Complementary cycles in regular multipartite tournaments, where one cycle has length five

Zhihong He ${ }^{\text {a }}$, Torsten Korneffel ${ }^{\text {b }}$, Dirk Meierling ${ }^{\text {b }}$, Lutz Volkmann ${ }^{\text {b,* }}$, Stefan Winzen ${ }^{\text {b }}$
a School of Mathematics and Information Science, Yantai University, Yantai 264005, China
b Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

ARTICLE INFO

Article history:

Received 14 March 2007
Received in revised form 21 August 2008
Accepted 22 August 2008
Available online 10 September 2008
Keywords:
Multipartite tournaments
Complementary cycles
Regular multipartite tournaments

Abstract

The vertex set of a digraph D is denoted by $V(D)$. A c-partite tournament is an orientation of a complete c-partite graph.

In 1999, Yeo conjectured that each regular c-partite tournament D with $c \geq 4$ and $|V(D)| \geq 10$ contains a pair of vertex disjoint directed cycles of lengths 5 and $|V(D)|-5$. In this paper we shall confirm this conjecture using a computer program for some cases. © 2008 Elsevier B.V. All rights reserved.

1. Terminology

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. If x is a vertex of multipartite tournament D, then $V(x)$ is the partite set of D such that $x \in V(x)$. A tournament is a c-partite tournament with exactly c vertices. By a cycle or path we mean a directed cycle or directed path.

In this paper all digraphs are finite without loops or multiple arcs. The vertex set and the arc set of a digraph D are denoted by $V(D)$ and $E(D)$, respectively. For a vertex set X of D, we define $D[X]$ as the subdigraph induced by X.

If $x y$ is an arc of a digraph D, then we write $x \rightarrow y$ and say x dominates y. If X and Y are two disjoint subsets of $V(D)$ or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$. Furthermore, $X \Rightarrow Y$ denotes the property that there is no arc from Y to X. By $d^{+}(X, Y)$ we define the number of arcs going from X to Y.

The out-neighborhood $N_{D}^{+}(x)=N^{+}(x)$ of a vertex x is the set of vertices dominated by x, and the in-neighborhood $N_{D}^{-}(x)=N^{-}(x)$ is the set of vertices dominating x. The numbers $d_{D}^{+}(x)=d^{+}(x)=\left|N^{+}(x)\right|$ and $d_{D}^{-}(x)=d^{-}(x)=\left|N^{-}(x)\right|$ are the outdegree and indegree of x, respectively. The minimum outdegree and the minimum indegree of D are denoted by $\delta^{+}(D)$ and $\delta^{-}(D)$, and the maximum outdegree and the maximum indegree of D are denoted by $\Delta^{+}(D)$ and $\Delta^{-}(D)$, respectively.

The global irregularity of a digraph D is defined by

$$
i_{g}(D)=\max \left\{\max \left(d^{+}(x), d^{-}(x)\right)-\min \left(d^{+}(y), d^{-}(y)\right) \mid x, y \in V(D)\right\}
$$

and the local irregularity by $i_{l}(D)=\max \left|d^{+}(x)-d^{-}(x)\right|$ over all vertices x of D. If $i_{g}(D) \leq 1$, then D is called almost regular, and if $i_{g}(D)=0$, then D is regular.

[^0]

Fig. 1. The 3-regular 4-partite tournament $D_{4,2}^{*}$.
A cycle of length m is an m-cycle. A cycle or a path in a digraph D is Hamiltonian if it includes all the vertices of D. A set $X \subseteq V(D)$ of vertices is independent if the induced subdigraph $D[X]$ has no arcs. The independence number $\alpha(D)=\alpha$ is the maximum size among the independent sets of vertices of D.

A digraph D is strongly connected or strong if, for each pair of vertices u and v, there is a path from u to v in D. A digraph D with at least $k+1$ vertices is k-connected if for any set A of at most $k-1$ vertices, the subdigraph $D-A$ obtained by deleting A is strong. The connectivity of D, denoted by $\kappa(D)$, is then defined to be the largest value of k such that D is k-connected.

A cycle-factor of a digraph D is a spanning subdigraph consisting of disjoint cycles. A cycle-factor with the minimum number of cycles is called a minimal cycle-factor. If x is a vertex of a cycle C, then the predecessor and the successor of x on C are denoted by x^{-}and x^{+}, respectively. If we replace every arc $x y$ of D by $y x$, then we call the resulting digraph, denoted by D^{-1}, the converse digraph of D.

2. Introduction and Preliminary Results

A digraph D is called cycle complementary if there exist two vertex disjoint cycles C and C^{\prime} such that $V(D)=V(C) \cup V\left(C^{\prime}\right)$. The problem of complementary cycles in tournaments was almost completely solved by Reid [4] in 1985 and by Z. Song [5] in 1993. These authors proved that every 2 -connected tournament T on at least 8 vertices has complementary cycles of length t and $|V(T)|-t$ for all $t \in\{3,4, \ldots,|V(T)|-3\}$. For c-partite tournaments with $c \geq 3$, there exist the following two conjectures.

Conjecture 2.1 ([14]). A regular c-partite tournament D with $c \geq 4$ and $|V(D)| \geq 8$ has a pair of vertex disjoint cycles of length t and $|V(D)|-t$ for all $t \in\{3,4, \ldots,|V(D)|-3\}$.

Conjecture 2.2 ([6]). Let D be a multipartite tournament. If $\kappa(D) \geq \alpha(D)+1$, then D is cycle complementary, unless D is a member of a finite family of multipartite tournaments.

In 2005, Volkmann [8] confirmed the first conjecture for $t=3$, unless D is isomorphic to two fixed regular 4-partite tournament with two vertices in each partite set. In addition, Volkmann [7] showed that Conjecture 2.1 is also valid for $t=4$ when $c \geq 5$ or $c \geq 4$ and $\alpha(D) \geq 4$. Example 2.3 below by Volkmann [7] demonstrates that Yeo's conjecture is not true in general for $t=4$ when $c=4$ and $\alpha(D)=2$. In this paper we will show that Conjecture 2.1 is valid for $t=5$, where we use a computer program for some cases.

Example 2.3 ([7]). Let $D_{4,2}^{*}$ be the 3-regular 4-partite tournament presented in Fig. 1. Then it is straightforward to verify that $D_{4,2}^{*}$ does not contain two 4 -cycles C_{4} and C_{4}^{*} such that $V\left(D_{4,2}^{*}\right)=V\left(C_{4}\right) \cup V\left(C_{4}^{*}\right)$.

A computer program (cf. the Appendix) has shown that $D_{4,2}^{*}$ is the only regular 4-partite tournament with two vertices in each partite sets that does not contain two complementary cycles of length 4. Hence one can conclude from Volkmann's paper [8] that Conjecture 2.1 is valid for $t=4$ with exception of $D_{4,2}^{*}$.

The following results play an important role in our investigations. We start with a well-known fact about regular multipartite tournaments.

Lemma 2.4. If D is a regular c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$, then $\alpha(D)=\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{c}\right|$.
Theorem 2.5 ([3]). Let T be a strongly connected tournament. Then, every vertex of T is contained in an m-cycle for each m between 3 and $|V(T)|$.

Theorem 2.6 ([1]). Each strongly connected c-partite tournament contains an m-cycle for each $m \in\{3,4, \ldots, c\}$.
Theorem 2.7 ([4,5]). If T is a 2-connected tournament with $|V(T)| \geq 8$, then T contains two complementary cycles of length t and $|V(T)|-t$ for all $3 \leq t \leq|V(T)| / 2$.

Theorem 2.8 ([13]). If D is a multipartite tournament, then

$$
\kappa(D) \geq\left\lceil\frac{|V(D)|-2 i_{l}(D)-\alpha(D)}{3}\right\rceil
$$

Theorem 2.9 ([10]). Let D be a multipartite tournament. If $\alpha(D)$ is odd, then

$$
\kappa(D) \geq\left\lceil\frac{|V(D)|-2 i_{l}(D)-\alpha(D)+1}{3}\right\rceil
$$

Theorem 2.10 ([12]). Let D be a $(\lfloor q / 2\rfloor+1)$-connected multipartite tournament such that $\alpha(D) \leq q$. If D has a cycle-factor, then D is Hamiltonian.

Theorem 2.11 ([15]). Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a c-partite tournament D such that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right|$. If

$$
i_{g}(D) \leq \frac{|V(D)|-\left|V_{c-1}\right|-2\left|V_{c}\right|+2}{2}
$$

then D is Hamiltonian.
Lemma 2.12 ([15,2]). A digraph D has no cycle-factor if and only if its vertex set $V(D)$ can be partitioned into four subsets Y, Z, R_{1}, and R_{2} such that

$$
\begin{equation*}
R_{1} \Rightarrow Y, \quad\left(R_{1} \cup Y\right) \Rightarrow R_{2}, \quad \text { and } \quad|Y|>|Z| \tag{1}
\end{equation*}
$$

where Y is an independent set.
Theorem 2.13 ([12]). Let D be a multipartite tournament having a cycle-factor but no Hamiltonian cycle. Then there exists a partite set V^{*} of D and an indexing $C_{1}, C_{2}, \ldots, C_{t}$ of the cycles of some minimal cycle-factor of D such that for all arcs yx from C_{j} to C_{1} for $2 \leq j \leq t$, it holds $\left\{y^{+}, x^{-}\right\} \subseteq V^{*}$.

Theorem 2.14 ([11]). Let D be an almost regular c-partite tournament with $c \geq 5$. Then D contains a strongly connected subtournament of order p for every $p \in\{3,4, \ldots, c\}$.

Theorem 2.15 ([9]). Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a c-partite tournament D with no cycle-factor such that $\left|V_{1}\right| \leq$ $\left|V_{2}\right| \leq \cdots \leq\left|V_{c}\right|$. According to Lemma 2.12, the vertex set $V(D)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} satisfying (1) such that $|Z|+k+1 \leq|Y| \leq\left|V_{c}\right|-t$ with integers $k, t \geq 0$. Let V_{i} be the partite set with the property that $Y \subseteq V_{i}$. If $Q=V(D)-Z-V_{i}, Q_{1}=Q \cap R_{1}$, and $Q_{2}=Q \cap R_{2}$, then

$$
\begin{aligned}
& i_{l}(D) \geq|V(D)|-3\left|V_{c}\right|+2 t+2 k+2 \text { and } \\
& i_{g}(D) \geq \frac{|V(D)|-\left|V_{c-1}\right|-2\left|V_{c}\right|+3 k+3}{2}
\end{aligned}
$$

if $Q_{1}=\emptyset$ or $Q_{2}=\emptyset$ and

$$
i_{g}(D) \geq i_{l}(D) \geq \frac{|V(D)|-\left|V_{c-1}\right|-2\left|V_{c}\right|+3 k+3+t}{2}
$$

if $Q_{1} \neq \emptyset$ and $Q_{2} \neq \emptyset$.
Lemma 2.16. Each regular 4-partite tournament contains a 5-cycle through all partite sets.
Proof. Let D be a regular 4-partite tournament with the partite sets $V_{1}, V_{2}, V_{3}, V_{4}$. In view of Lemma 2.4, we have $\left|V_{1}\right|=$ $\left|V_{2}\right|=\left|V_{3}\right|=\left|V_{4}\right|=r$. Since D is regular, we note that $r \geq 2$. Suppose that D does not contain any 5-cycle through all partite sets. To derive a contradiction we distinguish two cases.
Case 1 . Assume that D contains a strongly connected subtournament T_{4} of order 4 . If $V\left(T_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that, without loss of generality, $v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{4} \rightarrow v_{1}, v_{3} \rightarrow v_{1}$ and $v_{4} \rightarrow v_{2}$, then we assume, without loss of generality, that $v_{i} \in V_{i}$ for $i \in\{1,2,3,4\}$. Let us define the sets $A=N^{+}\left(v_{1}\right)-V\left(T_{4}\right), B=N^{-}\left(v_{1}\right)-V\left(T_{4}\right), V_{i}^{\prime}=V_{i} \cap A$ and $V_{i}^{\prime \prime}=V_{i} \cap B$ for $i=2,3,4$.

If there is a vertex $a \in A$ such that $a \rightarrow v_{2}$, then $v_{1} a v_{2} v_{3} v_{4} v_{1}$ is a 5 -cycle containing vertices of all partite sets, a contradiction. Hence we assume in the following that $v_{2} \Rightarrow A$.

If there is a vertex $a \in A$ such that $a \rightarrow v_{4}$, then $v_{1} a v_{4} v_{2} v_{3} v_{1}$ is a 5 -cycle through all partite sets, a contradiction. Thus we assume in the following that $v_{4} \Rightarrow A$. This implies that $V_{4}^{\prime} \neq \emptyset$, since otherwise we obtain the contradiction

$$
d^{+}\left(v_{1}\right)=d^{+}\left(v_{4}\right) \geq|A|+2=d^{+}\left(v_{1}\right)+1
$$

If there is a vertex $v_{4}^{\prime} \in V_{4}^{\prime}$ such that $v_{4}^{\prime} \rightarrow v_{3}$, then $v_{1} v_{2} v_{4}^{\prime} v_{3} v_{4} v_{1}$ is a 5 -cycle containing vertices of 4 partite sets, a contradiction. Hence we assume that $v_{3} \rightarrow V_{4}^{\prime}$.

If there is a vertex $b \in B$ with the property that $v_{4} \rightarrow b$, then the 5 -cycle $v_{1} v_{2} v_{3} v_{4} b v_{1}$ leads to a contradiction. Hence we assume that $B \Rightarrow v_{4}$.

If there is a vertex $v_{2}^{\prime \prime} \in V_{2}^{\prime \prime}$ such that $v_{3} \rightarrow v_{2}^{\prime \prime}$, then the cycle $v_{1} v_{2} v_{3} v_{2}^{\prime \prime} v_{4} v_{1}$ yields a contradiction. It remains the case that $V_{2}^{\prime \prime} \rightarrow v_{3}$.

This yields $V_{2}^{\prime \prime} \rightarrow V_{4}^{\prime}$, since otherwise we arrive at the contradiction that $v_{1} v_{4}^{\prime} v_{2}^{\prime \prime} v_{3} v_{4} v_{1}$ is a 5-cycle through all partite sets, where $v_{4}^{\prime} \in V_{4}^{\prime}$ and $v_{2}^{\prime \prime} \in V_{2}^{\prime \prime}$ such that $v_{4}^{\prime} \rightarrow v_{2}^{\prime \prime}$.

If there are vertices $v_{4}^{\prime} \in V_{4}^{\prime}$ and $v_{3}^{\prime \prime} \in V_{3}^{\prime \prime}$ such that $v_{4}^{\prime} \rightarrow v_{3}^{\prime \prime}$, then we find the 5-cycle $v_{1} v_{2} v_{3} v_{4}^{\prime} v_{3}^{\prime \prime} v_{1}$, a contradiction. Thus assume in the following that $V_{3}^{\prime \prime} \rightarrow V_{4}^{\prime}$.

Summarizing some of our results we deduce that

$$
\left(V_{2}^{\prime \prime} \cup V_{3}^{\prime \prime} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right) \rightarrow V_{4}^{\prime} \neq \emptyset
$$

This implies that $V_{4}^{\prime \prime} \neq \emptyset$, since otherwise, for each $v_{4}^{\prime} \in V_{4}^{\prime}$ we arrive at the contradiction

$$
d^{-}\left(v_{1}\right)=d^{-}\left(v_{4}^{\prime}\right) \geq|B|+3=d^{-}\left(v_{1}\right)+1
$$

Similarly, we conclude that for each vertex $v_{4}^{\prime} \in V_{4}^{\prime}$ there is a vertex $v_{1}^{\prime} \in V_{1}-\left\{v_{1}\right\}$ such that $v_{4}^{\prime} \rightarrow v_{1}^{\prime}$. Now we choose two fix vertices $v_{4}^{\prime} \in V_{4}^{\prime}$ and $v_{1}^{\prime} \in V_{1}-\left\{v_{1}\right\}$ such that $v_{4}^{\prime} \rightarrow v_{1}^{\prime}$.

If there is a vertex $v_{3}^{\prime \prime} \in V_{3}^{\prime \prime}$ such that $v_{1}^{\prime} \rightarrow v_{3}^{\prime \prime}$, then $v_{1} v_{2} v_{4}^{\prime} v_{1}^{\prime} v_{3}^{\prime \prime} v_{1}$ is a 5 -cycle, a contradiction. Hence assume that $V_{3}^{\prime \prime} \rightarrow v_{1}^{\prime}$.

If there is a vertex $v_{2}^{\prime \prime} \in V_{2}^{\prime \prime}$ with the property that $v_{1}^{\prime} \rightarrow v_{2}^{\prime \prime}$, then $v_{1} v_{4}^{\prime} v_{1}^{\prime} v_{2}^{\prime \prime} v_{3} v_{1}$ is a cycle through all partite sets, a contradiction. Hence assume that $V_{2}^{\prime \prime} \rightarrow v_{1}^{\prime}$.

If $v_{1}^{\prime} \rightarrow v_{2}$, then $v_{1} v_{4}^{\prime} v_{1}^{\prime} v_{2} v_{3} v_{1}$ is a 5 -cycle containing vertices of all partite sets, a contradiction. Thus assume in the following that $v_{2} \rightarrow v_{1}^{\prime}$.

Furthermore we conclude that $v_{3} \rightarrow v_{1}^{\prime}$, since otherwise $v_{1} v_{2} v_{1}^{\prime} v_{3} v_{4} v_{1}$ is a cycle through all partite sets, a contradiction.
If there is a vertex $v_{4}^{\prime \prime} \in V_{4}^{\prime \prime}$ such that $v_{1}^{\prime} \rightarrow v_{4}^{\prime \prime}$, then $v_{1} v_{2} v_{3} v_{1}^{\prime} v_{4}^{\prime \prime} v_{1}$ is a 5-cycle, a contradiction. It remains the case that $V_{4}^{\prime \prime} \rightarrow v_{1}^{\prime}$.

Altogether, we obtain the contradiction

$$
d^{-}\left(v_{1}\right)=d^{-}\left(v_{1}^{\prime}\right) \geq|B|+\left|\left\{v_{2}, v_{3}, v_{4}^{\prime}\right\}\right|=d^{-}\left(v_{1}\right)+1
$$

Case 2. Suppose that D does not contain any strong subtournament of order 4 . By the hypothesis that D is regular, Theorem 2.8 yields that D is strongly connected. Hence, according to Theorem 2.6, there exists a 3 -cycle $C=v_{1} v_{2} v_{3} v_{1}$ in D. Assume, without loss of generality, that $v_{i} \in V_{i}$ for $i \in\{1,2,3\}$.

