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1. Introduction

The theory of complexes of directed trees was initiated by Kozlov [18] to answer a question by Stanley. Babson and
Kozlov used results from the theory in their proof of the Lovasz conjecture [1]. In this paper we study three ways to connect
topology with combinatorics by constructing simplicial complexes:

Name  Base object Restriction on simplices
DT(G) Directed graph G They are directed forests of G.
Ind(G)  Undirected graph G No vertices are adjacent in G.

AR, (P) Pointset P in metric space  No two vertices within distance r.

To decide the homotopy type of complexes on directed graphs, Kozlov [ 18] constructed complexes on undirected graphs.
In the second part of this paper we show that by moving the problems into complexes on point sets of metric spaces,
the homotopy type can be determined for several classes, and naturally generalized. The first section treats complexes on
directed graphs. It is shown that certain complexes are shellable, for example those on directed acyclic graphs.

The general reference to combinatorial topology methods used in this paper is the survey [3].

2. Complexes of directed trees

In this section all graphs are directed. A directed forest is an acyclic graph with at most one edge directed to each vertex.
Equivalently, a directed forest is a collection of disjoint directed trees with all edges oriented away from the root.

Definition 2.1. Let G be a directed graph. The complex of directed trees, DT(G) has the edges of G as vertex set. A set of edges
is a simplex of DT(G) if the edges viewed as a graph is a directed forest.
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Fig. 1. GraphG.
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Fig. 2. Maximal faces F; and F, of DTg(G).

Constructing simplicial complexes from graphs can, in principle, be done in two ways: For graphs that satisfy certain
properties either their edges or their vertices form a simplex. For complexes of directed trees it is the edges, but later on
complexes of the other kind are used.

A directed forest H C G is maximal if H' is not a directed forest forany H C H’ C G. The roots of a directed forest are the
roots of the trees in the forest. A maximal face of DT(G) is the edge set of a maximal directed forest in G, and the other way
around.

Definition 2.2. Let R C V(G). The simplicial complex DTz(G) € DT(G) is generated by the faces of DT(G) which are edge
sets of directed forests with R as roots.

The maximal (with respect to inclusion) forests in DT(G) with roots R are the maximal faces of DTr(G).

Definition 2.3. An edge (x — y) of G is nice in a subcomplex A of DT(G) if

(i) there is an edge (z — y) in A such that z # x;
(ii) any forest F € A without an edge directed to y can be extended with (x — y),and F U {(x — y)} € A.

Example 2.4. Let G be the directed graph in Fig. 1. Let us find some nice edges in DT(G), where R = {1, 4}. The maximal
faces are drawn in Fig. 2. We partition the vertices into left and right sides of a dotted line: A vertex v is on the left side if
the tree which v is in has the same root r in all maximal faces of DT (G), and the path from r to v is the same in all maximal
faces of DTg(G). All other vertices are on the right side. The union of F; and F, with their vertices partitioned is depicted in
Fig. 3. In this example it is not hard to see that the edges crossing the dotted line are nice.

Proposition 2.5. All edges crossing the dotted line in a construction as in Example 2.4 are nice if the maximal faces have the same
roots.

Proof. First we need to show that an edge (z — w) can only cross the dotted line from left to right. Assume the contrary,
i.e. that (z — w) is from right to left. Since w is on the left, the tree which w is in has the same root r in all maximal faces,
and the path from r to w is the same. The vertex before w in that path is always the same, and (z — w) is in a maximal
face, so the vertex is z. But then the path from r to z is the same in all maximal faces, and z should be on the left side, which
is a contradiction.

Assume that (x — y) is an edge crossing the dotted line and that the maximal faces are {F;}ic;.

The vertex y is not a root, hence there is an edge to y in all maximal faces. If (x — y) were the only edge to y in U F;,
it would be in all maximal faces. But then the path to y is the same in all maximal faces, and y would be on the left side.
Since y is on the right side, there is an edge (z — y) such that z # x. Therefore condition (i) of the definition of nice edges
is satisfied.

If (x — y) does not induce a directed cycle when added to a face, then condition (ii) is fulfilled. A directed cycle which
contains (x — y) as an edge would cross the dotted line at least twice. But all edges crossing the dotted line go from left to
right, hence (x — y) cannot induce a directed cycle. O
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Fig. 3. The union of F; and F, with their vertices partitioned.

Lemma 2.6. If R C V(G) is nonempty, and DT(G) has more than one maximal face, then there is an edge (x — y) € E(G)
which is nice in DT(G).

