Complete solution for the rainbow numbers of matchings ${ }^{\star}$

He Chen, Xueliang Li, Jianhua Tu
Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

A R T I C L E I N F O

Article history:

Received 3 April 2007
Received in revised form 25 September 2008
Accepted 1 October 2008
Available online 11 November 2008

Keywords:

Edge-colored graph
Rainbow subgraph
Rainbow number

Abstract

For a given graph H and a positive n, the rainbow number of H, denoted by $r b(n, H)$, is the minimum integer k so that in any edge-coloring of K_{n} with k colors there is a copy of H whose edges have distinct colors. In 2004, Schiermeyer determined $r b\left(n, k K_{2}\right)$ for all $n \geq 3 k+3$. The case for smaller values of n (namely, $n \in[2 k, 3 k+2]$) remained generally open. In this paper we extend Schiermeyer's result to all plausible n and hence determine the rainbow number of matchings.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider undirected, finite and simple graphs only, and use standard notations in graph theory (see $[3,8])$. Let K_{n} be an edge-colored complete graph on n vertices. If a subgraph H of K_{n} contains no two edges of the same color, then H is called a totally multicolored (TMC) or rainbow subgraph of K_{n} and we say that K_{n} contains a TMC or rainbow H. Let $f(n, H)$ denote the maximum number of colors in an edge-coloring of K_{n} with no TMC H. We now define $r b(n, H)$ as the minimum number of colors such that any edge-coloring of K_{n} with at least $r b(n, H)=f(n, H)+1$ colors contains a TMC or rainbow subgraph isomorphic to H. The number $r b(n, H)$ is called the rainbow number of H.
$f(n, H)$ is called the anti-Ramsey number of H, which was introduced by Erdős, Simonovits and Sós in the 1970s. They showed that it is closely related to the Turán number. The anti-Ramsey number has been studied in $[1,2,5,9,11,6,7]$ and elsewhere. There are very few graphs whose anti-Ramsey numbers have been determined exactly. To the best of our knowledge, $f(n, H)$ is known exactly for large n only when H is a complete graph, a path, a star, a cycle or a broom whose maximum degree exceeds its diameter (a broom is obtained by identifying an end of a path with a vertex of a star) (see [10, 9,11,6,7]).

For a given graph H, let $\operatorname{ext}(n, H)$ denote the maximum number of edges that a graph G of order n can have with no subgraph isomorphic to H. For $H=k K_{2}$, the value $\operatorname{ext}\left(n, k K_{2}\right)$ has been determined by Erdős and Gallai [4], where $H=k K_{2}$ is a matching M of size k.

Theorem 1.1 (Erdős and Gallai [4]). ext $\left(n, k K_{2}\right)=\max \left\{\binom{2 k-1}{2},\binom{k-1}{2}+(k-1)(n-k+1)\right\}$ for all $n \geq 2 k$ and $k \geq 1$, that is, for any given graph G of order n, if $|E(G)|>\max \left\{\binom{2 k-1}{2},\binom{k-1}{2}+(k-1)(n-k+1)\right\}$, then G contains a $k K_{2}$, or a matching of size k.

In 2004, Schiermeyer [10] used a counting technique and determined the rainbow numbers $r b\left(K_{n}, k K_{2}\right)$ for all $k \geq 2$ and $n \geq 3 k+3$.

[^0]0012-365X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.10.002

Theorem 1.2 (Schiermeyer [10]). $r b\left(n, k K_{2}\right)=\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$ for all $k \geq 2$ and $n \geq 3 k+3$.
It is easy to see that n must be at least $2 k$. So, for $2 k \leq n<3 k+3$, the rainbow numbers remain not determined. In this paper, we will use a technique different from Schiermeyer [10] to determine the exact values of $r b\left(n, k K_{2}\right)$ for all $k \geq 2$ and $n \geq 2 k$. Our technique is to use the Gallai-Edmonds structure theorem for matchings.

Theorem 1.3.

$$
r b\left(n, k K_{2}\right)= \begin{cases}4, & n=4 \text { and } k=2 \\ \operatorname{ext}\left(n,(k-1) K_{2}\right)+3, & n=2 k \text { and } k \geq 7 \\ \operatorname{ext}\left(n,(k-1) K_{2}\right)+2, & \text { otherwise }\end{cases}
$$

2. Preliminaries

Let M be a matching in a given graph G. Then the subgraph of G induced by M, denoted by $\langle M\rangle_{G}$ or $\langle M\rangle$, is the subgraph of G whose edge set is M and whose vertex set consists of the vertices incident with some edges in M. A vertex of G is said to be saturated by M if it is incident with an edge of M; otherwise, it is said to be unsaturated. If every vertex of a vertex subset U of G is saturated, then we say that U is saturated by M. A matching with maximum cardinality is called a maximum matching.

In a given graph $G, N_{G}(U)$ denotes the set of vertices of G adjacent to a vertex of U. If $R, T \in V(G)$, we denote $E_{G}(R, T)$ or $E(R, T)$ as the set of all edges having a vertex from both R and T. Let $G(m, n)$ denote a bipartite graph with bipartition $A \cup B$, and $|A|=m$ and $|B|=n$. Without loss of generality, in the following we always assume that $m \geq n$.

Let $\operatorname{ext}(m, n, H)$ denote the maximum number of edges that a bipartite graph $G(m, n)$ can have with no subgraph isomorphic to H. The following lemma is due to Ore and can be found in [8].

Lemma 2.1. Let $G(m, n)$ be a bipartite graph with bipartition $A \cup B$, and M a maximum matching in G. Then the size of M is m - d, where

$$
d=\max \left\{|S|-\left|N_{G}(S)\right|: S \subseteq A\right\}
$$

We now determine the value $\operatorname{ext}(m, n, H)$ for $H=k K_{2}$.

Theorem 2.2.

$$
\operatorname{ext}\left(m, n, k K_{2}\right)=m(k-1) \quad \text { for all } n \geq k \geq 1
$$

that is, for any given bipartite graph $G(m, n)$, if $|E(G(m, n))|>m(k-1)$, then $k K_{2} \subset G(m, n)$.
Proof. Suppose that G contains no $k K_{2}$. Let M be a maximum matching of G and the size of M be $k-i$, where $i \geq 1$. By Lemma 2.1, there exists a subset $S \subset A$ such that $|S|-\left|N_{G}(S)\right|=m-k+i$. Thus

$$
|E(G)| \leq|S|\left|N_{G}(S)\right|+n(m-|S|)=\left(\left|N_{G}(S)\right|+m-k+i\right)\left|N_{G}(S)\right|+n\left(k-i-\left|N_{G}(S)\right|\right) .
$$

Since $0 \leq\left|N_{G}(S)\right| \leq k-i \leq k-1$, we obtain

$$
|E(G)| \leq \max \{m(k-1), n(k-1)\}=m(k-1) .
$$

So, $\operatorname{ext}\left(m, n, k K_{2}\right)=m(k-1)$.
Lemma 2.3.

$$
\operatorname{ext}\left(2 k,(k-1) K_{2}\right)= \begin{cases}\binom{k-2}{2}+(k-2)(k+2), & 2 \leq k \leq 7 \\ \binom{2 k-3}{2}, & k=2 \text { or } k \geq 7\end{cases}
$$

Proof. From Theorem 1.1, we have that $\operatorname{ext}\left(2 k,(k-1) K_{2}\right)=\max \left\{\binom{2 k-3}{2},\binom{k-2}{2}+(k-2)(k+2)\right\}$. Since $\binom{2 k-3}{2}-$ $\left(\binom{k-2}{2}+(k-2)(k+2)\right)=\frac{1}{2}(k-2)(k-7)$, we have that if $2 \leq k \leq 7, \operatorname{ext}\left(2 k,(k-1) K_{2}\right)=\binom{k-2}{2}+(k-2)(k+2)$, and if $k=2$ or $k \geq 7$, ext $\left(2 k,(k-1) K_{2}\right)=\binom{2 k-3}{2}$.

