 = ∅, then we obtain the contradiction d+H (y) ≥ 8 for every y ∈ Y . In the remaining case

that 1 ≤ |R1| ≤ 4, we see that there exists a vertex x ∈ R1 with d−H (x) ≤ 1, a contradiction.
Next assume that 1 = |Z | < |Y | = 2. If R1 = ∅, then we obtain the contradiction d+H (y) ≥ 7 for every y ∈ Y . If

1 ≤ |R1| ≤ 2, then there exists a vertex x ∈ R1 such that d+H (x) ≤ 1, a contradiction.
In the remaining case that |R1| = 3, we arrive at a contradiction or H[R1] is a 3-cycle, Z → R1, and C5 ⇒ R1. Let, without

loss of generality, Y = {v2, v3}. We discuss the case that R1 = {a2, b2, c2}, Z = {u2}, and thus R2 = {a3, b3, c3, u3}. The
proofs of the other cases are analogously:
Subcase 6.2.1. Assume that u3 → {a3, b3, c3}. This implies that {a3, b3, c3} → u2 and {a3, b3, c3} ⇒ C5, and we have found
the two complementary cycles a1b1c2v2c3a1 and c1u1v1b2v3u3a3u2a2b3c1.
Subcase 6.2.2. Assume that u3 has exactly two out-neighbors in R2. We only discuss the case that u3 → {a3, b3} and c3 → u3
completely, because the other cases are similar. This leads to u3 ⇒ C5.
Subcase 6.2.2.1. Assume that a3 → b3. This implies b3 → {c3, u2} and b3 ⇒ C5, and there is the 5-cycle C∗5 = a1b1c2v2u3a1.
If a3 → c3, then we observe that c3 → u2 and c3 ⇒ C5, and we arrive at the complementary cycles C∗5 and

c1u1v1b2v3a3c3u2a2b3c1.
If c3 → a3, then we obtain a3 → u2 and a3 ⇒ C5, and we arrive at the complementary cycles C∗5 and

c1u1v1b2v3c3a3u2a2b3c1.
Subcase 6.2.2.2. Assume that b3 → a3. This implies a3 → {c3, u2} and a3 ⇒ C5, and there is the 5-cycle C∗5 = a1b1c2v2u3a1.
If b3 → c3, then we observe that c3 → u2 and c3 ⇒ C5, and we arrive at the complementary cycles C∗5 and

c1u1v1a2v3b3c3u2b2a3c1.
If c3 → b3, then we obtain b3 → u2 and b3 ⇒ C5, and we arrive at the complementary cycles C∗5 and

c1u1v1a2v3c3b3u2b2a3c1.
Case 7. Assume that c = 5 and r = 2. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the
Appendix).
Case 8. Assume that c = 4 and r = 6. This implies that D is 9-regular and α(H) = 5. Since il(H) ≤ 4, Theorem 2.9 yields
κ(H) ≥ 3. If H has a cycle factor, then Theorem 2.10 shows that H is Hamiltonian, and we are done.
Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V (H) can be partitioned into

subsets Y , Z, R1, R2 such that R1 ⇒ Y , (R1∪Y )⇒ R2, |Y | > |Z |, and Y is an independent set. Since κ(H) ≥ 3 and α(H) = 5,
we see that 3 ≤ |Z | < |Y | ≤ 5. Let, without loss of generality, |R1| ≤ |R2|. Since D is 9-regular, we see that d+H (x), d

−

H (x) ≥ 5
for every x ∈ V (H) and d+H (x), d

−

H (x) ≥ 6 for x ∈ V
′

1. Let V1 = {u1, u2, . . . , u6}, V2 = {x1, x2, . . . , x6}, V3 = {y1, y2, . . . , y6},
V4 = {w1, w2, . . . , w6} and, without loss of generality, V (C5) = {u5, u6, x6, y6, w6}.
Case 8.1. Assume that |Z | = 3 and |Y | = 5. In this case, Theorem 2.15 with k = 1 and t = 0 leads to the contradiction
ig(H) ≥ 5.
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Case 8.2. Assume that |Z | = 3 and |Y | = 4. If R1 = ∅, then Y ⇒ R2 and |Z | = 3 yields the contradiction d−H (y) ≤ 3 for every
y ∈ Y . There remain the cases 1 ≤ |R1| ≤ 6. If there exists a vertex u ∈ R1 such that d−D[R1](u) ≤ 1, then |Z | = 3 implies
the contradiction d−H (u) ≤ 4. Hence we assume in the following that d

−

D[R1]
(x) ≥ 2 for every x ∈ R1. This immediately leads

to |R1| = 6. If D[R1] is bipartite, then we arrive at the contradiction 12 ≤ |E(D[R1])| ≤ 9. If D[R1] is exactly 3-partite, then
it follows that d−D[R1](x) = 2 for every vertex x ∈ R1. Since there are two vertices u ∈ R1 and v ∈ Z that belong to the same
partite set, we obtain the contradiction d−H (u) ≤ 4. If D[R1] is exactly 4-partite, then we arrive at the contradiction

31 ≤
∑
x∈R1

d−H (x) =
∑
x∈R1

d−D[R1](x)+ d
+(Z, R1) ≤ 13+ 18− 3 = 28.