Proof. Construct the left/right-partition of the vertices as in Example 2.4. If there are no edges crossing the dotted line,
all edges are on the left side, and there is only one maximal face. Hence there is an edge crossing the dotted line, and by
Proposition 2.5 that edge is nice. O

Definition 2.7. A simplicial complex A is shellable if its maximal faces can be ordered Fi, F,, ..., F, such that for all
1<i<k<nthereare1 <j < kande € F,suchthat ;N F, C FNF, = F\ {e}.

Lemma 2.8. Let F; # F, be maximal faces of DTg(G), and (x — y) € F; \ Fy a nice edge in DTg(G). Then there is a maximal face
Fj of DTg(G), and an e € Fy, such that F; N F, € F; N F, = F \ {e}.

Proof. There is an edge (z — y) in F, since it is maximal and y ¢ R. Replace it with (x — y) to construct F;. From the
definition of nice edges we have that F; € DTg(G). Now F; N Fy = F, \ {(z — y)}. Since (x — y) € F;and (z — y) ¢ F;, we
concludethat FNF =FN(F\{z—> ) CR\{z—=>»}=FNF. O

Theorem 2.9. DTy (G) is shellable for any @ # R C V(G).

Proof. The proof is by induction over the number of maximal faces. If DTz(G) has one maximal face, it is a simplex, and
thus shellable. Assume that DTz(G) has more than one maximal face. By Lemma 2.6 there is a nice edge (x — y). Define
G, G’ C G as follows:

EG)=E@\{z—>ylz#x EG)=EG)\{kx—>

A maximal face of DTz(G) has exactly one edge to y, thus the set of maximal faces of DTR(G) is the disjoint union of the
sets of maximal faces of DTg(G') and DTg(G"). Since (x — y) is nice, it is in some, but not in all maximal faces of DT(G).
Both DTR(G’) and DT(G”) have smaller numbers of maximal faces than DTk (G), so by induction they are shellable. Order
the maximal faces of DTk (G):

Fi,F, ..., F, Fei1, Feas ooy Fras
— —
Shelling order of DTr(G'), (x—y) €F}. Shelling order of DT (G"), (x—y)&F).

Ifforall1 <i<k<s+t, thereare1 <j < kand (z — w) € F,suchthat FNF, C FFNF, = F.\ {(z — w)}, then DTz(G)
isshellable.If 1 <i<k <tort <i<k<s+twearedone. Assumel <i<t <k<s+t.

The nice edge (x — y) is in F;, but not in F. Construct F; as described in Lemma 2.8. The edge (x — y)isinFj,soj <t <k,
and we have a shelling order. O

A directed acyclic graph is a directed graph without directed cycles. It is not hard to see that the vertices of a directed
acyclic graph G can be ordered so that if (x — y) € E(G), then x is before y. This is usually called the topological order. Let R
be the set of vertices of G with no edges directed to them. The first vertex in the order is in R, so the set is not empty. Since G
is a directed acyclic graph, so are all its subgraphs. Hence the maximal subgraphs, with at most one edge to each vertex, are
the maximal forests. All maximal forests contain an edge to each vertex in V(G) \ R. Hence the roots of all maximal forests
are R, and DT(G) = DTy (G).
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Corollary 2.10. If G is a directed acyclic graph, then DT(G) is shellable.

A pure shellable simplicial complex A is homotopy equivalent to a wedge of spheres of the same dimension as A, or
it is contractible. Thus, by calculating the Euler characteristic of A, its homotopy type can be determined. See Bjérner and
Wachs, [6], for a proof of that, and further extensions.

Denote with d~ (v) the number of edges directed to a vertex v.

Lemma 2.11. If Gis a directed acyclic graph with at least one edge, then

xoTe) =— [] a—-d @,

veV(G)\R
where R is the set of vertices without edges directed to them.

Proof. The proof is by induction over the number of vertices not in R. If there is only one vertex not in R, then the complex
DT(G) is homotopy equivalent to d~ (v) disjoint points, and the formula is true.

If V(G) \ R has at least two vertices, order the vertices so that if (x — y) € E(G), then x is before y, and so that all vertices
of R come before the other ones. Denote the last vertex in this order with w. Let G’ be the induced subgraph of G with vertex
set V(G) \ {w}. Since w is the last one ordered, there are no edges from w, and E(G) \ E(G') are the d~ (w) edges to w.

Let (i) be the number of subgraphs of G which are forests with i edges, and «’(i) similarly for G'. A forest with i edges in
G either has no edge to w, or one of the d~ (w) edges to w, hence fori > 0

a(d) =d' (@) +d (w)a'(i—1).
Clearly «(0) = ’(0) = 1. The reduced Euler characteristic of DT(G) is

X(OTG) = Y (=D a()

i>0
=—1+ Z(—l)f+1 (¢ () +d~(w)a' (i — 1))
i>1
= —14+ ) DM () +d- @) Y (=D~ 1)
i>1 i>1
=Y (=) () —d~(w) Y (=D (i)
i>0 i=0

=(1—d )Y (-D"a'()

i>0
= (1—d (w)x (DT(G)).

