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1. Terminology

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. If x is a vertex of multipartite
tournament D, then V (x) is the partite set of D such that x € V(x). A tournament is a c-partite tournament with exactly
c vertices. By a cycle or path we mean a directed cycle or directed path.

In this paper all digraphs are finite without loops or multiple arcs. The vertex set and the arc set of a digraph D are denoted
by V(D) and E(D), respectively. For a vertex set X of D, we define D[X] as the subdigraph induced by X.

If xy is an arc of a digraph D, then we write x — y and say x dominates y. If X and Y are two disjoint subsets of V(D)
or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by
X — Y. Furthermore, X = Y denotes the property that there is no arc from Y to X. By d™ (X, Y) we define the number of
arcs going from X to Y.

The out-neighborhood NBL (x) = NT'(x) of a vertex x is the set of vertices dominated by x, and the in-neighborhood
Np (x) = N~ (x) is the set of vertices dominating x. The numbers df; (x) =dt(x) = INT(x)|andd,, (x) = d~(x) = [N~ (x)| are
the outdegree and indegree of x, respectively. The minimum outdegree and the minimum indegree of D are denoted by §* (D)
and 8§~ (D), and the maximum outdegree and the maximum indegree of D are denoted by A™ (D) and A~ (D), respectively.

The global irregularity of a digraph D is defined by

ig(D) = max{max(d* (x), d” (x)) — min(d" (y), d” ())|x,y € V(D)},

and the local irregularity by iy(D) = max |d*(x) — d~ ()| over all vertices x of D. If iy (D) < 1, then D is called almost regular,
and if iz (D) = 0, then D is regular.
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Fig. 1. The 3-regular 4-partite tournament Dj ,.

A cycle of length m is an m-cycle. A cycle or a path in a digraph D is Hamiltonian if it includes all the vertices of D. A set
X C V(D) of vertices is independent if the induced subdigraph D[X] has no arcs. The independence number «(D) = « is the
maximum size among the independent sets of vertices of D.

A digraph D is strongly connected or strong if, for each pair of vertices u and v, there is a path from u to v in D. A digraph D
with at least k + 1 vertices is k-connected if for any set A of at most k — 1 vertices, the subdigraph D — A obtained by deleting
A is strong. The connectivity of D, denoted by « (D), is then defined to be the largest value of k such that D is k-connected.

A cycle-factor of a digraph D is a spanning subdigraph consisting of disjoint cycles. A cycle-factor with the minimum
number of cycles is called a minimal cycle-factor. If x is a vertex of a cycle C, then the predecessor and the successor of x on C
are denoted by x~ and x™, respectively. If we replace every arc xy of D by yx, then we call the resulting digraph, denoted by
D™, the converse digraph of D.

2. Introduction and Preliminary Results

Adigraph Dis called cycle complementary if there exist two vertex disjoint cycles C and C’ such that V(D) = V(C)UV (C').
The problem of complementary cycles in tournaments was almost completely solved by Reid [4] in 1985 and by Z. Song [5]
in 1993. These authors proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of
length t and |V(T)| — t forall t € {3,4,...,|V(T)| — 3}. For c-partite tournaments with ¢ > 3, there exist the following
two conjectures.

Conjecture 2.1 ([14]). A regular c-partite tournament D with ¢ > 4 and |V (D)| > 8 has a pair of vertex disjoint cycles of length
tand |V(D)| —tforallt € {3,4,...,|V(D)| — 3}.

Conjecture 2.2 ([6]). Let D be a multipartite tournament. If k(D) > «a(D) + 1, then D is cycle complementary, unless D is a
member of a finite family of multipartite tournaments.

In 2005, Volkmann [8] confirmed the first conjecture for t = 3, unless D is isomorphic to two fixed regular 4-partite
tournament with two vertices in each partite set. In addition, Volkmann [7] showed that Conjecture 2.1 is also valid for
t = 4whenc > 5orc > 4and @(D) > 4. Example 2.3 below by Volkmann [7] demonstrates that Yeo’s conjecture is not
true in general for t = 4 when ¢ = 4 and «(D) = 2. In this paper we will show that Conjecture 2.1 is valid for t = 5, where
we use a computer program for some cases.

Example 2.3 ([7]). Let Dj,z be the 3-regular 4-partite tournament presented in Fig. 1. Then it is straightforward to verify that
Dj, , does not contain two 4-cycles C4 and Cj such that V(D ,) = V(Cy) U V(C)).

A computer program (cf. the Appendix) has shown that D , is the only regular 4-partite tournament with two vertices
in each partite sets that does not contain two complementary cycles of length 4. Hence one can conclude from Volkmann'’s
paper [8] that Conjecture 2.1 is valid for t = 4 with exception of D} ,.

The following results play an important role in our investigations. We start with a well-known fact about regular
multipartite tournaments.

Lemma 2.4. If D is a regular c-partite tournament with the partite sets V1, Vs, ..., V,, then (D) = |V1| = |Va| = - - = |V,|.

Theorem 2.5 ([3]). Let T be a strongly connected tournament. Then, every vertex of T is contained in an m-cycle for each m
between 3 and |V (T)]|.
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Theorem 2.6 ([1]). Each strongly connected c-partite tournament contains an m-cycle foreachm € {3,4, ..., c}.

Theorem 2.7 ([4,5]).If T is a 2-connected tournament with |V (T)| > 8, then T contains two complementary cycles of length t
and |V(T)| —tforall3 <t < |V(T)|/2.

Theorem 2.8 ([13]). If D is a multipartite tournament, then

[[V(D)| — 2i(D) — Oé(D)-‘
3 .

k(D) >

Theorem 2.9 ([10]). Let D be a multipartite tournament. If a(D) is odd, then

(D) > [ V(D)| = 2ii(D) — a(D) + 1—‘
> 3 .

Theorem 2.10 ([12]). Let D be a (|q/2] + 1)-connected multipartite tournament such that «(D) < q. If D has a cycle-factor,
then D is Hamiltonian.

Theorem 2.11 ([15]). Let V4, Vs, ..., V. be the partite sets of a c-partite tournament D such that |V,| < |V5| < -+ < |V |. If
. V(D)| — |Ve_1]| — 2|V | 4+ 2
lg(D)SI()I |c21I Vel ’

then D is Hamiltonian.

Lemma 2.12 ([15,2]). Adigraph D has no cycle-factor if and only if its vertex set V (D) can be partitioned into four subsets Y, Z, Ry,
and R, such that

R] = Y7 (Rl U Y) = R27 and |Y| > |Z|7 (])

where Y is an independent set.

Theorem 2.13 ([12]). Let D be a multipartite tournament having a cycle-factor but no Hamiltonian cycle. Then there exists a
partite set V* of D and an indexing Cy, C,, ..., C; of the cycles of some minimal cycle-factor of D such that for all arcs yx from
GitoCy for 2 <j <t,itholds {y",x"} C V*

Theorem 2.14 ([11]). Let D be an almost regular c-partite tournament with ¢ > 5. Then D contains a strongly connected
subtournament of order p foreveryp € {3,4, ..., c}.

Theorem 2.15 ([9]). Let V4, V5, ..., V. be the partite sets of a c-partite tournament D with no cycle-factor such that |V,| <
Vo] < -+ < |V.|. According to Lemma 2.12, the vertex set V(D) can be partitioned into subsets Y, Z, Ry, R, satisfying (1)
such that |Z| + k + 1 < |Y| < |V¢| — t with integers k,t > 0. Let V; be the partite set with the property that Y C V,. If
Q=V({D)—Z—V;,0 =QNRy,and Q; = Q N Ry, then

i(D) > [V(D)] — 3|Ve| + 2t + 2k +2 and
VD) — [Ve—1| — 2|V + 3k + 3

ig(D) = >

if @ =Wor Q, = ¥and
IV(D)| — |Ver| — 2|Ve| + 3k + 3+t
2

ig(D) = (D) =
if Qi #0and Q # 9.

Lemma 2.16. Each regular 4-partite tournament contains a 5-cycle through all partite sets.

Proof. Let D be a regular 4-partite tournament with the partite sets Vi, V5, V3, V4. In view of Lemma 2.4, we have |V;| =
Vo] = |V3| = |V4| = r.Since D is regular, we note that r > 2. Suppose that D does not contain any 5-cycle through all
partite sets. To derive a contradiction we distinguish two cases.

Case 1. Assume that D contains a strongly connected subtournament T4 of order 4. If V(T,) = {vq, vy, v3, v4} such that,
without loss of generality, v{ — v, = v3 — v4 — v, v3 = v; and v4 — v, then we assume, without loss of generality,
that v; € V;fori € {1, 2, 3, 4}. Let us define the sets A = N* (v1) — V(T4), B=N"(v1) —V(T4),V{ = V;NAand V]’ = V;NB
fori=2,3,4.
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If there is a vertex a € A such that a — vy, then viavv3v4vq is a 5-cycle containing vertices of all partite sets, a
contradiction. Hence we assume in the following that v, = A.

If there is a vertex a € A such that a — vy, then viav4v,v301 is a 5-cycle through all partite sets, a contradiction. Thus
we assume in the following that v, = A. This implies that V; # ¢, since otherwise we obtain the contradiction

d" () =d"(ve) = JA|+2=d"(v1) + 1.

If there is a vertex vj, € V, such that v, — wvs, then vyv;v V340 is a 5-cycle containing vertices of 4 partite sets, a
contradiction. Hence we assume that v; — V.

If there is a vertex b € B with the property that v, — b, then the 5-cycle viv,v3v4bvq leads to a contradiction. Hence we
assume that B = vy.

If there is a vertex vj € V, such that v3 — vJ, then the cycle vyv,v3v5 v4v; yields a contradiction. It remains the case
that VJ) — vs.

This yields V) — Vj, since otherwise we arrive at the contradiction that v;v,v5vsv4v; is a 5-cycle through all partite
sets, where v, € V, and v) € V' such that vj, — vJ.

If there are vertices v, € V; and v§ € V{ such that v, — v%, then we find the 5-cycle v;v,v3v4v5v4, a contradiction.
Thus assume in the following that Vi — V.

Summarizing some of our results we deduce that

(Vy UV U{vg, v, v3)) = Vg # 0.
This implies that V' # @, since otherwise, for each v, € V, we arrive at the contradiction
d"(v)=d (v = Bl+3=d (v) + 1.

Similarly, we conclude that for each vertex vj € V, there is a vertex v} € V; — {v;} such that v; — v}. Now we choose two
fix vertices v, € V; and v] € V; — {vq} such that vy — ;.

If there is a vertex v € VI such that v{ — v}, then viv,v v v5 v, is a 5-cycle, a contradiction. Hence assume that
vy — ).

If there is a vertex vj € Vi with the property that vi — v/, then v;vjv{vjv3v; is a cycle through all partite sets, a
contradiction. Hence assume that V) — v].

If vi — vy, then vyvjv]vav3v7 is a 5-cycle containing vertices of all partite sets, a contradiction. Thus assume in the
following that v, — vj.

Furthermore we conclude that v3 — v}, since otherwise v;v,v]v3v4v1 is a cycle through all partite sets, a contradiction.

If there is a vertex v, € V) such that v, — v}, then viv,v3v;v}v; is a 5-cycle, a contradiction. It remains the case that

. ] 4 4 1 4 1V4

v, — v

Altogether, we obtain the contradiction

d”(v) = d”(v}) = Bl + [{vz, v3, v3}| = d” (v1) + 1.

Case 2. Suppose that D does not contain any strong subtournament of order 4. By the hypothesis that D is regular, Theorem 2.8
yields that D is strongly connected. Hence, according to Theorem 2.6, there exists a 3-cycle C = vqivv3v7 in D. Assume,
without loss of generality, that v; € V; fori € {1, 2, 3}.

If there exists a vertex v4 € V4 having an in- and an out-neighbor in V(C), then D[{vq, v, v3, v4}] is a strong
subtournament of order 4, a contradiction to our assumption. Hence we can decompose V, into two subsets V, and V' such
that V; — V(C) — V. Assume, without loss of generality, that V,; # . In addition, let v, € V; and define U = N (v}).

Subcase 2.1. Assume that V; # @ and let v] € V. Suppose that v, — U = N (v}). Using the fact that V; — V(C), we
arrive at the contradiction

d*(vy) = INTp| + V(O] =d"(v)) + 3.
Thus there is a vertex u € U N (V4 U V, U V3) such that u — vj. If u € V;, then D[(V(C) — {v;}) U {v}, vy, u}] contains a
5-cycle through all partite sets, a contradiction.