If there exists a vertex $v_{4} \in V_{4}$ having an in- and an out-neighbor in $V(C)$, then $D\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$ is a strong subtournament of order 4 , a contradiction to our assumption. Hence we can decompose V_{4} into two subsets V_{4}^{\prime} and $V_{4}^{\prime \prime}$ such that $V_{4}^{\prime \prime} \rightarrow V(C) \rightarrow V_{4}^{\prime}$. Assume, without loss of generality, that $V_{4}^{\prime} \neq \emptyset$. In addition, let $v_{4}^{\prime} \in V_{4}^{\prime}$ and define $U=N^{+}\left(v_{4}^{\prime}\right)$.
Subcase 2.1. Assume that $V_{4}^{\prime \prime} \neq \emptyset$ and let $v_{4}^{\prime \prime} \in V_{4}^{\prime \prime}$. Suppose that $v_{4}^{\prime \prime} \rightarrow U=N^{+}\left(v_{4}^{\prime}\right)$. Using the fact that $V_{4}^{\prime \prime} \rightarrow V(C)$, we arrive at the contradiction

$$
d^{+}\left(v_{4}^{\prime \prime}\right) \geq\left|N^{+}\left(v_{4}^{\prime}\right)\right|+|V(C)|=d^{+}\left(v_{4}^{\prime}\right)+3
$$

Thus there is a vertex $u \in U \cap\left(V_{1} \cup V_{2} \cup V_{3}\right)$ such that $u \rightarrow v_{4}^{\prime \prime}$. If $u \in V_{i}$, then $D\left[\left(V(C)-\left\{v_{i}\right\}\right) \cup\left\{v_{4}^{\prime}, v_{4}^{\prime \prime}, u\right\}\right]$ contains a 5-cycle through all partite sets, a contradiction.
Subcase 2.2. Assume that $V_{4}^{\prime \prime}=\emptyset$ and thus $V_{4}^{\prime}=V_{4}$. If there are vertices $u \in U$ and $v_{j} \in V(C)$ such that $u \rightarrow v_{j}$, then $u v_{j} v_{j+1} v_{j+2} v_{4}^{\prime} u$ is a 5 -cycle through all partite sets, a contradiction. Thus it remains the case that $V(C) \Rightarrow U$. But now we arrive at the contradiction

$$
\begin{aligned}
d^{+}\left(v_{4}^{\prime}\right)=d^{+}\left(v_{1}\right) & \geq\left|\left\{v_{2}\right\}\right|+\left|V_{4}\right|+\left|U-V\left(v_{1}\right)\right| \\
& \geq 1+r+d^{+}\left(v_{4}^{\prime}\right)-(r-1)=d^{+}\left(v_{4}^{\prime}\right)+2
\end{aligned}
$$

and the proof of this lemma is complete.

3. Main result

Theorem 3.1. If D is a regular c-partite tournament with $c \geq 4$ and $|V(D)| \geq 10$, then D contains two complementary cycles of length 5 and $|V(D)|-5$.

Proof. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of D and let $r=\alpha(D)$. Then it follows from Lemma 2.4 that $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=$ $\left|V_{c}\right|=\alpha(D)=r$ and $|V(D)|=c r$. According to Theorem 2.8, we have

$$
\begin{equation*}
\kappa(D) \geq\left\lceil\frac{|V(D)|-\alpha(D)}{3}\right\rceil=\left\lceil\frac{(c-1) r}{3}\right\rceil \tag{2}
\end{equation*}
$$

If $r=1$, that means that D is a tournament, then $|V(D)|=c \geq 10$ and (2) yield $\kappa(D) \geq 3$. The desired result follows from Theorem 2.7.

Therefore, it remains the case that $r \geq 2$. In view of Lemma 2.16 and Theorem 2.6, there exists a 5-cycle C_{5} through exactly 4 partite sets when $c=4$. According to Theorem 2.14 , there is a 5 -cycle C_{5} through exactly 5 partite sets when $c \geq 5$. If we define the c-partite tournament H by $H=D-V\left(C_{5}\right)$, then $|V(H)|=c r-5$. Let $V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{c}^{\prime}$ be the partite sets of H such that $\left|V_{1}^{\prime}\right| \leq\left|V_{2}^{\prime}\right| \leq \cdots \leq\left|V_{c}^{\prime}\right|$.
A. Assume that $c=4$. As D is regular and $|V(D)| \geq 10$, it follows that $r \geq 4$ is even $\left|V_{3}^{\prime}\right| \leq r-1$, and $\left|V_{4}^{\prime}\right| \leq r-1$ and $i_{g}(H) \leq 4$. If $r \geq 8$, then we deduce that

$$
i_{g}(H) \leq 4 \leq \frac{r}{2}=\frac{4 r-5-(r-1)-2(r-1)+2}{2} \leq \frac{|V(H)|-\left|V_{3}^{\prime}\right|-2\left|V_{4}^{\prime}\right|+2}{2}
$$

Applying Theorem 2.11, we conclude that H has a Hamiltonian cycle C, and so we have found two complementary cycles C and C_{5}, where C_{5} has length five. If $c=4$, there remain the cases $r=4,6$.
B. Assume that $c=5$. Since C_{5} contains vertices from 5 partite sets, we deduce that $i_{g}(H) \leq 4$ and $\left|V_{i}^{\prime}\right|=r-1$ for $1 \leq i \leq 5$. If $r \geq 4$, then we deduce that

$$
i_{g}(H) \leq 4 \leq \frac{2 r}{2}=\frac{5 r-5-(r-1)-2(r-1)+2}{2}=\frac{|V(H)|-\left|V_{4}^{\prime}\right|-2\left|V_{5}^{\prime}\right|+2}{2}
$$

Applying Theorem 2.11, we conclude that H has a Hamiltonian cycle C, and we obtain the desired complementary cycles. Thus there remain the cases $c=5$ and $r=2,3$.
C. Assume that $c=6$. It follows that r is even. Since C_{5} contains vertices from 5 partite sets, we observe that $\left|V_{5}^{\prime}\right| \leq r-1$ and $i_{g}(H) \leq 5$. If $r \geq 4$, then we deduce that

$$
i_{g}(H) \leq 5 \leq \frac{3 r-2}{2}=\frac{6 r-5-(r-1)-2 r+2}{2}=\frac{|V(H)|-\left|V_{5}^{\prime}\right|-2\left|V_{6}^{\prime}\right|+2}{2}
$$

Applying Theorem 2.11, we obtain the desired complementary cycles. Thus there remains the case that $c=6$ and $r=2$.
D. Assume that $c \geq 7$. With exception of the four cases $c=7$ and $r=2,3, c=8$, and $r=2$, as well as $c=9$ and $r=2$, we have

$$
i_{g}(H) \leq 5 \leq \frac{(c-3) r-3}{2}=\frac{c r-5-r-2 r+2}{2}=\frac{|V(H)|-\left|V_{c-1}^{\prime}\right|-2\left|V_{c}^{\prime}\right|+2}{2}
$$

Again, Theorem 2.11 leads to the desired complementary cycles.
Case 1. Assume that $c=9$ and $r=2$. Then D is 8-regular and $\alpha(H)=2$. In addition, Theorem 2.8 yields $\kappa(D) \geq 6$ and thus $\kappa(H) \geq 1$.
Subcase 1.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}$ be a minimal cycle-factor of H with the properties described in Theorem 2.13. Because of $\left|V^{*}\right| \leq 2$, it follows from Theorem 2.13 that there is at most one arc from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}. As $\kappa(H) \geq 1$, we see that there is exactly one arc from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}. Since $|V(H)|=13$, we can assume, without loss of generality, that $\left|V\left(C_{1}^{\prime}\right)\right| \leq 6$, because we consider the inverse digraph D^{-1} when $\left|V\left(C_{1}^{\prime}\right)\right| \geq 7$. This implies that there are at least two vertices $x_{1}, x_{2} \in V\left(C_{1}^{\prime}\right)$ such that $d_{D\left[V\left(C_{1}^{\prime}\right)\right]}^{-}\left(x_{i}\right) \leq 2$ for $i=1,2$ and thus $d_{D}^{-}\left(x_{1}\right) \leq 7$ or $d_{D}^{-}\left(x_{2}\right) \leq 7$, a contradiction to the 8 -regularity of D.
Subcase 1.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set $V(H)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} such that $R_{1} \Rightarrow Y,\left(R_{1} \cup Y\right) \Rightarrow R_{2},|Y|>|Z|$, and Y is an independent set. Since $\kappa(H) \geq 1$ and $\alpha(H)=2$, we see that $1=|Z|<|Y|=2$. Let, without loss of generality, $Y=V_{9}^{\prime}$ and $\left|R_{1}\right| \leq\left|R_{2}\right|$. Since D is 8-regular, we see that $d_{H}^{+}(x), d_{H}^{-}(x) \geq 3$ for every $x \in V(H)$ and $d_{H}^{+}(x), d_{H}^{-}(x) \geq 4$ for $x \in\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime}\right)$.

If $R_{1}=\emptyset$, then $V_{9}^{\prime}=Y \rightarrow R_{2}$ leads to the contradiction $d_{H}^{-}(y) \leq 1$ for $y \in Y$. If $1 \leq\left|R_{1}\right| \leq 4$, then there exists a vertex $x \in R_{1}$ such that $d_{H}^{-}(x) \leq 2$, a contradiction. In the remaining case $\left|R_{1}\right|=5$, we arrive at the contradiction that there exists a vertex $x \in R_{1}$ such that $d_{H}^{-}(x) \leq 2$ or the induced subdigraph $H\left[R_{1}\right]$ is a 2-regular tournament. In the second case, we obtain the contradiction $d_{H}^{-}(x) \leq 3$ for some vertex $x \in R_{1} \cap\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime}\right)$.

Case 2. Assume that $c=8$ and $r=2$. Then D is 7-regular and $\alpha(H)=2$. Let $V_{1}^{\prime}=\{a\}, V_{2}^{\prime}=\{b\}, V_{3}^{\prime}=\{c\}, V_{4}^{\prime}=\{d\}, V_{5}^{\prime}=$ $\{z\}, V_{6}^{\prime}=\left\{u_{1}, u_{2}\right\}, V_{7}^{\prime}=\left\{v_{1}, v_{2}\right\}$, and $V_{8}^{\prime}=\left\{w_{1}, w_{2}\right\}$ be the partite sets of H and $W=\{a, b, c, d, z\}$
Subcase 2.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}$ be a minimal cycle-factor with the properties described in Theorem 2.13. Because of $\left|V^{*}\right| \leq 2$, it follows from Theorem 2.13 that there is at most one arc from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}. Since $|V(H)|=11$, we can assume, without loss of generality, that $\left|V\left(C_{1}^{\prime}\right)\right| \leq 5$.

If $\left|V\left(C_{1}^{\prime}\right)\right| \leq 4$, then there are at least two vertices $x_{1}, x_{2} \in V\left(C_{1}^{\prime}\right)$ such that $d_{D\left[V\left(C_{1}^{\prime}\right)\right]}^{-}\left(x_{i}\right)=1$ for $i=1$, 2 . This implies $d_{D}^{-}\left(x_{1}\right) \leq 6$ or $d_{D}^{-}\left(x_{2}\right) \leq 6$, a contradiction to the 7-regularity of D.

Assume now that $\left|V\left(C_{1}^{\prime}\right)\right|=5$. If there exist at least two vertices $x_{1}, x_{2} \in V\left(C_{1}^{\prime}\right)$ such that $d_{D\left[V\left(C_{1}^{\prime}\right)\right]}^{-}\left(x_{i}\right)=1$ for $i=1$, 2 , then we arrive at a contradiction as in the case $\left|V\left(C_{1}^{\prime}\right)\right| \leq 4$. Otherwise, the digraph $D\left[V\left(C_{1}^{\prime}\right)\right]$ is 4- or 5-partite. If $D\left[V\left(C_{1}^{\prime}\right)\right]$ is 4-partite, then there exists a vertex $x_{1} \in V\left(C_{1}^{\prime}\right)$ such that $d_{D\left[V\left(C_{1}^{\prime}\right)\right]}^{-}\left(x_{1}\right)=1$, and there are vertices $x \in V\left(C_{5}\right)$ and $y \in V\left(C_{1}^{\prime}\right)$ which are not adjacent. This leads to the contradiction $d_{D}^{-}\left(x_{1}\right) \leq 6$ or $d_{D}^{-}(y) \leq 6$. If $D\left[V\left(C_{1}^{\prime}\right)\right]$ is 5-partite, then there exist $x_{1}, x_{2} \in V\left(C_{5}\right)$ and $y_{1}, y_{2} \in V\left(C_{1}^{\prime}\right)$ such that x_{i} and y_{i} are not adjacent for $i=1,2$, and we arrive analogously at a contradiction to the 7-regularity of D.
Subcase 2.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set $V(H)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} such that $R_{1} \Rightarrow Y,\left(R_{1} \cup Y\right) \Rightarrow R_{2},|Y|>|Z|$, and Y is an independent set. Since D is 7-regular, we see that $d_{H}^{+}(x), d_{H}^{-}(x) \geq 2$ for every $x \in V(H)$ and $d_{H}^{+}(x), d_{H}^{-}(x) \geq 3$ for every $x \in W$. This easily implies that $Z=\emptyset$ is not possible. Thus let now $1=|Z|<|Y|=2$ and let, without loss of generality, $Y=V_{8}^{\prime}=\left\{w_{1}, w_{2}\right\}$ and $\left|R_{1}\right| \leq\left|R_{2}\right|$.

If $R_{1}=\emptyset$, then $Y \Rightarrow R_{2}$ leads to the contradiction $d_{H}^{-}(y) \leq 1$ for $y \in Y$. If $1 \leq\left|R_{1}\right| \leq 2$, then there exists a vertex $x \in R_{1}$ such that $d_{H}^{-}(x) \leq 1$, a contradiction. If $\left|R_{1}\right|=3$, we arrive at the contradiction that there exists a vertex $x \in R_{1}$ such that $d_{H}^{-}(x) \leq 1$ or the induced subdigraph $H\left[R_{1}\right]$ is a 3-cycle. In the second case, we obtain the contradiction $d_{H}^{-}(x) \leq 3$ for some vertex $x \in R_{1} \cap W$.

In the remaining case that $\left|R_{1}\right|=4$, we deduce that $\left|R_{2}\right|=4$. If there is a vertex $y \in R_{1}$ with $d_{H\left[R_{1}\right]}^{-}(y)=0$ or a vertex $y \in R_{2}$ with $d_{H\left[R_{2}\right]}^{+}(y)=0$, then we obtain a contradiction to $d_{H}^{+}(x), d_{H}^{-}(x) \geq 2$ for every $x \in V(H)$. Thus we assume in the following that $d_{H\left[R_{1}\right]}^{-}(x) \geq 1$ for every $x \in R_{1}$ and $d_{H\left[R_{2}\right]}^{+}(x) \geq 1$ for every $x \in R_{2}$. Now we distinguish 3 cases.

Assume that $H\left[R_{1}\right]$ is a bipartite tournament. It follows that $R_{1}=V_{6}^{\prime} \cup V_{7}^{\prime}$. Hence there exists at least one vertex $x \in R_{2} \cap W$ such that $d_{H}^{+}(x) \leq 2$, a contradiction.

Assume that $H\left[R_{1}\right]$ is a 3-partite tournament but not bipartite. Let, without loss of generality, $V_{7}^{\prime} \subset R_{1}$. In the case that $R_{1} \cap V_{6}^{\prime}=\emptyset$, we arrive at the contradiction that there exists a vertex $x \in R_{1} \cap W$ such that $d_{H}^{-}(x) \leq 2$. In the remaining case that $R_{1} \cap V_{6}^{\prime} \neq \emptyset$, we arrive at the contradiction that there exists at least one vertex $x \in R_{2} \cap W$ such that $d_{H}^{+}(x) \leq 2$.

Assume that $H\left[R_{1}\right]$ is a tournament. If $H\left[R_{2}\right]$ is not a tournament, then we arrive at a contradiction similar to the two cases above. Furthermore, we obtain a contradiction or we deduce that, without loss of generality, $R_{1}=\left\{u_{1}, v_{1}, a, b\right\}$, $R_{2}=\left\{u_{2}, v_{2}, c, d\right\}$ and $Z=\{z\}$ such that $Z \rightarrow R_{1} \rightarrow Y \rightarrow R_{2} \rightarrow Z$ and $R_{1} \Rightarrow R_{2}$ so that $d_{H}^{+}(x)=7$ for every $x \in R_{1}$ and $d_{H}^{-}(y)=7$ for every $y \in R_{2}$. If $C_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$, then the 7-regularity of D implies that $R_{2} \Rightarrow C_{5} \Rightarrow R_{1}$. Hence there exists the new 5 -cycle $C_{5}^{*}=v_{1} w_{1} u_{2} x_{1} x_{2} v_{1}$. If we assume, without loss of generality, that $a \rightarrow b$ and $c \rightarrow d$, then there exists the complementary cycle $x_{3} x_{4} x_{5} u_{1} w_{2} c d z a b v_{2} x_{3}$.
Case 3. Assume that $c=7$ and $r=3$. Then D is 9-regular and $\alpha(H)=3$. In addition, Theorem 2.9 yields $\kappa(D) \geq 7$ and thus $\kappa(H) \geq 2$. If H has a cycle factor, then Theorem 2.10 shows that H is Hamiltonian, and we are done.

Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set $V(H)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} such that $R_{1} \Rightarrow Y,\left(R_{1} \cup Y\right) \Rightarrow R_{2},|Y|>|Z|$, and Y is an independent set. Since $\kappa(H) \geq 2$ and $\alpha(H)=3$, we see that $2=|Z|<|Y|=3$. Let, without loss of generality, $Y=V_{7}^{\prime}$ and $\left|R_{1}\right| \leq\left|R_{2}\right|$. Since D is 9-regular, we see that $d_{H}^{+}(x), d_{H}^{-}(x) \geq 4$ for every $x \in V(H)$ and $d_{H}^{+}(x), d_{H}^{-}(x) \geq 5$ for $x \in\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime}\right)$.

If $R_{1}=\emptyset$, then $Y \rightarrow R_{2}$ leads to the contradiction $d_{H}^{-}(y) \leq 2$ for $y \in Y$. If $1 \leq\left|R_{1}\right| \leq 4$, then there exists a vertex $x \in R_{1}$ such that $d_{H}^{-}(x) \leq 3$, a contradiction. In the remaining case $\left|R_{1}\right|=5$, we arrive at the contradiction that there exists a vertex $x \in R_{1}$ such that $d_{H}^{-}(x) \leq 3$ or the induced subdigraph $H\left[R_{1}\right]$ is a 2-regular tournament. In the second case, we obtain the contradiction $d_{H}^{-}(x) \leq 4$ for some vertex $x \in R_{1} \cap\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime}\right)$.
Case 4. Assume that $c=7$ and $r=2$. Then D is 6-regular and $\alpha(H)=2$. Let $V_{1}^{\prime}=\{a\}, V_{2}^{\prime}=\{b\}, V_{3}^{\prime}=\{c\}, V_{4}^{\prime}=\{d\}, V_{5}^{\prime}=$ $\{z\}, V_{6}^{\prime}=\left\{u_{1}, u_{2}\right\}$, and $V_{7}^{\prime}=\left\{v_{1}, v_{2}\right\}$ be the partite sets of H and $W=\{a, b, c, d, z\}$. Since D is 6-regular, we observe that $d_{H}^{+}(x), d_{H}^{-}(x) \geq 1$ for every $x \in V(H)$ and $d_{H}^{+}(x), d_{H}^{-}(x) \geq 2$ for every $x \in W$. In addition, let $C_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$.
Subcase 4.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}$ be a minimal cycle-factor with the properties described in Theorem 2.13. Because of $\left|V^{*}\right| \leq 2$, it follows from Theorem 2.13 that there is at most one arc from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}.

If C_{1}^{\prime} is a 3-cycle, then we arrive at a contradiction with exception of the case that C_{1}^{\prime} has, without loss of generality, the form $C_{1}^{\prime}=a u_{1} v_{1} a$, and there is an arc from $H-V\left(C_{1}^{\prime}\right)$ to a. In addition, we deduce that $T_{6}=H-V\left(C_{1}^{\prime}\right)$ is a strong tournament and $C_{5} \rightarrow v_{1}$. According to Theorem 2.5, there exists a 5-cycle C_{5}^{*} containing u_{2} in T_{6}. Now let $y \in\left(V\left(T_{6}\right)-V\left(C_{5}^{*}\right)\right)$. Since D is 6 -regular, there exists an arc from y to C_{5}, say $y \rightarrow x_{1}$. This implies that $x_{1} x_{2} x_{3} x_{4} x_{5} v_{1} a u_{1} y x_{1}$ is a complementary cycle of C_{5}^{*}.