Case 8.3. Assume that |Z | = 4 and |Y | = 5. Assume, without loss of generality, that Y = V ′4 = {w1, w2, w3, w4, w5}. If
R1 = ∅, then Y ⇒ R2 and |Z | = 4 yields the contradiction d+H (y) ≤ 4 for every y ∈ Y . There remain the cases 1 ≤ |R1| ≤ 5.
If there exists a vertex u ∈ R1 such that d−D[R1](u) = 0, then |Z | = 4 implies the contradiction d

−

H (u) ≤ 4. Hence we assume
in the following that d−D[R1](x) ≥ 1 for every x ∈ R1. This immediately leads to |R1| ≥ 3.
Case 8.3.1. Assume that |R1| = 3. We deduce that D[R1] is a 3-cycle. Since |Z | = 4, we arrive at the contradiction

16 ≤
∑
x∈R1

d−H (x) =
∑
x∈R1

d−D[R1](x)+ d
+(Z, R1) ≤ 3+ 12− 4 = 11.

Case 8.3.2. Assume that |R1| = 4. If D[R1] is exactly 3-partite, then we obtain the contradiction

21 ≤
∑
x∈R1

d−H (x) =
∑
x∈R1

d−D[R1](x)+ d
+(Z, R1) ≤ 5+ 16− 4 = 17.

In the case that D[R1] is bipartite, we arrive at a contradiction, or R1 ⊂ (V ′2 ∪ V
′

3), Z = V
′

1 = {u1, u2, u3, u4}, D[R1] is a
4-cycle, Z → R1, and C5 ⇒ R1. If, without loss of generality, R1 = {x1, x2, y1, y2}, then R2 = {x3, x4, x5, y3, y4, y5}. Because
of d+H (x) ≥ 5 for every vertex x ∈ V (H), we deduce that d

+

D[R2]
(x) ≥ 1 for every vertex x ∈ R2. Now let, without loss of

generality, d+D[R2](x3) = d
+

D[R2]
(y3) = d+D[R2](y4) = 1. This implies that {x3, y3, y4} → Z and {x3, y3, y4} ⇒ C5.

Assume that C5 = x6u5y6u6w6x6. Since Y → R2, the 9-regularity of D shows that every vertex of Y has an in-neighbor
in Z as well as in V (C5). Assume, without loss of generality, that y6 → w5 and u1 → w1. Since at least one of the vertices
in {x4, x5, y5} has at least three out-neighbors in Z and the remaining two vertices at least two out-neighbors in Z , we have,
without loss of generality, the two possibilities y5 → u2, x5 → u3, and x4 → u4 or y5 → u1, x5 → u3, and x4 → u4. Now
there are the two complementary cycles C ′5 = y6w5y4x6u5y6 and

C19 = u6w6y1w4y3u1w1y5u2x1w2x5u3x2w3x4u4y2x3u6.

or C ′5 = y6w5y4x6u5y6 and

C19 = u6w6y1w4y5u1w1y3u2x1w2x5u3x2w3x4u4y2x3u6.

Since we can change the vertices xi and yi in R1 for i = 1, 2 as well as x3 with y3 and y4 arbitrary when we search arcs
between these vertices and vertices from Y or Z , we see that all other cases are analogous.
Case 8.3.3. Assume that |R1| = 5. If D[R1] is exactly 3-partite, then we obtain the contradiction

26 ≤
∑
x∈R1

d−H (x) =
∑
x∈R1

d−D[R1](x)+ d
+(Z, R1) ≤ 8+ 20− 4 = 24.

In the case that D[R1] is bipartite, we arrive at a contradiction, or R1 ⊂ (V ′2 ∪ V
′

3) and Z = V
′

1 = {u1, u2, u3, u4}. Let,
without loss of generality, R1 = {x1, x2, x3, y1, y2} and R2 = {x4, x5, y3, y4, y5}. Because of d+H (x), d

−

H (x) ≥ 5 for every
vertex x ∈ V (H), we deduce that there are exactly four vertices x ∈ R1 with d−D[R1](x) = 1 and four vertices y ∈ R2 with
d+D[R2](y) = 1. Assume that C5 = x6u5y6u6w6x6.
We only discuss the case d−D[R1](x1) = d

−

D[R1]
(x2) = d−D[R1](y1) = d

−

D[R1]
(y2) = 1 and d+D[R2](x4) = d

+

D[R2]
(x5) = d+D[R2](y3) =

d+D[R2](y4) = 1 completely, because the other cases are similar.
If we assume, without loss of generality, that y1 → x1, then we obtain x1 → y2. This implies y2 → {x2, x3} and thus

x2 → y1 → x3. The 9-regularity of D leads to Z → {x1, x2, y1, y2} and C5 ⇒ {x1, x2, y1, y2}.
In addition, if we assume, without loss of generality, that y3 → x4, then we obtain x5 → y3. This implies {y4, y5} → x5

and thus y5 → x4 → y4. The 9-regularity of D leads to {x4, x5, y3, y4} → Z and {x4, x5, y3, y4} ⇒ C5.
In the case that Z → Y , it follows that Y ⇒ C5. This leads to d−D (u6) ≥ 10, a contradiction to the 9-regularity of D.
Otherwise there exists an arc from Y to Z , sayw1 → u1. This implies that there is an arc from C5 tow1, say x6 → w1. The 9-

regularity ofD shows that x3 has at least three in-neighbors in Z and that y5 has at least three out-neighbors in Z . We assume,
without loss of generality, that u4 → x3 and y5 → u2. Now we obtain the two complementary cycles C ′5 = x6w1u1x2y4x6
and

C19 = u5y6u6w6x1w2y3u4x3w3x5u3y1w4y5u2y2w5x4u5.