Subcase 2.2. Assume that V{/ = @ and thus V; = Vj. If there are verticesu € U and v; € V(C) such that u — v, then
UVjVj11Vj4204U is a 5-cycle through all partite sets, a contradiction. Thus it remains the case that V(C) = U. But now we
arrive at the contradiction

d* (v =d"(v1) = [{v2}| +Val + U =V (v1)|

>
>14+r+d@) —r—1)=d"(v)) +2,

and the proof of this lemma is complete. O
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3. Main result

Theorem 3.1. If D is a regular c-partite tournament with ¢ > 4 and |V(D)| > 10, then D contains two complementary cycles
of length 5 and |V(D)| — 5.

Proof. Let Vi, V5, ..., V. be the partite sets of D and let r = (D). Then it follows from Lemma 2.4 that |V| = [V3| = --- =
|V¢]| = «(D) = r and |V(D)| = cr. According to Theorem 2.8, we have

[V(D)| — a(D)" . [(c - 1)r"
3 a 3 ’

If r = 1, that means that D is a tournament, then |V(D)| = ¢ > 10 and (2) yield « (D) > 3. The desired result follows from
Theorem 2.7.

Therefore, it remains the case that r > 2. In view of Lemma 2.16 and Theorem 2.6, there exists a 5-cycle Cs through
exactly 4 partite sets when ¢ = 4. According to Theorem 2.14, there is a 5-cycle Cs through exactly 5 partite sets when
¢ > 5.If we define the c-partite tournament H by H = D — V(Gs), then |V(H)| = cr — 5. Let V], V3, ..., V/ be the partite
sets of H such that |[V{| < [V;| <--- < |V/].

A. Assume that ¢ = 4. As D is regular and |V(D)| > 10, it follows thatr > 4iseven |[V;] <r — 1,and |V;] <r — 1and
ig(H) < 4.1fr > 8, then we deduce that

! !
i (H) < 4 < g _ 4r —5—(r 1; 2r— 1) +2 < [V(H)| |V32| 2|V, | + 2'

Applying Theorem 2.11, we conclude that H has a Hamiltonian cycle C, and so we have found two complementary cycles C
and Cs, where Cs has length five. If c = 4, there remain the cases r = 4, 6.

B. Assume that ¢ = 5. Since Cs contains vertices from 5 partite sets, we deduce that i;(H) < 4 and |V/| = r — 1 for
1 <i<5.Ifr > 4, then we deduce that

2r 5r—=5—-(r—-1)—=2(r—1)+2 VH — V] — 2IV!] 42
(M) <4< = ( ; r—H+2 _|V(H) |42| Vsl +2

Applying Theorem 2.11, we conclude that H has a Hamiltonian cycle C, and we obtain the desired complementary cycles.
Thus there remain the casesc =5andr = 2, 3.

C. Assume that ¢ = 6. It follows that r is even. Since Cs contains vertices from 5 partite sets, we observe that [V| < r—1
and iy (H) < 5.1fr > 4, then we deduce that

3r—2 6r—5—(r—1)—2r+2 |V(H)|— Vi —2|V{|+2
a 2 - 2 ’

Applying Theorem 2.11, we obtain the desired complementary cycles. Thus there remains the case thatc = 6 and r = 2.
D. Assume that ¢ > 7. With exception of the four casesc = 7andr = 2,3,c = 8,andr = 2,aswellasc = 9andr = 2,
we have

(2)

k(D) > {

ig(H) <5 <

c—=3)yr—3 ca-5-r=2r+2 |VH)|—-IV_ 4| =2V +2
- 2 - 2 '
Again, Theorem 2.11 leads to the desired complementary cycles.
Case 1. Assume that c = 9 and r = 2. Then D is 8-regular and «(H) = 2. In addition, Theorem 2.8 yields « (D) > 6 and thus
k(H) > 1.

Subcase 1.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C;, CJ, ..., C/ be a
minimal cycle-factor of H with the properties described in Theorem 2.13. Because of |[V*| < 2, it follows from Theorem 2.13
that there is at most one arc from H — V(C}) to C;. As k (H) > 1, we see that there is exactly one arc from H — V(C;) to C;.
Since [V (H)| = 13, we can assume, without loss of generality, that |V (C;)| < 6, because we consider the inverse digraph
D! when |[V(Cy)| = 7.This implies that there are at least two vertices x;, x, € V(C}) such thatd ) <2fori=1,2

ig(H) =5 =

oiv(cp i
and thus dj, (x;) <7 ordj (xy) <7, acontradiction to the 8-regularity of D.
Subcase 1.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V(H) can be partitioned
into subsets Y, Z, Ry, R, such thatR; = Y, (Ry UY) = R,, |Y| > |Z|, and Y is an independent set. Since x(H) > 1 and
a(H) = 2, we see that 1 = |Z| < |Y| = 2. Let, without loss of generality, Y = V{ and |R;| < |R;|. Since D is 8-regular, we
see that d}} (x), d;; (x) > 3 for every x € V(H) and d}} (x), d;; (x) > 4forx € (V] UV, UV, UV, UV)).

IfR; = ¢, then V§ = Y — R, leads to the contradiction d;;(y) < 1fory € Y.If 1 < |Ry| < 4, then there exists a vertex
X € Ry such that d; (x) < 2, a contradiction. In the remaining case |R;| = 5, we arrive at the contradiction that there exists a
vertex x € Ry such thatd,; (x) < 2 or the induced subdigraph H[R,] is a 2-regular tournament. In the second case, we obtain
the contradiction dj; (x) < 3 for some vertexx € Ry N (V] UV, UV, UV, U V).
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Case 2. Assume that c = 8 and r = 2. Then D is 7-regular and «(H) = 2.Let V| = {a}, V) = {b}, Vi = {c}, V, = {d}, Vi =
{z}, V§ = {u1, u}, V5 = {v1, v}, and Vg = {wy, w,} be the partite sets of H and W = {a, b, ¢, d, z}

Subcase 2.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C;, C;, ..., ([ be a
minimal cycle-factor with the properties described in Theorem 2.13. Because of |V*| < 2, it follows from Theorem 2.13 that
there is at most one arc from H — V (C;) to C;. Since |V (H)| = 11, we can assume, without loss of generality, that |V (C})| < 5.

If [V(C})| < 4, then there are at least two vertices x1, x, € V(C}) such that d:;[wc/)](xi) = 1fori = 1, 2. This implies
1

dp (x1) < 6ordj,(x2) < 6,a contradiction to the 7-regularity of D.

Assume now that |[V(C})| = 5. If there exist at least two vertices x4, x, € V(C}) such that d;lv(c,” x) = 1fori = 1,2,
1

then we arrive at a contradiction as in the case |V (C})| < 4. Otherwise, the digraph D[V (C})] is 4- or 5-partite. If D[V (C})] is
4-partite, then there exists a vertex x; € V(C;) such that d (x1) = 1, and there are vertices x € V(Cs) andy € V(C})

DIV (C))]
which are not adjacent. This leads to the contradiction dj, (x;) < 6 or d (y) < 6.1f D[V(C;)] is 5-partite, then there exist
X1, X2 € V(Gs)andyy, y, € V(C}) suchthatx; and y; are notadjacent fori = 1, 2,and we arrive analogously at a contradiction
to the 7-regularity of D.

Subcase 2.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V(H) can be partitioned
into subsets Y, Z, Ry, R, suchthatR; = Y, (R{UY) = R, |Y| > |Z], and Y is an independent set. Since D is 7-regular, we
see that d]; (%), dy(x) > 2 foreveryx € V(H) and d]; (x), dy (x) > 3 for every x € W. This easily implies that Z = ¥ is not
possible. Thus let now 1 = |Z| < |Y| = 2 and let, without loss of generality, Y = Vg = {w;, w,} and [Ry| < |Ry|.

IfRy = §, then Y = R, leads to the contradictiond (y) < 1fory € Y.If 1 < |R;| < 2, then there exists a vertex x € R;
such that d;; (x) < 1, a contradiction. If [R;| = 3, we arrive at the contradiction that there exists a vertex x € R; such that
d,; (x) < 1or the induced subdigraph H[R;] is a 3-cycle. In the second case, we obtain the contradiction d;; (x) < 3 for some
vertexx € Ry NW.

In the remaining case that |R;| = 4, we deduce that |R,| = 4. If there is a vertex y € Ry with d;[Rl](y) = 0 or a vertex
y € Ry with d,J;[RZ](y) = 0, then we obtain a contradiction to d,ﬁ (%), d (x) > 2 for every x € V(H). Thus we assume in the
following that d;mﬂ(x) > 1 for every x € Ry and d;[RZI(X) > 1 for every x € Ry. Now we distinguish 3 cases.

Assume that H[R;] is a bipartite tournament. It follows that R; = Vé U V7. Hence there exists at least one vertexx € R,NW
such that d; (x) < 2, a contradiction.

Assume that H[R,] is a 3-partite tournament but not bipartite. Let, without loss of generality, V; C R;. In the case that
Ry NV{ = @, we arrive at the contradiction that there exists a vertex x € Ry N W such that dj; (x) < 2. In the remaining case
that Ry N V{ # @, we arrive at the contradiction that there exists at least one vertex x € R, N W such that d,ﬁ x) <2.

Assume that H[R{] is a tournament. If H[R,] is not a tournament, then we arrive at a contradiction similar to the two
cases above. Furthermore, we obtain a contradiction or we deduce that, without loss of generality, Ry = {uy, vy, a, b},
Ry = {uy, vy,c,d}and Z = {z} suchthatZ —- Ry - Y — R, — Z and Ry = R, so that d;j(x) = 7 for every x € R; and
dy (y) = 7 foreveryy € Ry.If Cs = X1X2X3X4X5X1, then the 7-regularity of D implies that R, = (5 = R;. Hence there exists
the new 5-cycle (' = vywqlxX1X2v1. If we assume, without loss of generality, that a — b and ¢ — d, then there exists the
complementary cycle x3x4Xsuqwycdzabv,xs.

Case 3. Assume that c = 7 and r = 3. Then D is 9-regular and «(H) = 3. In addition, Theorem 2.9 yields « (D) > 7 and thus
k (H) > 2.1f H has a cycle factor, then Theorem 2.10 shows that H is Hamiltonian, and we are done.

Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V(H) can be partitioned into
subsets Y, Z, Ry, Ry such thatR; = Y, (R{UY) = Ry, |Y| > |Z|,and Y is an independent set. Since k (H) > 2and «(H) = 3,
we see that 2 = |Z| < |Y]| = 3. Let, without loss of generality, Y = V; and |Ry| < |R;|. Since D is 9-regular, we see that
dif (x), dj; (x) > 4 for every x € V(H) and d; (x), dj; (x) > 5 forx € (V] UV, UV; UV, UV).

IfRy = @, then Y — R, leads to the contradictiond, (y) < 2fory € Y.If 1 < |R;| < 4, then there exists a vertexx € R,
such that d,; (x) < 3, a contradiction. In the remaining case |R;| = 5, we arrive at the contradiction that there exists a vertex
X € Ry such that d,; (x) < 3 or the induced subdigraph H[R;] is a 2-regular tournament. In the second case, we obtain the
contradiction dj; (x) < 4 for some vertexx € Ry N (V{ UV, UV, UV, UVY).

Case 4. Assume thatc = 7 and r = 2. Then D is 6-regular and a«(H) = 2.Let V| = {a}, V) = {b}, Vi = {c}, V, = {d}, Vi =
{z}, Vi = {us, up}, and V; = {vy, vy} be the partite sets of Hand W = {a, b, c, d, z}. Since D is 6-regular, we observe that
dﬁ (x), d (x) > 1foreveryx € V(H) and d;r (%), di; (x) > 2 for every x € W. In addition, let C5 = X1XX3X4X5X1.

Subcase 4.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C;, C;, ..., ([ be a
minimal cycle-factor with the properties described in Theorem 2.13. Because of |V*| < 2, it follows from Theorem 2.13 that
there is at most one arc from H — V(C}) to C;.