Subcase 4.1.1. Assume that C_{1}^{\prime} is a 4-cycle and that there is no arc from the 5-cycle C_{2}^{\prime} to C_{1}^{\prime}. It follows that $V\left(C_{1}^{\prime}\right) \cap V_{6}^{\prime} \neq \emptyset$ and $V\left(C_{1}^{\prime}\right) \cap V_{7}^{\prime} \neq \emptyset$. We distinguish the three cases that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is 4-partite, 3-partite or bipartite.
Subcase 4.1.1.1. Assume that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is 4-partite. This implies, without loss of generality, that $C_{1}^{\prime}=a v_{1} u_{1} b a$ such that $v_{1} \rightarrow b$ and $u_{1} \rightarrow a$. It follows that $C_{5} \Rightarrow C_{1}^{\prime}$. Next let, without loss of generality, $C_{2}^{\prime}=v_{2} y_{2} y_{3} y_{4} y_{5} v_{2}$. Since $T_{5}=D\left[V\left(C_{5}\right)\right]$ is a strong tournament, we conclude from Theorem 2.5 that either there are at least three distinct vertices w_{1}, w_{2}, w_{3} in T_{5} such that $T_{5}-w_{i}$ is strong for $i=1,2,3$ or we suppose that $x_{j} \rightarrow x_{i}$ for $1 \leq i<j \leq 5$ and $j-i \geq 2$.

If $T_{5}-w_{i}$ is strong for $i=1,2,3$, then it follows that $v_{2} \rightarrow w_{1}$ or $v_{2} \rightarrow w_{2}$ or $v_{2} \rightarrow w_{3}$, say $v_{2} \rightarrow w_{1}=x_{1}$. Since y_{5} dominates at least one vertex of $T_{5}-x_{1}$, say $y_{5} \rightarrow x_{2}$, we arrive at the complementary cycles $x_{1} u_{1}$ bav $v_{2} x_{1}$ and $x_{2} x_{3} x_{4} x_{5} v_{1} y_{2} y_{3} y_{4} y_{5} x_{2}$.

If $x_{j} \rightarrow x_{i}$ for $1 \leq i<j \leq 5$ and $j-i \geq 2$, then $C_{2}^{\prime} \rightarrow x_{5}$ and y_{5} dominates at least one vertex of $T_{5}-x_{5}$, say $y_{5} \rightarrow x_{1}$. Now we arrive at the complementary cycles $x_{5} u_{1}$ bav $2_{2} x_{5}$ and $x_{1} x_{2} x_{3} x_{4} v_{1} y_{2} y_{3} y_{4} y_{5} x_{1}$.
Subcase 4.1.1.2. Assume that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is 3-partite. This implies, without loss of generality, that $C_{1}^{\prime}=a u_{1} v_{1} u_{2} a$ such that $v_{1} \rightarrow a$. It follows that $C_{5} \Rightarrow C_{1}^{\prime}$. Next let, without loss of generality, $C_{2}^{\prime}=v_{2} y_{2} y_{3} y_{4} y_{5} v_{2}$. As above, the strong connectivity of $T_{5}=D\left[V\left(C_{5}\right)\right]$ implies that either there are at least three distinct vertices w_{1}, w_{2}, w_{3} in T_{5} such that $T_{5}-w_{i}$ is strong for $i=1,2,3$ or we suppose that $x_{j} \rightarrow x_{i}$ for $1 \leq i<j \leq 5$ and $j-i \geq 2$.

If $T_{5}-w_{i}$ is strong for $i=1,2,3$, then it follows that $v_{2} \rightarrow w_{1}$ or $v_{2} \rightarrow w_{2}$ or $v_{2} \rightarrow w_{3}$, say $v_{2} \rightarrow w_{1}=x_{1}$. Since y_{5} dominates at least one vertex of $T_{5}-x_{1}$, say $y_{5} \rightarrow x_{2}$, we arrive at the complementary cycles $x_{1} v_{1} a u_{1} v_{2} x_{1}$ and $x_{2} x_{3} x_{4} x_{5} u_{2} y_{2} y_{3} y_{4} y_{5} x_{2}$.

If $x_{j} \rightarrow x_{i}$ for $1 \leq i<j \leq 5$ and $j-i \geq 2$, then $C_{2}^{\prime} \rightarrow x_{5}$ and y_{5} dominates at least one vertex of $T_{5}-x_{5}$, say $y_{5} \rightarrow x_{1}$. Now we have the complementary cycles $x_{5} v_{1} a u_{1} v_{2} x_{5}$ and $x_{1} x_{2} x_{3} x_{4} u_{2} y_{2} y_{3} y_{4} y_{5} x_{1}$.
Subcase 4.1.1.3. Assume that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is bipartite. This implies, without loss of generality, that $C_{1}^{\prime}=u_{1} v_{1} u_{2} v_{2} u_{1}$ and that $C_{5} \rightarrow C_{1}^{\prime}$. Next let $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$. It follows that $D\left[V\left(C_{2}^{\prime}\right)\right]$ as well as $D\left[V\left(C_{5}\right)\right]$ are 2-regular tournaments and that $D\left[V\left(C_{5}\right)\right]-x_{i}$ is strong for each $1 \leq i \leq 5$. If we assume, without loss of generality, that $y_{1} \rightarrow x_{1}$, then we can assume, without loss of generality, that $y_{5} \rightarrow x_{2}$. Now we have the complementary cycles $x_{1} u_{2} v_{2} u_{1} y_{1} x_{1}$ and $x_{2} x_{3} x_{4} x_{5} v_{1} y_{2} y_{3} y_{4} y_{5} x_{2}$.
Subcase 4.1.2. Assume that $C_{1}^{\prime}=p_{1} p_{2} p_{3} p_{4} p_{1}$ is a 4-cycle such that there is an arc, say $y_{1} p_{1}$ from the 5 -cycle $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ to C_{1}^{\prime}. If, without loss of generality, $V^{*}=V_{7}^{\prime}=\left\{v_{1}, v_{2}\right\}$, then Theorem 2.13 shows that, without loss of generality, $p_{4}=v_{1}$ and $y_{2}=v_{2}$.
Subcase 4.1.2.1. Assume that $V\left(C_{1}^{\prime}\right) \cap V_{6}^{\prime}=\emptyset$. The 6-regularity of D leads to $p_{1} \rightarrow p_{3}$ and $v_{1} \rightarrow p_{2}$. Thus $y_{1} p_{1} p_{3} v_{1} p_{2} v_{2} y_{3} y_{4} y_{5} y_{1}$ is a complementary cycle of C_{5}.
Subcase 4.1.2.2. Assume that $V\left(C_{1}^{\prime}\right) \cap V_{6}^{\prime}=\left\{u_{1}\right\}$ and $u_{1}=p_{1}$. The 6-regularity of D leads to $u_{1} \rightarrow p_{3}$ and $v_{1} \rightarrow p_{2}$. Thus $y_{1} u_{1} p_{3} v_{1} p_{2} v_{2} y_{3} y_{4} y_{5} y_{1}$ is a complementary cycle of C_{5}.
Subcase 4.1.2.3. Assume that $V\left(C_{1}^{\prime}\right) \cap V_{6}^{\prime}=\left\{u_{1}\right\}$ and $u_{1}=p_{2}$. The 6-regularity of D leads to $p_{1} \rightarrow p_{3}$. If $v_{1} \rightarrow u_{1}$, then $y_{1} p_{1} p_{3} v_{1} u_{1} v_{2} y_{3} y_{4} y_{5} y_{1}$ is a complementary cycle of C_{5}.

Assume next that $u_{1} \rightarrow v_{1}$. The 6-regularity of D leads to $C_{5} \Rightarrow\left\{p_{1}, p_{3}\right\}$ and $C_{5} \rightarrow u_{1}$. We assume, without loss of generality, that $v_{1} \rightarrow x_{1}$ and thus $\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \rightarrow v_{1}$. If $x_{5} \rightarrow p_{1}$, then we have the two complementary cycles C_{2}^{\prime} and $v_{1} x_{1} x_{2} x_{3} x_{4} x_{5} p_{1} u_{1} p_{3} v_{1}$. Hence there remains the case that $V\left(x_{5}\right)=V\left(p_{1}\right)$. Because of $\sum_{i=1}^{5} d_{H}^{-}\left(y_{i}\right)=27$, there are at least two vertices y_{i} and y_{j} in C_{2}^{\prime} such that $\left\{y_{i}, y_{j}\right\} \Rightarrow C_{5}$. We distinguish the following subcases where the subscripts are taken modulo 5.
Subcase 4.1.2.3.1. Assume that $y_{j}=y_{i+1}$.
If $y_{i+1} \neq v_{2}$ and $V\left(y_{i}\right) \neq V\left(x_{4}\right)$, then $x_{5} x_{1} x_{2} v_{1} y_{i+1} x_{5}$ and $x_{3} x_{4} p_{1} u_{1} p_{3} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{4}$ are complementary cycles.
If $y_{i+1}=v_{2}$ and $V\left(y_{i}\right) \neq V\left(x_{4}\right)$, then $x_{2} x_{3} v_{1} p_{1} y_{i+1} x_{2}$ and $x_{4} x_{5} x_{1} u_{1} p_{3} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{4}$ are complementary cycles.
If $y_{i+1} \neq v_{2}$ and $V\left(y_{i}\right)=V\left(x_{4}\right)$, then $x_{4} x_{5} u_{1} v_{1} y_{i+1} x_{4}$ and $x_{1} x_{2} x_{3} p_{1} p_{3} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{1}$ are complementary cycles.
If $y_{i+1}=v_{2}$ and $V\left(y_{i}\right)=V\left(x_{4}\right)$, then $x_{4} x_{5} v_{1} p_{1} y_{i+1} x_{4}$ and $x_{1} x_{2} x_{3} u_{1} p_{3} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{1}$ are complementary cycles.
Subcase 4.1.2.3.2. Assume that $y_{j}=y_{i+2}$.
If $y_{i+1} \rightarrow y_{i+3}$, then we are in the same situation as in Subcase 4.1.2.3.1 when we use y_{i+2} instead of y_{i+1} and $y_{i+1} y_{i+3} y_{i+4} y_{i}$ instead of $y_{i-3} y_{i-2} y_{i-1} y_{i}$.

If $y_{i+4} \rightarrow y_{i+1}$, then we are in the same situation as in Subcase 4.1.2.3.1 when we use y_{i} instead of y_{i+1} and $y_{i+3} y_{i+4} y_{i+1} y_{i+2}$ instead of $y_{i-3} y_{i-2} y_{i-1} y_{i}$.

In the remaining case that $y_{i+3} \rightarrow y_{i+1}$ and $y_{i+1} \rightarrow y_{i+4}$, we use in Subcase 4.1.2.3.1 y_{i+2} instead of y_{i+1} and $y_{i+3} y_{i+1} y_{i+4} y_{i}$ instead of $y_{i-3} y_{i-2} y_{i-1} y_{i}$.
Subcase 4.1.2.4. Assume that $V\left(C_{1}^{\prime}\right) \cap V_{6}^{\prime}=\left\{u_{1}\right\}$ and $u_{1}=p_{3}$. The 6-regularity of D leads to $v_{1} \rightarrow p_{2}$. If $p_{1} \rightarrow u_{1}$, then $y_{1} p_{1} u_{1} v_{1} p_{2} v_{2} y_{3} y_{4} y_{5} y_{1}$ is a complementary cycle of C_{5}. Otherwise we have $u_{1} \rightarrow p_{1}$, and the 6-regularity of D leads to $C_{5} \rightarrow v_{1}$. If, without loss of generality, $p_{1} \rightarrow x_{1}$, then there exist the complementary cycles C_{2}^{\prime} and $p_{1} x_{1} x_{2} x_{3} x_{4} x_{5} v_{1} p_{2} u_{1} p_{1}$.
Subcase 4.1.2.5. Assume that $V\left(C_{1}^{\prime}\right) \cap V_{6}^{\prime}=\left\{u_{1}, u_{2}\right\}$. This implies, without loss of generality, that $C_{1}^{\prime}=u_{1} p_{2} u_{2} v_{1} u_{1}$. The 6regularity of D leads to $v_{1} \rightarrow p_{2}$ and thus $C_{5} \Rightarrow p_{2}$ and $C_{5} \rightarrow\left\{v_{1}, u_{2}\right\}$. We assume, without loss of generality, that $u_{1} \rightarrow x_{1}$ and thus $\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \rightarrow u_{1}$. If $x_{5} \rightarrow p_{2}$, then we have the two complementary cycles C_{2}^{\prime} and $u_{1} x_{1} x_{2} x_{3} x_{4} x_{5} p_{2} u_{2} v_{1} u_{1}$. Hence there remains the case that $V\left(x_{5}\right)=V\left(p_{2}\right)$. Because of $\sum_{i=1}^{5} d_{H}^{-}\left(y_{i}\right)=28$, there are at least two vertices y_{i} and y_{i+1} in C_{2}^{\prime} such that $\left\{y_{i}, y_{i+1}\right\} \Rightarrow C_{5}$.

If $y_{i+1} \neq v_{2}$ and $V\left(y_{i}\right) \neq V\left(x_{4}\right)$, then $x_{5} x_{1} x_{2} v_{1} y_{i+1} x_{5}$ and $x_{3} x_{4} u_{1} p_{2} u_{2} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{4}$ are complementary cycles.
If $y_{i+1}=v_{2}$ and $V\left(y_{i}\right) \neq V\left(x_{4}\right)$, then $x_{2} x_{3} v_{1} u_{1} y_{i+1} x_{2}$ and $x_{4} x_{5} x_{1} p_{2} u_{2} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{4}$ are complementary cycles.
If $y_{i+1} \neq v_{2}$ and $V\left(y_{i}\right)=V\left(x_{4}\right)$, then $x_{4} x_{5} u_{2} v_{1} y_{i+1} x_{4}$ and $x_{1} x_{2} x_{3} u_{1} p_{2} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{1}$ are complementary cycles.
If $y_{i+1}=v_{2}$ and $V\left(y_{i}\right)=V\left(x_{4}\right)$, then $x_{4} x_{5} v_{1} u_{1} y_{i+1} x_{4}$ and $x_{1} x_{2} x_{3} p_{2} u_{2} y_{i-3} y_{i-2} y_{i-1} y_{i} x_{1}$ are complementary cycles.
Subcase 4.1.3. Assume that C_{1}^{\prime} is a 5 - or 6 -cycle. Using the converse D^{-1} of D, we obtain the desired results by the cases discussed above.
Subcase 4.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set $V(H)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} such that $R_{1} \Rightarrow Y,\left(R_{1} \cup Y\right) \Rightarrow R_{2},|Y|>|Z|$, and Y is an independent set. Assume, without loss of generality, that $\left|R_{1}\right| \leq\left|R_{2}\right|$.
Subcase 4.2.1. Assume that $Z=\emptyset$. If $R_{1}=\emptyset$, then we arrive at the contradiction $d_{H}^{+}(y) \geq 7$ for every $y \in Y$. If $1 \leq\left|R_{1}\right| \leq 3$, then we obtain the contradiction $d_{H}^{-}(x)=0$ for a vertex $x \in R_{1}$ or $d_{H}^{-}(x) \leq 1$ for a vertex $x \in R_{1} \cap W$. In the remaining case that $\left|R_{1}\right|=\left|R_{2}\right|=4$ and $|Y|=1$, we receive at a contradiction or, without loss of generality, the subdigraph $H\left[R_{1}\right]$ consists of the 4-cycle $u_{1} v_{1} a b u_{1}$ such that $u_{1} \rightarrow a$ and $v_{1} \rightarrow b$ and the subdigraph $H\left[R_{2}\right]$ consists of the 4-cycle $u_{2} v_{2} c d u_{2}$ such that $c \rightarrow u_{2}$ and $d \rightarrow v_{2}$ or $H\left[R_{2}\right]$ consists of the 4 -cycle $v_{2} u_{2} c d v_{2}$ such that $c \rightarrow v_{2}$ and $d \rightarrow u_{2}$ and $Y=\{z\}$. In addition, we deduce that $R_{2} \Rightarrow C_{5} \Rightarrow R_{1}$. In the first case, we obtain the complementary cycles $x_{1} v_{1} a b u_{2} x_{1}$ and $x_{2} x_{3} x_{4} x_{5} u_{1} z c d v_{2} x_{2}$ and in the second case $x_{1} v_{1} a b v_{2} x_{1}$ and $x_{2} x_{3} x_{4} x_{5} u_{1} z c d u_{2} x_{2}$.
Subcase 4.2.2. Assume that $Z \neq \emptyset$. It follows that $1=|Z|<|Y|=2$. Assume, without loss of generality, that $Y=V_{7}^{\prime}=\left\{v_{1}, v_{2}\right\}$. It follows that $R_{1} \rightarrow Y \rightarrow R_{2}$.
Subcase 4.2.2.1. Assume that $R_{1}=\emptyset$. This implies that $Z \rightarrow Y$ and $C_{5} \rightarrow Y$. Let $R_{2}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\}$.
Subcase 4.2.2.1.1. Assume that $Z \subset W$, say $Z=\{z\}$. Since D is 6 -regular, we see that there are at least two vertices in R_{2}, say y_{1} and y_{2}, such that $\left\{y_{1}, y_{2}\right\} \rightarrow z$.
Subcase 4.2.2.1.1.1. Assume that $\left\{y_{1}, y_{2}\right\}=\left\{u_{1}, u_{2}\right\}$. Let, without loss of generality, $y_{3} y_{4} y_{5} y_{6}$ be a Hamiltonian path of the tournament induced by this vertex set. If $y_{i} \rightarrow u_{j}$ for $i=4,5,6$ and $j=1,2$, then there exists the 5 -cycle $y_{i-1} y_{i} u_{j} z v_{1} y_{i-1}$. If $p_{1} p_{2} p_{3}$ is a Hamiltonian path of the remaining vertices in R_{2} such that, without loss of generality, $p_{3} \rightarrow x_{1}$, then $x_{1} x_{2} x_{3} x_{4} x_{5} v_{2} p_{1} p_{2} p_{3} x_{1}$ is a complementary cycle. Therefore we can assume in the following that $\left\{u_{1}, u_{2}\right\} \rightarrow\left\{y_{4}, y_{5}, y_{6}\right\}$. If $y_{i} \rightarrow z$ for $i=5,6$, then there exists the 5 -cycle $u_{1} y_{i-1} y_{i} z v_{1} u_{1}$, and analogously to above also a complementary cycle. So we assume now that $z \rightarrow\left\{y_{5}, y_{6}\right\}$. This implies that $\left\{y_{5}, y_{6}\right\} \rightarrow y_{3}$. As above we receive to two desired complementary cycles or $\left\{u_{1}, u_{2}\right\} \rightarrow y_{3}$. It follows that $y_{3} \rightarrow z$ and as before we obtain the desired complementary cycles.
Subcase 4.2.2.1.1.2. Assume that $\left\{y_{1}, y_{2}\right\} \neq\left\{u_{1}, u_{2}\right\}$. Assume, without loss of generality, that $y_{1} \rightarrow y_{2}$.
If there is a vertex in R_{2}, say y_{3}, such that $y_{3} \rightarrow y_{1}$, then there is the 5-cycle $y_{3} y_{1} y_{2} z v_{1} y_{1}$ and a complementary 9-cycle, with exception of the cases that $\left\{y_{4}, y_{5}, y_{6}\right\}=\left\{u_{1}, u_{2}, y_{6}\right\}$ such that $\left\{u_{1}, u_{2}\right\} \rightarrow y_{6}$ or $y_{6} \rightarrow\left\{u_{1}\right.$, $\left.u_{2}\right\}$. Assume first that $\left\{u_{1}, u_{2}\right\} \rightarrow y_{6}$. If $y_{6} \rightarrow y_{i}$ for an $i=1,2$, then there exists the 5-cycle $u_{1} y_{6} y_{i} z v_{1} u_{1}$ and a complementary 9-cycle. Otherwise, we have $\left\{y_{1}, y_{2}\right\} \rightarrow y_{6}$ and thus $y_{6} \rightarrow z$. If $y_{1} \rightarrow u_{1}$, then there is the 5 -cycle $y_{1} u_{1} y_{6} z v_{1} y_{1}$ and also a complementary cycle. In the other case $u_{1} \rightarrow y_{1}$, there is the 5-cycle $u_{1} y_{1} y_{2} z v_{1} u_{1}$ and a complementary cycle. The second case that $y_{6} \rightarrow\left\{u_{1}, u_{2}\right\}$ is similar. It remains the case that $y_{1} \Rightarrow\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}$.
Subcase 4.2.2.1.1.2.1. Assume that $y_{1}=u_{1}$ and let, without loss of generality, $y_{3}=u_{2}$. If $y_{i} \rightarrow y_{2}$ for an $i=4,5,6$, then there is the 5 -cycle $u_{1} y_{i} y_{2} z v_{1} u_{1}$ and a complementary cycle. It remains the case that $y_{2} \rightarrow\left\{y_{4}, y_{5}, y_{6}\right\}$. Because of Subcase 4.2.2.1.1.1, we can assume that $z \rightarrow u_{2}$. If $y_{i} \rightarrow z$ for an $i=4,5,6$, then there is the 5-cycle $u_{1} y_{2} y_{i} z v_{1} u_{1}$ and a complementary cycle. Otherwise we have $z \rightarrow\left\{y_{4}, y_{5}, y_{6}\right\}$, and the 6-regularity shows, without loss of generality, that $y_{4} \rightarrow y_{5} \rightarrow y_{6} \rightarrow y_{4}$. Thus we obtain $\left\{y_{4}, y_{5}, y_{6}\right\} \rightarrow u_{2} \rightarrow C_{5}$, If, without loss of generality, $y_{6} \rightarrow x_{4}$, then we arrive at the complementary cycles $x_{1} x_{2} x_{3} v_{2} u_{2} x_{1}$ and $x_{4} x_{5} v_{1} u_{1} y_{2} z y_{4} y_{5} y_{6} x_{4}$.
Subcase 4.2.2.1.1.2.2. Assume that $y_{2}=u_{1}$ and let, without loss of generality, $y_{3}=u_{2}$. If $y_{i} \rightarrow u_{1}$ for an $i=4,5,6$, then there is the 5 -cycle $y_{1} y_{i} u_{1} z v_{1} y_{1}$ and a complementary cycle. It remains the case that $u_{1} \rightarrow\left\{y_{4}, y_{5}, y_{6}\right\}$. Because of Subcase 4.2.2.1.1.1, we can assume that $z \rightarrow u_{2}$. If $y_{i} \rightarrow z$ for an $i=4,5,6$, then there is the 5-cycle $y_{1} u_{1} y_{i} z v_{1} y_{1}$ and a complementary cycle. Otherwise we have $z \rightarrow\left\{y_{4}, y_{5}, y_{6}\right\}$, and the 6-regularity shows, without loss of generality, that $y_{4} \rightarrow y_{5} \rightarrow y_{6} \rightarrow y_{4}$. Thus we obtain $\left\{y_{4}, y_{5}, y_{6}\right\} \rightarrow u_{2}$, and hence the contradiction $d^{-}\left(u_{2}\right) \geq 7$.
Subcase 4.2.2.1.1.2.3. Assume that $\left\{y_{1}, y_{2}\right\} \subset W$ and let, without loss of generality, $y_{3}=u_{1}$ and $y_{4}=u_{2}$. In addition, we assume, without loss of generality, that $z \rightarrow u_{1}$ and $y_{5} \rightarrow y_{6}$. If $u_{i} \rightarrow y_{2}$ for an $i=1,2$, then there is the 5-cycle $y_{1} u_{i} y_{2} z v_{1} y_{1}$ and a complementary cycle. Otherwise we have $y_{2} \rightarrow\left\{u_{1}, u_{2}\right\}$. If $u_{2} \rightarrow z$, then there is the 5-cycle $y_{1} y_{2} u_{2} z v_{1} y_{1}$ and a complementary cycle. It remains the case that $z \rightarrow u_{2}$.