Z. He et al. / Discrete Mathematics 309 (2009) 3131–3149 3143

Case 9. Assume that c = 4 and r = 4. This implies that D is 6-regular and α(H) = 3. Since il(H) ≤ 4, Theorem 2.9 yields
κ(H) ≥ 1. Since D is 6-regular, we see that d+H (x), d

−

H (x) ≥ 2 for every x ∈ V (H) and d
+

H (x), d
−

H (x) ≥ 3 for x ∈ V
′

1.
Subcase 9.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C ′1, C

′

2, . . . , C
′
t be a

minimal cycle-factor with the properties described in Theorem 2.13. Because of |V ∗| ≤ 3, it follows from Theorem 2.13 that
there are at most two incident arcs from H − V (C ′1) to C

′

1. Since κ(H) ≥ 1, there exists at least one arc from H − V (C
′

1) to C
′

1.
If C ′1 is a 3-cycle, then we arrive at the contradiction d

−

H (x) ≤ 1 for at least two vertices x ∈ V (C
′

1). If C
′

1 is a 4-cycle, then
we arrive at the contradiction d−H (x) ≤ 1 for at least one vertex x ∈ V (C

′

1) or d
−

H (y) ≤ 2 for a vertex y ∈ V
′

1. Let now C
′

1 be a
5-cycle c1c2c3c4c5c1.
Subcase 9.1.1. Assume that H[V (C ′1)] is 3-partite. The 6-regularity of D easily yields

∑
x∈V (C ′1)

d+H (x) = 30 and there are
exactly two incident arcs from H − V (C ′1) to C

′

1.
If these two arcs are incident with c1, then c5 ∈ V ∗, V (c1) = V (c3) and V (c2) = V (c4). In addition, it follows that c1 → c4

and c5 → {c2, c3}, and we arrive at the contradiction d−H (c5) = 1.
Assume that the two arcs from H − V (C ′1) to C

′

1 are incident with c1 and c4. It follows that V (c5) = V (c3) = V
∗, and the

6-regularity of D leads to V (c1) = V (c4), c1 → c3, c2 → c5 and c4 → c2. We deduce that V ′1 ∩ V (C
′

1) = ∅.
Subcase 9.1.1.1. Assume that t = 3. Let C ′2 = y1y2y3y1 such that y1 → {c1, c4}, and let C

′

3 = x1x2x3x1. This leads to y2 ∈ V
∗.

Assume first that y1 ∈ V ′1. It follows that y3 ∈ V (c2). Furthermore assume, without loss of generality, that x1 ∈ V
′

1,
x2 ∈ V (c1) and x3 ∈ V (c2). The 6-regularity of D implies that x1 → {y2, y3}. Now C5 and x2x3x1y2y3y1c4c5c1c2c3x2 are
complementary cycles of D.
Assume second that y1 ∈ V (c2). It follows that y3 ∈ V ′1. Furthermore assume, without loss of generality, that x1 ∈ V

′

1,
x2 ∈ V (c1) and x3 ∈ V (c2). The 6-regularity of D implies that x1 → {y1, y2}. Again C5 and x2x3x1y2y3y1c4c5c1c2c3x2 are
complementary cycles of D.
Subcase 9.1.1.2. Assume that t = 2. Let C ′2 = y1y2y3y4y5y6y1 and y1 → c1 as well as y1 → c4. This implies that y2 ∈ V ∗, and
it is straightforward to verify that y1 ∈ V ′1.
Assume that V (c2) = V (y3) = V (y6), V (y4) = V (y1) and thus V (y5) = V (c1) = V (c4).We conclude that y4 → {y2, y6}. If

y5 → y2, then C5 and y1c1c2c3c4c5y5y2y3y4y6y1 are complementary cycles. If y2 → y5, then C5 and y1c1c2c3c4c5y3y4y2y5y6y1
are complementary cycles.
Assume that V (c2) = V (y3) = V (y6) and V (y5) = V (y1). This implies that V (y4) = V (c1) = V (c4). We conclude that

y5 → {y2, y3} and thus y3 → y1. If y2 → y6, then C5 and y1c1c2c3c4c5y3y4y5y2y6y1 are the desired complementary cycles. If
y6 → y2, then C5 and y1c1c2c3c4c5y4y5y6y2y3y1 are complementary cycles.
Assume that V (c2) = V (y3) = V (y5), V (y4) = V (y1) and thus V (y6) = V (c1) = V (c4).We conclude that y4 → {y2, y6}. If

y5 → y2, then C5 and y1c1c2c3c4c5y5y2y3y4y6y1 are complementary cycles. If y2 → y5, then C5 and y1c1c2c3c4c5y3y4y2y5y6y1
are complementary cycles.
Assume that V (c2) = V (y4) = V (y6), V (y3) = V (y1) and thus V (y5) = V (c1) = V (c4). We conclude that y3 → {y5, y6}

and so y6 → y2. In the case that y5 → y2, there are the complementary cycles C5 and y1c1c2c3c4c5y4y5y2y3y6y1. If y5 → y1,
then C5 and y1c1c2c3c4c5y6y2y3y4y5y1 are complementary cycles. Otherwise we obtain the contradiction d−(y5) ≥ 7.
Assume that V (c2) = V (y4) = V (y6), V (y5) = V (y1) and thus V (y3) = V (c1) = V (c4). We conclude that y5 → {y2, y3}.