If C; is a 3-cycle, then we arrive at a contradiction with exception of the case that C; has, without loss of generality, the
form C] = au;v;q,and there is an arc from H — V(C;) to a. In addition, we deduce that T¢ = H —V(C;) is a strong tournament
and G5 — v4. According to Theorem 2.5, there exists a 5-cycle C containing u, in Ts. Now lety € (V(Tg) — V(CZ)). Since D is
6-regular, there exists an arc from y to Cs, say y — x1. This implies that x1x,X3x4X5v1auyx; is a complementary cycle of CZ.
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Subcase 4.1.1. Assume that C; is a 4-cycle and that there is no arc from the 5-cycle C; to ;. It follows that V(C;) N Vg # @
and V(C}) NV, # . We distinguish the three cases that H[V (C;)] is 4-partite, 3-partite or bipartite.

Subcase 4.1.1.1. Assume that H[V (C})] is 4-partite. This implies, without loss of generality, that C; = avqu;ba such that
vy — band u; — a.lt follows that Gs = C;}. Next let, without loss of generality, C;, = v2y,y3y4Ysvs. Since Ts = D[V (Cs)]
is a strong tournament, we conclude from Theorem 2.5 that either there are at least three distinct vertices wy, w,, w3 in Ts
such that Ts — wj is strong fori = 1, 2, 3 or we suppose thatx; — x;for1 <i<j<5andj—i> 2.

If Ts — wj is strong for i = 1, 2, 3, then it follows that v, — w; orv; — w; or v, — ws, say v, —> w; = Xj.
Since ys dominates at least one vertex of Ts — x4, say ys — X, we arrive at the complementary cycles x;u;bav,x; and
X2X3X4X5V1Y2Y3Y4Y5X>.

Ifx; > x;for1 <i<j<5andj—i> 2 thenC; — xs and ys dominates at least one vertex of Ts — xs, say y5 — X;.
Now we arrive at the complementary cycles Xsu1bav,xs and X1X2X3X401Y2Y3Y4Y5X1.

Subcase 4.1.1.2. Assume that H[V (C})] is 3-partite. This implies, without loss of generality, that C; = aujv;iuya such that
v — a. It follows that Cs = Cj. Next let, without loss of generality, C; = v,y,y3Y4y5v;. As above, the strong connectivity
of Ts = D[V (Cs)] implies that either there are at least three distinct vertices wq, w,, ws in Ts such that Ts — wj is strong for
i=1,2,3o0rwesuppose thatx; — x;for1 <i<j<5andj—i> 2.

If Ts — wj is strong for i = 1,2, 3, then it follows that v, — w; orv; — wy or v, — ws, say v, —> w; = Xj.
Since ys dominates at least one vertex of Ts — xq, say y5 — X, we arrive at the complementary cycles x; v au,v,x; and
X2X3X4X5U2Y2Y3YaY5X2.

Ifx; > x;for1 <i<j<5andj—i> 2 thenC; — x5 and ys dominates at least one vertex of Ts — x5, say y5 — X;.
Now we have the complementary cycles xsviauvyXs and x1X2X3X4UsY2Y3Y4Y5X1.

Subcase 4.1.1.3. Assume that H[V(Cy)] is bipartite. This implies, without loss of generality, that C; = u;vqu;v,u; and that
Cs — Cj. Next let C; = y1¥2y3Yaysys. It follows that D[V (C;)] as well as D[V (Cs)] are 2-regular tournaments and that
D[V (Cs)] — x; is strong for each 1 < i < 5. If we assume, without loss of generality, that y; — x1, then we can assume,
without loss of generality, that ys — x,. Now we have the complementary cycles x1u,v,u1y1X1 and XoX3X4X5V1Y2Y3Y4Y5X2.

Subcase 4.1.2. Assume that C; = p1p,pspap1 is a 4-cycle such that there is an arc, say y1p; from the 5-cycle C;, = y1y2y3Vaysy1
to C;. If, without loss of generality, V* = V; = {v, v,}, then Theorem 2.13 shows that, without loss of generality, ps = vy
and y, = v,.

Subcase 4.1.2.1. Assume that V (C;) NV = @. The 6-regularity of D leads to py — p3 and vy — p,. Thus y1p1p3v1P2v2Y3Y4Y591
is a complementary cycle of Cs.

Subcase 4.1.2.2. Assume that V(C;) NV = {uy} and u; = p;. The 6-regularity of D leads to uy — p; and v; — p,. Thus
Y1U1P3V1P2V2Y3Y4YsYy1 is @ complementary cycle of Cs.

Subcase 4.1.2.3. Assume that V(C;) N V{ = {u;} and u; = p,. The 6-regularity of D leads to p; — ps3. If v; — uy, then
Y1P1P3V1U1V2Y3Y4YsY 1 is a complementary cycle of Cs.

Assume next that u; — v;. The 6-regularity of D leads to CGs = {p1, ps} and Cs — u;. We assume, without loss of
generality, that v; — x; and thus {x;, X3, X4, Xs} — v;. If x5 — p1, then we have the two complementary cycles C} and

V1X1X2X3X4X5P1U1P3V1. Hence there remains the case that V(xs) = V(p;). Because of Ziszl dy (i) = 27, there are at least
two vertices y; and y; in C;, such that {y;, y;} = Cs. We distinguish the following subcases where the subscripts are taken
modulo 5.

Subcase 4.1.2.3.1. Assume that y; = yi11.

Ifyip1 # vy and V(y;) # V(x4), then xsx1X,v1Yi41X5 and X3xap1U1P3yi—3yi—2Yi—1YiX4 are complementary cycles.

Ifyir1 = vy and V(y;) # V(x4), then x,x3v1p1Yir1X2 and x4Xsx1U1P3Yi—3Yi—2Yi—1YiX4 are complementary cycles.

Ifyir1 # vy and V(y;) = V(xy), then x4Xsuqv1Yir1X4 and X1X2X3p1P3Yi—3Yi—2Yi—1YiX1 are complementary cycles.

Ifyir1 = vy and V(y;) = V(x4), then X4Xsv1p1Yir1X4 and X1XoX3U1P3Yi—3Yi—2Yi—1YiX1 are complementary cycles.
Subcase 4.1.2.3.2. Assume that y; = yii».

Ifyir1 — ¥ir3, then we are in the same situation as in Subcase 4.1.2.3.1 when we use y; ; instead of y; 1 and y;1 1Y+ 3Yi+aVi
instead of y;_syi_2¥i—1Yi.

Ifyiya — Yir1, then we are in the same situation as in Subcase 4.1.2.3.1 when we use y; instead of y; 1 and y; 3YitaVir1Vit2
instead of y;_sy;i_2yi—1i.

In the remaining case thaty; ;3 — y; 1 and y;.1 — Yi+4, We use in Subcase 4.1.2.3.1y;,, instead of y; 1 and Y1 3Yir1Yi+aVi
instead of y;_syi_2Yi—1Yi.
Subcase 4.1.2.4. Assume that V(C;) N V{ = {u;} and uy = ps. The 6-regularity of D leads to vi — p,.1f p1 — uy, then
Y1P1U1V1P2V2Y3Y4Ys5Y1 is a complementary cycle of Cs. Otherwise we have u; — pq, and the 6-regularity of D leads to
Cs — vy. If, without loss of generality, p; — x;, then there exist the complementary cycles C;, and p1X1X,X3X4X501P2U1P1.
Subcase 4.1.2.5. Assume that V(C;) N V¢ = {uy, u,}. This implies, without loss of generality, that C; = u;p,u,viu;. The 6-
regularity of D leads to vy — p, and thus Cs = p, and G5 — {vq, u>}. We assume, without loss of generality, that u; — x;
and thus {x,, X3, X4, X5} — u;.Ifx5 — p, then we have the two complementary cycles C; and u1X1X2X3X4X5 P2, v1U7. Hence
there remains the case that V(xs) = V(p,). Because of Z?:] dy (i) = 28, there are at least two vertices y; and y;1; in C,
such that {y;, yit1} = Gs.
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Ifyir1 # vy and V(y;) # V(x4), then Xsx1X2v1Yi11X5 and X3x4U1PaUsyi—3Yi—2Yi—1YiX4 are complementary cycles.

Ifyir1 = vy and V(y;) # V(X4), then xoX3v1u1Yir1X2 and X4Xsx1P2UsYi—3Yi—2Yi—1YiX4 are complementary cycles.

Ifyir1 # vy and V(y;) = V(x4), then X4Xsusv1Yi11X4 and x1XaX3U1P2Yi—3Yi—2Yi—1YiX1 are complementary cycles.

Ifyir1 = vy and V(y;) = V(x4), then X4Xsv1U1Yi11X4 and X1XoX3poUsYi—3Yi—2Yi—1YiXq are complementary cycles.
Subcase 4.1.3. Assume that Cj is a 5- or 6-cycle. Using the converse D~ of D, we obtain the desired results by the cases
discussed above.

Subcase 4.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V(H) can be partitioned
into subsets Y, Z, Ry, R, suchthatR; = Y, (R; UY) = R,,|Y| > |Z|, and Y is an independent set. Assume, without loss of
generality, that |Ry| < |R;|.

Subcase 4.2.1. Assume that Z = . If Ry = (J, then we arrive at the contradiction d,j(y) > 7foreveryy e Y.If 1 < |Ry| <3,
then we obtain the contradiction dj, (x) = 0 for a vertex x € R; or d;; (x) < 1for avertex x € Ry N W. In the remaining case
that |R;| = |R;| = 4and |Y| = 1, we receive at a contradiction or, without loss of generality, the subdigraph H[R;] consists
of the 4-cycle ujviabuy such that u; — a and v; — b and the subdigraph H[R,] consists of the 4-cycle u,v,cdu; such that
¢ — up and d — v, or H[R;] consists of the 4-cycle vyu,cdv, such thatc — v, andd — u; and Y = {z}. In addition, we
deduce that R, = Cs = R;. In the first case, we obtain the complementary cycles x;vabu,x; and x,x3X4Xsu1zcdv,x, and in
the second case x;v1abvyxq and xpX3X4XsUqzcduy Xy,

Subcase 4.2.2. Assume that Z # @. It follows that 1 = |Z| < |Y| = 2. Assume, without loss of generality, that
Y =V, = {vq, vp}. It follows that Ry — Y — R;.

Subcase 4.2.2.1. Assume that Ry = (. This implies thatZ — Y and Cs — Y.Let R, = {y1,¥2,¥3, V4, Vs, V5}-

Subcase 4.2.2.1.1. Assume that Z C W, say Z = {z}. Since D is 6-regular, we see that there are at least two vertices in R;, say
yq and y,, such that {y, y»} — z.

Subcase 4.2.2.1.1.1. Assume that {y1, y»} = {u1, uy}. Let, without loss of generality, y3y4ysys be a Hamiltonian path of the
tournament induced by this vertex set. If y; — u; fori = 4,5, 6 and j = 1, 2, then there exists the 5-cycle y;_1yjujzviyi—1.
If p1paps is a Hamiltonian path of the remaining vertices in R, such that, without loss of generality, p3 — X1, then
X1X2X3X4X5U2P1P2P3X1 is @ complementary cycle. Therefore we can assume in the following that {uq, uz} — {y4,¥s,¥s}.
Ify; —> zfori = 5, 6, then there exists the 5-cycle uyy;_1y;zviu1, and analogously to above also a complementary cycle.
So we assume now that z — {ys, y}. This implies that {ys, ys} — y3. As above we receive to two desired complementary
cycles or {uy, uy} — ys. It follows that y3 — z and as before we obtain the desired complementary cycles.

Subcase 4.2.2.1.1.2. Assume that {y1, y2} # {u1, up}. Assume, without loss of generality, that y; — y-.

If there is a vertex in Ry, say y3, such that y; — y1, then there is the 5-cycle y3y1y>zv1y1 and a complementary 9-cycle,
with exception of the cases that {y4, ys,ys} = {u1, Uz, ys} such that {u;, u,} — ye oryg — {uy, u}. Assume first that
{u1, u3} — ye.1fyg — y;forani = 1, 2, then there exists the 5-cycle uqygy;zviu; and a complementary 9-cycle. Otherwise,
we have {yq, y»} — ys and thus ys — z.If y; — uy, then there is the 5-cycle y u1yszv1y; and also a complementary cycle.
In the other case u; — y1, there is the 5-cycle uqy1y,zv u; and a complementary cycle. The second case that yg — {uq, uy}
is similar. It remains the case thaty; = {ys, Y4, s, ¥s}.