Let G be a graph. Denote by $D(G)$ the set of all vertices in G which are not covered by at least one maximum matching of G. Let $A(G)$ be the set of vertices in $V(G)-D(G)$ adjacent to at least one vertex in $D(G)$. Finally let $C(G)=V(G)-A(G)-D(G)$. We denote the $D(G), A(G)$ and $C(G)$ as the canonical decomposition of G.

A near-perfect matching in a graph G is a matching of G covering all but exactly one vertex of G. A graph G is said to be factor-critical if $G-v$ has a perfect matching for every $v \in V(G)$.

Theorem 2.4 (The Gallai-Edmonds Structure Theorem [8]). For a graph G, let $D(G), A(G)$ and $C(G)$ be defined as above. Then:
(a) The components of the subgraph induced by $D(G)$ are factor-critical.
(b) The subgraph induced by $C(G)$ has a perfect matching.
(c) The bipartite graph obtained from G by deleting the vertices of $C(G)$ and the edges spanned by $A(G)$ and by contracting each component of $D(G)$ to a single vertex has positive surplus (as viewed from $A(G)$).
(d) Any maximum matching M of G contains a near-perfect matching of each component of $D(G)$, a perfect matching of each component of $C(G)$ and matches all vertices of $A(G)$ with vertices in distinct components of $D(G)$.
(e) The size of a maximum matching M is $\frac{1}{2}(|V(G)|-c(D(G))+|A(G)|)$, where $c(D(G))$ denotes the number of components of the graph spanned by $D(G)$.

3. Main results

For $k=1$, it is clear that $r b\left(n, K_{2}\right)=1$. Now we determine the value of $r b\left(n, 2 K_{2}\right)$ (for $k=2$).

Theorem 3.1.

$$
r b\left(4,2 K_{2}\right)=4
$$

and

$$
r b\left(n, 2 K_{2}\right)=2=\operatorname{ext}\left(n, K_{2}\right)+2 \text { for all } n \geq 5
$$

Proof. It is obvious that $r b\left(4,2 K_{2}\right) \leq 4$. Let $V\left(K_{4}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. If K_{4} is edge-colored with 3 colors such that $c\left(a_{1} a_{2}\right)=c\left(a_{3} a_{4}\right)=1, c\left(a_{1} a_{3}\right)=c\left(a_{2} a_{4}\right)=2$ and $c\left(a_{1} a_{4}\right)=c\left(a_{2} a_{3}\right)=3$, then K_{4} contains no TMC $2 K_{2}$. So, $r b\left(4,2 K_{2}\right)=4$.

For $n \geq 5$, let the edges of $G=K_{n}$ be colored with at least 2 colors. Suppose that K_{n} contains no TMC $2 K_{2}$. Let $e_{1}=a_{1} b_{1}$ be an edge with $c\left(e_{1}\right)=1, T=\left\{a_{1}, b_{1}\right\}$ and $R=V\left(K_{n}\right)-T$. Then $c(e)=1$ for all edges $e \in E(G[R])$. Moreover, $c(e)=1$ for all edges $e \in E(T, R)$, since $|R| \geq 3$. But then K_{n} is monochromatic, a contradiction. So, $r b\left(n, 2 K_{2}\right)=2$ for all $n \geq 5$.

The next proposition provides a lower and an upper bound for $r b\left(n, k K_{2}\right)$.
Proposition 3.2. $\operatorname{ext}\left(n,(k-1) K_{2}\right)+2 \leq r b\left(n, k K_{2}\right) \leq \operatorname{ext}\left(n, k K_{2}\right)+1$.
Proof. The upper bound is obvious. For the lower bound, an extremal coloring of K_{n} can be obtained from an extremal graph S_{n} for ext $\left(n,(k-1) K_{2}\right)$ by coloring the edges of S_{n} differently and the edges of $\overline{S_{n}}$ by one extra color. It is obvious that the coloring does not contain a TMC $k K_{2}$.

We will show that the lower bound can be achieved for all $n \geq 2 k+1$ and $k \geq 3$, and thus obtain the exact value of $r b\left(n, k K_{2}\right)$ for all $n \geq 2 k+1$ and $k \geq 3$.

For $n=2 k$, we suppose that $H=K_{2 k-3}$ is a subgraph of K_{n} and $V\left(K_{n}\right)-V(H)=\left\{a_{1}, a_{2}, a_{3}\right\}$. If K_{n} is edge-colored such that $c\left(a_{1} a_{2}\right)=1, c\left(a_{1} a_{3}\right)=c\left(a_{2} a_{3}\right)=2, c(e)=1$ for all edges $e \in E\left(a_{3}, V(H)\right), c(e)=2$ for all edges $e \in E\left(a_{1}, V(H)\right) \cup E\left(a_{2}, V(H)\right)$ and the edges of $H=K_{2 k-3}$ is colored differently by $\binom{2 k-3}{2}$ extra colors. It is easy to check that the coloring does not contain a TMC $k K_{2}$ in K_{n}. So, $r b\left(2 k, k K_{2}\right) \geq\binom{ 2 k-3}{2}+3$ for all $k \geq 3$. Hence, if $k \geq 7$, then $\operatorname{ext}\left(2 k,(k-1) K_{2}\right)=\binom{2 k-3}{2}$ and $r b\left(2 k, k K_{2}\right) \geq \operatorname{ext}\left(2 k,(k-1) K_{2}\right)+3$. We will show that the lower bound can be achieved for all $n \geq 2 k$ and $k \geq 7$.

Theorem 3.3. For all $n \geq 2 k$ and $k \geq 3$, we have

$$
r b\left(n, k K_{2}\right)= \begin{cases}\operatorname{ext}\left(n,(k-1) K_{2}\right)+3, & n=2 k \text { and } k \geq 7 \\ \operatorname{ext}\left(n,(k-1) K_{2}\right)+2, & \text { otherwise }\end{cases}
$$

Proof. We shall prove the theorem by contradiction. If $n=2 k$ and $k \geq 7$, let the edges of K_{n} be colored with ext $\left(n,(k-1) K_{2}\right)+3$ colors; otherwise, let the edges of K_{n} be colored with ext $\left(n,(k-1) K_{2}\right)+2$ colors. Suppose that K_{n} contains no TMC $k K_{2}$. Now let $G \subset K_{n}$ be a TMC spanning subgraph which contains all colors in K_{n}, i.e., if $n=2 k$ and $k \geq 7,|E(G)|=\operatorname{ext}\left(n,(k-1) K_{2}\right)+3$; otherwise $|E(G)|=\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$. Since $|E(G)| \geq \operatorname{ext}\left(n,(k-1) K_{2}\right)+2$, there is a TMC $(k-1) K_{2}$ in G.