Assume next that $y_{6} \rightarrow y_{2}$. If $u_{i} \rightarrow y_{6}$ for an $i=1,2$, then there is the 5-cycle $u_{i} y_{6} y_{2} z v_{1} u_{i}$ and a complementary cycle. Otherwise we have $y_{6} \rightarrow\left\{u_{1}, u_{2}\right\}$, and this implies that $u_{1} \rightarrow C_{5}$ and $u_{2} \rightarrow y_{5}$. If, without loss of generality, $y_{6} \rightarrow x_{4}$, then we arrive at the complementary cycles $x_{1} x_{2} x_{3} v_{2} u_{1} x_{1}$ and $x_{4} x_{5} v_{1} y_{1} y_{2} z u_{2} y_{5} y_{6} x_{4}$.

Assume now that $y_{2} \rightarrow y_{6}$ and $y_{5} \rightarrow y_{2}$. If $u_{i} \rightarrow y_{5}$ for an $i=1,2$, then there is the 5-cycle $u_{i} y_{5} y_{2} z v_{1} u_{i}$ and a complementary cycle. Otherwise we have $y_{5} \rightarrow\left\{u_{1}, u_{2}\right\}$, and this implies that $\left\{u_{1}, u_{2}\right\} \rightarrow y_{6}$. This yields the contradiction $d^{-}\left(y_{6}\right) \geq 7$.

Finally, assume that $y_{2} \rightarrow y_{6}$ and $y_{2} \rightarrow y_{5}$. The 6-regularity of D shows that $y_{6} \rightarrow u_{1}$ or $y_{6} \rightarrow u_{2}$, say $y_{6} \rightarrow u_{1}$. This implies $u_{1} \rightarrow y_{5}$. If $y_{5} \rightarrow z$, then there is the 5-cycle $y_{1} u_{1} y_{5} z v_{1} y_{1}$ and a complementary cycle. Otherwise we have $z \rightarrow y_{5}$.

It follows that $y_{5} \rightarrow u_{2}$ and thus $u_{2} \rightarrow y_{6}$ and so $y_{6} \rightarrow z$. This finally leads to the complementary cycles $u_{1} y_{5} y_{6} z v_{1} u_{1}$ and $x_{1} x_{2} x_{3} x_{4} x_{5} v_{2} y_{1} y_{2} u_{2} x_{1}$.
Subcase 4.2.2.1.2. Assume that $Z \subset V_{6}^{\prime}$, say $Z=\left\{u_{1}\right\}$. Since D is 6-regular, there is at least one vertex in R_{2}, say y_{1}, such that $y_{1} \rightarrow u_{1}$.
Subcase 4.2.2.1.2.1. Assume that there exists a vertex in R_{2}, say y_{2}, such that $y_{2} \rightarrow y_{1}$. If $y_{i} \rightarrow y_{2}$ for an $i=3,4,5,6$, then there is the 5 -cycle $y_{i} y_{2} y_{1} u_{1} v_{1} y_{i}$ and a complementary cycle. Hence it remains the case that $y_{2} \rightarrow\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}$. If $y_{i} \rightarrow y_{1}$ for an $i=3,4,5,6$, then there is the 5 -cycle $y_{2} y_{i} y_{1} u_{1} v_{1} y_{i}$ and a complementary cycle. Hence it remains the case that $y_{1} \rightarrow\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}$.

Assume that $y_{2}=u_{2}$. If $y_{i} \rightarrow u_{1}$ for an $i=3,4,5,6$, then the same arguments as above lead to two desired complementary cycles. It remains the case that $u_{1} \rightarrow\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}$. This leads to the contradiction $d^{-}\left(y_{i}\right) \geq 7$ for at least two $i \in\{3,4,5,6\}$.

Assume that $y_{2} \neq u_{2}$ and, without loss of generality, that $y_{6}=u_{2}$. If $y_{i} \rightarrow u_{1}$ for an $i=3,4,5$, then the same arguments as above lead to two desired complementary cycles. It remains the case that $u_{1} \rightarrow\left\{y_{3}, y_{4}, y_{5}\right\}$. It follows, without loss of generality, that $y_{3} \rightarrow y_{4} \rightarrow y_{5} \rightarrow y_{3}$ and thus $\left\{y_{3}, y_{4}, y_{5}\right\} \rightarrow u_{2}$, and we arrive at the contradiction $d^{-}\left(u_{2}\right) \geq 7$.
Subcase 4.2.2.1.2.2. Assume that $y_{1} \rightarrow\left\{y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\}$ and let, without loss of generality, $y_{6}=u_{2}$. With respect to Subcase 4.2.2.1.2.1, we can assume that $u_{1} \rightarrow\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$. This implies that $C_{5} \rightarrow u_{1}$. For the tournament induced by $\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$, we have, without loss of generality, the following two possibilities.

1. Possibility. Assume that $y_{2} \rightarrow\left\{y_{3}, y_{4}, y_{5}\right\}$ and $y_{3} \rightarrow y_{4} \rightarrow y_{5} \rightarrow y_{3}$. This implies $\left\{y_{3}, y_{4}, y_{5}\right\} \rightarrow u_{2}$ and thus $u_{2} \rightarrow y_{2}, u_{2} \rightarrow C_{5}$ and $\left\{y_{3}, y_{4}, y_{5}\right\} \Rightarrow C_{5}$. If, without loss of generality, $y_{5} \rightarrow x_{4}$, then we arrive at the complementary cycles $x_{1} x_{2} x_{3} v_{1} u_{2} x_{1}$ and $x_{4} x_{5} v_{2} y_{1} u_{1} y_{2} y_{3} y_{4} y_{5} x_{4}$.
2. Possibility. Assume that $y_{2} \rightarrow y_{3} \rightarrow y_{4} \rightarrow y_{5} \rightarrow y_{2}, y_{2} \rightarrow y_{4}$, and $y_{3} \rightarrow y_{5}$. This implies $\left\{y_{4}, y_{5}\right\} \rightarrow u_{2}$ and $\left\{y_{4}, y_{5}\right\} \Rightarrow C_{5}$. If, without loss of generality, $u_{2} \rightarrow x_{1}$, then we arrive at the complementary cycles $x_{1} x_{2} x_{3} v_{1} u_{2} x_{1}$ and $x_{4} x_{5} v_{2} y_{1} u_{1} y_{2} y_{3} y_{4} y_{5} x_{4}$ when $V\left(y_{5}\right) \neq V\left(x_{4}\right)$ or $x_{4} x_{5} v_{2} y_{1} u_{1} y_{5} y_{2} y_{3} y_{4} x_{4}$ when $V\left(y_{5}\right)=V\left(x_{4}\right)$.
Subcase 4.2.2.2. Assume that $\left|R_{1}\right|=1$. We deduce, without loss of generality, that $R_{1}=\left\{u_{1}\right\}$ and $Z=\{z\}$. This implies that $z \rightarrow u_{1}$ and $C_{5} \rightarrow u_{1}$. Let $R_{2}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$.
Subcase 4.2.2.2.1. Assume that there is an arc from Z to Y, say $z \rightarrow v_{1}$. This implies that there exists an arc from R_{2} to Z, say $y_{1} \rightarrow z$.

Assume that there is an arc $y_{i} \rightarrow y_{1}$, say $y_{2} \rightarrow y_{1}$. If there is a further arc, say $y_{3} \rightarrow y_{2}$, then there is the 5-cycle $y_{3} y_{2} y_{1} z v_{1} y_{3}$. If, without loss of generality, $y_{4} \rightarrow y_{5} \rightarrow x_{1}$, then there exists the complementary cycle $x_{1} x_{2} x_{3} x_{4} x_{5} u_{1} v_{2} y_{4} y_{5} x_{1}$. Otherwise we have $y_{2} \rightarrow\left\{y_{3}, y_{4}, y_{5}\right\}$. If $y_{i} \rightarrow y_{1}$ for an $i=3,4,5$, then we find the desired complementary cycles as in the last case. Thus assume that $y_{1} \rightarrow\left\{y_{3}, y_{4}, y_{5}\right\}$. If $y_{i} \rightarrow z$ for an $i=3,4,5$, then we obtain our complementary cycles as above. However, if $z \rightarrow\left\{y_{3}, y_{4}, y_{5}\right\}$, then we arrive at a contradiction to the 6 -regularity of D.

Next assume that $y_{1} \rightarrow\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$. If $y_{i} \rightarrow z$ for an $i=2,3,4,5$, then we are in a situation as discussed before. However, the case $z \rightarrow\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$, leads to a contradiction to the 6-regularity of D.
Subcase 4.2.2.2.2. Assume that $Y \rightarrow z$. It follows that $C_{5} \rightarrow Y$. If there is an arc from R_{2} to Z, say $y_{1} \rightarrow z$ and an arc, say $y_{2} \rightarrow y_{1}$, then there is the 5-cycle $y_{2} y_{1} z u_{1} v_{1} y_{2}$. Since $C_{5} \rightarrow v_{2}$ it is easy to find a complementary cycle. If $y_{1} \rightarrow z$ and $y_{1} \rightarrow\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$, then we arrive at a contradiction to the 6 -regularity as above. Therefore it remains the case that $z \rightarrow R_{2}$. Let, without loss of generality, $y_{5}=u_{2}$. If the tournament induced by the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ is transitive, then we obtain a contradiction to the 6 -regularity of D. Hence there exists a 3 -cycle, say $y_{1} y_{2} y_{3} y_{1}$. If we assume, without loss of generality, that $y_{4} \rightarrow y_{5} \rightarrow x_{1}$, then there is the 5-cycle $x_{1} x_{2} v_{1} y_{4} y_{5} x_{1}$. In addition, we observe that $y_{1} \rightarrow x_{3}$ or $y_{2} \rightarrow x_{3}$ or $y_{3} \rightarrow x_{3}$. If not, then we arrive at the contradiction $x_{3} \rightarrow\left\{x_{4}, v_{1}, v_{2}, u_{1}, y_{1}, y_{2}, y_{3}\right\}$ or $x_{3} \rightarrow\left\{x_{4}, v_{1}, v_{2}, u_{1}, z, y_{2}, y_{3}\right\}$ when $V\left(x_{3}\right)=V\left(y_{1}\right)$ for example. If, without loss of generality, $y_{1} \rightarrow x_{3}$, then there is the complementary cycle $x_{3} x_{4} x_{5} v_{2} z u_{1} y_{2} y_{3} y_{1} x_{3}$.
Subcase 4.2.2.3. Assume that $\left|R_{1}\right|=2$. In this case we distinguish two cases.
Subcase 4.2.2.3.1. Assume that $R_{1}=\left\{u_{1}, u_{2}\right\}$. This implies, without loss of generality, that $Z=\{a\}$ and $Z \rightarrow R_{1}$ and thus $C_{5} \rightarrow R_{1}$. Since D is 6-regular, there are at least two vertices, say d and z, in R_{2} such that $\{d, z\} \rightarrow a$ and $\{d, z\} \Rightarrow C_{5}$. If we assume, without loss of generality, that $d \rightarrow z$, then we deduce that $\{b, c\} \rightarrow d$ and $c \rightarrow z$. It follows that $z \rightarrow b$. Next we assume, without loss of generality, that $V(z) \neq V\left(x_{1}\right)$ and $x_{2} \rightarrow v_{1}$.

If $b \rightarrow a$ and $V(d) \neq V\left(x_{3}\right)$, then there are the complementary cycles $x_{1} x_{2} v_{1} c z x_{1}$ and $x_{3} x_{4} x_{5} u_{1} v_{2} b a u_{2} d x_{3}$.
If $b \rightarrow a$ and $V(d)=V\left(x_{3}\right)$, then there are the complementary cycles $x_{1} x_{2} v_{1} c d x_{1}$ and $x_{3} x_{4} x_{5} u_{1} v_{2} b a u_{2} z x_{3}$.
If $a \rightarrow b$, then we observe that $b \Rightarrow C_{5}$. If $V(b) \neq V\left(x_{3}\right)$, then there are the complementary cycles $x_{1} x_{2} v_{1} c z x_{1}$ and $x_{3} x_{4} x_{5} u_{1} v_{2} d a u_{2} b x_{3}$.

It remains the case that $V(b)=V\left(x_{3}\right)$. If $x_{3} \rightarrow v_{1}$ and $V(d) \neq V\left(x_{1}\right)$, then there are the complementary cycles $x_{1} x_{2} x_{3} v_{1} d x_{1}$ and $x_{4} x_{5} u_{1} v_{2} c z a u_{2} b x_{4}$. If $x_{3} \rightarrow v_{1}$ and $V(d)=V\left(x_{1}\right)$, then there are the complementary cycles $x_{2} x_{3} v_{1} c d x_{2}$ and $x_{4} x_{5} x_{1} u_{1} v_{2} z a u_{2} b x_{4}$. Otherwise $v_{1} \rightarrow x_{3}$, and we arrive at the complementary cycles $v_{1} x_{3} x_{4} x_{5} u_{1} v_{1}$ and $x_{1} x_{2} u_{2} v_{2} c d z a b x_{1}$. Subcase 4.2.2.3.2. Assume, without loss of generality, that $R_{1}=\left\{b, u_{1}\right\}$ and $Z=\{a\}$ such that $u_{1} \rightarrow b$ and $a \rightarrow\left\{b, u_{1}\right\}$. This implies that $C_{5} \Rightarrow b$ and $C_{5} \rightarrow u_{1}$. Let $R_{2}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$.

Assume that there exists an arc from R_{2} to Z, say $y_{1} \rightarrow a$. If there is an arc $y_{i} \rightarrow y_{1}$, say $y_{2} \rightarrow y_{1}$, then we have the 5-cycle $y_{2} y_{1} a b v_{1} y_{2}$. If, without loss of generality, $y_{3} \rightarrow y_{4} \rightarrow x_{1}$, then there exists the complementary cycle $x_{1} x_{2} x_{3} x_{4} x_{5} u_{1} v_{2} y_{3} y_{4} x_{1}$.

Otherwise we have $y_{1} \rightarrow\left\{y_{2}, y_{3}, y_{4}\right\}$. If $y_{i} \rightarrow a$ for an $i=2,3,4$, then we obtain our complementary cycles as in the case before. However, if $a \rightarrow\left\{y_{2}, y_{3}, y_{4}\right\}$, then we arrive at a contradiction to the 6 -regularity of D. In the remaining case that $a \rightarrow\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, there is a vertex $y_{i} \in R_{2}$ with $d^{-}\left(y_{i}\right) \geq 7$, a contradiction.
Subcase 4.2.2.4. Assume that $\left|R_{1}\right|=\left|R_{2}\right|=3$. Under this condition we discuss three cases. In the remaining cases we obtain the desired result by using the converse D^{-1} of D.
Subcase 4.2.2.4.1. Assume that $R_{1}=\left\{b, u_{1}, u_{2}\right\}$. This implies, without loss of generality, that $Z=\{a\}, u_{1} \rightarrow b, c \rightarrow d \rightarrow$ $z \rightarrow c, R_{2} \rightarrow a$, and $R_{2} \Rightarrow C_{5}$. Now we distinguish two cases.