Subcase 4.2.2.1.1.2.1. Assume that y; = u; and let, without loss of generality, y3 = u,. Ify; — y, forani = 4,5,6,
then there is the 5-cycle uy;y,zviu; and a complementary cycle. It remains the case that y, — {y4, ys, ¥s}. Because of
Subcase 4.2.2.1.1.1, we can assume that z — u,. Ify; — z forani = 4,5, 6, then there is the 5-cycle u,y,y;zvu; and
a complementary cycle. Otherwise we have z — {y4, ys, ¥6}, and the 6-regularity shows, without loss of generality, that
Y4 — Y5 — Y — Y. Thus we obtain {y4, ys, ys} — uy — Gs, If, without loss of generality, y¢ — X4, then we arrive at the
complementary cycles X1x,X3v,UzX1 and X4Xsv1U1Y22Y4Y5Y6X4.

Subcase 4.2.2.1.1.2.2. Assume that y, = u; and let, without loss of generality, y3 = uy.If y; — u; forani = 4,5,6,
then there is the 5-cycle y,y;uizv1y; and a complementary cycle. It remains the case that u; — {y4, ys, ys}. Because of
Subcase 4.2.2.1.1.1, we can assume that z — u,.If y; — z forani = 4,5, 6, then there is the 5-cycle y u;y;zvy: and
a complementary cycle. Otherwise we have z — {y4, ys, ¥s}, and the 6-regularity shows, without loss of generality, that
Y4 — Y5 — Y — V4. Thus we obtain {y4, ¥s, y¢} — U3, and hence the contradiction d™ (uy) > 7.

Subcase 4.2.2.1.1.2.3. Assume that {y;, y,} C W and let, without loss of generality, y3 = uy and y4 = u,. In addition, we
assume, without loss of generality, thatz — u; andys — yg.Ifu; — y, forani = 1, 2, then there is the 5-cycle yu;y,zv1y1
and a complementary cycle. Otherwise we have y, — {uy, u>}. If u; — z, then there is the 5-cycle yiy,u,zv,y; and a
complementary cycle. It remains the case thatz — u5.

Assume next that ys — y,.If u; — yg forani = 1, 2, then there is the 5-cycle u;ysy>zviu; and a complementary cycle.
Otherwise we have ys — {u1, u»}, and this implies that u; — Cs and u, — ys. If, without loss of generality, ys — x4, then
we arrive at the complementary cycles X1x,X3v,U1X1 and X4X5v1Y1Y22U2Y5Y6Xa4-

Assume now that y, — ysand y5s — y,. Ifu; — ys forani = 1,2, then there is the 5-cycle u;ysy,zviu; and a
complementary cycle. Otherwise we have ys — {uq, u,}, and this implies that {uy, u,} — ys. This yields the contradiction
d”(ye) = 7.

Finally, assume that y, — ys and y, — ys. The 6-regularity of D shows that ys — uq or y¢ — u, say y¢ — uy. This
implies u; — ys.If ys — z, then there is the 5-cycle y u1yszv1y; and a complementary cycle. Otherwise we have z — ys.
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It follows that ys — u, and thus u, — yg and so ys — z. This finally leads to the complementary cycles u1ysyszviu; and
X1X2X3X4X5V2Y1Y2U2X1.

Subcase 4.2.2.1.2. Assume that Z C V/, say Z = {uy}. Since D is 6-regular, there is at least one vertex in R, say y1, such that
Y1 — uq.

Subcase 4.2.2.1.2.1. Assume that there exists a vertex in Ry, say y,, such thaty, — yq.Ify; — y, forani = 3,4,5,6,
then there is the 5-cycle y;y,y1ujv1y; and a complementary cycle. Hence it remains the case that y, — {y3, V4, Vs, ¥s}. If
y;i — yiforani = 3, 4,5, 6, then there is the 5-cycle y,y;y1u1v1y; and a complementary cycle. Hence it remains the case
thaty; — {y3, Y4, ¥s, Y6}

Assume that y, = u,. Ify; — uy forani = 3,4,5,6, then the same arguments as above lead to two desired
complementary cycles. It remains the case that u; — {ys, Y4, ¥s, ¥s}. This leads to the contradiction d~(y;) > 7 for at
leasttwoi € {3, 4, 5, 6}.

Assume that y, # u, and, without loss of generality, that ys = u,.If y; — u; forani = 3, 4, 5, then the same arguments
as above lead to two desired complementary cycles. It remains the case that u; — {ys, y4, ys}. It follows, without loss of
generality, that y3 — y4 — ys — y3 and thus {ys, ¥4, ¥s} — u, and we arrive at the contradiction d~ (u,) > 7.

Subcase 4.2.2.1.2.2. Assume that y; — {y2,¥3, Vs, Vs, Vs} and let, without loss of generality, ys = u,. With respect to
Subcase 4.2.2.1.2.1, we can assume that u; — {y», y3, ¥4, ys}. This implies that Cs — u;. For the tournament induced
by {y2, y3, ¥4, ¥s}, we have, without loss of generality, the following two possibilities.

1. Possibility. Assume that y, — {y3,¥4,ys} and y3 — y4 — ys — ys. This implies {ys, y4,¥5} — uy and thus
U, — ¥y, Uy — GCsand {ys, ys,ys} = Cs. If, without loss of generality, ys — x4, then we arrive at the complementary
cycles x1xpX301U2X1 and X4Xsv2Y1U1Y2Y3Y4Y5X4.

2. Possibility. Assume that y, — y3 — Y4 — ¥5 — V2, Y2 — Ya, and y3 — ys. This implies {y4, ys} — u and
{y4,¥5} = Gs. If, without loss of generality, u, — x;, then we arrive at the complementary cycles x1x,x3viupx; and
X4X502Y1U1Y2Y3YaY5X4 When V (ys) # V(x4) OF X4X502Y1U1Y5Y2Y3Y4X4 When V (ys) = V(x4).

Subcase 4.2.2.2. Assume that |R;| = 1. We deduce, without loss of generality, that R; = {u;} and Z = {z}. This implies that
z — uyand G — uq. Let Ry = {y1, ¥2, ¥3, ¥4, ¥s}-

Subcase 4.2.2.2.1. Assume that there is an arc from Z to Y, say z — wvy. This implies that there exists an arc from R, to Z, say
Y1 —> Z.

Assume that there is an arc y; — Y1, say ¥y — Yi. If there is a further arc, say y3 — y,, then there is the 5-cycle
V3y2y1zv1ys. If, without loss of generality, y, — ys — X1, then there exists the complementary cycle x1X,X3X4X5U1V2Y4Y5X1.
Otherwise we have y, — {y3,V4,¥s5}. Ify; — y; forani = 3, 4, 5, then we find the desired complementary cycles as in
the last case. Thus assume that y; — {ys, ys4, ys}. Ify; — z forani = 3, 4, 5, then we obtain our complementary cycles as
above. However, if z — {y3, ¥4, ¥5}, then we arrive at a contradiction to the 6-regularity of D.

Next assume that y; — {y2,¥3, Vs, ¥s5}. If y; — zforani = 2, 3, 4, 5, then we are in a situation as discussed before.
However, the case z — {y-, y3, Y4, ¥s5}, leads to a contradiction to the 6-regularity of D.

Subcase 4.2.2.2.2. Assume that Y — z. It follows that Cs — Y. If there is an arc from R, to Z, say y; — z and an
arc, say y» — i, then there is the 5-cycle y,yizuqv1y,. Since Cs — v, it is easy to find a complementary cycle. If
y1 — zandy; — {y2,¥3, Vs, ys}, then we arrive at a contradiction to the 6-regularity as above. Therefore it remains
the case that z — R,. Let, without loss of generality, ys = u,. If the tournament induced by the vertices y1, y2, ¥3, Y4
is transitive, then we obtain a contradiction to the 6-regularity of D. Hence there exists a 3-cycle, say y1y,ysy:. If we
assume, without loss of generality, that y4 — ys — X1, then there is the 5-cycle x1X,v1y4y5X1. In addition, we observe
that y; — x3 ory, — x3 or y3 — x3. If not, then we arrive at the contradiction x3 — {x4, v1, V2, U1, Y1, Y2, Y3} Or
X3 — {X4, V1, U2, Uy, Z, Y2, y3} When V(x3) = V(y;) for example. If, without loss of generality, y; — xs, then there is
the complementary cycle X3x4X5v22zU1Y2Y3Y1X3.

Subcase 4.2.2.3. Assume that |R;| = 2. In this case we distinguish two cases.

Subcase 4.2.2.3.1. Assume that Ry = {uq, uy}. This implies, without loss of generality, that Z = {a} and Z — R; and thus
Cs — R;.Since D is 6-regular, there are at least two vertices, say d and z, in R, such that {d, z} — aand {d, z} = GCs.If we
assume, without loss of generality, that d — z, then we deduce that {b, c} — d and ¢ — z. It follows that z — b. Next we
assume, without loss of generality, that V(z) # V(x;) and x, — vy.

If b — aand V(d) # V(x3), then there are the complementary cycles x;x,v;czx; and X3x4Xsu7vybau,dxs.

Ifb — aand V(d) = V(x3), then there are the complementary cycles xx,vcdx; and X3x4xsu;v,bau,zxs.

If a — b, then we observe that b = GCs. If V(b) # V(x3), then there are the complementary cycles x1x,v;czx; and
X3X4X5UqVpdauybxs.

It remains the case that V(b) = V(x3). If x3 — vy and V(d) # V(x;), then there are the complementary cycles
X1X2X3v1dX7 and x4Xsuqvoczauybxy. If x3 — vy and V(d) = V(x7), then there are the complementary cycles x,x3v;cdx;
and x4XsX1U1vzau, bx,. Otherwise vy — X3, and we arrive at the complementary cycles viX3x4Xsuq v and X1x,Up Vocdzabx ;.
Subcase 4.2.2.3.2. Assume, without loss of generality, that Ry = {b, u;} and Z = {a} such that u; — band a — {b, u;}. This
implies that Cs = band Cs — uy. Let Ry = {y1, y2, ¥3, Y4}.

Assume that there exists an arc from R, to Z, say y; — a.If thereis anarcy; — yq,sayy, — y1, then we have the 5-cycle
y2y1abvy,. If, without loss of generality, y; — y4 — X1, then there exists the complementary cycle x1X,X3X4X5U1V2)3Y4X1.
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Otherwise we have y; — {y2,¥3, ya}.Ify; — aforani = 2, 3, 4, then we obtain our complementary cycles as in the case
before. However, if a — {y2, ¥3, y4}, then we arrive at a contradiction to the 6-regularity of D. In the remaining case that
a — {y1,Y2,¥3, Y4}, there is a vertex y; € R, withd™ (y;) > 7, a contradiction.

Subcase 4.2.2.4. Assume that |R;| = |Ry| = 3. Under this condition we discuss three cases. In the remaining cases we obtain
the desired result by using the converse D! of D.

Subcase 4.2.2.4.1. Assume that Ry = {b, uy, u,}. This implies, without loss of generality, that Z = {a}, u; - b,c - d —
z — ¢,Ry — a,and R, = Cs. Now we distinguish two cases.

Assume first that u, — b. It follows that Cs — {uq, u>} and a — {u4, u,}. If we assume, without loss of generality, that
X3 — vy and V(x1) # V(c), then there are the complementary cycles x1x,X3v,¢x1 and x4xsu,bvdau,zxy when V(z) # V(x4)
Or X4XsUpbvzau dx, when V(z) = V(xy).

Assume second that b — u,. It follows that Cs — u; and a — {uy, b}. If we assume, without loss of generality, that
X3 — vy and V(x1) # V(c), then there are the complementary cycles x1X;X3v,¢x1 and x4xsu,v{dabu,zx, when V(z) # V(x4)
OT X4X5UqV zabuydx, when V(z) = V(xy).

Subcase 4.2.2.4.2. Assume that Ry = {b, ¢, u1} and Z = {u,}. It follows, without loss of generality, thata — d — z — a,
R, — up, and R, = Gs. If, without loss of generality, b — c, then we conclude that u, — {b,c},c — u; — b, and
Cs — u;. If we assume, without loss of generality, that x3 — v, and V(x;) # V(a), then there are the complementary
cycles x1x2X3v2ax1 and x4Xsujv1duybezxy when V(z) # V(x4) or X4Xsujvizupbedxy when V(z) = V(xy).

Subcase 4.2.2.4.3. Assume that Ry = {b, c, u;} and, without loss of generality, Z = {a}. If, without loss of generality, b — ¢
and d — z, then we deduce that {a, u1} — bandz — {a, u,}. It follows thatz = C5 = b. Now there remain the four cases
thatc — uyandd — up,¢c - uyanduy, — d,uy — candd — uy,aswellasu; — cand u, — d.