We first need to prove the following two lemmas.
Lemma 3.4. If two components of G consist of $a K_{2 k-3}$ and $a K_{3}$, respectively, and the other components are isolated vertices (see Fig. 1), then K_{n} contains a TMC $k K_{2}$.

Fig. 1. The special graph $S G_{1}$.

Fig. 2. The special graph $S G_{2} . G^{\prime}$ and $G^{\prime \prime}$ are a $K_{2 k-3}$ and a P_{3}, respectively, or G^{\prime} and $G^{\prime \prime}$ are a $K_{2 k-3}^{-}$and a K_{3}, respectively.

Proof. Denote $S G_{1}$ as the special graph G and Q as the set of isolated vertices of G. Without loss of generality, we suppose that $c\left(u_{1} u_{2}\right)=1, c\left(u_{2} u_{3}\right)=2, c\left(u_{1} u_{3}\right)=3, c\left(v_{1} v_{2}\right)=4, c\left(v_{2} v_{3}\right)=5, c\left(v_{1} v_{3}\right)=6$ (see Fig. 1).

The proof of the lemma is given by distinguishing the following two cases:
Case I. $k \geq 4$.
We suppose that G contains no TMC $k K_{2}$. We will show $c\left(u_{1} v_{1}\right)=5$. If $c\left(u_{1} v_{1}\right) \neq 5$, then in $G_{1}=K_{2 k-3}-u_{1}$ the number of edges whose colors are not $c\left(u_{1} v_{1}\right)$ is at least $\binom{2 k-4}{2}-1$. Since $k \geq 4$, we have $\binom{2 k-4}{2}-1>\operatorname{ext}\left(2 k-4,(k-2) K_{2}\right)=$ $\binom{2 k-5}{2}$. Thus we can obtain a TMC $H=(k-2) K_{2}$ which contains no color $c\left(u_{1} v_{1}\right)$ in G_{1}, and hence there is a TMC $k K_{2}=H \cup\left\{u_{1} v_{1}, v_{2} v_{3}\right\}$ in K_{n}. So, $c\left(u_{1} v_{1}\right)$ must be 5 . By the same token, $c\left(u_{2} v_{2}\right)$ and $c\left(u_{3} v_{3}\right)$ must be 6 and 4, respectively. Now we can obtain a TMC $H^{\prime}=(k-3) K_{2}$ in $G_{2}=K_{2 k-3}-u_{1}-u_{2}-u_{3}$, and hence there is a TMC $k K_{2}=H^{\prime} \cup\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}\right\}$ in K_{n}.

Case II. $k=3$.
We suppose that K_{n} contains no TMC $3 K_{2}$. Then $c\left(u_{1} v_{1}\right) \in\{2,5\}, c\left(u_{2} v_{2}\right) \in\{3,6\}, c\left(u_{3} v_{3}\right) \in\{1,4\}$. Now we can obtain a TMC $3 K_{2}=u_{1} v_{1} \cup u_{2} v_{2} \cup u_{3} v_{3}$ in K_{n}.

Lemma 3.5. If $n \geq 2 k+1$ and two components of G are G^{\prime} and $G^{\prime \prime}$, where G^{\prime} and $G^{\prime \prime}$ are a $K_{2 k-3}$ and a P_{3}, respectively, or G^{\prime} and $G^{\prime \prime}$ are a $K_{2 k-3}^{-}$and a K_{3}, respectively, and the other components are isolated vertices (see Fig. 2), then K_{n} contains a TMC $k K_{2}$, where P_{3} is a path with three vertices and $K_{2 k-3}^{-}$is obtained from $K_{2 k-3}$ by deleting an edge.

Proof. Denote $S G_{2}$ as the special graph G and Q as the set of isolated vertices of G. Without loss of generality, we suppose that $c\left(u_{1} u_{2}\right)=1, c\left(u_{2} u_{3}\right)=2, c\left(u_{1} u_{3}\right)=3, c\left(v_{1} v_{2}\right)=4, c\left(v_{2} v_{3}\right)=5$ (see Fig. 2). The proof of the lemma is given by distinguishing the following two cases:

Case I. $k \geq 4$.
Since $n \geq 2 k+1$, we suppose that $v_{4} \in Q$. If $c\left(u_{1} v_{4}\right)=j$, without loss of generality, we suppose that $j \neq 4$. The number of edges of $G^{\prime}-u_{1}$ whose color is not j is at least $\binom{2 k-4}{2}-2$ and $\binom{2 k-4}{2}-2>\operatorname{ext}\left(2 k-4,(k-2) K_{2}\right)=\binom{2 k-5}{2}$. Then there is a TMC $H=(k-2) K_{2}$ in $G^{\prime}-u_{1}$ which contains no color j. We can obtain a TMC $k K_{2}=H \cup u_{1} v_{4} \cup v_{1} v_{2}$ in K_{n}.

Case II. $k=3$.
Without loss of generality, we suppose that G^{\prime} and $G^{\prime \prime}$ are a K_{3} and a P_{3}, respectively. We suppose that K_{n} contains no TMC $3 K_{2}$. Then, $c\left(u_{1} v_{4}\right) \in\{2,5\} \cap\{2,4\}$, i.e., $c\left(u_{1} v_{4}\right)=2, c\left(u_{3} v_{3}\right) \in\{2,4\} \cap\{1$, 4$\}$, i.e., $c\left(u_{1} v_{4}\right)=4, c\left(u_{2} v_{1}\right) \in\{2,5\} \cap\{3,5\}$, i.e., $c\left(u_{1} v_{4}\right)=5$. Now we obtain a TMC $3 K_{2}=u_{1} v_{4} \cup u_{3} v_{3} \cup u_{2} v_{1}$. See Fig. 3 .

Now we turn back to the proof of Theorem 3.3. Let $D(G), A(G), C(G)$ be the canonical decomposition of G and $c(D(G))=q$, $|A(G)|=s,|V(G)|=n$. Since the size of the maximum matchings of G is $k-1$, by Theorem $2.4(e), k-1=\frac{1}{2}(n-q+s)$, i.e., $q=n-2 k+2+s$. Let the components of $D(G)$ be $D_{1}, D_{2}, \ldots, D_{q}$. By Theorem 2.4 (a), the components of the subgraph induced by $D(G)$ are factor-critical, hence we suppose that $\left|V\left(D_{i}\right)\right|=2 l_{i}+1$ for $1 \leq i \leq q$, without loss of generality, $l_{1} \geq l_{2} \geq \cdots \geq l_{q} \geq 0$. Let the components of $C(G)$ be $C_{1}, C_{2}, \ldots, C_{q^{\prime}}$ with $\left|V\left(C_{i}\right)\right|=2 t_{i}$ for $1 \leq i \leq q^{\prime}$.

Fig. 3. We can obtain a TMC $3 K_{2}=u_{1} v_{4} \cup u_{3} v_{3} \cup u_{2} v_{1}$ in K_{n}.