Substituting the formula for y (DT(G')) concludes the proof. O

Theorem 2.12. If Gis a directed acyclic graph, then DT(G) is homotopy equivalent to a wedge of HUEV(G)\R (d=(v) — 1) spheres
of dimension #V (G) — #R — 1, where R is the set of vertices without edges directed to them.

Proof. The complex DT(G) is shellable by Corollary 2.10, and the reduced Euler characteristic is & ]_[vev(c)\R(d*(v) -1
by Lemma 2.11. The maximal faces of DT(G) are the maximal forests of G. Since the forests have edges exactly to the
vertices with non-zero in-degree, there are #V (G) — #R edges in a maximal forest, and the dimension of a maximal face is
#V(G) —#R—-1. O

Corollary 2.13. If G is a directed acyclic graph, then the following statements are equivalent:

DT(G) is a cone with one of the edges of G as apex.
There is an edge of G which is in all maximal forests.
There is a vertex in G with in-degree 1.

The product of all (d~(v) — 1) for v € V(G) is zero.
DT(G) is contractible.

Proof. Follows directly from Theorem 2.12 and its proof. O

Several of the results in this section, in particular Theorem 2.9, can be put into the context of greedoids and proved with
methods from [4].
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3. Independence complexes

In the previous section the graphs were directed, but from now on all graphs are assumed to be undirected. A subset of
the vertex set of a graph is independent if no two vertices in it are adjacent. In a graph G, the neighborhood of a vertex v,
Ng(v) is the set of vertices which are adjacent to v. If it is clear which G is meant, we just write N (v).

The vertex set of a simplicial complex A is denoted A©. The link of a vertex v of Aislk,(v) ={c € A |v € 5,0 U {v}
€ A}. The starof vin A is sty (v) = {v} * lka(v). f W C V(G) then G[W] is the induced subgraph with vertex set W, and
G\ W = G[V(G) \ W]. Similarly for simplicial complexes, if W € A©® then A[W] is the induced subcomplex of faces in A
contained in W,and A\ W = A[A©@ \ W].

Definition 3.1. Let G be an undirected graph. The independence complex of G, denoted Ind(G), is a simplicial complex with
vertex set V(G), and o € Ind(G) if o is an independent set of G.

Proving the following standard facts is a good exercise to get acquainted with independence complexes.

IfA C V(G) then Ind(G[A]) = Ind(G)[A].

IfA, B C V(G) then Ind(G[A]) N Ind(G[B]) = Ind(G[A N B)).

If v € V(G) then Ik (v) = Ind(G \ (N(v) U {v})), and stipqc)(v) = Ind(G \ N(v)) = v * lKipq(c) (V).
If Ind(G \ (N(v) U {v})) is contractible, then Ind(G) =~ Ind(G \ v)

If v € V(G) then Ind(G) is the union of stjyq(c) (v) and Uy en(w) Stindc) (W).

Ifv, w € V(G) are adjacent and N(v) \ {w} € N(w) \ {v}, then stiq(c) (v) 2 Kinde) (w).

If the neighborhood of a vertex v is included in the neighborhood of another vertex, the removal of v from the graph
is called a fold. In the theory of Hom-complexes fold is a fundamental tool for reducing the size of the input graphs while
preserving the simple homotopy type, see [17]. But in contrast with folds for Hom-complexes, the vertex with the larger
neighborhood is removed to preserve the simple homotopy type of an independence complex.

Lemma 3.2. If N(v) € N(w) then Ind(G) collapses onto Ind(G \ {w}).

Proof. Match each maximal o, such that w € o and v ¢ o, with o U {v}, and remove them by an elementary collapse step.
Repeat this until all o such that w € o are gone. O

In particular, if N(u) = {v} and w € N(v) \ {u}, then Ind(G) collapses onto Ind(G \ {w}).

Proposition 3.3 ([9]). If Gis a forest then Ind(G) is either contractible or homotopy equivalent to a sphere.

Proof. It is sufficient to show that successive use of Lemma 3.2 starting with G gives a graph H with no adjacent edges, since
Ind(H) is either contractible or homotopy equivalent to a sphere, and each use of the lemma provides a collapse.