We only discuss the case thatc — u;andu, — d, the other cases are similar. It follows thatd = Cs = candd — a — c.
Since u; has at least 4 out-neighbors in Cs, and u; has at least 4 in-neighbors in Cs, there exists an index i such that x; — u;
and u; — x;;1 for 1 < i < 5. This leads to the complementary cycles dabcvd and X; 1X; 12X 3Xi+4Xill1V2ZUsXi1 1.

Case 5. Assume that c = 6 and r = 2. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the

Appendix).

Case 6. Assume that ¢ = 5 and r = 3. Then D is 6-regular and a(H) = 2.Let V; = {aj, a3, a3}, Vo = {by, by, b3},

V3 = {c1, ¢3, c3}, V4 = {uq, Uy, us}, Vs = {v1, vy, v3} and, without loss of generality, Cs = a1biciujv1a;. Since D is 6-regular,

we observe that d; (%), d (x) > 2 forevery x € V(H).

Subcase 6.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C;, C;, ..., C/ be a

minimal cycle-factor of H with the properties described in Theorem 2.13. Because of |V*| < 2, it follows from Theorem 2.13

that there is at most one arc from H — V(C;) to C;. If [V (C7)| < 4, then we conclude that there exists a vertex x € V(C}) with

dy (x) < 1, a contradiction. If [V(C})| > 6, then we obtain similarly the contradiction that there exists a vertex x € V(C;)

with dj} (x) < 1.It remains the case t = 2 such that C} and C; are 5-cycles.

Subcase 6.1.1. Assume that there does not exist an arc from C;, to C;. This leads to a contradiction, with exception of the case

that C; and Cj induce 2-regular tournaments T; and T, such that CGs = C; = C; = Cs. Now let C = a;b;cixya; be a new

5-cycle of D such that x € (V(C;) N'Vs) and y € (V(C;) N Vy). Since T; and T, are regular tournaments, we observe that

T, — x and T, — y contain Hamiltonian cycles x;x,x3X4X1 and y1y,y3y4y1, respectively. If, without loss of generality, x4 and

y1 belong to different partite sets, then u;viX1X2X3X4Y1Y2Y3Y4ll1 is a complementary cycle of CX, and we are done.

Subcase 6.1.2. Assume that there exists an arc from C; to C{. If H[V (C})] is 3-partite, then it follows that there exists a vertex

x € V(Cy) with d; (x) < 1, a contradiction.

Subcase 6.1.2.1. Assume that H[V (C;)] is exactly 5-partite. This implies that H[V (C})] is also 5-partite. Let C; = X1X2X3X4X5X1

and C} = y1y2y3Y4ysy1 such thaty; — x;. Because of Theorem 2.13, we see that y, and x5 belong to the same partite set V*.
If x5 — Xxp, then the 6-regularity implies that x3 — x5 and so x; — x3. This yields the complementary cycle

Y1X1X3X4X5X2Y2Y3Y4Y5Y1-
If x, — x5, then we deduce that x, — X, and thus x; — x4. If x5 — X3, then we receive at the complementary cycle
V1X1X2X5X3X4Y2Y3Y4Ys5Y1. If X3 — Xs, then it follows that x; — x3. Thus it remains the situation that

X1 — X4 —> X3 > X5 and Xx; — X3 — Xs.
Analogously one can show that there remains the case that
Y2 = y5 = y3 = yiandys —> ya — y1.
The 6-regularity of D implies that
(G, —y2) = G5 = (C] — X5).

Let in the following, without loss of generality, v; € V*.If x; — ay, then we arrive at the complementary cycles C; and
X501b1C1U1U1X1X2X3X4X5.
If a; — xs, then we distinguish different cases.
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Assume that V(x;) # V(y3). We deduce that there exists the 5-cycle a1xsx1y3v14a;.

If V(uy) # V(x2) and V(y1) # V(by), then we arrive at the complementary cycle bycu1X2X3X4Y2Y4Y5Y1b1.

IfV(uy) # V(x2), V(y1) = V(by) and V(y1) # V(x4), then we arrive at the complementary cycle b1c1u1X2X3X4Y1Y2Y4Y5b1.

IfV(uy) # V(xp),V(y1) = V(by) and V(y;) = V(x4), then we arrive at the complementary cycle byc u1X2X3X4Y5Y1Y2Y4b1.

IfV(uy) = V(xp) and V(y7) # V(b1), then we arrive at the complementary cycle byc1u1X3X4X2Y2Y4Ys5y1b1.

IfV(uy) = V(xp),V(y1) = V(by) and V(x;) # V(y1), then we arrive at the complementary cycle bycqu1X3X4X2Y1Y2Y4Y5b1.

IfV(uy) = V(xp),V(y1) = V(by)and V(x,) = V(y1), then we arrive at the complementary cycle bycqu1X3X4X2Ys5Y1Y2Y4b1.

Assume that V(x;) = V(y3). We deduce that there exists the 5-cycle a;xsx1y4v1a;.

If V(uy) # V(x2) and V(y1) # V(by), then we arrive at the complementary cycle bcu1X2X3X4Y2Y5Y3Y1b1.

IfV(u1) # V(x2),V(y1) = V(by),and V(x4) # V(ys), then we arrive at the complementary cycle b1c1u1X2X3X4Ys5Y1Y2Y3b1.

IfV(uy) # V(x2),V(y1) = V(by),and V(x4) = V(ys), then we arrive at the complementary cycle by cqu1X2X3X4Y1Y2Ys5Y3b1.

IfV(uy) = V(xp) and V(y7) # V(b1), then we arrive at the complementary cycle byciu1X3X4X2Y2Y5Y3Y1b1.

IfV(uy) = V(xp),V(y1) = V(by) and V(x;) # V(y3), then we arrive at the complementary cycle bycqu1X3X4X2Y3Y1Y2Y5b1.

IfV(uy) = V(xp),V(y1) = V(by) and V(x,) = V(y3), then we arrive at the complementary cycle bycqu1X3X4X2Y1Y2Y5Y3b1.
Subcase 6.1.2.2. Assume that H[V(C})] is exactly 4-partite. This implies that H[V(C;)] is also 4-partite. If there does not
exist an arc from C, to Cj, then there exists at least one vertex x € V(C;) with d;;(x) < 1, a contradiction. Let now

C; = X1X2Xx3X4Xsx1 and C; = y1y2y3Yaysy1 such that y; — x;. Because of Theorem 2.13, we see that y, and x5 belong
to the same partite set V*.

If V(y;) = V(y3), then it follows that y; — ys — y, — y4 — y; and we obtain the complementary cycle
Y1X1X2X3X4X5Y3Y5Y2Y4Y 1.
If V(y1) = V(ys), then it follows that y, — y, — ys — y3 — y; and we obtain the complementary cycle

Y1X1X2X3X4X5Y4Y2Y5Y3Y 1.

Next assume that V(y;) # V(y;) fori = 3, 4. Because of y, € V*, it remains the case that V(y3) = V(ys). This implies
thatys — y» — y4 — y1 and y3 — y1, and we arrive at the complementary cycle y1X1X2X3X4X5Y4Y5Y2Y3Y1-
Subcase 6.2. Assume that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V(H) can be partitioned
into subsets Y, Z, Ry, Ry such thatR; = Y, (Ri UY) = R,, |Y| > |Z],and Y is an independent set. Let, without loss of
generality, |[R{| < |Ry|.

Assume first that Z = (. If R; = ¢, then we obtain the contradiction d,‘; (y) > 8 foreveryy € Y. In the remaining case
that 1 < [Ry| < 4, we see that there exists a vertex x € Ry with d; (x) < 1, a contradiction.

Next assume that 1 = |Z| < |Y| = 2.If Ry = {J, then we obtain the contradiction d,ﬁ(y) > 7 foreveryy € Y. If
1 < |Rq| < 2, then there exists a vertex x € Ry such that d: (x) < 1, a contradiction.

In the remaining case that |R{| = 3, we arrive at a contradiction or H[R] is a 3-cycle,Z — Ry, and Cs = R;. Let, without
loss of generality, Y = {v,, v3}. We discuss the case that Ry = {ay, by, ¢z}, Z = {uy}, and thus R, = {as, bs, c3, u3}. The
proofs of the other cases are analogously:

Subcase 6.2.1. Assume that u3 — {as, bs, c3}. This implies that {as, b3, c3} — u; and {as, bs, c3} = Cs, and we have found
the two complementary cycles a;bicovoc3a; and ciuqv1byv3usasu,abscy.

Subcase 6.2.2. Assume that u3 has exactly two out-neighbors in R,. We only discuss the case that u3 — {as, b3} and c3 — u3
completely, because the other cases are similar. This leads to u; = Cs.

Subcase 6.2.2.1. Assume that as — bs. This implies bs — {c3, uy} and b3 = Cs, and there is the 5-cycle G = a;biczv;5u3a4.

If a3 — c3, then we observe that c3 — u, and c3 = Gs, and we arrive at the complementary cycles ¢ and
C1U1v1b2U303C3U2azb3C1.

If c — a3 then we obtain a3 — uy and a3 = GCs, and we arrive at the complementary cycles C and
C1u1v1b2v36303u2a2b3c1.

Subcase 6.2.2.2. Assume that b3 — as. This implies a3 — {c3, u,} and a3 = Cs, and there is the 5-cycle C' = a1b cyvuza;.

If b3 — c3, then we observe that c3 — u and c3 = Gs, and we arrive at the complementary cycles ¢ and
C]U]U]GzU3b3C3U2b2(13C].

If c3 — bs, then we obtain b3 — uy and b3 = (s, and we arrive at the complementary cycles ' and
C]U]U102U3C3b3quza3C].

Case 7. Assume that c = 5 and r = 2. This case was solved with the help of an algorithm programmed in GAP [16] (cf. the
Appendix).

Case 8. Assume that ¢ = 4 and r = 6. This implies that D is 9-regular and «(H) = 5. Since ij(H) < 4, Theorem 2.9 yields
k(H) > 3.If H has a cycle factor, then Theorem 2.10 shows that H is Hamiltonian, and we are done.

Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V(H) can be partitioned into
subsets Y, Z, Ry, Ry suchthatR; = Y, (R{UY) = Ry, |Y| > |Z|,and Y is an independent set. Since x (H) > 3and «(H) = 5,
we see that 3 < |Z| < |Y| < 5. Let, without loss of generality, |R;| < |R;|. Since D is 9-regular, we see that d;(x), d;(x) =5
for every x € V(H) and d;(x), dy(x) > 6forx € Vi.Let V; = {uq, up, ..., ug}, Vo = {X1, X2, ..., X6}, V3 = {y1, ¥2, . .., Y6}
V4 = {w1, wo, ..., wg} and, without loss of generality, V(Cs) = {us, ug, X5, y5, We}-

Case 8.1. Assume that |Z| = 3 and |Y| = 5. In this case, Theorem 2.15 with k = 1 and t = 0 leads to the contradiction
ig(H) > 5.
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Case 8.2. Assume that |Z| = 3and |Y| = 4.IfRy = {J,thenY = R, and |Z| = 3 yields the contradiction d;; (y) < 3 for every
y € Y. There remain the cases 1 < |Ry| < 6. If there exists a vertex u € R; such that dg[Rﬂ(u) < 1, then |Z| = 3 implies
the contradiction d;; (u) < 4. Hence we assume in the following that dB[Rl] (x) > 2 for every x € R;. This immediately leads
to |R1| = 6.If D[R] is bipartite, then we arrive at the contradiction 12 < |E(D[R])| < 9.If D[R] is exactly 3-partite, then
it follows that dE[Rl](x) = 2 for every vertex x € R;. Since there are two vertices u € R; and v € Z that belong to the same
partite set, we obtain the contradiction d; (u) < 4.If D[R] is exactly 4-partite, then we arrive at the contradiction

31< ) dy(0) =) dyp (¥ +d"(Z,R) <13+ 18 -3 =28.

XxeRq XxeRq

Case 8.3. Assume that |Z| = 4 and |Y| = 5. Assume, without loss of generality, that Y = V; = {w1, w,, w3, ws, ws}. If
Ry =@, thenY = R, and |Z| = 4 yields the contradiction dﬁ (y) < 4foreveryy € Y. There remain the cases 1 < |R;| < 5.
If there exists a vertex u € Ry such that dEIRll(u) = 0, then |Z| = 4 implies the contradiction d;; (u) < 4. Hence we assume
in the following that dE[Rl](x) > 1 for every x € R;. This immediately leads to |[R;| > 3.