Assume first that $u_{2} \rightarrow b$. It follows that $C_{5} \rightarrow\left\{u_{1}, u_{2}\right\}$ and $a \rightarrow\left\{u_{1}, u_{2}\right\}$. If we assume, without loss of generality, that $x_{3} \rightarrow v_{2}$ and $V\left(x_{1}\right) \neq V(c)$, then there are the complementary cycles $x_{1} x_{2} x_{3} v_{2} c x_{1}$ and $x_{4} x_{5} u_{2} b v_{1} d a u_{1} z x_{4}$ when $V(z) \neq V\left(x_{4}\right)$ or $x_{4} x_{5} u_{2} b v_{1} z a u_{1} d x_{4}$ when $V(z)=V\left(x_{4}\right)$.

Assume second that $b \rightarrow u_{2}$. It follows that $C_{5} \rightarrow u_{1}$ and $a \rightarrow\left\{u_{1}, b\right\}$. If we assume, without loss of generality, that $x_{3} \rightarrow v_{2}$ and $V\left(x_{1}\right) \neq V(c)$, then there are the complementary cycles $x_{1} x_{2} x_{3} v_{2} c x_{1}$ and $x_{4} x_{5} u_{1} v_{1} d a b u_{2} z x_{4}$ when $V(z) \neq V\left(x_{4}\right)$ or $x_{4} x_{5} u_{1} v_{1} z a b u_{2} d x_{4}$ when $V(z)=V\left(x_{4}\right)$.
Subcase 4.2.2.4.2. Assume that $R_{1}=\left\{b, c, u_{1}\right\}$ and $Z=\left\{u_{2}\right\}$. It follows, without loss of generality, that $a \rightarrow d \rightarrow z \rightarrow a$, $R_{2} \rightarrow u_{2}$, and $R_{2} \Rightarrow C_{5}$. If, without loss of generality, $b \rightarrow c$, then we conclude that $u_{2} \rightarrow\{b, c\}, c \rightarrow u_{1} \rightarrow b$, and $C_{5} \rightarrow u_{1}$. If we assume, without loss of generality, that $x_{3} \rightarrow v_{2}$ and $V\left(x_{1}\right) \neq V(a)$, then there are the complementary cycles $x_{1} x_{2} x_{3} v_{2} a x_{1}$ and $x_{4} x_{5} u_{1} v_{1} d u_{2} b c z x_{4}$ when $V(z) \neq V\left(x_{4}\right)$ or $x_{4} x_{5} u_{1} v_{1} z u_{2} b c d x_{4}$ when $V(z)=V\left(x_{4}\right)$.
Subcase 4.2.2.4.3. Assume that $R_{1}=\left\{b, c, u_{1}\right\}$ and, without loss of generality, $Z=\{a\}$. If, without loss of generality, $b \rightarrow c$ and $d \rightarrow z$, then we deduce that $\left\{a, u_{1}\right\} \rightarrow b$ and $z \rightarrow\left\{a, u_{2}\right\}$. It follows that $z \Rightarrow C_{5} \Rightarrow b$. Now there remain the four cases that $c \rightarrow u_{1}$ and $d \rightarrow u_{2}, c \rightarrow u_{1}$ and $u_{2} \rightarrow d, u_{1} \rightarrow c$ and $d \rightarrow u_{2}$, as well as $u_{1} \rightarrow c$ and $u_{2} \rightarrow d$.

We only discuss the case that $c \rightarrow u_{1}$ and $u_{2} \rightarrow d$, the other cases are similar. It follows that $d \Rightarrow C_{5} \Rightarrow c$ and $d \rightarrow a \rightarrow c$. Since u_{2} has at least 4 out-neighbors in C_{5}, and u_{1} has at least 4 in-neighbors in C_{5}, there exists an index i such that $x_{i} \rightarrow u_{1}$ and $u_{2} \rightarrow x_{i+1}$ for $1 \leq i \leq 5$. This leads to the complementary cycles dabc $v_{1} d$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} u_{1} v_{2} z u_{2} x_{i+1}$.
Case 5. Assume that $c=6$ and $r=2$. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the Appendix).
Case 6. Assume that $c=5$ and $r=3$. Then D is 6-regular and $\alpha(H)=2$. Let $V_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}, V_{2}=\left\{b_{1}, b_{2}, b_{3}\right\}$, $V_{3}=\left\{c_{1}, c_{2}, c_{3}\right\}, V_{4}=\left\{u_{1}, u_{2}, u_{3}\right\}, V_{5}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and, without loss of generality, $C_{5}=a_{1} b_{1} c_{1} u_{1} v_{1} a_{1}$. Since D is 6-regular, we observe that $d_{H}^{+}(x), d_{H}^{-}(x) \geq 2$ for every $x \in V(H)$.
Subcase 6.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}$ be a minimal cycle-factor of H with the properties described in Theorem 2.13. Because of $\left|V^{*}\right| \leq 2$, it follows from Theorem 2.13 that there is at most one arc from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}. If $\left|V\left(C_{1}^{\prime}\right)\right| \leq 4$, then we conclude that there exists a vertex $x \in V\left(C_{1}^{\prime}\right)$ with $d_{H}^{-}(x) \leq 1$, a contradiction. If $\left|V\left(C_{1}^{\prime}\right)\right| \geq 6$, then we obtain similarly the contradiction that there exists a vertex $x \in V\left(C_{2}^{\prime}\right)$ with $d_{H}^{+}(x) \leq 1$. It remains the case $t=2$ such that C_{1}^{\prime} and C_{2}^{\prime} are 5-cycles.
Subcase 6.1.1. Assume that there does not exist an arc from C_{2}^{\prime} to C_{1}^{\prime}. This leads to a contradiction, with exception of the case that C_{1}^{\prime} and C_{2}^{\prime} induce 2-regular tournaments T_{1} and T_{2} such that $C_{5} \Rightarrow C_{1}^{\prime} \Rightarrow C_{2}^{\prime} \Rightarrow C_{5}$. Now let $C_{5}^{*}=a_{1} b_{1} c_{1} x y a_{1}$ be a new 5-cycle of D such that $x \in\left(V\left(C_{1}^{\prime}\right) \cap V_{5}\right)$ and $y \in\left(V\left(C_{2}^{\prime}\right) \cap V_{4}\right)$. Since T_{1} and T_{2} are regular tournaments, we observe that $T_{1}-x$ and $T_{2}-y$ contain Hamiltonian cycles $x_{1} x_{2} x_{3} x_{4} x_{1}$ and $y_{1} y_{2} y_{3} y_{4} y_{1}$, respectively. If, without loss of generality, x_{4} and y_{1} belong to different partite sets, then $u_{1} v_{1} x_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{3} y_{4} u_{1}$ is a complementary cycle of C_{5}^{*}, and we are done.
Subcase 6.1.2. Assume that there exists an arc from C_{2}^{\prime} to C_{1}^{\prime}. If $H\left[V\left(C_{1}^{\prime}\right)\right]$ is 3-partite, then it follows that there exists a vertex $x \in V\left(C_{1}^{\prime}\right)$ with $d_{H}^{-}(x) \leq 1$, a contradiction.
Subcase 6.1.2.1. Assume that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is exactly 5-partite. This implies that $H\left[V\left(C_{2}^{\prime}\right)\right]$ is also 5-partite. Let $C_{1}^{\prime}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ and $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ such that $y_{1} \rightarrow x_{1}$. Because of Theorem 2.13 , we see that y_{2} and x_{5} belong to the same partite set V^{*}.

If $x_{5} \rightarrow x_{2}$, then the 6-regularity implies that $x_{3} \rightarrow x_{5}$ and so $x_{1} \rightarrow x_{3}$. This yields the complementary cycle $y_{1} x_{1} x_{3} x_{4} x_{5} x_{2} y_{2} y_{3} y_{4} y_{5} y_{1}$.

If $x_{2} \rightarrow x_{5}$, then we deduce that $x_{4} \rightarrow x_{2}$ and thus $x_{1} \rightarrow x_{4}$. If $x_{5} \rightarrow x_{3}$, then we receive at the complementary cycle $y_{1} x_{1} x_{2} x_{5} x_{3} x_{4} y_{2} y_{3} y_{4} y_{5} y_{1}$. If $x_{3} \rightarrow x_{5}$, then it follows that $x_{1} \rightarrow x_{3}$. Thus it remains the situation that

$$
x_{1} \rightarrow x_{4} \rightarrow x_{2} \rightarrow x_{5} \quad \text { and } \quad x_{1} \rightarrow x_{3} \rightarrow x_{5} .
$$

Analogously one can show that there remains the case that

$$
y_{2} \rightarrow y_{5} \rightarrow y_{3} \rightarrow y_{1} \text { and } y_{2} \rightarrow y_{4} \rightarrow y_{1}
$$

The 6-regularity of D implies that

$$
\left(C_{2}^{\prime}-y_{2}\right) \Rightarrow C_{5} \Rightarrow\left(C_{1}^{\prime}-x_{5}\right)
$$

Let in the following, without loss of generality, $v_{1} \in V^{*}$. If $x_{5} \rightarrow a_{1}$, then we arrive at the complementary cycles C_{2}^{\prime} and $x_{5} a_{1} b_{1} c_{1} u_{1} v_{1} x_{1} x_{2} x_{3} x_{4} x_{5}$.

If $a_{1} \rightarrow x_{5}$, then we distinguish different cases.

Assume that $V\left(x_{1}\right) \neq V\left(y_{3}\right)$. We deduce that there exists the 5-cycle $a_{1} x_{5} x_{1} y_{3} v_{1} a_{1}$.
If $V\left(u_{1}\right) \neq V\left(x_{2}\right)$ and $V\left(y_{1}\right) \neq V\left(b_{1}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{2} x_{3} x_{4} y_{2} y_{4} y_{5} y_{1} b_{1}$.
If $V\left(u_{1}\right) \neq V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$ and $V\left(y_{1}\right) \neq V\left(x_{4}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{4} y_{5} b_{1}$. If $V\left(u_{1}\right) \neq V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$ and $V\left(y_{1}\right)=V\left(x_{4}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{2} x_{3} x_{4} y_{5} y_{1} y_{2} y_{4} b_{1}$. If $V\left(u_{1}\right)=V\left(x_{2}\right)$ and $V\left(y_{1}\right) \neq V\left(b_{1}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{3} x_{4} x_{2} y_{2} y_{4} y_{5} y_{1} b_{1}$.
If $V\left(u_{1}\right)=V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$ and $V\left(x_{2}\right) \neq V\left(y_{1}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{3} x_{4} x_{2} y_{1} y_{2} y_{4} y_{5} b_{1}$. If $V\left(u_{1}\right)=V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$ and $V\left(x_{2}\right)=V\left(y_{1}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{3} x_{4} x_{2} y_{5} y_{1} y_{2} y_{4} b_{1}$. Assume that $V\left(x_{1}\right)=V\left(y_{3}\right)$. We deduce that there exists the 5-cycle $a_{1} x_{5} x_{1} y_{4} v_{1} a_{1}$.
If $V\left(u_{1}\right) \neq V\left(x_{2}\right)$ and $V\left(y_{1}\right) \neq V\left(b_{1}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{2} x_{3} x_{4} y_{2} y_{5} y_{3} y_{1} b_{1}$.
If $V\left(u_{1}\right) \neq V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$, and $V\left(x_{4}\right) \neq V\left(y_{5}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{2} x_{3} x_{4} y_{5} y_{1} y_{2} y_{3} b_{1}$. If $V\left(u_{1}\right) \neq V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$, and $V\left(x_{4}\right)=V\left(y_{5}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{5} y_{3} b_{1}$. If $V\left(u_{1}\right)=V\left(x_{2}\right)$ and $V\left(y_{1}\right) \neq V\left(b_{1}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{3} x_{4} x_{2} y_{2} y_{5} y_{3} y_{1} b_{1}$.
If $V\left(u_{1}\right)=V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$ and $V\left(x_{2}\right) \neq V\left(y_{3}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{3} x_{4} x_{2} y_{3} y_{1} y_{2} y_{5} b_{1}$. If $V\left(u_{1}\right)=V\left(x_{2}\right), V\left(y_{1}\right)=V\left(b_{1}\right)$ and $V\left(x_{2}\right)=V\left(y_{3}\right)$, then we arrive at the complementary cycle $b_{1} c_{1} u_{1} x_{3} x_{4} x_{2} y_{1} y_{2} y_{5} y_{3} b_{1}$. Subcase 6.1.2.2. Assume that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is exactly 4-partite. This implies that $H\left[V\left(C_{2}^{\prime}\right)\right]$ is also 4-partite. If there does not exist an arc from C_{2}^{\prime} to C_{1}^{\prime}, then there exists at least one vertex $x \in V\left(C_{1}^{\prime}\right)$ with $d_{H}^{-}(x) \leq 1$, a contradiction. Let now $C_{1}^{\prime}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ and $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ such that $y_{1} \rightarrow x_{1}$. Because of Theorem 2.13, we see that y_{2} and x_{5} belong to the same partite set V^{*}.

If $V\left(y_{1}\right)=V\left(y_{3}\right)$, then it follows that $y_{3} \rightarrow y_{5} \rightarrow y_{2} \rightarrow y_{4} \rightarrow y_{1}$ and we obtain the complementary cycle $y_{1} x_{1} x_{2} x_{3} x_{4} x_{5} y_{3} y_{5} y_{2} y_{4} y_{1}$.

If $V\left(y_{1}\right)=V\left(y_{4}\right)$, then it follows that $y_{4} \rightarrow y_{2} \rightarrow y_{5} \rightarrow y_{3} \rightarrow y_{1}$ and we obtain the complementary cycle $y_{1} x_{1} x_{2} x_{3} x_{4} x_{5} y_{4} y_{2} y_{5} y_{3} y_{1}$.

Next assume that $V\left(y_{1}\right) \neq V\left(y_{i}\right)$ for $i=3$, 4. Because of $y_{2} \in V^{*}$, it remains the case that $V\left(y_{3}\right)=V\left(y_{5}\right)$. This implies that $y_{5} \rightarrow y_{2} \rightarrow y_{4} \rightarrow y_{1}$ and $y_{3} \rightarrow y_{1}$, and we arrive at the complementary cycle $y_{1} x_{1} x_{2} x_{3} x_{4} x_{5} y_{4} y_{5} y_{2} y_{3} y_{1}$.
Subcase 6.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set $V(H)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} such that $R_{1} \Rightarrow Y,\left(R_{1} \cup Y\right) \Rightarrow R_{2},|Y|>|Z|$, and Y is an independent set. Let, without loss of generality, $\left|R_{1}\right| \leq\left|R_{2}\right|$.

Assume first that $Z=\emptyset$. If $R_{1}=\emptyset$, then we obtain the contradiction $d_{H}^{+}(y) \geq 8$ for every $y \in Y$. In the remaining case that $1 \leq\left|R_{1}\right| \leq 4$, we see that there exists a vertex $x \in R_{1}$ with $d_{H}^{-}(x) \leq 1$, a contradiction.

Next assume that $1=|Z|<|Y|=2$. If $R_{1}=\emptyset$, then we obtain the contradiction $d_{H}^{+}(y) \geq 7$ for every $y \in Y$. If $1 \leq\left|R_{1}\right| \leq 2$, then there exists a vertex $x \in R_{1}$ such that $d_{H}^{+}(x) \leq 1$, a contradiction.

In the remaining case that $\left|R_{1}\right|=3$, we arrive at a contradiction or $H\left[R_{1}\right]$ is a 3-cycle, $Z \rightarrow R_{1}$, and $C_{5} \Rightarrow R_{1}$. Let, without loss of generality, $Y=\left\{v_{2}, v_{3}\right\}$. We discuss the case that $R_{1}=\left\{a_{2}, b_{2}, c_{2}\right\}, Z=\left\{u_{2}\right\}$, and thus $R_{2}=\left\{a_{3}, b_{3}, c_{3}, u_{3}\right\}$. The proofs of the other cases are analogously:
Subcase 6.2.1. Assume that $u_{3} \rightarrow\left\{a_{3}, b_{3}, c_{3}\right\}$. This implies that $\left\{a_{3}, b_{3}, c_{3}\right\} \rightarrow u_{2}$ and $\left\{a_{3}, b_{3}, c_{3}\right\} \Rightarrow C_{5}$, and we have found the two complementary cycles $a_{1} b_{1} c_{2} v_{2} c_{3} a_{1}$ and $c_{1} u_{1} v_{1} b_{2} v_{3} u_{3} a_{3} u_{2} a_{2} b_{3} c_{1}$.
Subcase 6.2.2. Assume that u_{3} has exactly two out-neighbors in R_{2}. We only discuss the case that $u_{3} \rightarrow\left\{a_{3}, b_{3}\right\}$ and $c_{3} \rightarrow u_{3}$ completely, because the other cases are similar. This leads to $u_{3} \Rightarrow C_{5}$.
Subcase 6.2.2.1. Assume that $a_{3} \rightarrow b_{3}$. This implies $b_{3} \rightarrow\left\{c_{3}, u_{2}\right\}$ and $b_{3} \Rightarrow C_{5}$, and there is the 5-cycle $C_{5}^{*}=a_{1} b_{1} c_{2} v_{2} u_{3} a_{1}$.
If $a_{3} \rightarrow c_{3}$, then we observe that $c_{3} \rightarrow u_{2}$ and $c_{3} \Rightarrow C_{5}$, and we arrive at the complementary cycles C_{5}^{*} and $c_{1} u_{1} v_{1} b_{2} v_{3} a_{3} c_{3} u_{2} a_{2} b_{3} c_{1}$.

If $c_{3} \rightarrow a_{3}$, then we obtain $a_{3} \rightarrow u_{2}$ and $a_{3} \Rightarrow C_{5}$, and we arrive at the complementary cycles C_{5}^{*} and $c_{1} u_{1} v_{1} b_{2} v_{3} c_{3} a_{3} u_{2} a_{2} b_{3} c_{1}$.
Subcase 6.2.2.2. Assume that $b_{3} \rightarrow a_{3}$. This implies $a_{3} \rightarrow\left\{c_{3}, u_{2}\right\}$ and $a_{3} \Rightarrow C_{5}$, and there is the 5-cycle $C_{5}^{*}=a_{1} b_{1} c_{2} v_{2} u_{3} a_{1}$.
If $b_{3} \rightarrow c_{3}$, then we observe that $c_{3} \rightarrow u_{2}$ and $c_{3} \Rightarrow C_{5}$, and we arrive at the complementary cycles C_{5}^{*} and $c_{1} u_{1} v_{1} a_{2} v_{3} b_{3} c_{3} u_{2} b_{2} a_{3} c_{1}$.

If $c_{3} \rightarrow b_{3}$, then we obtain $b_{3} \rightarrow u_{2}$ and $b_{3} \Rightarrow C_{5}$, and we arrive at the complementary cycles C_{5}^{*} and $c_{1} u_{1} v_{1} a_{2} v_{3} c_{3} b_{3} u_{2} b_{2} a_{3} c_{1}$.
Case 7. Assume that $c=5$ and $r=2$. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the Appendix).
Case 8 . Assume that $c=4$ and $r=6$. This implies that D is 9-regular and $\alpha(H)=5$. Since $i_{l}(H) \leq 4$, Theorem 2.9 yields $\kappa(H) \geq 3$. If H has a cycle factor, then Theorem 2.10 shows that H is Hamiltonian, and we are done.

Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set $V(H)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} such that $R_{1} \Rightarrow Y,\left(R_{1} \cup Y\right) \Rightarrow R_{2},|Y|>|Z|$, and Y is an independent set. Since $\kappa(H) \geq 3$ and $\alpha(H)=5$, we see that $3 \leq|Z|<|Y| \leq 5$. Let, without loss of generality, $\left|R_{1}\right| \leq\left|R_{2}\right|$. Since D is 9-regular, we see that $d_{H}^{+}(x), d_{H}^{-}(x) \geq 5$ for every $x \in V(H)$ and $d_{H}^{+}(x), d_{H}^{-}(x) \geq 6$ for $x \in V_{1}^{\prime}$. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}, V_{2}=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}, V_{3}=\left\{y_{1}, y_{2}, \ldots, y_{6}\right\}$, $V_{4}=\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$ and, without loss of generality, $V\left(C_{5}\right)=\left\{u_{5}, u_{6}, x_{6}, y_{6}, w_{6}\right\}$.
Case 8.1. Assume that $|Z|=3$ and $|Y|=5$. In this case, Theorem 2.15 with $k=1$ and $t=0$ leads to the contradiction $i_{g}(H) \geq 5$.

Case 8.2. Assume that $|Z|=3$ and $|Y|=4$. If $R_{1}=\emptyset$, then $Y \Rightarrow R_{2}$ and $|Z|=3$ yields the contradiction $d_{H}^{-}(y) \leq 3$ for every $y \in Y$. There remain the cases $1 \leq\left|R_{1}\right| \leq 6$. If there exists a vertex $u \in R_{1}$ such that $d_{D\left[R_{1}\right]}^{-}(u) \leq 1$, then $|Z|=3$ implies the contradiction $d_{H}^{-}(u) \leq 4$. Hence we assume in the following that $d_{D\left[R_{1}\right]}^{-}(x) \geq 2$ for every $x \in R_{1}$. This immediately leads to $\left|R_{1}\right|=6$. If $D\left[R_{1}\right]$ is bipartite, then we arrive at the contradiction $12 \leq\left|E\left(D\left[R_{1}\right]\right)\right| \leq 9$. If $D\left[R_{1}\right]$ is exactly 3-partite, then it follows that $d_{D\left[R_{1}\right]}^{-}(x)=2$ for every vertex $x \in R_{1}$. Since there are two vertices $u \in R_{1}$ and $v \in Z$ that belong to the same partite set, we obtain the contradiction $d_{H}^{-}(u) \leq 4$. If $D\left[R_{1}\right]$ is exactly 4-partite, then we arrive at the contradiction

$$
31 \leq \sum_{x \in R_{1}} d_{H}^{-}(x)=\sum_{x \in R_{1}} d_{D\left[R_{1}\right]}^{-}(x)+d^{+}\left(Z, R_{1}\right) \leq 13+18-3=28
$$

Case 8.3. Assume that $|Z|=4$ and $|Y|=5$. Assume, without loss of generality, that $Y=V_{4}^{\prime}=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$. If $R_{1}=\emptyset$, then $Y \Rightarrow R_{2}$ and $|Z|=4$ yields the contradiction $d_{H}^{+}(y) \leq 4$ for every $y \in Y$. There remain the cases $1 \leq\left|R_{1}\right| \leq 5$. If there exists a vertex $u \in R_{1}$ such that $d_{D\left[R_{1}\right]}^{-}(u)=0$, then $|Z|=4$ implies the contradiction $d_{H}^{-}(u) \leq 4$. Hence we assume in the following that $d_{D\left[R_{1}\right]}^{-}(x) \geq 1$ for every $x \in R_{1}$. This immediately leads to $\left|R_{1}\right| \geq 3$.
Case 8.3.1. Assume that $\left|R_{1}\right|=3$. We deduce that $D\left[R_{1}\right]$ is a 3-cycle. Since $|Z|=4$, we arrive at the contradiction

$$
16 \leq \sum_{x \in R_{1}} d_{H}^{-}(x)=\sum_{x \in R_{1}} d_{D\left[R_{1}\right]}^{-}(x)+d^{+}\left(Z, R_{1}\right) \leq 3+12-4=11
$$

Case 8.3.2. Assume that $\left|R_{1}\right|=4$. If $D\left[R_{1}\right]$ is exactly 3-partite, then we obtain the contradiction

$$
21 \leq \sum_{x \in R_{1}} d_{H}^{-}(x)=\sum_{x \in R_{1}} d_{D\left[R_{1}\right]}^{-}(x)+d^{+}\left(Z, R_{1}\right) \leq 5+16-4=17
$$

In the case that $D\left[R_{1}\right]$ is bipartite, we arrive at a contradiction, or $R_{1} \subset\left(V_{2}^{\prime} \cup V_{3}^{\prime}\right), Z=V_{1}^{\prime}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, D\left[R_{1}\right]$ is a 4-cycle, $Z \rightarrow R_{1}$, and $C_{5} \Rightarrow R_{1}$. If, without loss of generality, $R_{1}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, then $R_{2}=\left\{x_{3}, x_{4}, x_{5}, y_{3}, y_{4}, y_{5}\right\}$. Because of $d_{H}^{+}(x) \geq 5$ for every vertex $x \in V(H)$, we deduce that $d_{D\left[R_{2}\right]}^{+}(x) \geq 1$ for every vertex $x \in R_{2}$. Now let, without loss of generality, $d_{D\left[R_{2}\right]}^{+}\left(x_{3}\right)=d_{D\left[R_{2}\right]}^{+}\left(y_{3}\right)=d_{D\left[R_{2}\right]}^{+}\left(y_{4}\right)=1$. This implies that $\left\{x_{3}, y_{3}, y_{4}\right\} \rightarrow Z$ and $\left\{x_{3}, y_{3}, y_{4}\right\} \Rightarrow C_{5}$.

Assume that $C_{5}=x_{6} u_{5} y_{6} u_{6} w_{6} x_{6}$. Since $Y \rightarrow R_{2}$, the 9-regularity of D shows that every vertex of Y has an in-neighbor in Z as well as in $V\left(C_{5}\right)$. Assume, without loss of generality, that $y_{6} \rightarrow w_{5}$ and $u_{1} \rightarrow w_{1}$. Since at least one of the vertices in $\left\{x_{4}, x_{5}, y_{5}\right\}$ has at least three out-neighbors in Z and the remaining two vertices at least two out-neighbors in Z, we have, without loss of generality, the two possibilities $y_{5} \rightarrow u_{2}, x_{5} \rightarrow u_{3}$, and $x_{4} \rightarrow u_{4}$ or $y_{5} \rightarrow u_{1}, x_{5} \rightarrow u_{3}$, and $x_{4} \rightarrow u_{4}$. Now there are the two complementary cycles $C_{5}^{\prime}=y_{6} w_{5} y_{4} \chi_{6} u_{5} y_{6}$ and

$$
C_{19}=u_{6} w_{6} y_{1} w_{4} y_{3} u_{1} w_{1} y_{5} u_{2} x_{1} w_{2} x_{5} u_{3} x_{2} w_{3} x_{4} u_{4} y_{2} x_{3} u_{6} .
$$

or $C_{5}^{\prime}=y_{6} w_{5} y_{4} x_{6} u_{5} y_{6}$ and

$$
C_{19}=u_{6} w_{6} y_{1} w_{4} y_{5} u_{1} w_{1} y_{3} u_{2} x_{1} w_{2} x_{5} u_{3} x_{2} w_{3} x_{4} u_{4} y_{2} x_{3} u_{6}
$$

Since we can change the vertices x_{i} and y_{i} in R_{1} for $i=1,2$ as well as x_{3} with y_{3} and y_{4} arbitrary when we search arcs between these vertices and vertices from Y or Z, we see that all other cases are analogous.
Case 8.3.3. Assume that $\left|R_{1}\right|=5$. If $D\left[R_{1}\right]$ is exactly 3-partite, then we obtain the contradiction

$$
26 \leq \sum_{x \in R_{1}} d_{H}^{-}(x)=\sum_{x \in R_{1}} d_{D\left[R_{1}\right]}^{-}(x)+d^{+}\left(Z, R_{1}\right) \leq 8+20-4=24
$$

In the case that $D\left[R_{1}\right]$ is bipartite, we arrive at a contradiction, or $R_{1} \subset\left(V_{2}^{\prime} \cup V_{3}^{\prime}\right)$ and $Z=V_{1}^{\prime}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Let, without loss of generality, $R_{1}=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}$ and $R_{2}=\left\{x_{4}, x_{5}, y_{3}, y_{4}, y_{5}\right\}$. Because of $d_{H}^{+}(x), d_{H}^{-}(x) \geq 5$ for every vertex $x \in V(H)$, we deduce that there are exactly four vertices $x \in R_{1}$ with $d_{D\left[R_{1}\right]}^{-}(x)=1$ and four vertices $y \in R_{2}$ with $d_{D\left[R_{2}\right]}^{+}(y)=1$. Assume that $C_{5}=x_{6} u_{5} y_{6} u_{6} w_{6} x_{6}$.

We only discuss the case $d_{D\left[R_{1}\right]}^{-}\left(x_{1}\right)=d_{D\left[R_{1}\right]}^{-}\left(x_{2}\right)=d_{D\left[R_{1}\right]}^{-}\left(y_{1}\right)=d_{D\left[R_{1}\right]}^{-}\left(y_{2}\right)=1$ and $d_{D\left[R_{2}\right]}^{+}\left(x_{4}\right)=d_{D\left[R_{2}\right]}^{+}\left(x_{5}\right)=d_{D\left[R_{2}\right]}^{+}\left(y_{3}\right)=$ $d_{D\left[R_{2}\right]}^{+}\left(y_{4}\right)=1$ completely, because the other cases are similar.

If we assume, without loss of generality, that $y_{1} \rightarrow x_{1}$, then we obtain $x_{1} \rightarrow y_{2}$. This implies $y_{2} \rightarrow\left\{x_{2}, x_{3}\right\}$ and thus $x_{2} \rightarrow y_{1} \rightarrow x_{3}$. The 9-regularity of D leads to $Z \rightarrow\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ and $C_{5} \Rightarrow\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$.

In addition, if we assume, without loss of generality, that $y_{3} \rightarrow x_{4}$, then we obtain $x_{5} \rightarrow y_{3}$. This implies $\left\{y_{4}, y_{5}\right\} \rightarrow x_{5}$ and thus $y_{5} \rightarrow x_{4} \rightarrow y_{4}$. The 9-regularity of D leads to $\left\{x_{4}, x_{5}, y_{3}, y_{4}\right\} \rightarrow Z$ and $\left\{x_{4}, x_{5}, y_{3}, y_{4}\right\} \Rightarrow C_{5}$.

In the case that $Z \rightarrow Y$, it follows that $Y \Rightarrow C_{5}$. This leads to $d_{D}^{-}\left(u_{6}\right) \geq 10$, a contradiction to the 9 -regularity of D.
Otherwise there exists an arc from Y to Z, say $w_{1} \rightarrow u_{1}$. This implies that there is an arc from C_{5} to w_{1}, say $x_{6} \rightarrow w_{1}$. The 9regularity of D shows that x_{3} has at least three in-neighbors in Z and that y_{5} has at least three out-neighbors in Z. We assume, without loss of generality, that $u_{4} \rightarrow x_{3}$ and $y_{5} \rightarrow u_{2}$. Now we obtain the two complementary cycles $C_{5}^{\prime}=x_{6} w_{1} u_{1} x_{2} y_{4} x_{6}$ and

$$
C_{19}=u_{5} y_{6} u_{6} w_{6} x_{1} w_{2} y_{3} u_{4} x_{3} w_{3} x_{5} u_{3} y_{1} w_{4} y_{5} u_{2} y_{2} w_{5} x_{4} u_{5} .
$$

Case 9. Assume that $c=4$ and $r=4$. This implies that D is 6-regular and $\alpha(H)=3$. Since $i_{l}(H) \leq 4$, Theorem 2.9 yields $\kappa(H) \geq 1$. Since D is 6-regular, we see that $d_{H}^{+}(x), d_{H}^{-}(x) \geq 2$ for every $x \in V(H)$ and $d_{H}^{+}(x), d_{H}^{-}(x) \geq 3$ for $x \in V_{1}^{\prime}$.
Subcase 9.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t}^{\prime}$ be a minimal cycle-factor with the properties described in Theorem 2.13. Because of $\left|V^{*}\right| \leq 3$, it follows from Theorem 2.13 that there are at most two incident arcs from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}. Since $\kappa(H) \geq 1$, there exists at least one arc from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}.

If C_{1}^{\prime} is a 3-cycle, then we arrive at the contradiction $d_{H}^{-}(x) \leq 1$ for at least two vertices $x \in V\left(C_{1}^{\prime}\right)$. If C_{1}^{\prime} is a 4-cycle, then we arrive at the contradiction $d_{H}^{-}(x) \leq 1$ for at least one vertex $x \in V\left(C_{1}^{\prime}\right)$ or $d_{H}^{-}(y) \leq 2$ for a vertex $y \in V_{1}^{\prime}$. Let now C_{1}^{\prime} be a 5-cycle $c_{1} c_{2} c_{3} c_{4} c_{5} c_{1}$.
Subcase 9.1.1. Assume that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is 3-partite. The 6-regularity of D easily yields $\sum_{x \in V\left(C_{1}^{\prime}\right)} d_{H}^{+}(x)=30$ and there are exactly two incident arcs from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}.

If these two arcs are incident with c_{1}, then $c_{5} \in V^{*}, V\left(c_{1}\right)=V\left(c_{3}\right)$ and $V\left(c_{2}\right)=V\left(c_{4}\right)$. In addition, it follows that $c_{1} \rightarrow c_{4}$ and $c_{5} \rightarrow\left\{c_{2}, c_{3}\right\}$, and we arrive at the contradiction $d_{H}^{-}\left(c_{5}\right)=1$.

Assume that the two arcs from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime} are incident with c_{1} and c_{4}. It follows that $V\left(c_{5}\right)=V\left(c_{3}\right)=V^{*}$, and the 6-regularity of D leads to $V\left(c_{1}\right)=V\left(c_{4}\right), c_{1} \rightarrow c_{3}, c_{2} \rightarrow c_{5}$ and $c_{4} \rightarrow c_{2}$. We deduce that $V_{1}^{\prime} \cap V\left(C_{1}^{\prime}\right)=\emptyset$.
Subcase 9.1.1.1. Assume that $t=3$. Let $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{1}$ such that $y_{1} \rightarrow\left\{c_{1}, c_{4}\right\}$, and let $C_{3}^{\prime}=x_{1} x_{2} x_{3} x_{1}$. This leads to $y_{2} \in V^{*}$.
Assume first that $y_{1} \in V_{1}^{\prime}$. It follows that $y_{3} \in V\left(c_{2}\right)$. Furthermore assume, without loss of generality, that $x_{1} \in V_{1}^{\prime}$, $x_{2} \in V\left(c_{1}\right)$ and $x_{3} \in V\left(c_{2}\right)$. The 6-regularity of D implies that $x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$. Now C_{5} and $x_{2} x_{3} x_{1} y_{2} y_{3} y_{1} c_{4} c_{5} c_{1} c_{2} c_{3} x_{2}$ are complementary cycles of D.

Assume second that $y_{1} \in V\left(c_{2}\right)$. It follows that $y_{3} \in V_{1}^{\prime}$. Furthermore assume, without loss of generality, that $x_{1} \in V_{1}^{\prime}$, $x_{2} \in V\left(c_{1}\right)$ and $x_{3} \in V\left(c_{2}\right)$. The 6-regularity of D implies that $x_{1} \rightarrow\left\{y_{1}, y_{2}\right\}$. Again C_{5} and $x_{2} x_{3} x_{1} y_{2} y_{3} y_{1} c_{4} c_{5} c_{1} c_{2} c_{3} x_{2}$ are complementary cycles of D.
Subcase 9.1.1.2. Assume that $t=2$. Let $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{1}$ and $y_{1} \rightarrow c_{1}$ as well as $y_{1} \rightarrow c_{4}$. This implies that $y_{2} \in V^{*}$, and it is straightforward to verify that $y_{1} \in V_{1}^{\prime}$.

Assume that $V\left(c_{2}\right)=V\left(y_{3}\right)=V\left(y_{6}\right), V\left(y_{4}\right)=V\left(y_{1}\right)$ and thus $V\left(y_{5}\right)=V\left(c_{1}\right)=V\left(c_{4}\right)$. We conclude that $y_{4} \rightarrow\left\{y_{2}, y_{6}\right\}$. If $y_{5} \rightarrow y_{2}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{5} y_{2} y_{3} y_{4} y_{6} y_{1}$ are complementary cycles. If $y_{2} \rightarrow y_{5}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{2} y_{5} y_{6} y_{1}$ are complementary cycles.

Assume that $V\left(c_{2}\right)=V\left(y_{3}\right)=V\left(y_{6}\right)$ and $V\left(y_{5}\right)=V\left(y_{1}\right)$. This implies that $V\left(y_{4}\right)=V\left(c_{1}\right)=V\left(c_{4}\right)$. We conclude that $y_{5} \rightarrow\left\{y_{2}, y_{3}\right\}$ and thus $y_{3} \rightarrow y_{1}$. If $y_{2} \rightarrow y_{6}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{5} y_{2} y_{6} y_{1}$ are the desired complementary cycles. If $y_{6} \rightarrow y_{2}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{4} y_{5} y_{6} y_{2} y_{3} y_{1}$ are complementary cycles.

Assume that $V\left(c_{2}\right)=V\left(y_{3}\right)=V\left(y_{5}\right), V\left(y_{4}\right)=V\left(y_{1}\right)$ and thus $V\left(y_{6}\right)=V\left(c_{1}\right)=V\left(c_{4}\right)$. We conclude that $y_{4} \rightarrow\left\{y_{2}, y_{6}\right\}$. If $y_{5} \rightarrow y_{2}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{5} y_{2} y_{3} y_{4} y_{6} y_{1}$ are complementary cycles. If $y_{2} \rightarrow y_{5}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{2} y_{5} y_{6} y_{1}$ are complementary cycles.

Assume that $V\left(c_{2}\right)=V\left(y_{4}\right)=V\left(y_{6}\right), V\left(y_{3}\right)=V\left(y_{1}\right)$ and thus $V\left(y_{5}\right)=V\left(c_{1}\right)=V\left(c_{4}\right)$. We conclude that $y_{3} \rightarrow\left\{y_{5}, y_{6}\right\}$ and so $y_{6} \rightarrow y_{2}$. In the case that $y_{5} \rightarrow y_{2}$, there are the complementary cycles C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{4} y_{5} y_{2} y_{3} y_{6} y_{1}$. If $y_{5} \rightarrow y_{1}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{6} y_{2} y_{3} y_{4} y_{5} y_{1}$ are complementary cycles. Otherwise we obtain the contradiction $d^{-}\left(y_{5}\right) \geq 7$.