If y2 → y6, then C5 and y1c1c2c3c4c5y3y4y5y2y6y1 are complementary cycles. If y6 → y2, then it follows that y2 → y4 and
thus y4 → y1. But now C5 and y1c1c2c3c4c5y5y6y2y3y4y1 are complementary cycles.
Subcase 9.1.2. Assume that H[V (C ′1)] is 4-partite. The 6-regularity of D easily yields

∑
x∈V (C ′1)

d+H (x) = 30 and there are
exactly two incident arcs from H − V (C ′1) to C

′

1.
Subcase 9.1.2.1. Assume that these two arcs are incident with c1. This implies that c5 ∈ V ∗, and it is a simple matter to verify
that V (c2) = V (c4). In addition, it follows that c1 → c4 and c5 → c2 and thus c3 → c5 and so c1 → c3. This leads to c1 ∈ V ′1.
In the case t = 2 assume that C ′2 = y1y2y3y4y5y6y1. If y1 → c1 and so y2 ∈ V ∗, then C5 and y1c1c3c4c5c2y2y3y4y5y6y1 are

complementary cycles.
In the other case t = 3, let C ′2 = x1x2x3x1 and C

′

3 = y1y2y3y1 such that {x1, y1} → c1. This implies that x2, y2 ∈ V ∗. We
assume, without loss of generality, that x3 ∈ V ′1. If x3 → y2, then C5 and y1c1c2c3c4c5x1x2x3y2y3y1 are complementary cycles.
If otherwise y2 → x3, then the 6-regularity of D yields x3 → {y1, y3}. Since x2 → y3 leads to the 6-cycle y1y2x3x1x2y3y1 and
thus to t = 2, it remains the case that y3 → x2. But now C5 and x1c1c2c3c4c5y1y2y3x2x3x1 are complementary cycles.
Subcase 9.1.2.2. Assume that the two arcs fromH−V (C ′1) to C

′

1 are incidentwith c1 and c4. It follows thatV (c5) = V (c3) = V
∗,

and the 6-regularity of D leads to c1 → c3 and c2 → c5 and thus c4 → c2 and so c1 ∈ V ′1 or c4 ∈ V
′

1. Now it is easy to show
that t = 2. Let C ′2 = y1y2y3y4y5y6y1 and y1 → c1 as well as y1 → c4. This implies that y2 ∈ V ∗.
Subcase 9.1.2.2.1. Assume that y3 ∈ V ′1. It follows that V (y4) = V (y6) and V (y1) = V (y5). If y1 → y3, then we deduce that
y3 → {y5, y6} and thus {y5, y6} → y2. This leads to y2 → y4 and so y4 → y1. Now C5 and y1c1c2c3c4c5y5y6y2y3y4y1 are
complementary cycles. Otherwise we have y3 → y1. If y6 → y2, then C5 and y1c1c2c3c4c5y4y5y6y2y3y1 are complementary
cycles. In the remaining case that y2 → y6, we deduce that y3 → y5 and thus y5 → y2. Now C5 and y1c1c2c3c4c5y3y4y5y2y6y1
are complementary cycles.
Subcase 9.1.2.2.2. Assume that y4 ∈ V ′1. It follows that V (y3) = V (y6) and V (y1) = V (y5). If y1 → y4, then we deduce
that y4 → {y2, y6} and thus y6 → y2. This leads to y2 → y5 and so y5 → y3. This implies that y3 → y1 and hence
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C5 and y1c1c2c3c4c5y4y5y6y2y3y1 are complementary cycles. Otherwise we have y4 → y1. If y6 → y2, then there are the
complementary cycles C5 and y1c1c2c3c4c5y5y6y2y3y4y1. In the remaining case that y2 → y6, we deduce that y6 → y4 and
thus y4 → y2. If y5 → y3, then C5 and y1c1c2c3c4c5y5y3y4y2y6y1 are complementary cycles. If y3 → y5, then y5 → y2, and
there are the complementary cycles C5 and y1c1c2c3c4c5y3y4y5y2y6y1.
Subcase 9.1.2.2.3. Assume that y5 ∈ V ′1. It follows that V (y3) = V (y6) and V (y1) = V (y4) or V (y1) = V (y3) and
V (y4) = V (y6). We only discuss the first case, the second one is similar. If y5 → y2 and y4 → y6, then C5 and
y1c1c2c3c4c5y5y2y3y4y6y1 are complementary cycles. If y5 → y2 and y6 → y4, then y4 → y2 and thus y2 → y6. Now
C5 and y1c1c2c3c4c5y3y4y5y2y6y1 are complementary cycles. If y2 → y5, then y5 → {y1, y3} and thus y3 → y1. If y6 → y2,
then C5 and y1c1c2c3c4c5y4y5y6y2y3y1 are complementary cycles. If y2 → y6, then y6 → y4 and thus y4 → y2. Now C5 and
y1c1c2c3c4c5y3y4y2y5y6y1 are complementary cycles.
Subcase 9.1.2.2.4. Assume that y6 ∈ V ′1. This case is similar to Subcase 9.1.2.2.1 and is therefore omitted.
Using the converse D−1 of D, we obtain the desired results by the cases discussed above when C ′1 is a 6-, 7-, or 8-cycle.