Case 8.3.1. Assume that |R{| = 3. We deduce that D[R] is a 3-cycle. Since |Z| = 4, we arrive at the contradiction

16 <> dy(®) =Y dpp, ) +d"(Z,R) <3+12-4=11.

XERy XERq
Case 8.3.2. Assume that |R{| = 4. If D[R] is exactly 3-partite, then we obtain the contradiction
21 ) dy) =Y dpp (0 +d"(Z R) <5+16—4=17.

XERq XERq

In the case that D[R] is bipartite, we arrive at a contradiction, or Ry C (V;, U V3),Z = V| = {uy, u, us, us}, D[Rq]is a
4-cycle,Z — Ry, and Cs = R;. If, without loss of generality, Ry = {x1, X2, ¥1, Y2}, then Ry = {x3, X4, X5, ¥3, Y4, y5}. Because
of d: (x) = 5 for every vertex x € V(H), we deduce that d,}L[ RZ](X) > 1 for every vertex x € R,. Now let, without loss of
generality, djj, (X3) = djg, (V3) = djyg, (va) = 1. This implies that {x3, y3, 4} — Z and {x3, 3, ya} = Gs.

Assume that Cs = XgUsYslsWeXe. Since Y — Ry, the 9-regularity of D shows that every vertex of Y has an in-neighbor
in Z as well as in V(Gs). Assume, without loss of generality, that ys — ws and u; — wjy. Since at least one of the vertices
in {x4, X5, 5} has at least three out-neighbors in Z and the remaining two vertices at least two out-neighbors in Z, we have,
without loss of generality, the two possibilities y5 — u5, Xs — u3, and X4 — U4 O y5 — Uy, X5 — U3, and X4 — 4. Now
there are the two complementary cycles C; = yswsy4Xslsys and

Ci9 = UsWeY1W4Y3U1W1Y5UIX1WX5U3X) W3X4ULY2X3Ug.
or C; = YeWsY4XglisYs and
Ci9 = UsWeY1W4YsU1W1Y3UX1 W X5U3X W3X4UsY2X3Up.
Since we can change the vertices x; and y; in Ry fori = 1, 2 as well as x3 with y3 and y, arbitrary when we search arcs

between these vertices and vertices from Y or Z, we see that all other cases are analogous.
Case 8.3.3. Assume that |R{| = 5. If D[R;] is exactly 3-partite, then we obtain the contradiction

26<) dy(0) =Y dyg (0 +d"(Z R) <8+20—4=24

XERq X€ERq

In the case that D[R] is bipartite, we arrive at a contradiction, or Ry C (V; U Vj) and Z = V| = {uy, uy, us, us}. Let,
without loss of generality, Ry = {x1, X2, X3, Y1, Y2} and R, = {x4, X5, y3, 4, ¥5}. Because of d;r(x), d;(x) > 5 for every
vertex X € V(H), we deduce that there are exactly four vertices x € Ry with dE[Rl ](x) = 1 and four vertices y € R, with
dfjr,) ) = 1. Assume that Cs = XelsYss WeX.

We only discuss the case dp (X1) = dpg,; (%2) = dpe (1) = dpjp, (v2) = 1and dje () = dfjp (X5) = djyg 1 (V3) =
dg[R (y4) = 1 completely, because the other cases are similar.

I%Jwe assume, without loss of generality, that y; — x1, then we obtain x; — 5. This implies y, — {x,, x3} and thus
X — Y1 — x3. The 9-regularity of D leads to Z — {x1, X2, y1, y2} and Cs = {x1, X2, V1, ¥2}

In addition, if we assume, without loss of generality, that y; — x4, then we obtain x5 — ys. This implies {y4, y5} — x5
and thus ys — x4 — y4. The 9-regularity of D leads to {x4, Xs, 3, ¥4} — Z and {x4, X5, ¥3, ¥4} = Cs.

In the case that Z — Y, it follows that Y = Cs. This leads to dj, (us) > 10, a contradiction to the 9-regularity of D.

Otherwise there exists an arc from Y to Z, say w; — u4.Thisimplies that there is an arc from Cs to w1, say xs — w1.The 9-
regularity of D shows that x5 has at least three in-neighbors in Z and that ys has at least three out-neighbors in Z. We assume,
without loss of generality, that u, — x3 and y5s — u,. Now we obtain the two complementary cycles C, = Xgw1l1X2Y4Xg
and

Ci9 = UsYslgWeX1W2Y3U4X3W3X5U3Y 1 W4Y5U2Y2 W5X4Us.
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Case 9. Assume that ¢ = 4 and r = 4. This implies that D is 6-regular and «(H) = 3. Since ij(H) < 4, Theorem 2.9 yields

k(H) > 1.Since D is 6-regular, we see that d,ﬁ(x), d, (x) > 2 foreveryx € V(H) and dﬁ(x), dy (x) = 3forx € Vj.

Subcase 9.1. Assume that H has a cycle-factor. If H is Hamiltonian, then we are done. If not, then let C{, C;, ..., C/ be a

minimal cycle-factor with the properties described in Theorem 2.13. Because of |V*| < 3, it follows from Theorem 2.13 that

there are at most two incident arcs from H — V(C;) to Cj. Since k (H) > 1, there exists at least one arc from H — V(C}) to C;.
If C{ is a 3-cycle, then we arrive at the contradiction dj; (x) < 1 for at least two vertices x € V(C}). If C} is a 4-cycle, then

we arrive at the contradiction dj; (x) < 1 for at least one vertex x € V(C}) ord; (¥) < 2 foravertexy € V;.Let now C; be a

5-cycle c1cyC3€4C5C1.

Subcase 9.1.1. Assume that H[V(C})] is 3-partite. The 6-regularity of D easily yields erv(q) d; (x) = 30 and there are

exactly two incident arcs from H — V(Cy) to C;.

If these two arcs are incident with cq, thencs € V*,V(c1) = V(c3) and V(cz) = V(c4). In addition, it follows that c; — ¢4
and ¢s — {cy, c3}, and we arrive at the contradiction d; (c5) = 1.

Assume that the two arcs from H — V(C}) to C; are incident with ¢; and c,. It follows that V(cs) = V(c3) = V*, and the
6-regularity of D leads to V(c;) = V(c4), c1 — €3,¢; — ¢5 and ¢4 — ¢,. We deduce that Vi NV (C)) = 9.

Subcase 9.1.1.1. Assume that t = 3. Let C; = y1y,ysy:1 such thaty; — {cy, ¢4}, and let C; = x1x,x3x;. This leads to y, € V*.
Assume first that y; € V. It follows that y; € V(c;). Furthermore assume, without loss of generality, that x; € Vj,
X, € V(cy) and x3 € V(cp). The 6-regularity of D implies that x; — {y», y3}. Now Cs and X,x3X1Y»Y3)1C4C5C1C2C3X, are
complementary cycles of D.
Assume second that y; € V(cy). It follows that y; € V]. Furthermore assume, without loss of generality, that x; € Vj,
X, € V(cy) and x3 € V(cy). The 6-regularity of D implies that x; — {y1, y2}. Again Cs and x,X3X1Y2Y3Y1C4C5C1C2C3X, are
complementary cycles of D.

Subcase 9.1.1.2. Assume that t = 2. Let C; = y1Y2Y3Y4YsYey1 and y; — c1 as well as y; — c4. This implies that y, € V*, and
it is straightforward to verify that y; € V.

Assume thatV(cy) = V(y3) = V(¥6),V(y4) = V(y1) and thus V(ys) = V(c1) = V(c4). We conclude thaty, — {y-, ys}.If
Y5 = Y2, then Cs and y1¢1€2€3€4C5Y5Y2Y3YaY6y1 are complementary cycles. If y, — ys, then Cs and y1¢1€2€3¢4C5Y3Y4Y2Y5Y6Y1
are complementary cycles.

Assume that V(c;) = V(y3) = V(¥6) and V(ys) = V(y1). This implies that V(y4) = V(c1) = V(c4). We conclude that
¥s — {¥2,y3} and thus y3 — y1.If y, — ys, then Cs and y1¢1C2¢3C4C5Y3Y4Y5Y2Y6Y1 are the desired complementary cycles. If
Y6 — Y2, then Cs and y1¢1C2C3€4C5Y4Y5Y6Y2Y3Y1 are complementary cycles.

Assume that V(c;) = V(y3) = V(¥5),V(ys) = V(y1) and thus V(ys) = V(c1) = V(cq). We conclude thaty, — {y, ye}.If
Y5 — Y2, then Cs and y1¢1€2€3€4C5Y5Y2Y3Y4Y6y1 are complementary cycles. If y, — ys, then Cs and y1¢1€2€3€4C5Y3Y4Y2Y5Y691
are complementary cycles.

Assume that V(c) = V(y4) = V(¥5), V(¥3) = V(y1) and thus V(ys) = V(c1) = V(c4). We conclude that y3 — {ys, ys}
and so yg — y». In the case that y5 — y-, there are the complementary cycles Cs and y1¢1¢2C3C4C5Y4Y5Y2Y3YsY1- If y5 — y1,
then Cs and y1¢1C2C3C4C5Y6Y2Y3Y4Ys5y1 are complementary cycles. Otherwise we obtain the contradiction d= (ys) > 7.

Assume that V(c;) = V(y4) = V(¥6), V(¥5) = V(¥1) and thus V (y3) = V(c1) = V(cs). We conclude that y5 — {y,, y3}.
If y, — ys, then Cs and y c1c203¢4C5y3Y4Y5Y2Y6Y1 are complementary cycles. If ys — y,, then it follows that y, — y4 and
thus y4 — y1. But now Cs and y1¢1C2C3€4C5Y5Y6Y2Y3Y4Y1 are complementary cycles.

Subcase 9.1.2. Assume that H[V (C})] is 4-partite. The 6-regularity of D easily yields
exactly two incident arcs from H — V(Cy) to C;.

Subcase 9.1.2.1. Assume that these two arcs are incident with c;. This implies that cs € V*, and it is a simple matter to verify
that V(c;) = V(c4). In addition, it follows that ¢; — ¢4 and cs — ¢; and thus c3 — ¢s and so ¢; — c3. Thisleads toc; € V.

In the case t = 2 assume that C;, = y1y2Y3VaYsVe¥1- Ify1 — c1 and soy, € V*, then Cs and y1¢1C3€4C5C2Y2Y3Y4Y5Y6Y1 are
complementary cycles.

In the other case t = 3, let C; = x1x,x3x; and C; = y1y,y3y1 such that {x;, y1} — c;. This implies that x,, y, € V*. We
assume, without loss of generality, that x; € V|.Ifx3 — ¥, then Cs and y;¢1¢,¢3C4C5X1X2X3Y2Y3y1 are complementary cycles.
If otherwise y, — x3, then the 6-regularity of D yields x3 — {y1, y3}. Since x, — y3 leads to the 6-cycle y y.x3X1x2y3y1 and
thus to t = 2, it remains the case that y3 — X,. But now Cs and X1¢1C>C3C4C5Y1Y2Y3X2X3X1 are complementary cycles.

Subcase 9.1.2.2. Assume that the two arcs from H—V (C;) to C; are incident with ¢y and c4. It follows that V(cs) = V(c3) = V*,
and the 6-regularity of D leads to c; — c3 and c; — ¢5 and thus ¢4 — ¢; and so ¢; € V; or ¢4 € V]. Now it is easy to show
thatt = 2. Let C;, = y1y2Y3V4Ysysy1 and y; — ¢; as well as y; — c4. This implies thaty, € V*.

Subcase 9.1.2.2.1. Assume that y; € V. It follows that V(y4) = V(ys) and V(y1) = V(ys5). If y; — y3, then we deduce that
¥3 = {¥s,ys} and thus {ys, ys} — y,. This leads to y, — y4 and so y5 — y1. Now Cs5 and y1€1C2€3€4C5Y5Y6Y2Y3Y4Y1 are
complementary cycles. Otherwise we have y3 — y1.If y§ — ¥, then Cs and y1¢1€2€3€4C5Y4Y5Y6Y2Y3Y1 are complementary
cycles. In the remaining case thaty, — ygs, we deduce thaty; — ys and thus ys — y,. Now Cs and y1¢1¢2C3C4C5Y3Y4Y5Y2Y6Y1
are complementary cycles.