The proof is by induction on the number of edges. If there are no adjacent edges we are done. If G is a forest with some
adjacent edges, then there is a vertex u with only one neighbor v, such that there is a vertex w in N(v) \ {u}. By Lemma 3.2,
we can remove w from G, and by induction G \ {w} can be reduced to a graph without adjacent edges. O

Actually we proved something stronger, that Ind(G) collapses to either the boundary of a crosspolytope or a point.

Proposition 3.4. Let G be a graph, v, w distinct non-adjacent vertices of G, and G’ the graph G extended with an edge between
v and w. If Ind(G") is k-connected and Ind(G" \ (Ng(v) U Ng(w))) is (k — 1)-connected, then Ind(G) is k-connected.

Proof. Recall the gluing lemma [3, 10.3(ii)]; if A; and A, are k-connected, and A1 N A, is (k — 1)-connected, then A; U A,
is k-connected. Let A; = Ind(G") and A, = Ind(G \ (Ng(v) U Ng(w))). The complex A is k-connected by assumption, and
A, is k-connected since it is a cone. Using A = {0 € Ind(G) | {v, w} € o} and A; = {o € Ind(G) | o U {v, w} € Ind(G)},
we get that A; U Ay = Ind(G), and A1 N Ay = Ind(G' \ (Ng(v) U Ng(w))) which is (k — 1)-connected. The result follows
from the gluing lemma. O

We denote that two topological spaces X and Y are homotopy equivalent by X =~ Y. Let {x; € X;}i; be a finite set of
pointed topological spaces. The wedge V¢ X; is the topological space one gets by identifying all of the x;s. The topology of
the wedge of spaces does not depend on how the spaces are pointed [3].

Definition 3.5. A set of maximal simplices from a simplicial complex A are generating simplices if the removal of their
interiors makes A contractible. Analogously, if § is a set of maximal open faces of A such that A \ § is contractible, then §
are generating faces of A.

Note that if § are generating faces of A, then A >~ V,¢g sd4ime A shellable complex has generating faces, they are exactly
the ones glued over their whole boundary when added. It is not hard to find complexes with generating faces that are not
shellable, or to find complexes without generating faces. If § are generating faces of A’, A collapses onto A’,and all o € §
are maximal in A, then § are generating faces of A.

To calculate the homotopy type of complexes in this section, a suitable subcomplex is found and contracted. Of course
one can smash any contractible subcomplex, but the resulting identifications can be ugly. Our main vehicle is this lemma
by Bjorner.
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Lemma 3.6 ([3, Theorem 10.4(ii)]). Let A = AgU AU - --U A, be asimplicial complex with subcomplexes A;. If A;NA; € Ao
forall1 <i < j < n,and A;is contractible for all 0 < i < n, then

A~ \/ susp(4p N A)).

1<i<n

Lemma 3.6 is a special case of [2, Theorem 2.1], which can be used to generalize both Theorems 3.7 and 3.11. However, the
amount of technicalities do not match the increased number of applications at this point.
Two degenerate cases working well with Lemma 3.6 are that susp(¥) = S°, and that the wedge of nothing is a point.

Theorem 3.7. If all vertices in the neighborhood of u € V(G) are adjacent then
Ind(G) ~ \/ susp(Ind(G\ (N(u) UN(v)))),

veN(u)

and the union of

U t aed |J {luoloeg)
veN(u) veN(u)
G\(N () UN (v))=0 G\(N () UN (1)) ##
are generating faces of Ind(G), if , are generating faces of Ind(G \ (N(u) U N(v))).

Proof. We prove this by smashing the star of u with Lemma 3.6 in two ways. First let A, = Stinqg) (1), and A, = Stinae) (V)
for all v € N(u). Clearly their union is Ind(G), and they are all contractible. If v and w are different vertices in N(u), then
A,NA, = Stlnd(G) (U) N Stlnd(G)(w) E lklnd(G) (U) Nw * ll(]nd((;) (w) = ll(]nd(c)(l)) n 11(]nd(5)(w) since v and w are adjacent.
Using that N(u) \ {v} € N(v) \ {u} and Nu) \ {w} C N(w) \ {u}, we get that Ikina) (v) N Kina(e () € Stinaiey (1) = Ay
The conditions of Lemma 3.6 are satisfied, and therefore

Ind(G) ~ \/ susp(A, N Ay)
veN(u)

= \/ suspInd(G \ (N(u) UN(v))).

veN(u)

Now to the second part of the theorem. Let V = {v € N(u) | G\ (N(u) U N(v)) # @}. Assume that §, are generating faces
of Ind(G \ (N(u) UN(v))) for v € V. Let § be the union of

U o) and | Jtwiuo o egu).

veN(u)\V veV

To begin with, we need to prove that each element of § is a maximal face of Ind(G). Let o be a maximal face of
Ind(G \ (N(u) UN(v))).Then {v} U ¢ is maximal in Ind(G \ (N(u) \ {v})), and also in Ind(G), since all vertices in N (u) \ {v}
are adjacent to v. If G\ (N(u) UN(v)) = @ forav € N(u), then N(v) = V(G) \ {v}, and {v} is maximal in Ind(G).