Subcase 9.2. Assumenext thatH has no cycle-factor. Then,with respect to Lemma2.12, the vertex setV (H) can be partitioned
into subsets Y , Z, R1, R2 such that R1 ⇒ Y , (R1 ∪ Y ) ⇒ R2, |Y | > |Z |, and Y is an independent set. Since κ(H) ≥ 1
and α(H) = 3, we see that 1 ≤ |Z | < |Y | ≤ 3. Let, without loss of generality, |R1| ≤ |R2|. Let V1 = {a1, a2, a3, a4},
V2 = {b1, b2, b3, b4}, V3 = {u1, u2, u3, u4}, V4 = {v1, v2, v3, v4} and C5 = x1x2x3x4x5x1 such that V (C5) = {a3, a4, b4, u4, v4}
and, without loss of generality, x1 = b4.
Subcase 9.2.1. Assume that |Z | = 1 and |Y | = 3. If R1 = ∅, then we arrive at the contradiction d+(y) ≥ 7 for y ∈ Y . If
1 ≤ |R1| ≤ 3, then we obtain the contradiction d−H (x) ≤ 1 for at least one vertex x ∈ R1.
Subcase 9.2.2. Assume that |Z | = 1 and |Y | = 2. If R1 = ∅, then we arrive at the contradiction d+(y) ≥ 7 for y ∈ Y . If
1 ≤ |R1| ≤ 2, then we obtain the contradiction d−H (x) ≤ 1 for at least one vertex x ∈ R1.
Subcase 9.2.2.1. Assume that |R1| = 3. In this case we arrive at a contradiction, unless {a1} = Z ⊂ V ′1 and H[R1] is a 3-cycle
C3, say C3 = b1u1v1b1. Let, without loss of generality, Y = {v2, v3}. The 6-regularity of D shows that C5 ⇒ R1, that there are
at least three arcs from R2 to a1, and that D[R2] contains a cycle.
Assume first that D[R2] contains a 3-cycle, say a2b2u2a2. We assume, without loss of generality, that b3 → a1. If u3 → b3,

then there exists the 5-cycle u3b3a1u1v2u3. Since there is at least one of the three arcs a2 → x2, b2 → x2, or u2 → x2,
say u2 → x2, we obtain the complementary cycle x2x3x4x5x1v1b1v3a2b2u2x2. If b3 → u3 and u3 → a1, then we have the
same situation as before. In the remaining case that b3 → u3 and a1 → u3, it follows that u3 → a2, and this yields the
contradiction d−(a2) ≥ 7.
Assume next that D[R2] contains a 4-cycle C4 but no 3-cycle. This is only possible when, without loss of generality,

C4 = b2u2b3u3b2 and a2 → {b2, b3, u2, u3}. This implies that C4 ⇒ C5. If we assume, without loss of generality, that
b2 → a1, then a2b2a1u1v2a2 is a 5-cycle. If x2 6= u4, then x2x3x4x5x1v1b1v3u2b3u3x2 is a complementary cycle. If x2 = u4,
then x3x4x5x1x2v1b1v3u2b3u3x3 is a complementary cycle.
Subcase 9.2.2.2. Assume that |R1| = |R2| = 4. Let, without loss of generality, Y = {v2, v3}. It is straightforward to verify that
Z ⊂ V1 or Z ⊂ V4.
Assume that Z = {a1}. In this case we arrive at a contradiction without the case that, without loss of generality,

R1 = {a2, b1, u1, v1} such that {b1, u1, v1} → a2 and b1 → v1 → u1 → b1 and D[R2] consists of the 4-cycle
C4 = b2u3b3u2b2. It follows that R2 ⇒ C5 ⇒ R1 and R2 → a1 ⇒ R1. Nowwe obtain the complementary cycles b2u3a1u1v2b2
and x1x2x3x4x5b1v1a2v3b3u2x1.
Assume that Z = {v1}. In this case we arrive at a contradiction, unless D[R1] consists, without loss of generality, of

the cycle a1b1u1b2a1 such that u1 → a1 and D[R2] consists of the cycle a2u2b3u3a2 such that a2 → b3. It follows that
R2 ⇒ C5 ⇒ R1 and R2 → a1 → R1. Nowwe obtain the complementary cycles u2v1b1u1v2u2 and x1x2x3x4x5b2a1v3b3u3a2x1.
Subcase 9.2.3. Assume that |Z | = 2 and |Y | = 3. Let, without loss of generality, Y = {v1, v2, v3}.
Subcase 9.2.3.1. Assume that R1 = ∅. This implies that Z → Y → R2 and C5 ⇒ Y . This case was solved with the help of an
algorithm programmed in GAP [16] (cf. the Appendix).
Subcase 9.2.3.2. Assume that |R1| = 1. This implies that Z → R1 and, without loss of generality, R1 = {b1}. This case was
solved with the help of an algorithm programmed in GAP [16] (cf. the Appendix).
Subcase 9.2.3.3. Assume that |R1| = 2.We have to discuss the following three cases: R1 = {b1, b2} and Z → R1, R1 = {a1, b1}
such that b1 → a1 and Z → R1, R1 = {b1, u1} such that, without loss of generality, b1 → u1 and Z → b1.
Subcase 9.2.3.3.1. Assume that R1 = {b1, b2} and Z = {a1, a2}. It follows that R2 = {u1, u2, u3, b3} and C5 ⇒ R1.
If {u1, u2, u3} → b3, then b3 → Z and there is an arc from u1 to Z , say u1 → a2. Assume that there is an arc from a2 to

Y , say a2 → v3. Since u2 has at least three out-neighbors in C5, and b2 four in-neighbors in C5, there exist two consecutive
vertices xi and xi+1 on C5 such that xi → b2 and u2 → xi+1. Hence there are the complementary cycles u3b3a1b1v1u3 and
xi+1xi+2xi+3xi+4xib2v2u1a2v3u2xi+1. Otherwise we have Y → a2. This implies that v3 has at least three in-neighbors in C5.
Since u2 has at least three out-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and
u2 → xi+1. Hence there are the complementary cycles u3b3a1b1v1u3 and xi+1xi+2xi+3xi+4xiv3u1a2b2v2u2xi+1.
If {u1, u2} → b3 and b3 → u3, then u3 → Z and there is an arc from b3 to Z , say b3 → a2. Assume that there is an

arc from a1 to Y , say a1 → v3. Since u2 has at least three out-neighbors in C5, and b2 four in-neighbors in C5, there exist
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two consecutive vertices xi and xi+1 on C5 such that xi → b2 and u2 → xi+1. Hence there are the complementary cycles
u1b3a2b1v1u1 and xi+1xi+2xi+3xi+4xib2v2u3a1v3u2xi+1. Otherwise we have Y → a1. This implies that v3 has at least three in-
neighbors in C5. Since u2 has at least three out-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that
xi → v3 and u2 → xi+1. Hence there are the complementary cycles u1b3a2b1v1u1 and xi+1xi+2xi+3xi+4xiv3u3a1b2v2u2xi+1.
The cases b3 → {u2, u3} and u1 → b3 as well as b3 → {u1, u2, u3} are similar and are therefore omitted.