Subcase 9.1.2.2.2. Assume that y4 € V]. It follows that V(y3) = V(ys) and V(y1) = V(ys5). If y1 — y4, then we deduce
that y, — {y2, s} and thus ys — y,. This leads to y, — ys and so ys — ys. This implies that y3 — y; and hence

xev(c) 4 (%) = 30 and there are
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Cs and y1C1C2C3C4C5Y4Y5Y6Y2Y3Y1 are complementary cycles. Otherwise we have y; — y1.If y§ — ¥, then there are the
complementary cycles Cs and y1¢1C2C3C4C5YsY6Y2Y3Y4Y1. In the remaining case that y, — yg, we deduce that ys — y, and
thus y4 — y,.1f y5 — y3, then Cs and y1¢1C2C3C4C5Y5Y3Y4Y2Y6y1 are complementary cycles. If y; — ys, then ys — y,, and
there are the complementary cycles Cs and y1€1C2C3C4C5Y3Y4Y5Y2Y6Y1-

Subcase 9.1.2.2.3. Assume that y5; € V. It follows that V(y3) = V(ys) and V(y1) = V(y4) or V(y1) = V(y3) and
V(ys) = V(ys). We only discuss the first case, the second one is similar. If ys — y, and y4 — ys, then Cs and
Y1C1C2C3C4CsYs5Y2Y3YaYeY1 are complementary cycles. If ys — y, and yg — y4, then y4 — y, and thus y, — ys. Now
Cs and y1C1C2C3C4CsY3Y4Y5Y2Y6y1 are complementary cycles. If y, — ys, then ys — {y1, y3} and thus y3 — y1. [fyg — y»,
then Cs and y1¢1C2C3€4C5Y4Y5Y6Y2Y3Y1 are complementary cycles. If y, — yg, then ys — y4 and thus y, — y,. Now Cs and
Y1C1C2C3C4C5Y3Y4Y2Y5Y6Y1 are complementary cycles.

Subcase 9.1.2.2.4. Assume that ys € V{. This case is similar to Subcase 9.1.2.2.1 and is therefore omitted.

Using the converse D~ ! of D, we obtain the desired results by the cases discussed above when C;isa6-,7-, or 8-cycle.

Subcase 9.2. Assume next that H has no cycle-factor. Then, with respect to Lemma 2.12, the vertex set V (H) can be partitioned
into subsets Y, Z,R{,R, such that Ry = Y, (Ry UY) = R, |Y| > |Z], and Y is an independent set. Since x (H) > 1
and ¢(H) = 3,weseethat 1 < |Z| < |Y| < 3. Let, without loss of generality, |R;| < |Ry|. Let V1 = {ay, a3, as, as},
V2 = {b], bz, b3, b4}, V3 = {U], up, us, U4}, V4 = {1}], Uy, U3, U4} and C5 = X1X2X3X4X5X1 such that V(C5) = {a3, ay, b4, Uy, U4}
and, without loss of generality, x; = by.

Subcase 9.2.1. Assume that |Z| = 1and |Y| = 3.1fR; = @, then we arrive at the contradiction d*(y) > 7 fory € Y.If
1 < |R4| < 3, then we obtain the contradiction d,; (x) < 1 for at least one vertex x € R;.

Subcase 9.2.2. Assume that |Z| = 1and |Y| = 2.If R; = #, then we arrive at the contradiction d*(y) > 7 fory € Y.If
1 < |Rq| < 2, then we obtain the contradiction d;; (x) < 1 for at least one vertex x € R;.

Subcase 9.2.2.1. Assume that |R;| = 3. In this case we arrive at a contradiction, unless {a;} = Z C V] and H[R;] is a 3-cycle
C3, say C3 = bjujvby. Let, without loss of generality, Y = {v,, v3}. The 6-regularity of D shows that Cs = Ry, that there are
at least three arcs from R; to ay, and that D[R;] contains a cycle.

Assume first that D[R, ] contains a 3-cycle, say a,b,u,a,. We assume, without loss of generality, that b; — a;.Ifus — b3,
then there exists the 5-cycle usbsa;ujv,us. Since there is at least one of the three arcs a; — X3, b, — X, 0r Uy — X5,
say U, — X, we obtain the complementary cycle x,X3X4X5X1v1b1v3a2b2UsX,. If b3 — u3 and u3 — aq, then we have the
same situation as before. In the remaining case that b3 — u3 and a; — us, it follows that u3 — a,, and this yields the
contradictiond™ (ay) > 7.

Assume next that D[R;] contains a 4-cycle C4 but no 3-cycle. This is only possible when, without loss of generality,
C4 = byupbsusb, and a, — {b,, bs, Uy, us}. This implies that C; = Cs. If we assume, without loss of generality, that
b, — ay, then aybya u v2a; is a 5-cycle. If X, # uy4, then x2X3X4X5x1V1b1v3Uzb3usX, is a complementary cycle. If x, = uy,
then x3x4Xs5x1X,v1b1v3Usb3U3X3 is @ complementary cycle.

Subcase 9.2.2.2. Assume that |R{| = |R;| = 4. Let, without loss of generality, Y = {v,, vs}. It is straightforward to verify that
ZCViorZ C V.

Assume that Z = {a;}. In this case we arrive at a contradiction without the case that, without loss of generality,
Ry = {ay, b1, uy, v1} such that {by,u;,v1} — ay and by - v; — u; — by and D[R;] consists of the 4-cycle
C4 = byusbsuyb,. It follows thatR, = Cs = R;and R, — a; = R;.Now we obtain the complementary cycles b,usa uiv.b,
and X1X2X3X4X5b1 U]Cle3b3Ll2X1.

Assume that Z = {v¢}. In this case we arrive at a contradiction, unless D[R] consists, without loss of generality, of
the cycle a;biub,a; such that u; — a; and D[R,] consists of the cycle a,u,bsusa; such that a, — bs. It follows that
R, = Cs = Ryand R, — a; — R;. Now we obtain the complementary cycles uyv1b U v,uU; and x1X3X3X4X5boa1v3b3U3a2X1.
Subcase 9.2.3. Assume that |[Z| = 2 and |Y| = 3. Let, without loss of generality, Y = {vq, vy, vs}.

Subcase 9.2.3.1. Assume that R; = . This implies thatZ — Y — R, and Cs = Y. This case was solved with the help of an
algorithm programmed in GAP [16] (cf. the Appendix).

Subcase 9.2.3.2. Assume that |R;| = 1. This implies that Z — R; and, without loss of generality, Ry = {b1}. This case was
solved with the help of an algorithm programmed in GAP [16] (cf. the Appendix).

Subcase 9.2.3.3. Assume that |R{| = 2. We have to discuss the following three cases: Ry = {by, b,}andZ — Ry,R; = {a;, b1}
such that by — a; and Z — Ry, Ry = {b1, u;} such that, without loss of generality, by — u; and Z — b;.

Subcase 9.2.3.3.1. Assume that Ry = {bq, b,} and Z = {a;, a,}. It follows that R, = {uq, uy, us3, b3} and Cs = R;.

If {uy, uy, us} — bs, then b3 — Z and there is an arc from u; to Z, say u; — a,. Assume that there is an arc from a, to
Y, say a, — wvs. Since u, has at least three out-neighbors in Cs, and b, four in-neighbors in Cs, there exist two consecutive
vertices x; and x; on Cs such that x; — b, and u, — Xx;;1. Hence there are the complementary cycles usbsa,bv,u3 and
Xit1Xit2Xir3XiraXibavou1aV3U5X 1. Otherwise we have Y — a,. This implies that v3 has at least three in-neighbors in Cs.
Since u; has at least three out-neighbors in Cs, there are two consecutive vertices x; and x;; on Cs such that x; — v; and
u; — Xi+1. Hence there are the complementary cycles usbsa;bqv us and X 1Xi12Xi+3Xi14X;U3U102D2 Vo Us Xy 1.

If {uy, u;} — bs and b3 — us, then u3 — Z and there is an arc from bs to Z, say b3 — a,. Assume that there is an
arc from a; to Y, say a; — vs. Since u, has at least three out-neighbors in Cs, and b, four in-neighbors in Cs, there exist
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two consecutive vertices x; and x;;.1 on Cs such that x; — b, and u, — x;;;. Hence there are the complementary cycles

u1bsaybyviuq and X 1Xi12Xi3Xi+aXiba Vo usa; V53U X 1. Otherwise we have Y — a;. This implies that vs has at least three in-

neighbors in Cs. Since u; has at least three out-neighbors in Cs, there are two consecutive vertices x; and x;; on Cs such that

X; — vz and u; — Xx;y1. Hence there are the complementary cycles u1b3a;biviuq and Xiq1Xi12Xi3Xi+aXiV3UszA1bavoUsXit 1.
The cases b3 — {u,, us3} and u; — bz as well as b3 — {uy, uy, us} are similar and are therefore omitted.

Subcase 9.2.3.3.2. Assume that Ry = {by, by} and Z = {ay, u,}. It follows that R, = {a,, bs, u,, u3} and Cs = R;.

Assume that D[R, ] contains a cycle. This implies that D[R;] has a 3-cycle, say au,bsa,. It follows that a, — {uy, us} and
thus us — bs and so {u,, us} — a; and {u,, u3} = GCs.Since v has at least two in-neighbors in Cs, there are two consecutive
vertices x; and x;1 on Cs such that x; — v and u, — X;;.1. Hence there are the complementary cycles bsa,u;b;v1b3 and
Xit1Xi42Xit3Xi44XiV3U3A1 by valinXiy 1.

If D[R;] has no cycle, then there remain the two possibilities a, — {u,, us, b3} and {u,, us} — bs or {a,, u,, u3} — bs
and u, — a, — us.

In the first case it follows that u; — a4, b3 — u; and u3 = GCs. Since v3 has at least two in-neighbors in Cs, there are
two consecutive vertices x; and x; 1 on Cs such that x; — v; and u3 — X;1. Hence there are the complementary cycles
ayUpa1b1v1a; and Xiy1XioXiy3Xi44aXiv3bsu1byvatisxiy .

In the second case it follows that a, — uq, b3 — a; and u3 = Gs. Since v3 has at least two in-neighbors in Cs, there
are two consecutive vertices x; and x; 1 on Cs such that x; — v3 and u3 — x;;1. Hence there are the complementary cycles
UzGzu1 b1ty and Xip1XipoXiy3XiraXiv3bsaibyvatisxiy .

Subcase 9.2.3.3.3. Assume that Ry = {by, by} and Z = {u4, u,}. It follows that R, = {ay, a3, bs, u3} and Cs = R;.

Assume that D[R;] contains a cycle. This implies that D[R;] has a 3-cycle, say ajusbsa;. It follows that u3 — a, and
thus a, — bz and so {aq, ax} — Z and u3 = Cs. Since v3 has at least two in-neighbors in Cs, there are two consecutive
vertices x; and x;;1 on Cs such that x; — v3 and u3 — x;1. Hence there are the complementary cycles bsa;u1b;v1b3 and
Xi1Xi42Xi13Xi44Xi V32U by Vo UisXiy 1.

If D[R;] has no cycle, then there remain the two possibilities us; — {ay, az, b3} and {a;, a,} — bs or {ay, az, us} — bs
and a; — us — das.

In the first case it follows that a; — uy, a, — u; and b; = GCs. Since v3 has at least two in-neighbors in Gs, there are
two consecutive vertices x; and x;1 on Cs such that x; — v3 and b3 — X;11. Hence there are the complementary cycles
uzaquybyvius and Xi1XipoXiy3XipaXiV3aa Uz by Vo b3Xiy .

In the second case it follows that b3 — uy, @, — u, and us = Cs. Since v3 has at least two in-neighbors in Cs, there
are two consecutive vertices x; and x;1 on Cs such that x; — v3 and u3 — x;,1. Hence there are the complementary cycles
a1bzu1b1v1a; and Xi1Xi42Xit3Xi4aXiV302Uzbr Vo UsX 1.

Subcase 9.2.3.3.4. Assume that Ry = {a,, by}. This implies that by — a; and Z = {uy, u} — R;.