Assume that $V\left(c_{2}\right)=V\left(y_{4}\right)=V\left(y_{6}\right), V\left(y_{5}\right)=V\left(y_{1}\right)$ and thus $V\left(y_{3}\right)=V\left(c_{1}\right)=V\left(c_{4}\right)$. We conclude that $y_{5} \rightarrow\left\{y_{2}, y_{3}\right\}$. If $y_{2} \rightarrow y_{6}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{5} y_{2} y_{6} y_{1}$ are complementary cycles. If $y_{6} \rightarrow y_{2}$, then it follows that $y_{2} \rightarrow y_{4}$ and thus $y_{4} \rightarrow y_{1}$. But now C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{5} y_{6} y_{2} y_{3} y_{4} y_{1}$ are complementary cycles.
Subcase 9.1.2. Assume that $H\left[V\left(C_{1}^{\prime}\right)\right]$ is 4-partite. The 6-regularity of D easily yields $\sum_{x \in V\left(C_{1}^{\prime}\right)} d_{H}^{+}(x)=30$ and there are exactly two incident arcs from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime}.
Subcase 9.1.2.1. Assume that these two arcs are incident with c_{1}. This implies that $c_{5} \in V^{*}$, and it is a simple matter to verify that $V\left(c_{2}\right)=V\left(c_{4}\right)$. In addition, it follows that $c_{1} \rightarrow c_{4}$ and $c_{5} \rightarrow c_{2}$ and thus $c_{3} \rightarrow c_{5}$ and so $c_{1} \rightarrow c_{3}$. This leads to $c_{1} \in V_{1}^{\prime}$.

In the case $t=2$ assume that $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{1}$. If $y_{1} \rightarrow c_{1}$ and so $y_{2} \in V^{*}$, then C_{5} and $y_{1} c_{1} c_{3} c_{4} c_{5} c_{2} y_{2} y_{3} y_{4} y_{5} y_{6} y_{1}$ are complementary cycles.

In the other case $t=3$, let $C_{2}^{\prime}=x_{1} x_{2} x_{3} x_{1}$ and $C_{3}^{\prime}=y_{1} y_{2} y_{3} y_{1}$ such that $\left\{x_{1}, y_{1}\right\} \rightarrow c_{1}$. This implies that $x_{2}, y_{2} \in V^{*}$. We assume, without loss of generality, that $x_{3} \in V_{1}^{\prime}$. If $x_{3} \rightarrow y_{2}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} x_{1} x_{2} x_{3} y_{2} y_{3} y_{1}$ are complementary cycles. If otherwise $y_{2} \rightarrow x_{3}$, then the 6-regularity of D yields $x_{3} \rightarrow\left\{y_{1}, y_{3}\right\}$. Since $x_{2} \rightarrow y_{3}$ leads to the 6-cycle $y_{1} y_{2} x_{3} x_{1} x_{2} y_{3} y_{1}$ and thus to $t=2$, it remains the case that $y_{3} \rightarrow x_{2}$. But now C_{5} and $x_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{1} y_{2} y_{3} x_{2} x_{3} x_{1}$ are complementary cycles.
Subcase 9.1.2.2. Assume that the two arcs from $H-V\left(C_{1}^{\prime}\right)$ to C_{1}^{\prime} are incident with c_{1} and c_{4}. It follows that $V\left(c_{5}\right)=V\left(c_{3}\right)=V^{*}$, and the 6-regularity of D leads to $c_{1} \rightarrow c_{3}$ and $c_{2} \rightarrow c_{5}$ and thus $c_{4} \rightarrow c_{2}$ and so $c_{1} \in V_{1}^{\prime}$ or $c_{4} \in V_{1}^{\prime}$. Now it is easy to show that $t=2$. Let $C_{2}^{\prime}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{1}$ and $y_{1} \rightarrow c_{1}$ as well as $y_{1} \rightarrow c_{4}$. This implies that $y_{2} \in V^{*}$.
Subcase 9.1.2.2.1. Assume that $y_{3} \in V_{1}^{\prime}$. It follows that $V\left(y_{4}\right)=V\left(y_{6}\right)$ and $V\left(y_{1}\right)=V\left(y_{5}\right)$. If $y_{1} \rightarrow y_{3}$, then we deduce that $y_{3} \rightarrow\left\{y_{5}, y_{6}\right\}$ and thus $\left\{y_{5}, y_{6}\right\} \rightarrow y_{2}$. This leads to $y_{2} \rightarrow y_{4}$ and so $y_{4} \rightarrow y_{1}$. Now C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{5} y_{6} y_{2} y_{3} y_{4} y_{1}$ are complementary cycles. Otherwise we have $y_{3} \rightarrow y_{1}$. If $y_{6} \rightarrow y_{2}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{4} y_{5} y_{6} y_{2} y_{3} y_{1}$ are complementary cycles. In the remaining case that $y_{2} \rightarrow y_{6}$, we deduce that $y_{3} \rightarrow y_{5}$ and thus $y_{5} \rightarrow y_{2}$. Now C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{5} y_{2} y_{6} y_{1}$ are complementary cycles.
Subcase 9.1.2.2.2. Assume that $y_{4} \in V_{1}^{\prime}$. It follows that $V\left(y_{3}\right)=V\left(y_{6}\right)$ and $V\left(y_{1}\right)=V\left(y_{5}\right)$. If $y_{1} \rightarrow y_{4}$, then we deduce that $y_{4} \rightarrow\left\{y_{2}, y_{6}\right\}$ and thus $y_{6} \rightarrow y_{2}$. This leads to $y_{2} \rightarrow y_{5}$ and so $y_{5} \rightarrow y_{3}$. This implies that $y_{3} \rightarrow y_{1}$ and hence
C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{4} y_{5} y_{6} y_{2} y_{3} y_{1}$ are complementary cycles. Otherwise we have $y_{4} \rightarrow y_{1}$. If $y_{6} \rightarrow y_{2}$, then there are the complementary cycles C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{5} y_{6} y_{2} y_{3} y_{4} y_{1}$. In the remaining case that $y_{2} \rightarrow y_{6}$, we deduce that $y_{6} \rightarrow y_{4}$ and thus $y_{4} \rightarrow y_{2}$. If $y_{5} \rightarrow y_{3}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{5} y_{3} y_{4} y_{2} y_{6} y_{1}$ are complementary cycles. If $y_{3} \rightarrow y_{5}$, then $y_{5} \rightarrow y_{2}$, and there are the complementary cycles C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{5} y_{2} y_{6} y_{1}$.
Subcase 9.1.2.2.3. Assume that $y_{5} \in V_{1}^{\prime}$. It follows that $V\left(y_{3}\right)=V\left(y_{6}\right)$ and $V\left(y_{1}\right)=V\left(y_{4}\right)$ or $V\left(y_{1}\right)=V\left(y_{3}\right)$ and $V\left(y_{4}\right)=V\left(y_{6}\right)$. We only discuss the first case, the second one is similar. If $y_{5} \rightarrow y_{2}$ and $y_{4} \rightarrow y_{6}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{5} y_{2} y_{3} y_{4} y_{6} y_{1}$ are complementary cycles. If $y_{5} \rightarrow y_{2}$ and $y_{6} \rightarrow y_{4}$, then $y_{4} \rightarrow y_{2}$ and thus $y_{2} \rightarrow y_{6}$. Now C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{5} y_{2} y_{6} y_{1}$ are complementary cycles. If $y_{2} \rightarrow y_{5}$, then $y_{5} \rightarrow\left\{y_{1}, y_{3}\right\}$ and thus $y_{3} \rightarrow y_{1}$. If $y_{6} \rightarrow y_{2}$, then C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{4} y_{5} y_{6} y_{2} y_{3} y_{1}$ are complementary cycles. If $y_{2} \rightarrow y_{6}$, then $y_{6} \rightarrow y_{4}$ and thus $y_{4} \rightarrow y_{2}$. Now C_{5} and $y_{1} c_{1} c_{2} c_{3} c_{4} c_{5} y_{3} y_{4} y_{2} y_{5} y_{6} y_{1}$ are complementary cycles.
Subcase 9.1.2.2.4. Assume that $y_{6} \in V_{1}^{\prime}$. This case is similar to Subcase 9.1.2.2.1 and is therefore omitted.
Using the converse D^{-1} of D, we obtain the desired results by the cases discussed above when C_{1}^{\prime} is a 6-, 7-, or 8-cycle.
Subcase 9.2. Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set $V(H)$ can be partitioned into subsets Y, Z, R_{1}, R_{2} such that $R_{1} \Rightarrow Y,\left(R_{1} \cup Y\right) \Rightarrow R_{2},|Y|>|Z|$, and Y is an independent set. Since $\kappa(H) \geq 1$ and $\alpha(H)=3$, we see that $1 \leq|Z|<|Y| \leq 3$. Let, without loss of generality, $\left|R_{1}\right| \leq\left|R_{2}\right|$. Let $V_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, $V_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}, V_{3}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, V_{4}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $C_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ such that $V\left(C_{5}\right)=\left\{a_{3}, a_{4}, b_{4}, u_{4}, v_{4}\right\}$ and, without loss of generality, $x_{1}=b_{4}$.
Subcase 9.2.1. Assume that $|Z|=1$ and $|Y|=3$. If $R_{1}=\emptyset$, then we arrive at the contradiction $d^{+}(y) \geq 7$ for $y \in Y$. If $1 \leq\left|R_{1}\right| \leq 3$, then we obtain the contradiction $d_{H}^{-}(x) \leq 1$ for at least one vertex $x \in R_{1}$.
Subcase 9.2.2. Assume that $|Z|=1$ and $|Y|=2$. If $R_{1}=\emptyset$, then we arrive at the contradiction $d^{+}(y) \geq 7$ for $y \in Y$. If $1 \leq\left|R_{1}\right| \leq 2$, then we obtain the contradiction $d_{H}^{-}(x) \leq 1$ for at least one vertex $x \in R_{1}$.
Subcase 9.2.2.1. Assume that $\left|R_{1}\right|=3$. In this case we arrive at a contradiction, unless $\left\{a_{1}\right\}=Z \subset V_{1}^{\prime}$ and $H\left[R_{1}\right]$ is a 3-cycle C_{3}, say $C_{3}=b_{1} u_{1} v_{1} b_{1}$. Let, without loss of generality, $Y=\left\{v_{2}, v_{3}\right\}$. The 6-regularity of D shows that $C_{5} \Rightarrow R_{1}$, that there are at least three arcs from R_{2} to a_{1}, and that $D\left[R_{2}\right]$ contains a cycle.

Assume first that $D\left[R_{2}\right]$ contains a 3-cycle, say $a_{2} b_{2} u_{2} a_{2}$. We assume, without loss of generality, that $b_{3} \rightarrow a_{1}$. If $u_{3} \rightarrow b_{3}$, then there exists the 5 -cycle $u_{3} b_{3} a_{1} u_{1} v_{2} u_{3}$. Since there is at least one of the three arcs $a_{2} \rightarrow x_{2}, b_{2} \rightarrow x_{2}$, or $u_{2} \rightarrow x_{2}$, say $u_{2} \rightarrow x_{2}$, we obtain the complementary cycle $x_{2} x_{3} x_{4} x_{5} x_{1} v_{1} b_{1} v_{3} a_{2} b_{2} u_{2} x_{2}$. If $b_{3} \rightarrow u_{3}$ and $u_{3} \rightarrow a_{1}$, then we have the same situation as before. In the remaining case that $b_{3} \rightarrow u_{3}$ and $a_{1} \rightarrow u_{3}$, it follows that $u_{3} \rightarrow a_{2}$, and this yields the contradiction $d^{-}\left(a_{2}\right) \geq 7$.

Assume next that $D\left[R_{2}\right]$ contains a 4-cycle C_{4} but no 3-cycle. This is only possible when, without loss of generality, $C_{4}=b_{2} u_{2} b_{3} u_{3} b_{2}$ and $a_{2} \rightarrow\left\{b_{2}, b_{3}, u_{2}, u_{3}\right\}$. This implies that $C_{4} \Rightarrow C_{5}$. If we assume, without loss of generality, that $b_{2} \rightarrow a_{1}$, then $a_{2} b_{2} a_{1} u_{1} v_{2} a_{2}$ is a 5-cycle. If $x_{2} \neq u_{4}$, then $x_{2} x_{3} x_{4} x_{5} x_{1} v_{1} b_{1} v_{3} u_{2} b_{3} u_{3} x_{2}$ is a complementary cycle. If $x_{2}=u_{4}$, then $x_{3} x_{4} x_{5} x_{1} x_{2} v_{1} b_{1} v_{3} u_{2} b_{3} u_{3} x_{3}$ is a complementary cycle.
Subcase 9.2.2.2. Assume that $\left|R_{1}\right|=\left|R_{2}\right|=4$. Let, without loss of generality, $Y=\left\{v_{2}, v_{3}\right\}$. It is straightforward to verify that $Z \subset V_{1}$ or $Z \subset V_{4}$.

Assume that $Z=\left\{a_{1}\right\}$. In this case we arrive at a contradiction without the case that, without loss of generality, $R_{1}=\left\{a_{2}, b_{1}, u_{1}, v_{1}\right\}$ such that $\left\{b_{1}, u_{1}, v_{1}\right\} \rightarrow a_{2}$ and $b_{1} \rightarrow v_{1} \rightarrow u_{1} \rightarrow b_{1}$ and $D\left[R_{2}\right]$ consists of the 4-cycle $C_{4}=b_{2} u_{3} b_{3} u_{2} b_{2}$. It follows that $R_{2} \Rightarrow C_{5} \Rightarrow R_{1}$ and $R_{2} \rightarrow a_{1} \Rightarrow R_{1}$. Now we obtain the complementary cycles $b_{2} u_{3} a_{1} u_{1} v_{2} b_{2}$ and $x_{1} x_{2} x_{3} x_{4} x_{5} b_{1} v_{1} a_{2} v_{3} b_{3} u_{2} x_{1}$.

Assume that $Z=\left\{v_{1}\right\}$. In this case we arrive at a contradiction, unless $D\left[R_{1}\right]$ consists, without loss of generality, of the cycle $a_{1} b_{1} u_{1} b_{2} a_{1}$ such that $u_{1} \rightarrow a_{1}$ and $D\left[R_{2}\right]$ consists of the cycle $a_{2} u_{2} b_{3} u_{3} a_{2}$ such that $a_{2} \rightarrow b_{3}$. It follows that $R_{2} \Rightarrow C_{5} \Rightarrow R_{1}$ and $R_{2} \rightarrow a_{1} \rightarrow R_{1}$. Now we obtain the complementary cycles $u_{2} v_{1} b_{1} u_{1} v_{2} u_{2}$ and $x_{1} x_{2} x_{3} x_{4} x_{5} b_{2} a_{1} v_{3} b_{3} u_{3} a_{2} x_{1}$. Subcase 9.2.3. Assume that $|Z|=2$ and $|Y|=3$. Let, without loss of generality, $Y=\left\{v_{1}, v_{2}, v_{3}\right\}$.
Subcase 9.2.3.1. Assume that $R_{1}=\emptyset$. This implies that $Z \rightarrow Y \rightarrow R_{2}$ and $C_{5} \Rightarrow Y$. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the Appendix).
Subcase 9.2.3.2. Assume that $\left|R_{1}\right|=1$. This implies that $Z \rightarrow R_{1}$ and, without loss of generality, $R_{1}=\left\{b_{1}\right\}$. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the Appendix).
Subcase 9.2.3.3. Assume that $\left|R_{1}\right|=2$. We have to discuss the following three cases: $R_{1}=\left\{b_{1}, b_{2}\right\}$ and $Z \rightarrow R_{1}, R_{1}=\left\{a_{1}, b_{1}\right\}$ such that $b_{1} \rightarrow a_{1}$ and $Z \rightarrow R_{1}, R_{1}=\left\{b_{1}, u_{1}\right\}$ such that, without loss of generality, $b_{1} \rightarrow u_{1}$ and $Z \rightarrow b_{1}$.
Subcase 9.2.3.3.1. Assume that $R_{1}=\left\{b_{1}, b_{2}\right\}$ and $Z=\left\{a_{1}, a_{2}\right\}$. It follows that $R_{2}=\left\{u_{1}, u_{2}, u_{3}, b_{3}\right\}$ and $C_{5} \Rightarrow R_{1}$.
If $\left\{u_{1}, u_{2}, u_{3}\right\} \rightarrow b_{3}$, then $b_{3} \rightarrow Z$ and there is an arc from u_{1} to Z, say $u_{1} \rightarrow a_{2}$. Assume that there is an arc from a_{2} to Y, say $a_{2} \rightarrow v_{3}$. Since u_{2} has at least three out-neighbors in C_{5}, and b_{2} four in-neighbors in C_{5}, there exist two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow b_{2}$ and $u_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} b_{3} a_{1} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} b_{2} v_{2} u_{1} a_{2} v_{3} u_{2} x_{i+1}$. Otherwise we have $Y \rightarrow a_{2}$. This implies that v_{3} has at least three in-neighbors in C_{5}. Since u_{2} has at least three out-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} b_{3} a_{1} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} u_{1} a_{2} b_{2} v_{2} u_{2} x_{i+1}$.

If $\left\{u_{1}, u_{2}\right\} \rightarrow b_{3}$ and $b_{3} \rightarrow u_{3}$, then $u_{3} \rightarrow Z$ and there is an arc from b_{3} to Z, say $b_{3} \rightarrow a_{2}$. Assume that there is an arc from a_{1} to Y, say $a_{1} \rightarrow v_{3}$. Since u_{2} has at least three out-neighbors in C_{5}, and b_{2} four in-neighbors in C_{5}, there exist
two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow b_{2}$ and $u_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{1} b_{3} a_{2} b_{1} v_{1} u_{1}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} b_{2} v_{2} u_{3} a_{1} v_{3} u_{2} x_{i+1}$. Otherwise we have $Y \rightarrow a_{1}$. This implies that v_{3} has at least three inneighbors in C_{5}. Since u_{2} has at least three out-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{1} b_{3} a_{2} b_{1} v_{1} u_{1}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} u_{3} a_{1} b_{2} v_{2} u_{2} x_{i+1}$.

The cases $b_{3} \rightarrow\left\{u_{2}, u_{3}\right\}$ and $u_{1} \rightarrow b_{3}$ as well as $b_{3} \rightarrow\left\{u_{1}, u_{2}, u_{3}\right\}$ are similar and are therefore omitted.
Subcase 9.2.3.3.2. Assume that $R_{1}=\left\{b_{1}, b_{2}\right\}$ and $Z=\left\{a_{1}, u_{1}\right\}$. It follows that $R_{2}=\left\{a_{2}, b_{3}, u_{2}, u_{3}\right\}$ and $C_{5} \Rightarrow R_{1}$.
Assume that $D\left[R_{2}\right]$ contains a cycle. This implies that $D\left[R_{2}\right]$ has a 3-cycle, say $a_{2} u_{2} b_{3} a_{2}$. It follows that $a_{2} \rightarrow\left\{u_{1}, u_{3}\right\}$ and thus $u_{3} \rightarrow b_{3}$ and so $\left\{u_{2}, u_{3}\right\} \rightarrow a_{1}$ and $\left\{u_{2}, u_{3}\right\} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{3} a_{2} u_{1} b_{1} v_{1} b_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} u_{3} a_{1} b_{2} v_{2} u_{2} x_{i+1}$.

If $D\left[R_{2}\right]$ has no cycle, then there remain the two possibilities $a_{2} \rightarrow\left\{u_{2}, u_{3}, b_{3}\right\}$ and $\left\{u_{2}, u_{3}\right\} \rightarrow b_{3}$ or $\left\{a_{2}, u_{2}, u_{3}\right\} \rightarrow b_{3}$ and $u_{2} \rightarrow a_{2} \rightarrow u_{3}$.

In the first case it follows that $u_{2} \rightarrow a_{1}, b_{3} \rightarrow u_{1}$ and $u_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $a_{2} u_{2} a_{1} b_{1} v_{1} a_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{3} u_{1} b_{2} v_{2} u_{3} x_{i+1}$.