Since $s+q=s+n-2 k+2+s \leq n$, then $0 \leq s \leq k-1$. Moreover,

$$
\begin{aligned}
n=s+\sum_{i=1}^{q}\left(2 l_{i}+1\right)+|C(G)| & \geq s+\left(2 l_{1}+1\right)+\sum_{i=2}^{q}\left(2 l_{i}+1\right) \\
& \geq s+\left(2 l_{1}+1\right)+(q-1) \\
& \geq s+\left(2 l_{1}+1\right)+(n-2 k+2+s-1)
\end{aligned}
$$

hence $2 l_{1}+1 \leq 2 k-2 s-1$. We distinguish four cases to finish the proof of Theorem 3.3.
Case 1. $s=k-1$.
In this case, since $s+q=(k-1)+n-2 k+2+(k-1)=n$, then $C(G)=\emptyset$ and $l_{1}=l_{2}=\cdots=l_{q}=0$. The components of the subgraph induced by $D(G)$ are isolated vertices. We distinguish two subcases to finish the proof of the case.

Subcase 1.1. There is at most one vertex u in $D(G)$ such that $d_{G}(u)<k-1$.
We suppose $v \in D(G)$ and $u \neq v$. Let $G(n-k-1, k-1)$ be the bipartite graph obtained from G by deleting the vertices u, v and the edges spanned by $A(G)$. It is obvious that $u v \in E\left(K_{n}\right)$ and $u v \notin E(G)$, without loss of generality, we suppose $c(u v)=1$. Then the number of edges in $G(n-k-1, k-1)$ whose color is not 1 is at least $(n-k-1)(k-1)-1$. Since $n-k-1 \geq 2$, then $(n-k-1)(k-1)-1>\operatorname{ext}\left(n-k-1, k-1,(k-1) K_{2}\right)=(n-k-1)(k-2)$. By Theorem 2.2, there exists a TMC $H=(k-1) K_{2}$ in $G(n-k-1, k-1)$ which contains no color 1 , thus we obtain a TMC $k K_{2}=H \cup u v$ in K_{n}.

Subcase 1.2. There exist at least two vertices u, v in $D(G)$ such that $d_{G}(u)<k-1$ and $d_{G}(v)<k-1$.
We suppose that $c(u v)=1$. Let $G^{\prime}(n-k-1, k-1)$ be the bipartite graph obtained from G by deleting the vertices u, v and the edges spanned by $A(G)$ and the edge whose color is 1 . Thus there is no $\operatorname{TMC}(k-1) K_{2}$ in $G^{\prime}(n-k-1, k-1)$. Hence, by Theorem 2.2,

$$
\begin{aligned}
|E(G)| & \leq 1+\operatorname{ext}\left(n-k-1, k-1,(k-1) K_{2}\right)+2(k-2)+\binom{k-1}{2} \\
& \leq 1+(k-2)(n-k-1)+2(k-2)+\binom{k-1}{2} \\
& =\binom{k-2}{2}+(k-2)(n-k+2)+1 \\
& <\operatorname{ext}\left(n,(k-1) K_{2}\right)+2
\end{aligned}
$$

which contradicts $|E(G)| \geq \operatorname{ext}\left(n,(k-1) K_{2}\right)+2$.
Case $2.0 \leq s \leq k-2$ and $2 l_{1}+1 \leq 2 k-2 s-3$.
In this case, if $2 k-2 s-3=1$, then $l_{1}=l_{2}=\cdots=l_{q}=0, s=k-2$ and $|C(G)|=2$, hence

$$
\begin{aligned}
|E(G)| & \leq\binom{ s}{2}+s(n-s)+\binom{2}{2} \\
& =\binom{k-2}{2}+(k-2)(n-k+2)+1 \\
& <\operatorname{ext}\left(n,(k-1) K_{2}\right)+2
\end{aligned}
$$

which contradicts $|E(G)| \geq \operatorname{ext}\left(n,(k-1) K_{2}\right)+2$.
If $2 k-2 s-3 \geq 3$, then $0 \leq s \leq k-3$ and

$$
\begin{aligned}
\sum_{i=2}^{q}\left(2 l_{i}+1\right)+\sum_{i=1}^{q^{\prime}}\left(2 t_{i}\right) & =n-s-\left(2 l_{1}+1\right) \\
& \geq n-s-(2 k-2 s-3)=(q-1)+2
\end{aligned}
$$

Thus, if $|C(G)| \geq 2$, then

$$
\begin{aligned}
|E(G)| & \leq\binom{ s}{2}+s(n-s)+\sum_{i=1}^{q}\binom{2 l_{i}+1}{2}+\sum_{i=1}^{q^{\prime}}\binom{2 t_{i}}{2} \\
& \leq\binom{ s}{2}+s(n-s)+\binom{2 l_{1}+1+\sum_{i=2}^{q} 2 l_{i}}{2}+\sum_{i=1}^{q^{\prime}}\binom{2 t_{i}}{2} \\
& \leq\binom{ s}{2}+s(n-s)+\binom{2 l_{1}+1+\sum_{i=2}^{q} 2 l_{i}+\left(\sum_{i=1}^{q^{\prime}} 2 t_{i}-2\right.}{2}+\binom{2}{2} \\
& =\binom{s}{2}+s(n-s)+\binom{n-s-(q-1)-2}{2}+\binom{2}{2} \\
& =\binom{s}{2}+s(n-s)+\binom{2 k-2 s-3}{2}+\binom{2}{2}:=f_{1}(s) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& f_{1}(0)=\binom{2 k-3}{2}+1<\operatorname{ext}\left(n,(k-1) K_{2}\right)+2 \\
& f_{1}(k-3)
\end{aligned} \quad=\binom{k-2}{2}+(k-2)(n-k+2)-(n-k)+2 .
$$

Since $0 \leq s \leq k-3,|E(G)| \leq \max \left\{f_{1}(0), f_{1}(k-3)\right\}<\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$, which contradicts $|E(G)| \geq \operatorname{ext}\left(n,(k-1) K_{2}\right)+2$. If $|C(G)|=0$, then $2 l_{2}+1 \geq 3$ and

$$
\begin{aligned}
|E(G)| & \leq\binom{ s}{2}+s(n-s)+\sum_{i=1}^{q}\binom{2 l_{i}+1}{2}+\sum_{i=1}^{q^{\prime}}\binom{2 t_{i}}{2} \\
& \leq\binom{ s}{2}+s(n-s)+\binom{2 l_{1}+1+\sum_{i=3}^{q} 2 l_{i}+\sum_{i=1}^{q^{\prime}} 2 t_{i}}{2}+\binom{2 l_{2}+1}{2} \\
& \leq\binom{ s}{2}+s(n-s)+\binom{2 l_{1}+1+\sum_{i=3}^{q} 2 l_{i}+\sum_{i=1}^{q^{\prime}} 2 t_{i}+\left(2 l_{2}-2\right)}{2}+\binom{3}{2} \\
& =\binom{s}{2}+s(n-s)+\binom{n-s-(q-1)-2}{2}+\binom{3}{2} \\
& =\binom{s}{2}+s(n-s)+\binom{2 k-2 s-3}{2}+\binom{3}{2}:=f_{2}(s) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& f_{2}(0)=\binom{2 k-3}{2}+3 \\
& f_{2}(1)=\binom{2 k-3}{2}+n-4 k+11 \\
& f_{2}(k-3)=\binom{k-2}{2}+(k-2)(n-k+2)-(n-k)+4 \\
& \quad \leq\binom{ k-2}{2}+(k-2)(n-k+2)+1<\operatorname{ext}\left(n,(k-1) K_{2}\right)+2 .
\end{aligned}
$$