Assume that D[R;] contains a cycle. This implies that D[R;] has a 3-cycle, say a,usb,a,. It follows that u3 — bs and
uz = Cs. Assume that a, — b3 and, without loss of generality, that a, — u,. It follows that b3 — u;. Since v5 has at least
two in-neighbors in Cs, there are two consecutive vertices x; and x;;1 on Cs such that x; — v3 and u3 — ;1. Hence there
are the complementary cycles byasu;biv1by and X4 1Xi 20X 3Xi14XiV3b3Ua1v2U3X; 1. If otherwise b; — a; and, without loss
of generality, b3 — uy, then it follows that a, — u, and we arrive at the same complementary cycles.

If D[R;] has no cycle, then there remain the following four possibilities:

us — {ao, by, b3} and a; — {b,, b3} or

us — {ap, by, b3} and b3 — a, — b, or

uz — {by, bs}and a, — {b,, b3, u3} or

uz — {ap, b3}, b — {ay, us} and a; — bs.

In the first case it follows that b, — {uq, uy} and b3 = Cs. Assume, without loss of generality, that a, — u,. Since v
has at least two in-neighbors in Cs, there are two consecutive vertices x; and x;; on Cs such that x; — v3 and b3 — X;;1.
Hence there are the complementary cycles usa;t; byvius and X1 1Xi12Xi3Xi+4XiV3boU1a1V2b3Xi1 1.

In the second case it follows that b, — {uq,u} and b, = Cs. Assume, without loss of generality, that a, — uj.
Next we distinguish two further cases. Assume that u; — bs. This implies that b3 = Cs. Since v3 has at least two in-
neighbors in Cs, there are two consecutive vertices x; and x;;1 on Cs such that x; — vs and b3 — x;;1. Hence there are
the complementary cycles usb,ubv us and X 1Xj 42X 3Xi1+4X;V302Uza1V2b3X1 1. Now assume that b3 — uy. Since vs has at
least two in-neighbors in Cs, there are two consecutive vertices x; and x;; on Cs such that x; — v; and b, — x;;1. Hence
there are the complementary cycles usbstbyvius and X1 1Xi12Xi+3Xi+4XiV302U2A1V2boXi1 1.

In the third case it follows that {b, b} — {uy, uy} and us = Cs. Since v3 has at least two in-neighbors in Cs, there are
two consecutive vertices x; and x;1 on Cs such that x; — vs; and u3 — X;1. Hence there are the complementary cycles
a;byuyb1v1a; and X1 Xi2Xig3XiraXiv3bsu A v Uiy,

In the fourth case it follows that {ay, b3} — {uq, 1y} and us = Cs. Since v3 has at least two in-neighbors in Cs, there
are two consecutive vertices x; and x; 1 on Cs such that x; — v3 and u3 — x;;.1. Hence there are the complementary cycles
byayu1byv1b, and xi1XipoXip3XipaXiv3bslaavausXiys.

Subcase 9.2.3.3.5. Assume that Ry = {by, u;} and Z = {ay, a,}. Assume, without loss of generality, that by — u;. It follows
that {a{, a} — b; and, without loss of generality, that a, — u4. This implies that Cs = b.
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Assume that D[R;] is a 4-cycle, say bu,bsusb,. If a; — R, then we deduce that R, — a3, R, = Cs, and there are
at least two vertices in Y, say v, vs, such that {v,, v3} — ay. Since vz has at least three in-neighbors in Cs, there are
two consecutive vertices x; and x;,1 on Cs such that x; — v3 and b3 — Xx;;1. Hence there are the complementary cycles
usbyayuqvqus and X 1Xi2Xi+3Xi14XiV301b1v2Us DX 1. Otherwise we have, without loss of generality, b3 — a;. If there is an
arc from Y to a,, say vs — a,, then v3 has at least three in-neighbors in Cs and b, has at least three out-neighbors in Cs.
Hence there are two consecutive vertices x; and x;.; on Cs such thatx; — v3 and b, — x;;1. This leads to the complementary
cycles uybsaibiviuy and X 1Xit2Xit3Xi14X;U302U1 VaUsboX; 1. Otherwise we have a, — Y. This yields b, — a, or us — ay,
say b, — a,. Since u; has at least three in-neighbors in Cs and u3 has at least three out-neighbors in Cs, there are two
consecutive vertices x; and x;; on Cs such thatx; — u; and u3 — x; 1. This leads to the complementary cycles u,bsa;bv1u;
and X; 1Xi12Xi 43X 1aX;U1V3b2a vz UsXi 1 1.

If D[R,] has no cycle, then there remain, without loss of generality, the two possibilities {u,, us} — {b,, b3} or
b, — {u, us} and u; — bz — us.

In the first case it follows that {b,, b3} — {ai, a;} and b, = Cs. Assume that u, — a, or u; — ag, say u, — da,.
Since v3 has at least two in-neighbors in Cs, there are two consecutive vertices x; and x;;; on Cs such that x;, — wvs
and b, — X;1. Hence there are the complementary cycles usbsa;bqvius and X;y1Xi2Xi13Xi14X;V3Uz02U1V2boX; 4 1. In the
case that Z — u,, we observe that u, = Cs. Since v has at least two in-neighbors in Cs, there are two consecutive
vertices x; and x;1q on Gs such that x; — wv; and u; — X;.1. Hence there are the complementary cycles usb,a;b v us
and X;{1Xi2Xiy3Xi14XV3b3az11 V3 Uz Xi 1 1.

In the second case it follows that u3 — {a;, a;} and, without loss of generality, that u, — a,. Assume that there
exists an arc from a; to Y, say a; — wv,. Since bs has at least three out-neighbors in Cs, there are two consecutive
vertices x; and x;;1 on Cs such that x; — by and b3 — Xx;;1. Hence there are the complementary cycles byu,a,uiv1b;
and X;1Xi42Xi3Xi+4Xib1v3U3a1v2b3X 1. In the case that Y — a;, we observe that v; has at least three in-neighbors in Cs.
Since bs has at least three out-neighbors in Cs, there are two consecutive vertices x; and x;,1 on Cs such that x; — v3 and
bs — X;;1. Hence there are the complementary cycles byu;ayuqv1b; and X 1Xi12Xi43Xi+4X;U3U3a1b1v2b3Xit 1.

Subcase 9.2.3.3.6. Assume that Ry = {by, u;} and, without loss of generality, that Z = {ay, u,}. It follows that {a;, b1} — u;
and {a], UZ} — b].

Assume that D[R, ] contains a cycle. This implies that D[R,] has a 3-cycle, say a,b,usa,. It follows that a, — u,, a; — bs,
and a, = Cs.

If b3 — us, then it follows that us; — a;. Assume that bs — u,. Since vs has at least two in-neighbors in Cs, there are
two consecutive vertices x; and x;1 on Cs such that x; — v and a; — Xx;y1. Hence there are the complementary cycles
byusaquqv1by and Xj X1 2Xi13XiaXjU3bsuab1v2a2x; 1. Otherwise we have u; — bs and thus b3 = Gs. Since v3 has at least
two in-neighbors in Gs, there are two consecutive vertices x; and x;,1 on Cs such that x; — v3 and b; — x;,1. Hence there
are the complementary cycles bousa u;v1b, and Xiy1Xi 12X 3XitaXiV3aoUsb1v2bsxiyq. If u3 — bs, then we obtain similarly
the two desired complementary cycles.

If D[R,] has no cycle, then there are the four possibilities b — a, — u3 — bsand b, — usand a, — b3z or
a, - b, —> u3 — bsand a, — bs and a, — u3 ora, — {us, by, b3} and u3 — b, and us — bs or uz3 — {a,, by, b3} and
a, — by and a, — bs. All these cases are analogue to the cases above and therefore are omitted.

Subcase 9.2.3.4. Assume that |R;| = |R,| = 3. This case was solved with the help of an algorithm programmed in GAP [16]
(cf. the Appendix). O
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Appendix

With the following algorithm programmed in GAP [16] we tested Case 5 of Theorem 3.1. Case 7, Case 9.2.3.1, Case 9.2.3.2
and Case 9.2.3.4 were tested the same way using minor modifications in Algorithm 2 (the initialization of the adjacency
matrix A), Algorithm 3 (the values concerning the number of vertices and the regularity) and Algorithm 4 (the values
concerning the chosen subsets). A similar program has also confirmed that the digraph D}, is the only regular 4-partite
tournament with two vertices in each partite set that does not contain two complementary cycles of length 4.

Algorithm 1 (Tests Via Backtracking Whether the Vertices of the List subset Induce a Hamiltonian Subdigraph of the Digraph
with Adjacency Matrix 4).

Hamiltontest:=function(subset,A)
local 1l,a,recursion;

recursion:=function(1l) #‘11’ is a local list
local ii,rest;
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rest:=Difference(subset,1l);
if rest=[]

then
#test whether the last vertex of ‘11’ dominates the first vertex of ‘11’
return A[11[Length(11)]]1[11[1]]=1;

else
#test all possibilities to extend the list ‘11°
for ii in rest do
if A[11[Length(11)]][ii]=1
then if recursion(Concatenation(11,[ii]))=true
then return true;
fi;
fi;
od;
fi;

return false;
end;

1:= [subset[1]];
a:= A{subset}{subset};

#shortcut: test whether there exists a vertex x in ‘subset’ such that
#dT(x) =0ord (x) =0
if ForAny(a,x->not (1 in x and -1 in x))

then return false;
fi;

return recursion(l);
end;

Algorithm 2 (Initialization of the Following Global Variables: Adjacency Matrix 4, and Degree Vectors dp lus and dminus).

Matrix_A_Init:=function();

A:=List([1..12],x->List([1..12],y->2));
#all entries of A are initialized with 2

for i in [1..12] do
for j in [1..12] do
if (i-j) mod 6 =0 #if i and j are in the same partition
then A[i][j]:=0; #then there is no arc between them
fi;
od;
od;

#without loss of generality, there exists a cycle through
#the vertices 1,2,...,6

for i in [1..6] do

A[i] [i mod 6+1]:=1;

od;

dplus:=List([1..12] ,x->Number([1..12],y->A[x] [y1=1));
#the vector of all outdegrees

dminus:=List([1..12],x->Number ([1..12],y->A[x] [yl=-1));
#the vector of all indegrees

end;



3148 Z. He et al. / Discrete Mathematics 309 (2009) 3131-3149

Algorithm 3 (Changes 4, dplus, dminus; Recursive Computation of the Adjacency Matrices of at Least all Non-Isomorphic 5-
regular 6-partite Tournaments).

AllMat:=function(n) #recursive computation, n is a list of vertices
local new,i,j;
new:=ShallowCopy (n[Length(n)]);

repeat
if new[2]=12
then
new[1] :=new[1]+1;
new[2] :=new([1]+1;
else
new[2] :=new[2]+1;
fi;

#if the recursive construction is complete, then test if there are
#complementary cycles
if new[1]>11
then
TestCC(A);
return;
fi;
until A[neul1]] [neul[2]]=2; #2 indicates that an arc has to be chosen

#update ‘dplus’ and ‘dminus’

if dplus[neu[1]]<5 and dminus[neu[2]]<5

then
dplus[neu[1]] :=dplus[neu[1]]+1;
dminus[neu[2]] :=dminus [neu[2]]+1;
A[neul1]] [neu[2]]:=1;A[neul2]] [neul[1]]:=-1;
Al1Mat (Concatenation(n, [neul));
Alneul[1]] [neul[2]]:=2;A[neul2]] [neul[1]]:=2;
dplus[neul[1]] :=dplus[neul[1]]-1;
dminus[neu[2]] :=dminus[neu[2]]-1;

fi;

if dplus[neu[2]]<5 and dminus[neu[1]]<5

then
dplus[neul[2]] :=dplus[neu[2]]+1;
dminus[neu[1]] :=dminus[neul[1]]+1;
Alneul[1]] [neul2]]:=-1;A[neul2]] [neul1]]:=1;
Al1Mat (Concatenation(n, [neul));
Alneul1]] [neul2]]:=2;A[neul2]] [neul1]]:=2;
dplus[neul[2]] :=dplus[neul[2]]-1;
dminus[neu[1]] :=dminus[neul[1]]-1;

fi;

end;

Algorithm 4 (Tests for Complementary Cycles).
TestCC:=function(mat)

local 1i,j;

#SubsetN(m,n) computes all subsets of {1,2,...,n} of size m
if ForAny(SubsetsN(5,12),x->Hamiltontest(x)

and Hamiltontest(Difference([1..12],x)))
then return true;
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else return false;
fi;

end;

Algorithm 5 (Concatenation of Algorithms 1-4).

Matrix_A_Init(Q);
Al11Mat ([[1,111);
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