Subcase 9.2.3.3.2. Assume that R1 = {b1, b2} and Z = {a1, u1}. It follows that R2 = {a2, b3, u2, u3} and C5 ⇒ R1.
Assume that D[R2] contains a cycle. This implies that D[R2] has a 3-cycle, say a2u2b3a2. It follows that a2 → {u1, u3} and

thus u3 → b3 and so {u2, u3} → a1 and {u2, u3} ⇒ C5. Since v3 has at least two in-neighbors in C5, there are two consecutive
vertices xi and xi+1 on C5 such that xi → v3 and u2 → xi+1. Hence there are the complementary cycles b3a2u1b1v1b3 and
xi+1xi+2xi+3xi+4xiv3u3a1b2v2u2xi+1.
If D[R2] has no cycle, then there remain the two possibilities a2 → {u2, u3, b3} and {u2, u3} → b3 or {a2, u2, u3} → b3

and u2 → a2 → u3.
In the first case it follows that u2 → a1, b3 → u1 and u3 ⇒ C5. Since v3 has at least two in-neighbors in C5, there are

two consecutive vertices xi and xi+1 on C5 such that xi → v3 and u3 → xi+1. Hence there are the complementary cycles
a2u2a1b1v1a2 and xi+1xi+2xi+3xi+4xiv3b3u1b2v2u3xi+1.
In the second case it follows that a2 → u1, b3 → a1 and u3 ⇒ C5. Since v3 has at least two in-neighbors in C5, there

are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and u3 → xi+1. Hence there are the complementary cycles
u2a2u1b1v1u2 and xi+1xi+2xi+3xi+4xiv3b3a1b2v2u3xi+1.
Subcase 9.2.3.3.3. Assume that R1 = {b1, b2} and Z = {u1, u2}. It follows that R2 = {a1, a2, b3, u3} and C5 ⇒ R1.
Assume that D[R2] contains a cycle. This implies that D[R2] has a 3-cycle, say a1u3b3a1. It follows that u3 → a2 and

thus a2 → b3 and so {a1, a2} → Z and u3 ⇒ C5. Since v3 has at least two in-neighbors in C5, there are two consecutive
vertices xi and xi+1 on C5 such that xi → v3 and u3 → xi+1. Hence there are the complementary cycles b3a1u1b1v1b3 and
xi+1xi+2xi+3xi+4xiv3a2u2b2v2u3xi+1.
If D[R2] has no cycle, then there remain the two possibilities u3 → {a1, a2, b3} and {a1, a2} → b3 or {a1, a2, u3} → b3

and a1 → u3 → a2.
In the first case it follows that a1 → u1, a2 → u2 and b3 ⇒ C5. Since v3 has at least two in-neighbors in C5, there are

two consecutive vertices xi and xi+1 on C5 such that xi → v3 and b3 → xi+1. Hence there are the complementary cycles
u3a1u1b1v1u3 and xi+1xi+2xi+3xi+4xiv3a2u2b2v2b3xi+1.
In the second case it follows that b3 → u1, a2 → u2 and u3 ⇒ C5. Since v3 has at least two in-neighbors in C5, there

are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and u3 → xi+1. Hence there are the complementary cycles
a1b3u1b1v1a1 and xi+1xi+2xi+3xi+4xiv3a2u2b2v2u3xi+1.
Subcase 9.2.3.3.4. Assume that R1 = {a1, b1}. This implies that b1 → a1 and Z = {u1, u2} → R1.
Assume that D[R2] contains a cycle. This implies that D[R2] has a 3-cycle, say a2u3b2a2. It follows that u3 → b3 and

u3 ⇒ C5. Assume that a2 → b3 and, without loss of generality, that a2 → u2. It follows that b3 → u1. Since v3 has at least
two in-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and u3 → xi+1. Hence there
are the complementary cycles b2a2u2b1v1b2 and xi+1xi+2xi+3xi+4xiv3b3u1a1v2u3xi+1. If otherwise b3 → a2 and, without loss
of generality, b3 → u1, then it follows that a2 → u2 and we arrive at the same complementary cycles.
If D[R2] has no cycle, then there remain the following four possibilities:
u3 → {a2, b2, b3} and a2 → {b2, b3} or
u3 → {a2, b2, b3} and b3 → a2 → b2 or
u3 → {b2, b3} and a2 → {b2, b3, u3} or
u3 → {a2, b3}, b2 → {a2, u3} and a2 → b3.
In the first case it follows that b2 → {u1, u2} and b3 ⇒ C5. Assume, without loss of generality, that a2 → u2. Since v3

has at least two in-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and b3 → xi+1.
Hence there are the complementary cycles u3a2u2b1v1u3 and xi+1xi+2xi+3xi+4xiv3b2u1a1v2b3xi+1.
In the second case it follows that b2 → {u1, u2} and b2 ⇒ C5. Assume, without loss of generality, that a2 → u2.