In the second case it follows that $a_{2} \rightarrow u_{1}, b_{3} \rightarrow a_{1}$ and $u_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{2} a_{2} u_{1} b_{1} v_{1} u_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{3} a_{1} b_{2} v_{2} u_{3} x_{i+1}$.
Subcase 9.2.3.3.3. Assume that $R_{1}=\left\{b_{1}, b_{2}\right\}$ and $Z=\left\{u_{1}, u_{2}\right\}$. It follows that $R_{2}=\left\{a_{1}, a_{2}, b_{3}, u_{3}\right\}$ and $C_{5} \Rightarrow R_{1}$.
Assume that $D\left[R_{2}\right]$ contains a cycle. This implies that $D\left[R_{2}\right]$ has a 3-cycle, say $a_{1} u_{3} b_{3} a_{1}$. It follows that $u_{3} \rightarrow a_{2}$ and thus $a_{2} \rightarrow b_{3}$ and so $\left\{a_{1}, a_{2}\right\} \rightarrow Z$ and $u_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{3} a_{1} u_{1} b_{1} v_{1} b_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{2} u_{2} b_{2} v_{2} u_{3} x_{i+1}$.

If $D\left[R_{2}\right]$ has no cycle, then there remain the two possibilities $u_{3} \rightarrow\left\{a_{1}, a_{2}, b_{3}\right\}$ and $\left\{a_{1}, a_{2}\right\} \rightarrow b_{3}$ or $\left\{a_{1}, a_{2}, u_{3}\right\} \rightarrow b_{3}$ and $a_{1} \rightarrow u_{3} \rightarrow a_{2}$.

In the first case it follows that $a_{1} \rightarrow u_{1}, a_{2} \rightarrow u_{2}$ and $b_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} a_{1} u_{1} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{2} u_{2} b_{2} v_{2} b_{3} x_{i+1}$.

In the second case it follows that $b_{3} \rightarrow u_{1}, a_{2} \rightarrow u_{2}$ and $u_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $a_{1} b_{3} u_{1} b_{1} v_{1} a_{1}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{2} u_{2} b_{2} v_{2} u_{3} x_{i+1}$.
Subcase 9.2.3.3.4. Assume that $R_{1}=\left\{a_{1}, b_{1}\right\}$. This implies that $b_{1} \rightarrow a_{1}$ and $Z=\left\{u_{1}, u_{2}\right\} \rightarrow R_{1}$.
Assume that $D\left[R_{2}\right]$ contains a cycle. This implies that $D\left[R_{2}\right]$ has a 3-cycle, say $a_{2} u_{3} b_{2} a_{2}$. It follows that $u_{3} \rightarrow b_{3}$ and $u_{3} \Rightarrow C_{5}$. Assume that $a_{2} \rightarrow b_{3}$ and, without loss of generality, that $a_{2} \rightarrow u_{2}$. It follows that $b_{3} \rightarrow u_{1}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{2} a_{2} u_{2} b_{1} v_{1} b_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{3} u_{1} a_{1} v_{2} u_{3} x_{i+1}$. If otherwise $b_{3} \rightarrow a_{2}$ and, without loss of generality, $b_{3} \rightarrow u_{1}$, then it follows that $a_{2} \rightarrow u_{2}$ and we arrive at the same complementary cycles.

If $D\left[R_{2}\right]$ has no cycle, then there remain the following four possibilities:
$u_{3} \rightarrow\left\{a_{2}, b_{2}, b_{3}\right\}$ and $a_{2} \rightarrow\left\{b_{2}, b_{3}\right\}$ or
$u_{3} \rightarrow\left\{a_{2}, b_{2}, b_{3}\right\}$ and $b_{3} \rightarrow a_{2} \rightarrow b_{2}$ or
$u_{3} \rightarrow\left\{b_{2}, b_{3}\right\}$ and $a_{2} \rightarrow\left\{b_{2}, b_{3}, u_{3}\right\}$ or
$u_{3} \rightarrow\left\{a_{2}, b_{3}\right\}, b_{2} \rightarrow\left\{a_{2}, u_{3}\right\}$ and $a_{2} \rightarrow b_{3}$.
In the first case it follows that $b_{2} \rightarrow\left\{u_{1}, u_{2}\right\}$ and $b_{3} \Rightarrow C_{5}$. Assume, without loss of generality, that $a_{2} \rightarrow u_{2}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} a_{2} u_{2} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{2} u_{1} a_{1} v_{2} b_{3} x_{i+1}$.

In the second case it follows that $b_{2} \rightarrow\left\{u_{1}, u_{2}\right\}$ and $b_{2} \Rightarrow C_{5}$. Assume, without loss of generality, that $a_{2} \rightarrow u_{2}$. Next we distinguish two further cases. Assume that $u_{1} \rightarrow b_{3}$. This implies that $b_{3} \Rightarrow C_{5}$. Since v_{3} has at least two inneighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} b_{2} u_{1} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{2} u_{2} a_{1} v_{2} b_{3} x_{i+1}$. Now assume that $b_{3} \rightarrow u_{1}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} b_{3} u_{1} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{2} u_{2} a_{1} v_{2} b_{2} x_{i+1}$.

In the third case it follows that $\left\{b_{1}, b_{2}\right\} \rightarrow\left\{u_{1}, u_{2}\right\}$ and $u_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $a_{2} b_{2} u_{2} b_{1} v_{1} a_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{3} u_{1} a_{1} v_{2} u_{3} x_{i+1}$.

In the fourth case it follows that $\left\{a_{2}, b_{3}\right\} \rightarrow\left\{u_{1}, u_{2}\right\}$ and $u_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{2} a_{2} u_{1} b_{1} v_{1} b_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{3} u_{2} a_{1} v_{2} u_{3} x_{i+1}$.
Subcase 9.2.3.3.5. Assume that $R_{1}=\left\{b_{1}, u_{1}\right\}$ and $Z=\left\{a_{1}, a_{2}\right\}$. Assume, without loss of generality, that $b_{1} \rightarrow u_{1}$. It follows that $\left\{a_{1}, a_{2}\right\} \rightarrow b_{1}$ and, without loss of generality, that $a_{2} \rightarrow u_{1}$. This implies that $C_{5} \Rightarrow b_{1}$.

Assume that $D\left[R_{2}\right]$ is a 4-cycle, say $b_{2} u_{2} b_{3} u_{3} b_{2}$. If $a_{1} \rightarrow R_{2}$, then we deduce that $R_{2} \rightarrow a_{2}, R_{2} \Rightarrow C_{5}$, and there are at least two vertices in Y, say v_{2}, v_{3}, such that $\left\{v_{2}, v_{3}\right\} \rightarrow a_{1}$. Since v_{3} has at least three in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} b_{2} a_{2} u_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{1} b_{1} v_{2} u_{2} b_{3} x_{i+1}$. Otherwise we have, without loss of generality, $b_{3} \rightarrow a_{1}$. If there is an arc from Y to a_{2}, say $v_{3} \rightarrow a_{2}$, then v_{3} has at least three in-neighbors in C_{5} and b_{2} has at least three out-neighbors in C_{5}. Hence there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{2} \rightarrow x_{i+1}$. This leads to the complementary cycles $u_{2} b_{3} a_{1} b_{1} v_{1} u_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{2} u_{1} v_{2} u_{3} b_{2} x_{i+1}$. Otherwise we have $a_{2} \rightarrow Y$. This yields $b_{2} \rightarrow a_{2}$ or $u_{3} \rightarrow a_{2}$, say $b_{2} \rightarrow a_{2}$. Since u_{1} has at least three in-neighbors in C_{5} and u_{3} has at least three out-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow u_{1}$ and $u_{3} \rightarrow x_{i+1}$. This leads to the complementary cycles $u_{2} b_{3} a_{1} b_{1} v_{1} u_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} u_{1} v_{3} b_{2} a_{2} v_{2} u_{3} x_{i+1}$.

If $D\left[R_{2}\right]$ has no cycle, then there remain, without loss of generality, the two possibilities $\left\{u_{2}, u_{3}\right\} \rightarrow\left\{b_{2}, b_{3}\right\}$ or $b_{2} \rightarrow\left\{u_{2}, u_{3}\right\}$ and $u_{2} \rightarrow b_{3} \rightarrow u_{3}$.

In the first case it follows that $\left\{b_{2}, b_{3}\right\} \rightarrow\left\{a_{1}, a_{2}\right\}$ and $b_{2} \Rightarrow C_{5}$. Assume that $u_{2} \rightarrow a_{2}$ or $u_{2} \rightarrow a_{1}$, say $u_{2} \rightarrow a_{2}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} b_{3} a_{1} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} u_{2} a_{2} u_{1} v_{2} b_{2} x_{i+1}$. In the case that $Z \rightarrow u_{2}$, we observe that $u_{2} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $u_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $u_{3} b_{2} a_{1} b_{1} v_{1} u_{3}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{3} a_{2} u_{1} v_{2} u_{2} x_{i+1}$.

In the second case it follows that $u_{3} \rightarrow\left\{a_{1}, a_{2}\right\}$ and, without loss of generality, that $u_{2} \rightarrow a_{2}$. Assume that there exists an arc from a_{1} to Y, say $a_{1} \rightarrow v_{2}$. Since b_{3} has at least three out-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow b_{1}$ and $b_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{2} u_{2} a_{2} u_{1} v_{1} b_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} b_{1} v_{3} u_{3} a_{1} v_{2} b_{3} x_{i+1}$. In the case that $Y \rightarrow a_{1}$, we observe that v_{3} has at least three in-neighbors in C_{5}. Since b_{3} has at least three out-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{2} u_{2} a_{2} u_{1} v_{1} b_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} u_{3} a_{1} b_{1} v_{2} b_{3} x_{i+1}$.
Subcase 9.2.3.3.6. Assume that $R_{1}=\left\{b_{1}, u_{1}\right\}$ and, without loss of generality, that $Z=\left\{a_{1}, u_{2}\right\}$. It follows that $\left\{a_{1}, b_{1}\right\} \rightarrow u_{1}$ and $\left\{a_{1}, u_{2}\right\} \rightarrow b_{1}$.

Assume that $D\left[R_{2}\right]$ contains a cycle. This implies that $D\left[R_{2}\right]$ has a 3-cycle, say $a_{2} b_{2} u_{3} a_{2}$. It follows that $a_{2} \rightarrow u_{2}, a_{2} \rightarrow b_{3}$, and $a_{2} \Rightarrow C_{5}$.

If $b_{3} \rightarrow u_{3}$, then it follows that $u_{3} \rightarrow a_{1}$. Assume that $b_{3} \rightarrow u_{2}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $a_{2} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{2} u_{3} a_{1} u_{1} v_{1} b_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} b_{3} u_{2} b_{1} v_{2} a_{2} x_{i+1}$. Otherwise we have $u_{2} \rightarrow b_{3}$ and thus $b_{3} \Rightarrow C_{5}$. Since v_{3} has at least two in-neighbors in C_{5}, there are two consecutive vertices x_{i} and x_{i+1} on C_{5} such that $x_{i} \rightarrow v_{3}$ and $b_{3} \rightarrow x_{i+1}$. Hence there are the complementary cycles $b_{2} u_{3} a_{1} u_{1} v_{1} b_{2}$ and $x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i} v_{3} a_{2} u_{2} b_{1} v_{2} b_{3} x_{i+1}$. If $u_{3} \rightarrow b_{3}$, then we obtain similarly the two desired complementary cycles.

If $D\left[R_{2}\right]$ has no cycle, then there are the four possibilities $b_{2} \rightarrow a_{2} \rightarrow u_{3} \rightarrow b_{3}$ and $b_{2} \rightarrow u_{3}$ and $a_{2} \rightarrow b_{3}$ or $a_{2} \rightarrow b_{2} \rightarrow u_{3} \rightarrow b_{3}$ and $a_{2} \rightarrow b_{3}$ and $a_{2} \rightarrow u_{3}$ or $a_{2} \rightarrow\left\{u_{3}, b_{2}, b_{3}\right\}$ and $u_{3} \rightarrow b_{2}$ and $u_{3} \rightarrow b_{3}$ or $u_{3} \rightarrow\left\{a_{2}, b_{2}, b_{3}\right\}$ and $a_{2} \rightarrow b_{2}$ and $a_{2} \rightarrow b_{3}$. All these cases are analogue to the cases above and therefore are omitted.
Subcase 9.2.3.4. Assume that $\left|R_{1}\right|=\left|R_{2}\right|=3$. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the Appendix).

Acknowledgement

We thank one of the anonymous referees for valuable hints and suggestions.

Appendix

With the following algorithm programmed in GAP [16] we tested Case 5 of Theorem 3.1. Case 7, Case 9.2.3.1, Case 9.2.3.2 and Case 9.2.3.4 were tested the same way using minor modifications in Algorithm 2 (the initialization of the adjacency matrix A), Algorithm 3 (the values concerning the number of vertices and the regularity) and Algorithm 4 (the values concerning the chosen subsets). A similar program has also confirmed that the digraph $D_{4,2}^{*}$ is the only regular 4-partite tournament with two vertices in each partite set that does not contain two complementary cycles of length 4 .

Algorithm 1 (Tests Via Backtracking Whether the Vertices of the List subset Induce a Hamiltonian Subdigraph of the Digraph with Adjacency Matrix A).

Hamiltontest:=function(subset, A)
local l,a,recursion;

```
recursion:=function(ll) #'ll' is a local list
    local ii,rest;
```

```
    rest:=Difference(subset,ll);
    if rest=[]
    then
        #test whether the last vertex of 'll' dominates the first vertex of 'll'
        return A[ll[Length(ll)]][ll[1]]=1;
    else
        #test all possibilities to extend the list 'll'
        for ii in rest do
            if A[ll[Length(ll)]][ii]=1
            then if recursion(Concatenation(ll,[ii]))=true
                    then return true;
                    fi;
        fi;
        od;
    fi;
    return false;
end;
1:= [subset[1]];
a:= A{subset}{subset};
#shortcut: test whether there exists a vertex x in 'subset' such that
#d}\mp@subsup{d}{}{+}(x)=0\mathrm{ or }\mp@subsup{d}{}{-}(x)=
if ForAny(a,x->not (1 in x and -1 in x))
    then return false;
fi;
return recursion(l);
end;
```

Algorithm 2 (Initialization of the Following Global Variables: Adjacency Matrix A, and Degree Vectors dplus and dminus). Matrix_A_Init:=function();

```
A:=List([1..12],x->List([1..12],y->2));
#all entries of A are initialized with 2
for i in [1..12] do
    for j in [1..12] do
        if (i-j) mod 6 =0 #if i and j are in the same partition
            then A[i][j]:=0; #then there is no arc between them
        fi;
    od;
od;
#without loss of generality, there exists a cycle through
#the vertices 1,2,...,6
for i in [1..6] do
    A[i][i mod 6+1]:=1;
od;
dplus:=List([1..12],x->Number([1..12],y->A[x][y]=1));
    #the vector of all outdegrees
dminus:=List([1..12], x->Number([1..12], y->A[x][y]=-1));
    #the vector of all indegrees
```

end;

Algorithm 3 (Changes A, dplus, dminus; Recursive Computation of the Adjacency Matrices of at Least all Non-Isomorphic 5regular 6-partite Tournaments).

```
AllMat:=function(n) #recursive computation, n is a list of vertices
local new,i,j;
new:=ShallowCopy(n[Length(n)]);
repeat
    if new[2]=12
        then
            new [1]:=new [1]+1;
            new [2]:=new[1]+1;
        else
        new [2]:=new [2] +1;
    fi;
    #if the recursive construction is complete, then test if there are
    #complementary cycles
    if new[1]>11
        then
            TestCC(A);
            return;
    fi;
until A[neu[1]][neu[2]]=2; #2 indicates that an arc has to be chosen
#update 'dplus' and 'dminus'
if dplus[neu[1]]<5 and dminus[neu[2]]<5
    then
        dplus[neu[1]]:=dplus[neu[1]]+1;
        dminus[neu[2]]:=dminus[neu[2]]+1;
    A[neu[1]][neu[2]]:=1;A[neu[2]][neu[1]]:=-1;
    AllMat(Concatenation(n, [neu]));
    A[neu[1]][neu[2]]:=2;A[neu[2]][neu[1]]:=2;
    dplus[neu[1]]:=dplus[neu[1]]-1;
    dminus[neu[2]]:=dminus[neu[2]]-1;
fi;
if dplus[neu[2]]<5 and dminus[neu[1]]<5
    then
        dplus[neu[2]]:=dplus[neu[2]]+1;
        dminus[neu[1]]:=dminus[neu[1]]+1;
        A[neu[1]][neu[2]]:=-1;A[neu[2]] [neu[1]]:=1;
        AllMat(Concatenation(n, [neu]));
        A[neu[1]][neu[2]]:=2;A[neu[2]][neu[1]]:=2;
        dplus[neu[2]]:=dplus[neu[2]]-1;
        dminus[neu[1]]:=dminus[neu[1]]-1;
fi;
end;
```

Algorithm 4 (Tests for Complementary Cycles).

```
TestCC:=function(mat)
```

local i,j;
\#SubsetN(m,n) computes all subsets of $\{1,2, \ldots, n\}$ of size m
if ForAny (SubsetsN $(5,12), x->H a m i l t o n t e s t(x)$
and Hamiltontest(Difference([1..12],x)))
then return true;
else return false;
fi;
end;
Algorithm 5 (Concatenation of Algorithms 1-4).
Matrix_A_Init();
AllMat ([[1, 1]]);

References

[1] J.A. Bondy, Diconnected orientation and a conjecture of Las Vergnas, J. London Math. Soc. 14 (1976) 277-282.
[2] G. Gutin, A. Yeo, Note on the path covering number of a semicomplete multipartite digraph, J. Combin. Math. Combin. Comput. 32 (2000) $231-237$.
[3] J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966) 297-301.
[4] K.B. Reid, Two complementary circuits in two-connected tournaments, Ann. Discrete Math. 27 (1985) 321-334.
[5] Z. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B 57 (1993) 18-25.
[6] L. Volkmann, Cycles in multipartite tournaments: Results and problems, Discrete Math. 245 (2002) 19-53.
[7] L. Volkmann, Complementary cycles in regular multipartite tournaments, where one cycle has length four, Kyungpook Math. J. 44 (2004) $219-247$.
[8] L. Volkmann, Complementary cycles in regular multipartite tournaments, Australas. J. Combin. 31 (2005) 119-134.
[9] L. Volkmann, S. Winzen, Almost regular multipartite tournaments containing a Hamiltonian path through a given arc, Discrete Math. 285 (2004) 267-278.
[10] L. Volkmann, S. Winzen, On the connectivity of close to regular multipartite tournaments, Discrete Appl. Math. 154 (2006) $1437-1452$.
[11] L. Volkmann, S. Winzen, Almost regular c-partite tournaments contain a strong subtournament of order c when $c \geq 5$, Discrete Math. 308 (2008) 1710-1721.
[12] A. Yeo, One-diregular subgraphs in semicomplete multipartite digraphs, J. Graph Theory 24 (1997) 175-185.
[13] A. Yeo, Semicomplete multipartite digraphs, Ph.D. Thesis, Odense University, 1998.
[14] A. Yeo, Diregular c-partite tournaments are vertex-pancyclic when $c \geq 5$, J. Graph Theory 32 (1999) 137-152.
[15] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? Graphs Combin. 15 (1999) 481-493.
[16] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4. 2006. http://www.gap-system.org.

[^0]: * Corresponding author.

 E-mail addresses: zhihhe@126.com (Z. He), korneffe@math2.rwth-aachen.de (T. Korneffel), meierling@math2.rwth-aachen.de (D. Meierling), volkm@math2.rwth-aachen.de (L. Volkmann), winzen@math2.rwth-aachen.de (S. Winzen).