Fig. 4. If $y z_{1} \in E_{G}\left(y, D_{1}\right)$, we can obtain a TMC $k K_{2}=M_{1}^{\prime} \cup M_{2}^{\prime} \cup u v$ in K_{n}.
If $s=0$ and $|E(G)|=\binom{2 k-3}{2}+3$, then $G \cong S G_{1}$. By Lemma 3.4 , we can obtain a TMC $k K_{2}$ in K_{n}. If $s=0, n \geq 2 k+1$ and $|E(G)|=\binom{2 k-3}{2}+2$, then $G \cong S G_{2}$. By Lemma 3.5, we can obtain a TMC $k K_{2}$ in K_{n}. So, if $n \geq 2 k+1$, then $|E(G)| \leq\binom{ 2 k-3}{2}+1<\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$, which contradicts $|E(G)|=\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$. If $n=2 k$ and $k \geq 7$, then $|E(G)| \leq\binom{ 2 k-3}{2}+2=\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$, which contradicts $|E(G)|=\operatorname{ext}\left(n,(k-1) K_{2}\right)+3$. If $n=2 k$ and $3 \leq k \leq 6$, then $|E(G)| \leq\binom{ 2 k-3}{2}+2 \leq\binom{ k-2}{2}+(k-2)(k+2)=\operatorname{ext}\left(n,(k-1) K_{2}\right)$, which contradicts $|E(G)|=\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$.

If $1 \leq s \leq k-3$, then $k \geq 4$ and $|E(G)| \leq \max \left\{f_{2}(1), f_{2}(k-3)\right\}$. So, if $f_{2}(k-3) \geq f_{2}(1)$, then $|E(G)| \leq f_{2}(k-3)<$ $\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$, a contradiction. If $f_{2}(1)>f_{2}(k-3)$, then

$$
\binom{2 k-3}{2}+n-4 k+11>\binom{k-2}{2}+(k-2)(n-k+2)-(n-k)+4
$$

Hence $2 k \leq n<\frac{1}{2}(5 k-7), k>7$ and

$$
\begin{aligned}
|E(G)| & \leq f_{2}(1)=\binom{2 k-3}{2}+n-4 k+11 \\
& <\binom{2 k-3}{2}+\frac{1}{2}(15-3 k) \\
& <\operatorname{ext}\left(n,(k-1) K_{2}\right)+2
\end{aligned}
$$

a contradiction.
Case $3.0 \leq s \leq k-2,2 l_{1}+1=2 k-2 s-1$ and $n \geq 2 k+1$.
In this case, $s+\left(2 l_{1}+1\right)+(q-1)=n$, hence $C(G)=\emptyset, l_{2}=l_{3}=\cdots=l_{q}=0$ and each D_{i} for $2 \leq i \leq q$ is an isolated vertex.

Let $G(q, s)$ be the bipartite graph obtained from G by deleting the edges spanned by $A(G)$ and by contracting the component D_{1} to a single vertex p. Thus by Theorem $2.4(\mathrm{c})$ and (d), we can obtain a maximum matching M of size $k-1$ such that M contains a maximum matching M_{1} of $G(q, s)$ which does not match vertex p and a near-perfect matching M_{2} of D_{1}. Since $q=n-2 k+2+s \geq s+3$, there exist two vertices $u, v \in D(G)-D_{1}$ and $u, v \notin\langle M\rangle$. It is obvious that $u v \in E\left(K_{n}\right)$ and $u v \notin E(G)$. We suppose that $c(u v)=1$, hence there exists an edge $e=y z \in M$ with $c(e)=1$. Now we distinguish two subcases to complete the proof of the case.

Subcase 3.1. $e \in M_{1}$.
In this subcase, $s \geq 1$ and $y z \in E_{G}(A(G), D(G))$, without loss of generality, we suppose that $y \in A(G)$. If there exists an edge $y z_{1} \in E_{G}\left(y, D_{1}\right)$ with $z_{1} \in D_{1}$, then we can obtain another maximum matching M_{1}^{\prime} of $G(q, s)$ with $M_{1}^{\prime}=M_{1} \cup y z_{1}-y z$ and a near-perfect matching M_{2}^{\prime} of D_{1} which does not match z_{1}. Thus we obtain a TMC $k K_{2}=M_{1}^{\prime} \cup M_{2}^{\prime} \cup u v$ in K_{n}. See Fig. 4.

Thus we suppose that $E_{G}\left(y, D_{1}\right)=\emptyset$. There is no matching of size s in $G^{\prime}(q-3, s)=G(q, s)-p-u-v-e$. By Theorem 2.2, $\left|E_{G}\left(G^{\prime}\right)\right| \leq(s-1)(q-3)=(s-1)(n-2 k+s-1)$. Now

$$
\begin{aligned}
|E(G)| & \leq\binom{ s}{2}+\binom{2 k-2 s-1}{2}+1+\left|E_{G}\left(G^{\prime}\right)\right|+\left|E_{G}\left(D_{1}, A(G)\right)\right|+\left|E_{G}(\{u, v\}, A(G))\right| \\
& \leq\binom{ s}{2}+\binom{2 k-2 s-1}{2}+1+(s-1)(n-2 k+s-1)+(2 k-2 s-1)(s-1)+2 s:=f_{3}(s) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& f_{3}(1)=\binom{2 k-3}{2}+3, \\
& f_{3}(2)=\binom{2 k-3}{2}+n-4 k+11,
\end{aligned}
$$

$$
\begin{aligned}
f_{3}(k-2) & =\binom{k-2}{2}+(k-2)(n-k+2)-(n-k)+4 \\
& \leq\binom{ k-2}{2}+(k-2)(n-k+2)<\operatorname{ext}\left(n,(k-1) K_{2}\right)+2
\end{aligned}
$$

If $s=1$, then $|E(G)| \leq\binom{ 2 k-3}{2}+3$. If $|E(G)|=\binom{2 k-3}{2}+3$, then $(G-e+u v) \cong S G_{1}$. By the proof of Lemma 3.4, we can obtain a TMC $k K_{2}$ in K_{n}. If $|E(G)|=\binom{2 k-3}{2}+2$, then $(G-e+u v) \cong S G_{2}$. By the proof of Lemma 3.5 , we can obtain a TMC $k K_{2}$ in K_{n}. If $|E(G)| \leq\binom{ 2 k-3}{2}+1 \leq \operatorname{ext}\left(n,(k-1) K_{2}\right)+1$, this contradicts $|E(G)|=\operatorname{ext}\left(n,(k-1) K_{2}\right)+2$.