Next we distinguish two further cases. Assume that u1 → b3. This implies that b3 ⇒ C5. Since v3 has at least two in-
neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and b3 → xi+1. Hence there are
the complementary cycles u3b2u1b1v1u3 and xi+1xi+2xi+3xi+4xiv3a2u2a1v2b3xi+1. Now assume that b3 → u1. Since v3 has at
least two in-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and b2 → xi+1. Hence
there are the complementary cycles u3b3u1b1v1u3 and xi+1xi+2xi+3xi+4xiv3a2u2a1v2b2xi+1.
In the third case it follows that {b1, b2} → {u1, u2} and u3 ⇒ C5. Since v3 has at least two in-neighbors in C5, there are

two consecutive vertices xi and xi+1 on C5 such that xi → v3 and u3 → xi+1. Hence there are the complementary cycles
a2b2u2b1v1a2 and xi+1xi+2xi+3xi+4xiv3b3u1a1v2u3xi+1.
In the fourth case it follows that {a2, b3} → {u1, u2} and u3 ⇒ C5. Since v3 has at least two in-neighbors in C5, there

are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and u3 → xi+1. Hence there are the complementary cycles
b2a2u1b1v1b2 and xi+1xi+2xi+3xi+4xiv3b3u2a1v2u3xi+1.
Subcase 9.2.3.3.5. Assume that R1 = {b1, u1} and Z = {a1, a2}. Assume, without loss of generality, that b1 → u1. It follows
that {a1, a2} → b1 and, without loss of generality, that a2 → u1. This implies that C5 ⇒ b1.
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Assume that D[R2] is a 4-cycle, say b2u2b3u3b2. If a1 → R2, then we deduce that R2 → a2, R2 ⇒ C5, and there are
at least two vertices in Y , say v2, v3, such that {v2, v3} → a1. Since v3 has at least three in-neighbors in C5, there are
two consecutive vertices xi and xi+1 on C5 such that xi → v3 and b3 → xi+1. Hence there are the complementary cycles
u3b2a2u1v1u3 and xi+1xi+2xi+3xi+4xiv3a1b1v2u2b3xi+1. Otherwise we have, without loss of generality, b3 → a1. If there is an
arc from Y to a2, say v3 → a2, then v3 has at least three in-neighbors in C5 and b2 has at least three out-neighbors in C5.
Hence there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and b2 → xi+1. This leads to the complementary
cycles u2b3a1b1v1u2 and xi+1xi+2xi+3xi+4xiv3a2u1v2u3b2xi+1. Otherwise we have a2 → Y . This yields b2 → a2 or u3 → a2,
say b2 → a2. Since u1 has at least three in-neighbors in C5 and u3 has at least three out-neighbors in C5, there are two
consecutive vertices xi and xi+1 on C5 such that xi → u1 and u3 → xi+1. This leads to the complementary cycles u2b3a1b1v1u2
and xi+1xi+2xi+3xi+4xiu1v3b2a2v2u3xi+1.
If D[R2] has no cycle, then there remain, without loss of generality, the two possibilities {u2, u3} → {b2, b3} or

b2 → {u2, u3} and u2 → b3 → u3.
In the first case it follows that {b2, b3} → {a1, a2} and b2 ⇒ C5. Assume that u2 → a2 or u2 → a1, say u2 → a2.

Since v3 has at least two in-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3
and b2 → xi+1. Hence there are the complementary cycles u3b3a1b1v1u3 and xi+1xi+2xi+3xi+4xiv3u2a2u1v2b2xi+1. In the
case that Z → u2, we observe that u2 ⇒ C5. Since v3 has at least two in-neighbors in C5, there are two consecutive
vertices xi and xi+1 on C5 such that xi → v3 and u2 → xi+1. Hence there are the complementary cycles u3b2a1b1v1u3
and xi+1xi+2xi+3xi+4xiv3b3a2u1v2u2xi+1.
In the second case it follows that u3 → {a1, a2} and, without loss of generality, that u2 → a2. Assume that there

exists an arc from a1 to Y , say a1 → v2. Since b3 has at least three out-neighbors in C5, there are two consecutive
vertices xi and xi+1 on C5 such that xi → b1 and b3 → xi+1. Hence there are the complementary cycles b2u2a2u1v1b2
and xi+1xi+2xi+3xi+4xib1v3u3a1v2b3xi+1. In the case that Y → a1, we observe that v3 has at least three in-neighbors in C5.
Since b3 has at least three out-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and
b3 → xi+1. Hence there are the complementary cycles b2u2a2u1v1b2 and xi+1xi+2xi+3xi+4xiv3u3a1b1v2b3xi+1.
Subcase 9.2.3.3.6. Assume that R1 = {b1, u1} and, without loss of generality, that Z = {a1, u2}. It follows that {a1, b1} → u1
and {a1, u2} → b1.
Assume that D[R2] contains a cycle. This implies that D[R2] has a 3-cycle, say a2b2u3a2. It follows that a2 → u2, a2 → b3,

and a2 ⇒ C5.
If b3 → u3, then it follows that u3 → a1. Assume that b3 → u2. Since v3 has at least two in-neighbors in C5, there are

two consecutive vertices xi and xi+1 on C5 such that xi → v3 and a2 → xi+1. Hence there are the complementary cycles
b2u3a1u1v1b2 and xi+1xi+2xi+3xi+4xiv3b3u2b1v2a2xi+1. Otherwise we have u2 → b3 and thus b3 ⇒ C5. Since v3 has at least
two in-neighbors in C5, there are two consecutive vertices xi and xi+1 on C5 such that xi → v3 and b3 → xi+1. Hence there
are the complementary cycles b2u3a1u1v1b2 and xi+1xi+2xi+3xi+4xiv3a2u2b1v2b3xi+1. If u3 → b3, then we obtain similarly
the two desired complementary cycles.
If D[R2] has no cycle, then there are the four possibilities b2 → a2 → u3 → b3 and b2 → u3 and a2 → b3 or

a2 → b2 → u3 → b3 and a2 → b3 and a2 → u3 or a2 → {u3, b2, b3} and u3 → b2 and u3 → b3 or u3 → {a2, b2, b3} and
a2 → b2 and a2 → b3. All these cases are analogue to the cases above and therefore are omitted.
Subcase 9.2.3.4. Assume that |R1| = |R2| = 3. This case was solved with the help of an algorithm programmed in GAP [16]
(cf. the Appendix). �
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Appendix