To conclude that § are generating faces of Ind(G) we also need to prove that A" = A\ § is contractible. For each v € V let
A =vx(Ind(G\ (N(u) UN(v))) \ $»). It is not hard to see that A" is the union of A, and U,y A}, All A} are contractible,
and for different v, w € V, Al N A}, € A, N A,  A,. By Lemma 3.6

A~ \/ susp(4, N A))

veV

= \/ susp(stinae (@) N v * (IN(G \ (N(u) UN@®))) \ §1))

veV

= \/ susp(Ind(G \ (N(u) UN(v))) \ $»)

veV

~ \/ susp(point)

veV

\/ point

veV
2~ point.

12

Thus g are generating faces of Ind(G). O

In [18] the complex cCﬁ was defined as the independence complex of the graph with vertex set {1, 2, ...n}, and two
vertices i < j are adjacent if j — i < k. The homotopy type £’,§, as well as its generating faces, were calculated for k = 2, and
for k > 2 stated as an open question. For convenience define ng; =f@ifn <0.
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Corollary 3.8. Forallk > 2andn > 1

Ly~ \/  susp(L£, ).

1<i<min(k,n)

Proof. The neighborhood of 1is {2, 3, ..., min(k, n)}, and any two different vertices of it are adjacent.
£’,§ ~ \/ susp(Ind(G \ (N(1) UN())))
ieN(1)
min(k,n)
=/ susp(nd(GLy | k+i<j<n}])
milnz(lf.n)
~ \/ susp(nd(Gl{j [ 1<j<n—k—i+1}])
i=2
miln(k,n)

= \/ susp(£y i)

i=2

= \/ susp(£f ). O

1<i<min(k,n)

Example 3.9. The generating faces of £ produced by recursive use of Theorem 3.7, with u = 1, are

n gf 4 {2,{3} 8  {2,6),{27}(3,7}. (3,8}

1 9 5 {3} 9 {2,7,{3,7).(3,8}

2 {2} 6 (2,6} 10 {3,8},{2,6, 10}

3 {2L{3) 7 {2.6},{2,7},{3.7} 11 {2,6,10}{2.6,11}{2,7, 11}, {3,7, 11}

Corollary 3.10. Let G be a graph with three distinct vertices u, v and w, such that N(u) = {v, w}, and {v, w} & E(G). If
Ind(G \ (N(u) UN(v))) and Ind(G \ (N(u) U N(w))) are (k — 1)-connected, and Ind(G \ (N(u) U N(v) UN(w))) is (k — 2)-
connected, then Ind(G) is k-connected.

Proof. Let G’ be the graph G extended with an edge between v and w. By Proposition 3.4 it suffices to prove that Ind(G') is
k-connected and Ind(G’ \ (Ng(v) U Ng(w))) is (k — 1)-connected. The neighborhood of u in G’ is the complete graph, so by
Theorem 3.7,

Ind(G)

12

susp(Ind(G" \ (Ng(u) U Ng(v)))) V susp(Ind(G"\ (Ng(w) U Ng(w))))
susp(Ind(G \ (Ng(u) U Ng(v)))) V susp(Ind(G \ (Ng(u) U Ng(w)))).

The suspension of a (k — 1)-connected complex is k-connected, and the wedge of k-connected complexes is k-connected,
thus Ind(G") is k-connected. The neighborhood of v in G\ (Ng(v) UNg(w)) is a complete graph, so once again by Theorem 3.7,

Ind(G" \ (Ng(v) U Ng(w))) = susp(Ind((G" \ (Ng(v) UNg(w))) \ {v, w}))
= susp(Ind(G \ (Ng(u) U Ng(v) U Ng(w)))).

The suspension of a (k—2)-connected complex is (k—1)-connected, hence Ind(G'\ (Ng (1) UNg(v))) is (k—1)-connnected. O
The previous theorem can be used when we find a complete subgraph of G with a vertex without neighbours outside the

subgraph. Removing the condition of the special vertex forces other conditions.