If $2 \leq s \leq k-2$, then $k \geq 4$ and $|E(G)| \leq \max \left\{f_{3}(2), f_{3}(k-2)\right\}$. So, if $f_{3}(k-2) \geq f_{3}(2)$, then $|E(G)| \leq f_{3}(k-2)<$ $\operatorname{ext}\left(n,(\bar{k}-1) K_{2}\right)+2$, a contradiction. If $f_{3}(1)>f_{3}(k-3)$, then

$$
\binom{2 k-3}{2}+n-4 k+11>\binom{k-2}{2}+(k-2)(n-k+2)-(n-k)+4
$$

Hence, $2 k \leq n<\frac{1}{2}(5 k-7), k>7$ and

$$
\begin{aligned}
|E(G)| & \leq f_{3}(2)=\binom{2 k-3}{2}+n-4 k+11 \\
& <\binom{2 k-3}{2}+\frac{1}{2}(15-3 k) \\
& <\operatorname{ext}\left(n,(k-1) K_{2}\right)+2
\end{aligned}
$$

a contradiction.
Subcase 3.2. $e \in M_{2}$.
In this subcase, $y \in D_{1}$ and $z \in D_{1}$. By Theorem 2.4 (a), D_{1} is factor-critical, there exists a near-perfect matching M_{2}^{\prime} which does not match y, So M_{2}^{\prime} does not contain $e=y z$. Now we obtain a TMC $k K_{2}=M_{2}^{\prime} \cup M_{1} \cup u v$ in K_{n}.

Case $4.0 \leq s \leq k-2,2 l_{1}+1=2 k-2 s-1$ and $n=2 k$.
In this case, $q=s+2$ and $s+\left(2 l_{1}+1\right)+(q-1)=2 k$, hence $C(G)=\emptyset, l_{2}=l_{3}=\cdots=l_{q}=0$ and each D_{i} for $2 \leq i \leq q$ is an isolated vertex. Now we distinguish two subcases to complete the proof of the case.

Subcase 4.1. $1 \leq s \leq k-2$.
If $E_{G}\left(D_{1}, A(G)\right)=\emptyset$, then

$$
|E(G)| \leq\binom{ 2 k-2 s-1}{2}+\binom{s}{2}+s(s+1):=f_{4}(s)
$$

Thus,

$$
\begin{aligned}
& f_{4}(1)=\binom{2 k-3}{2}+2, \\
& f_{4}(k-2)=\binom{k-2}{2}+(k-2)(k+2)+3-3(k-2)
\end{aligned}
$$

Since $k \geq 3$, then $f_{4}(1) \geq f_{4}(k-2)$ and $|E(G)| \leq \max \left\{f_{4}(1), f_{4}(k-2)\right\}=f_{4}(1)=\binom{2 k-3}{2}+2$. If $k \geq 7$, this contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+3=\binom{2 k-3}{2}+3$. If $3 \leq k \leq 6$, then

$$
\begin{aligned}
|E(G)| & \leq\binom{ 2 k-3}{2}+2 \\
& \leq\binom{ k-2}{2}+(k-2)(k+2)=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)
\end{aligned}
$$

which contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2$.
So we suppose that $E_{G}\left(D_{1}, A(G)\right) \neq \emptyset$. Let $G(s+2, s)$ be the bipartite graph obtained from G by deleting the edges spanned by $A(G)$ and by contracting the component D_{1} to a single vertex p. Thus by Theorem 2.4 (d), we can obtain a maximum matching M of size $k-1$ such that M contains a near-perfect matching M_{1} of D_{1} which does not match w with $w \in D_{1}$ and a matching M_{2} of size s which matches all vertices of $A(G)$ with vertices in $\{w\} \cup\left(D(G)-D_{1}\right)$. Since $E_{G}\left(D_{1}, A(G)\right) \neq \emptyset$, we can suppose that $w \in\left\langle M_{2}\right\rangle$. There exist exactly two vertices $u, v \in D(G)-D_{1}$ and $u, v \notin\langle M\rangle$. It is obvious that $u v \in E\left(K_{n}\right)$ and $u v \notin E(G)$. We suppose that $c(u v)=1$, hence there exists an edge $e=y z \in M$ with $c(e)=1$. Now we distinguish two subcases to complete the proof of Subcase 4.1.

$k_{2 k-3}^{-}=k_{2 k-3}-x z$
$S G_{3}$
Fig. 5. The special graph $S G_{3}$ and $\left|E\left(S G_{3}\right)\right|=\binom{2 k-3}{2}+3$.

Fig. 6. There is no $(k-s-1) K_{2}$ in $D_{1}^{\prime}=D_{1}-w-y z$. If $x^{\prime} y \in E(G)$, there is no $(s-1) K_{2}$ in the bipartite graph $G^{\prime}(s-1, s-1)=G-\left\{D_{1} \cup u \cup v \cup x^{\prime}\right\}$.
Subcase 4.1.1. $e=y z \in M_{1}$.
If $s=1$, then $\left|D_{1}\right|=2 k-3$ and we suppose $A(G)=\{x\}$. Thus the size of M_{1} is $k-2$ and there is no $H=(k-2) K_{2}$ in $D_{1}^{\prime}=D_{1}-w-y z$, for otherwise, we can obtain a TMC $k K_{2}=H \cup x w \cup u v$ in $K_{2 k}$. If $E_{G}(x,\{y, z\}) \neq \emptyset$, say $x y \in E(G)$, then we can obtain a perfect matching M_{1}^{\prime} of $D_{1}-y$ and a TMC $k K_{2}=M_{1}^{\prime} \cup u v \cup x y$ in $K_{2 k}$. So, $E_{G}(x,\{y, z\})=\emptyset$ and

$$
\begin{aligned}
|E(G)| & =1+\left|E_{G}\left(D_{1}^{\prime}\right)\right|+\left|E_{G}\left(w, D_{1}^{\prime}\right)\right|+\left|E_{G}\left(x, D_{1}\right)\right|+\left|E_{G}(x,\{u, v\})\right| \\
& \leq 1+\operatorname{ext}\left(2 k-4,(k-2) K_{2}\right)+(2 k-4)+(2 k-5)+2 \\
& =\binom{2 k-5}{2}+4 k-6 \\
& =\binom{2 k-3}{2}+3 .
\end{aligned}
$$

Denote $S G_{3}$ to be the special graph G shown in Fig. 5, whence $E\left(S G_{3}\right)=E\left(K_{2 k-3}^{-}\right) \cup x u \cup x v \cup y w \cup y z$. Without loss of generality, we suppose that $c(w y)=4$. If $|E(G)|=\binom{2 k-3}{2}+3$, it is easy to check that $G \cong S G_{3}$.

If $k \geq 7$, then by the starting hypothesis $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+3=\binom{2 k-3}{2}+3$, whence $G \cong S G_{3}$. Now $\binom{2 k-4}{2}-1>\operatorname{ext}\left(2 k-4,(k-2) K_{2}\right)$, we can obtain a TMC $H=(k-2) K_{2}$ in $K_{2 k-3}^{-}-w$, whence a TMC $k K_{2}=H \cup y w \cup u v$ in $K_{2 k}$.