With the following algorithm programmed in GAP [16] we tested Case 5 of Theorem 3.1. Case 7, Case 9.2.3.1, Case 9.2.3.2
and Case 9.2.3.4 were tested the same way using minor modifications in Algorithm 2 (the initialization of the adjacency
matrix A), Algorithm 3 (the values concerning the number of vertices and the regularity) and Algorithm 4 (the values
concerning the chosen subsets). A similar program has also confirmed that the digraph D∗4,2 is the only regular 4-partite
tournament with two vertices in each partite set that does not contain two complementary cycles of length 4.

Algorithm 1 (Tests Via Backtracking Whether the Vertices of the List subset Induce a Hamiltonian Subdigraph of the Digraph
with Adjacency Matrix A).

Hamiltontest:=function(subset,A)

local l,a,recursion;

recursion:=function(ll) #‘ll’ is a local list
local ii,rest;
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rest:=Difference(subset,ll);
if rest=[]

then
#test whether the last vertex of ‘ll’ dominates the first vertex of ‘ll’
return A[ll[Length(ll)]][ll[1]]=1;

else
#test all possibilities to extend the list ‘ll’
for ii in rest do
if A[ll[Length(ll)]][ii]=1
then if recursion(Concatenation(ll,[ii]))=true

then return true;
fi;

fi;
od;

fi;

return false;
end;

l:= [subset[1]];
a:= A{subset}{subset};

#shortcut: test whether there exists a vertex x in ‘subset’ such that

#d+(x) = 0 or d−(x) = 0

if ForAny(a,x->not (1 in x and -1 in x))
then return false;

fi;

return recursion(l);
end;

Algorithm 2 (Initialization of the Following Global Variables: Adjacency Matrix A, and Degree Vectors dplus and dminus).
Matrix_A_Init:=function();

A:=List([1..12],x->List([1..12],y->2));
#all entries of A are initialized with 2

for i in [1..12] do
for j in [1..12] do
if (i-j) mod 6 =0 #if i and j are in the same partition
then A[i][j]:=0; #then there is no arc between them

fi;
od;

od;

#without loss of generality, there exists a cycle through
#the vertices 1,2,...,6
for i in [1..6] do
A[i][i mod 6+1]:=1;

od;

dplus:=List([1..12],x->Number([1..12],y->A[x][y]=1));
#the vector of all outdegrees

dminus:=List([1..12],x->Number([1..12],y->A[x][y]=-1));
#the vector of all indegrees

end;
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Algorithm 3 (Changes A, dplus, dminus; Recursive Computation of the Adjacency Matrices of at Least all Non-Isomorphic 5-
regular 6-partite Tournaments).

AllMat:=function(n) #recursive computation, n is a list of vertices

local new,i,j;

new:=ShallowCopy(n[Length(n)]);

repeat
if new[2]=12
then
new[1]:=new[1]+1;
new[2]:=new[1]+1;

else
new[2]:=new[2]+1;

fi;

#if the recursive construction is complete, then test if there are
#complementary cycles
if new[1]>11
then
TestCC(A);
return;

fi;
until A[neu[1]][neu[2]]=2; #2 indicates that an arc has to be chosen

#update ‘dplus’ and ‘dminus’
if dplus[neu[1]]<5 and dminus[neu[2]]<5
then
dplus[neu[1]]:=dplus[neu[1]]+1;
dminus[neu[2]]:=dminus[neu[2]]+1;
A[neu[1]][neu[2]]:=1;A[neu[2]][neu[1]]:=-1;
AllMat(Concatenation(n,[neu]));
A[neu[1]][neu[2]]:=2;A[neu[2]][neu[1]]:=2;
dplus[neu[1]]:=dplus[neu[1]]-1;
dminus[neu[2]]:=dminus[neu[2]]-1;

fi;

if dplus[neu[2]]<5 and dminus[neu[1]]<5
then
dplus[neu[2]]:=dplus[neu[2]]+1;
dminus[neu[1]]:=dminus[neu[1]]+1;
A[neu[1]][neu[2]]:=-1;A[neu[2]][neu[1]]:=1;
AllMat(Concatenation(n,[neu]));
A[neu[1]][neu[2]]:=2;A[neu[2]][neu[1]]:=2;
dplus[neu[2]]:=dplus[neu[2]]-1;
dminus[neu[1]]:=dminus[neu[1]]-1;

fi;

end;

Algorithm 4 (Tests for Complementary Cycles).

TestCC:=function(mat)

local i,j;

#SubsetN(m,n) computes all subsets of {1,2,...,n} of size m
if ForAny(SubsetsN(5,12),x->Hamiltontest(x)

and Hamiltontest(Difference([1..12],x)))
then return true;
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else return false;
fi;

end;

Algorithm 5 (Concatenation of Algorithms 1–4).

Matrix_A_Init();
AllMat([[1,1]]);
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