Theorem 3.11. Let K be a subset of V(G) such that G[K] is a complete graph, and § are generating faces of Ind(G \ K), such
that for each k € K and o € §, at least one of the vertices in o is adjacent to k. Then

Ind(G) ~ Ind(G \ K) Vv \/ susp(Ind(G \ (K U N(k)))).

keK

Let K" ={k € K| G\ (KUN(k)) #£ @}. If Gy are generating faces of Ind(G \ (K U N(k))) for each k € K’, then the union of
9. J ik, and (JUkUalo € gi)

keK\K’ kek’

are generating faces of Ind(G).
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Proof. The proof is in the same spirit as that of Theorem 3.7. The subcomplex Ay = Ind(G \ K) \ 4 will be contracted. Let
A =Ind(G\ N(k)) foreachk € K,and A, = {0 | 0 C t}foreacht € 4.

If o € Ind(G) does not contain any vertex from K, theno € A, ifo € §,ando € Agifo € §.1fo € Ind(G) and k € o
forak € K, then o € Ay. Hence the union of these subcomplexes is A = Ind(G).

Now we check that the required intersections are subcomplexes of A,. Note thatif o € § and k € K, then o ¢ A since
by assumption there is a vertex in o adjacent to k. If k; and k, are two different elements of K, then Ay, N Ay, € Ind(G\ K)
since G[K] is a complete graph and k;, k, € K.Since o € Ay, forany o € §, Ay, N Ay, S Ind(G\K) \ § = Ap.Ifk € K and
o € §,then A, N A, < Ind(G \ K) since o € Ind(G \ K), moreover A, N A, € Ind(G \ K) \ § = Ay since Ay is disjoint
from §. If o1 and o, are different elements of §, then A,, N A,, € Ag since o1 € Ay, and oy & Ay,

By Lemma 3.6

Ind(G) ~ (\/ susp(Ag N Ak)) \/ (\/ susp(Ap N Ag)> .

keK o€y
Foro € §, AgN Ay = A \ {0} = §4m° =1 Hence
\/ susp(Ag N Ay) \/ suspSame—1 ~ \/ §4me ~ Ind(G \ K).

o€g 0§ o€G

Forallk € K, Ag N Ay = (Ind(G \ K) \ ) NInd(G \ N(k)) = Ind(G \ K) N Ind(G \ N(k)) = Ind(G \ (K U N(k))) since
forany o € § thereis a v € ¢ adjacent to k, which implies that o ¢ Ind(G \ N(k)). Inserting this in the conclusion of the
lemma proves the first part of the theorem.

Now the second part. Let #; = §, #» = U\’ {{k}}, and H3 = Urerr {{k} U |0 € Gi}. To show that # = F,UFH, U H3
are generating faces of Ind(G), we need that all o € # are maximal faces of Ind(G), and that Ind(G) \ # is contractible.

Ifk € K\ K’, then K UN(k) = V(G). The neighborhood of k is V(G) \ {k} since K \ {k} € N(k), and k is an isolated point
in Ind(G). Thus all elements of #, are maximal faces of Ind(G). If 0 € #; = §, then o is a maximal face of Ind(G \ K). For
each vertex k € K there is a vertex of o adjacent to it by assumption, so no vertex of K can be added to ¢. Hence ¢ is also a
maximal face of Ind(G). Therefore, all elements of #; are maximal faces of Ind(G). Ifk € K’ and o € §y, then o is a maximal
face of Ind(G \ (K U N(k))) = Ikipa(c)(k), so {k} U o is a maximal face of Ind(G). All elements of #5 are therefore maximal
faces.

Recall that Ag = Ind(G\K)\ §.Fork € K'let A}, = {k}*(Ind(G\ (KUN(k)))\ $x). We will use Lemma 3.6 with Ag and A},
for k € K’, which are all contractible. First we show that Ind(G) \ # = AqU (Ukek’ 4}). Clearly, Ind(G)\ H 2 AqU (Ugex’ Ap).
Ifo € Ind(G) \ # and no vertex of ¢ isin K’, then o € Aq.If o € Ind(G) \ # and k € o, where k € K, theno € A}.If
kq, k, € K’ are different, then A;q N A;Q = {k1} * (Ind(G \ (K UN (k1)) \ Gi,) N {kz} 5 (Ind(G \ (K UN(k2)) \ $x,) =
(Ind(G\ (K UN(k1))) \ §&,) N (nd(G \ (K UN(k2))) \ §1,) S Ao.

By Lemma 3.6

Ind(G) \ 7 =~ \/ susp (4o N 47)
kek’

= \/ susp ((Ind(G \ K) \ §) N ({k} * (Ind(G \ (K UN(K))) \ §1)))

keK’

= \/ susp (Ind(G \ K) \ $) N (Ind(G \ (K UN(K))) \ §))

keK’

= \/ susp (Ind(G \ K) N (Ind(G \ (K UN(k))) \ $x))

keK’

= \/ susp (Ind(G \ (K UN(k))) \ §1)

keK’

~ \/ susp (point)

keK’

2~ point.