If $3 \leq k \leq 6$, then

$$
\binom{2 k-3}{2}+3 \leq\binom{ k-2}{2}+(k-2)(k+2)+1=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+1
$$

which contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2$. If $2 \leq s \leq k-2$, then $k \geq 4$. We suppose that $x \in A(G)$ and $x w \in M_{2}$. By the same token, $E_{G}(x,\{y, z\})=\emptyset$ and there is no $(k-s-1) K_{2}$ in $D_{1}^{\prime}=D_{1}-w-y z$.

If $E_{G}(A(G)-x,\{y, z\}) \neq \emptyset$, say $x^{\prime} y \in E(G)$, then there is no $H=(s-1) K_{2}$ in the bipartite graph $G^{\prime}(s-1, s-1)=$ $G-\left\{D_{1} \cup u \cup v \cup x^{\prime}\right\}$, for otherwise, we can obtain a perfect matching M_{1}^{\prime} in $D_{1}-y$ and a TMC $k K_{2}=M_{1}^{\prime} \cup H \cup u v \cup x^{\prime} y$. See Fig. 6.

Thus,

$$
\begin{aligned}
\left|E_{G}(A(G), D(G))\right|= & \left|E_{G}\left(A(G), D_{1}-y-z\right)\right|+|E(A(G),\{y, z\})|+\left|E_{G}(A(G),\{u, v\})\right|+\left|E_{G}\left(G^{\prime}(s-1, s-1)\right)\right| \\
& +\left|E_{G}\left(x^{\prime}, D(G)-D_{1}-u-v\right)\right| \\
\leq & (2 k-2 s-3) s+2(s-1)+2 s+\operatorname{ext}\left(s-1, s-1,(s-1) K_{2}\right)+(s-1) \\
= & (2 k-2 s-3) s+2 s+(s-1)(s+1) .
\end{aligned}
$$

If $E_{G}(A(G)-x,\{y, z\})=\emptyset$, then

$$
\begin{aligned}
\left|E_{G}(A(G), D(G))\right| & =\left|E_{G}\left(A(G), D_{1}-y-z\right)\right|+\left|E_{G}\left(A(G), D(G)-D_{1}\right)\right| \\
& \leq(2 k-2 s-3) s+s(s+1)
\end{aligned}
$$

So,

$$
\begin{aligned}
\left|E_{G}(A(G), D(G))\right| & \leq \max \{(2 k-2 s-3) s+2 s+(s-1)(s+1),(2 k-2 s-3) s+s(s+1)\} \\
& =(2 k-2 s-3) s+2 s+(s-1)(s+1)
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
|E(G)| & =\binom{s}{2}+1+\left|E_{G}\left(D_{1}^{\prime}\right)\right|+\left|E_{G}\left(w, D_{1}^{\prime}\right)\right|+\left|E_{G}(A(G), D(G))\right| \\
& \leq\binom{ s}{2}+1+\binom{2 k-2 s-3}{2}+(2 k-2 s-2)+(2 k-2 s-3) s+2 s+(s-1)(s+1):=f_{5}(s)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& f_{5}(2)=\binom{2 k-3}{2}-2 k+11 \\
& f_{5}(k-2)=\binom{k-2}{2}+(k-2)(k+2)-k+4 \\
& \quad<\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2
\end{aligned}
$$

If $4 \leq k \leq 6$, then $f_{5}(k-2) \geq f_{5}(2)$ and $|E(G)| \leq \max \left\{f_{5}(2), f_{5}(k-2)\right\}=f_{5}(k-2)<\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2$, which contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2$.

If $k \geq 7$, then $f_{5}(2) \geq f_{5}(k-2)$ and $|E(G)| \leq \max \left\{f_{5}(2), f_{5}(k-2)\right\}=f_{5}(2)=\binom{2 k-3}{2}-2 k+11<\binom{2 k-3}{2}=$ $\operatorname{ext}\left(2 k,(k-1) K_{2}\right)$, which contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+3$.

Subcase 4.1.2. $e=y z \in M_{2}$.
Without loss of generality, we suppose that $y \in A(G)$.
If $s=1$, then $A(G)=\{y\}, y z=y w$ and $c(y w)=c(u v)=1$. Then $E_{G}\left(y, D_{1}-w\right)=\emptyset$, for otherwise, say $y w^{\prime} \in E_{G}\left(y, D_{1}-w\right)$ with $w^{\prime} \in\left(D_{1}-w\right)$, we can obtain a TMC $H=(k-2) K_{2}$ in $D_{1}-w^{\prime}$ and a TMC $k K_{2}=H \cup y w^{\prime} \cup u v$ in $K_{2 k}$. So,

$$
|E(G)|=\left|E_{G}\left(D_{1}\right)\right|+\left|E_{G}(y,\{w, u, v\})\right| \leq\binom{ 2 k-3}{2}+3
$$

If $3 \leq k \leq 6$, then

$$
\binom{2 k-3}{2}+3 \leq\binom{ k-2}{2}+(k-2)(k+2)+1=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+1
$$

which contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2$.
If $k \geq 7$, since $|E(G)|=\binom{2 k-3}{2}+3$, it is easy to check that $(G-e+u v) \cong S G_{1}$. By the proof of Lemma 3.4, we can obtain a TMC $k K_{2}$ in $K_{2 k}$.

If $2 \leq s \leq k-2$, first we look at the bipartite graph $G(s+2, s)$. We suppose that M_{2}^{\prime} is any maximum matching of size s in $G(s+2, s)$ with $p \in\left\langle M_{2}^{\prime}\right\rangle$ and $u_{1}, v_{1} \notin\left\langle M_{2}^{\prime}\right\rangle$. By Subcase 4.1.1, we can suppose that there exists an edge $e_{1} \in M_{2}^{\prime}$ such that $c\left(e_{1}\right)=c\left(u_{1} v_{1}\right)$. If $d_{G(s+2, s)}(p)=s$ and there is at most one vertex u_{2} in $D(G)-D_{1}$ such that $d_{G(s+2, s)}(u) \leq s-1$, we suppose $v_{2} \in D(G)-D_{1}$ and $u_{2} \neq v_{2}$. Let $G(s, s)$ be the bipartite graph obtained from $G(s+2, s)$ by deleting the vertices u_{2}, v_{2}. It is obvious that $u_{2} v_{2} \in E\left(K_{n}\right)$ and $u_{2} v_{2} \notin E(G)$. Then the number of edges in $G(s, s)$ whose color is not $c\left(u_{2} v_{2}\right)$ is at least $s^{2}-1$. Since $s \geq 2$, then $s^{2}-1 \geq \operatorname{ext}\left(s, s, s K_{2}\right)=s(s-1)+1$. By Theorem 2.2, there exists a TMC $H=s K_{2}$ in $G(s, s)$ which contains no color $c\left(u_{2} v_{2}\right)$, thus we obtain a TMC $(s+1) K_{2}=H \cup u_{2} v_{2}$. By Theorem 2.4 , we can obtain a TMC $k K_{2}$ in $K_{2 k}$.