The equalities need clarification. The first one is by definition. The second one follows from the fact that k & Ind(G \ K) \ §.
Pick a generating face 0 € §. By assumption, there is a v € o for every k € K’, such that v and k are adjacent, that is
v € N(k). Thus 0 ¢ Ind(G \ (K UN(k))) \ G« which gives the next equality. The final one follows from Ind(G \ K) 2
Ind(G\ (KUN(k))) 2 Ind(G\ (KUN(k))) \ . O

A relative of QC’; is its cycle version G,’i. It is the independence complex of a graph with vertex set {1, 2, ...n}, and two
vertices i < jare adjacentifj —i < kor (n +i) —j < k. The case k = 2 was computed in [18], and Llsed by Babson and
Kozlov [1] in the proof of the Lovasz conjecture. The Z,-homotopy types of ¢£ﬁ and Gﬁ were studied by Zivaljevié¢ [21].
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Example 3.12. Using the generating faces of QCﬁ listed in Example 3.9, and Theorem 3.11, with K = {1, 2}, we get these
generating faces for Gn3:

generating faces

{1,5},{1,6},{2,6},{2,7}, {4, 8}

9  {1,5},{1,6},{2, 6}, {2 7} {4.8},{4,9}.{5,9)

13 {1,5,9},{1,5,10},{1,6, 10},{1,6, 11}, {2, 6, 10}, {2, 6, 11},
{2,7,11},{2,7, 12}, {4,8, 12}, {4, 8, 13}, {4, 9, 13}, {5, 9, 13}

Thus €3 is a wedge of five S', @3 is a wedge of seven S!, and €3, is a wedge of twelve S2.

This theorem is molded after Theorem 1.1 in [5]. There is a homology version of it in [19]. Szabo and Tardos [20] also
proved it, but with explicit triangulations from discrete geometry.

Theorem 3.13. If G is a graph with n vertices and maximal degree d, then Ind(G) is L% — 1]-connected.

Proof. The proof is by inductionon n. If 1 < n < 2d then L% — 1] = —1 and Ind(G) is (—1)-connected since it is
nonempty.

Recall [3, Theorem 10.6(ii)]: If A is a simplicial complex and {A;}i¢; is a family of subcomplexes such that A = Ui 4;,
and every nonempty intersection A;; N A, N --- N A; is (k — t + 1)-connected, then A is k-connected if and only if the
nerve N (4;) is k-connected.

Ifn > 2d define A, = Ind(G \ N(v)) for each v € V(G). Clearly A = U,cy () A,. The complex A, is a cone with apex
v and in particular k-connected for all k. Let T be a subset of V(G) with t > 2 elements. There are at most d vertices in a
neighborhood and

()4 =()Ind(G\N()) = Ind (c \ UN(U)) ,

veT veT veT

50 G \ Uyer N(v) has at least n — td vertices and Ind(G \ Uyer N(v)) is L%‘Z’l — 1]-connected by induction. For t > 2

n—1 n—td—1 t n—td—1
1| —-t+1=|———m — = | < | — -1,
2d 2d 2 2d
thus Nyer A, is (L”Z;d1 — 1] — t + 1)-connected as required. We need to show that the nerve is L% — 1]-connected, and

it will follow from that the intersection of L”Z;dl — 1] + 2 arbitrary A, is nonempty. Indeed, if T is a subset of V(G) with
2=l — 1] + 2 elements, then G \ Uyer N(v) has at least n — d(| "2t — 1] + 2) vertices, and

n—d(| "=t gl p2)snoa(Pot )22 1]
=1 (=1 _ 1.1
2d = 2d 2 327 %

S0 Nyer Ay, = Ind(G \ Uyer N(v)) is nonempty. The conditions of [3, Theorem 10.6(ii)] are checked and thus Ind(G) is
2=l — 1]-connected. O

The independence complex of m disjoint complete bipartite graphs Ky 4 can be collapsed onto the independence complex of
mdisjoint edges using Lemma 3.2. That complex is homotopy equivalent with an (m — 1)-dimensional sphere. The m disjoint
K44 have 2md vertices and maximal degree d, thus by Theorem 3.13 the independence complex is (m — 2)-connected, which
is optimal.

It was proved in [11] that if G is claw-free then the constant 2—1d in Theorem 3.13 can be replaced by %, pushing up the
connectivity slightly.

4. Anti-Rips complexes

Anatural interpretation ofDCﬁ isas the complexon {1, 2, ...n} C R, with two different points p and g in the same simplex
if, and only if, |p — q| > k — 1. Many independence complexes in literature are based on graphs with natural embeddings in
low-dimensional metric space, see for example [7,12,16] and the references therein.

Definition 4.1. Let P be a subset of a metric space with distance function d, and r > 0. The anti-Rips complex AR, (P) has
vertex set P, and two different points p and q of P, are in the same simplex if and only if d(p, q¢) > r.
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Equivalently, AR, (P) = Ind(G), where G is the graph with vertex set P, and two different points p and q are adjacent if
d(p, q) < r.Notice that moving r from 0 to oo creates a family of complexes which is ordered by inclusion, and its limits are
the simplex on P, and P as disjoint points.

Why name it anti-Rips complexes? Substituting d(p, q) > r with d(p, q) < r defines Rips complexes. According to
Hausmann [15] Lefschetz called them Vietoris complexes, but the notation changed with Rips’ reintroduction of them in the
study of hyperbolic groups.

Complexes of Anti-Rips type are common in the interaction between combinatorial topology and statistical physics, see
for example [7,12,16]

Corollary 3.8 can now be generalized.

Proposition 4.2. If P is a finite subset of R and m = min(P) then

AR.(P)~ \/ susp(AR-({g€P|q>p+r}).

peP
m<p=m+r

Proof. Let u = min Theorem 3.7. O

IfP C 7Z? hasn vertices, then AR; (P) is L%J -connected by Theorem 3.13 since there are at most 4 points within distance
one from a point in Z2. Using the geometry of the plane, L”%”J can be improved to L"G%gj.

Proposition 4.3. If P C Z? has n vertices, then AR; (P) is L"ggj-connected.

Proof. The proof is by induction on n. If 1 < n < 8 then AR{(P) is L”ggj-connected since it is (—1)-connected, and

L“%GQJ < —1. Now assume that n > 8.Pick a u € P such that the sum of its x and y coordinates is maximal among the
points in P. There is no restriction to assume that u = (0, 0) since the proposition is translation invariant. Consider P as an
induced subgraph of the Z? lattice. Let v = (0, —1) and w = (—1, 0). Depending on N(u) € {v, w} we have four cases.

If N(u) = @ then AR;(P) is a cone and in particular L"ggj -connected.

If N(u) = {v} then AR;(P) =~ susp(AR;(P \ (N(u) U N(v)))) by Theorem 3.7. The complex AR;(P \ (N(u) U N(v))) is
LWJ—connected by induction since N(u) U N(v) C {u, v, (1, —1), (0, —2), (—1, —1)}. The suspension increases the
connectivity by one, and L(”_Gﬁj +1> L”%GQJ, thus AR (P) is L”ggj—connected. The case N(u) = {w} is analogous.

The final case is N(u) = {v, w}. By induction AR{(P \ (N(u) U N(v) U N(w))) is (L%J — 2)-connected since
N(u) UN@) UN(w) € {u, v, w, (—1,1), (=2,0), (=1, =1), (1, =1), (0, —2)} and [ "=2=2| > | =2 | — 2. The complex
AR (P \ (N(u) UN(v))) is (L”%QJ — 1)-connected by induction since N(u) UN(v) C {u, v, w, (—1, —1), (1, —1), (0, —2)}.

Analogously ARy (P \ (N(u) UN(w))) is (L%QJ — 1)-connected. By Corollary 3.10, AR; (P) is L"G%gj-connected. O

Itis not known if the proposition is sharp. If P is the disjoint union of m stars with 4 edges then AR, (P) is an (m—1)-sphere
by repeated foldings. This shows that the % constant in the proposition at best can be replaced by %

5. Open questions
We conclude with some open questions.

Question 5.1. One approach to bound the connectivity of a simplicial complex is to chop it up in pieces for which the connectivity
can be calculated easily, and then use the Nerve Lemma (cf. [5,10] and Theorem 3.13). Suitable subcomplexes for complexes of
directed trees are those with the same roots and Theorem 2.12 shows their connectedness. However the subcomplexes’ intersections
are in general cumbersome. Can this class of subcomplexes be adapted to prove a nontrivial bound for the connectivity?

Question 5.2. Theorem 3.11 puts conditions on the generating faces which are maybe even not possible to achieve by choosing the
generating faces correctly. In practice, when all generating faces are “far from a certain vertex”, that vertex can often be collapsed
away, or discrete Morse theory [14] can be used. Can this be formalized to a method for removing vertices not in generating faces?

Question 5.3. The homotopy type of @,’,‘ in general is still unsolved. A larger class to investigate is the anti-Rips complex of a finite

subset of a circle. In [13] the roots of the f-polynomial of such complexes were studied by extending a theorem by Chudnovsky
and Seymour [8].
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