So, if $d_{G(s+2, s)}(p)=s$, then we suppose there exist at least two vertices u_{3}, v_{3} in $D(G)-D_{1}$ such that $d_{G(s+2, s)}\left(u_{3}\right) \leq s-1$ and $d_{G(s+2, s)}\left(v_{3}\right) \leq s-1$. Let $G^{\prime}(s, s)$ be the bipartite graph obtained from $G(s+2, s)$ by deleting the vertices u_{3}, v_{3} and the edge whose color is $c\left(u_{3} v_{3}\right)$. Thus there is no TMC $s K_{2}$ in $G^{\prime}(s, s)$. By Theorem 2.2, $E(G(s+2, s)) \leq 1+2(s-1)+s(s-1)$ and

$$
\left|E_{G}(A(G), D(G))\right| \leq 1+2(s-1)+s((2 k-2 s-1)+(s-2))=1+2(s-1)+s(2 k-s-3)
$$

Now we suppose that $d_{G(s+2, s)}(p) \leq s-1$. Since $E\left(A(G), D_{1}\right) \neq \emptyset$, if there exists an edge $w^{\prime \prime} x^{\prime} \in E\left(A(G), D_{1}\right)$ with $x^{\prime} \in A(G), w^{\prime \prime} \in D_{1}$ and $w^{\prime \prime} x^{\prime} \neq w x$. Thus there is no TMC $H=(s-1) K_{2}$ in $G(s+2, s)-\left\{p \cup u \cup v \cup x^{\prime}\right\}-y z$, for otherwise, we can obtain a TMC $(s+1) K_{2}=H \cup u v \cup w^{\prime \prime} x^{\prime}$, a TMC $(k-s-1) K_{2}$ in $D_{1}-w^{\prime \prime}$ and a TMC $k K_{2}$ in $K_{2 k}$. We have

$$
\begin{aligned}
\left|E_{G}(A(G), D(G))\right| & \leq\left|E_{G}\left(A(G), D_{1}\right)\right|+(s-1)(s-2)+1+\left|E_{G}\left(x^{\prime}, D(G)-D_{1}-u-v\right)\right|+\left|E_{G}(A(G),\{u, v\})\right| \\
& \leq(2 k-2 s-1)(s-1)+(s-1)(s-2)+1+(s-1)+2 s \\
& =(2 k-2 s-1)(s-1)+s^{2}+2
\end{aligned}
$$

Fig. 7. G is isomorphic to one of the above three graphs.
If $E\left(A(G), D_{1}\right)=\{x w\}$, then

$$
\left|E_{G}(A(G), D(G))\right| \leq 1+s(s+1)
$$

Thus,

$$
\begin{aligned}
\left|E_{G}(A(G), D(G))\right| & \leq \max \left\{1+2(s-1)+s(2 k-s-3),(2 k-2 s-1)(s-1)+s^{2}+2,1+s(s+1)\right\} \\
& =1+2(s-1)+s(2 k-s-3)
\end{aligned}
$$

So,

$$
|E(G)| \leq\binom{ s}{2}+\binom{2 k-2 s-1}{2}+1+2(s-1)+s(2 k-s-3):=f_{6}(s)
$$

We have

$$
\begin{aligned}
f_{6}(2) & =\binom{2 k-3}{2}+3 \\
f_{6}(3) & =\binom{2 k-3}{2}-2 k+12 \\
f_{6}(k-2) & =\binom{k-2}{2}+(k-2)(k+2)-k+4 \\
& <\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2
\end{aligned}
$$

If $s=2$ and $|E(G)|=f_{6}(2)=\binom{2 k-3}{2}+3$, then it is easy to check that G has a structure shown in Fig. 7. By the proof Lemma 3.4, we can obtain a TMC $k K_{2}$ in $K_{2 k}$.

If $3 \leq s \leq k-2$, then $k \geq 5$. If $5 \leq k \leq 6$, then $f_{6}(k-2)=f_{6}(3)$ and $|E(G)| \leq f_{6}(k-2)<\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2$, which contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+2$. If $k \geq 7$, then $f_{6}(3)>f_{6}(k-2)$ and $|E(G)| \leq f_{6}(3)=\binom{2 k-3}{2}-2 k+12<$ $\binom{2 k-3}{2}=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)$, which contradicts $|E(G)|=\operatorname{ext}\left(2 k,(k-1) K_{2}\right)+3$.

Subcase 4.2. $s=0$.
In this subcase, $\left|V\left(D_{1}\right)\right|=2 k-1$ and $q=2$. We suppose that $z_{1} \in D_{1}$ and $D_{2}=\left\{z_{2}\right\}$. Let M be a perfect matching of $D_{1}-z_{1}$. Then there exists an edge $e \in M$ such that $c(e)=c\left(z_{1} z_{2}\right)$. So, there is no TMC $(k-1) K_{2}$ in $D_{1}-z_{1}-e$. Let D_{1}^{\prime} be $D_{1}-z_{1}-e$, and $D\left(D_{1}^{\prime}\right), A\left(D_{1}^{\prime}\right)$ and $C\left(D_{1}^{\prime}\right)$ be the canonical decomposition of D_{1}^{\prime}. We look at the graph $G_{1}=G-e+z_{1} z_{2}$. Let $A^{\prime}\left(G_{1}\right)=A\left(D_{1}^{\prime}\right) \cup z_{1}$ and $D^{\prime}\left(G_{1}\right)=D\left(D_{1}^{\prime}\right) \cup z_{2}$ and $C^{\prime}\left(G_{1}\right)=C\left(D_{1}^{\prime}\right)$. Let $\left|A^{\prime}\left(G_{1}\right)\right|=s^{\prime}$, $q^{\prime}=c\left(D^{\prime}\left(G_{1}\right)\right)=c\left(D\left(D_{1}^{\prime}\right)\right)+1=(2 k-2)-2(k-2)+s-1+1=s+2$. Obviously, $1 \leq s^{\prime} \leq k-1$. Employing a similar technique as in the proofs of Cases 1,2 and Subcase 4.1, we can obtain contradictions. The details are omitted. Now, the proof is complete.

Acknowledgments

The authors are very grateful to the referees for their helpful comments and suggestions.

References

[^1]
[^0]: Th Supported by NSFC, PCSIRT and the " 973 " program.
 E-mail addresses: lxı@nankai.edu.cn, xueliangli@yahoo.com.cn (X. Li).

[^1]: [1] N. Alon, On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 7 (1983) 91-94.
 2] M. Axenovich, A. Kündgen, On a generalized anti-Ramsey problem, Combinatorica 21 (2001) 335-349.
 [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976, Elsevier, New York.
 4] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sc. Hungar. 10 (1959) 337-356.
 [5] P. Erdős, M. Simonovits, V.T. Sós, Anti-Ramsey theorems, in: A. Hajnal, R. Rado, V.T. Sós (Eds.), Infinite and Finite Sets, Vol. II, in: Colloq. Math. Soc. János Bolyai, vol. 10, 1975, pp. 633-643.
 [6] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs Combin. 18 (2002) 303-308.
 [7] T. Jiang, D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274 (2004) 137-145.
 [8] L. Lovâsz, M.D. Plummer, Matching Theory, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1986.
 [9] J.J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs Combin. 21 (2005) 343-354.
 [10] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286 (2004) 157-162.
 [11] M. Simonovits, V.T. Sós, On restricted colourings of K_{n}, Combinatorica 4 (1984) 101-110.

