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a b s t r a c t

First we prove that certain complexes on directed acyclic graphs are shellable. Then
we study independence complexes. Two theorems used for breaking and gluing such
complexes are proved and applied to generalize the results by Kozlov.
An interesting special case is anti-Rips complexes: a subset P of a metric space is the

vertex set of the complex, and we include as a simplex each subset of P with no pair of
points within distance r . For any finite subset P of R the homotopy type of the anti-Rips
complex is determined.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The theory of complexes of directed trees was initiated by Kozlov [18] to answer a question by Stanley. Babson and
Kozlov used results from the theory in their proof of the Lovász conjecture [1]. In this paper we study three ways to connect
topology with combinatorics by constructing simplicial complexes:

Name Base object Restriction on simplices

DT(G) Directed graph G They are directed forests of G.
Ind(G) Undirected graph G No vertices are adjacent in G.
ARr(P) Point set P in metric space No two vertices within distance r .

To decide the homotopy type of complexes on directed graphs, Kozlov [18] constructed complexes on undirected graphs.
In the second part of this paper we show that by moving the problems into complexes on point sets of metric spaces,
the homotopy type can be determined for several classes, and naturally generalized. The first section treats complexes on
directed graphs. It is shown that certain complexes are shellable, for example those on directed acyclic graphs.
The general reference to combinatorial topology methods used in this paper is the survey [3].

2. Complexes of directed trees

In this section all graphs are directed. A directed forest is an acyclic graph with at most one edge directed to each vertex.
Equivalently, a directed forest is a collection of disjoint directed trees with all edges oriented away from the root.

Definition 2.1. Let G be a directed graph. The complex of directed trees, DT(G) has the edges of G as vertex set. A set of edges
is a simplex of DT(G) if the edges viewed as a graph is a directed forest.
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Fig. 1. Graph G.

Fig. 2. Maximal faces F1 and F2 of DTR(G).

Constructing simplicial complexes from graphs can, in principle, be done in two ways: For graphs that satisfy certain
properties either their edges or their vertices form a simplex. For complexes of directed trees it is the edges, but later on
complexes of the other kind are used.
A directed forest H ⊆ G ismaximal if H ′ is not a directed forest for any H ⊂ H ′ ⊆ G. The roots of a directed forest are the

roots of the trees in the forest. A maximal face of DT(G) is the edge set of a maximal directed forest in G, and the other way
around.

Definition 2.2. Let R ⊆ V (G). The simplicial complex DTR(G) ⊆ DT(G) is generated by the faces of DT(G) which are edge
sets of directed forests with R as roots.

The maximal (with respect to inclusion) forests in DT(G)with roots R are the maximal faces of DTR(G).

Definition 2.3. An edge (x→ y) of G is nice in a subcomplex∆ of DT(G) if

(i) there is an edge (z → y) in∆ such that z 6= x;
(ii) any forest F ∈ ∆without an edge directed to y can be extended with (x→ y), and F ∪ {(x→ y)} ∈ ∆.

Example 2.4. Let G be the directed graph in Fig. 1. Let us find some nice edges in DTR(G), where R = {1, 4}. The maximal
faces are drawn in Fig. 2. We partition the vertices into left and right sides of a dotted line: A vertex v is on the left side if
the tree which v is in has the same root r in all maximal faces of DTR(G), and the path from r to v is the same in all maximal
faces of DTR(G). All other vertices are on the right side. The union of F1 and F2 with their vertices partitioned is depicted in
Fig. 3. In this example it is not hard to see that the edges crossing the dotted line are nice.

Proposition 2.5. All edges crossing the dotted line in a construction as in Example 2.4 are nice if the maximal faces have the same
roots.

Proof. First we need to show that an edge (z → w) can only cross the dotted line from left to right. Assume the contrary,
i.e. that (z → w) is from right to left. Since w is on the left, the tree which w is in has the same root r in all maximal faces,
and the path from r to w is the same. The vertex before w in that path is always the same, and (z → w) is in a maximal
face, so the vertex is z. But then the path from r to z is the same in all maximal faces, and z should be on the left side, which
is a contradiction.
Assume that (x→ y) is an edge crossing the dotted line and that the maximal faces are {Fi}i∈I .
The vertex y is not a root, hence there is an edge to y in all maximal faces. If (x → y) were the only edge to y in ∪i∈I Fi,

it would be in all maximal faces. But then the path to y is the same in all maximal faces, and y would be on the left side.
Since y is on the right side, there is an edge (z → y) such that z 6= x. Therefore condition (i) of the definition of nice edges
is satisfied.
If (x → y) does not induce a directed cycle when added to a face, then condition (ii) is fulfilled. A directed cycle which

contains (x→ y) as an edge would cross the dotted line at least twice. But all edges crossing the dotted line go from left to
right, hence (x→ y) cannot induce a directed cycle. �
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Fig. 3. The union of F1 and F2 with their vertices partitioned.

Lemma 2.6. If R ⊆ V (G) is nonempty, and DTR(G) has more than one maximal face, then there is an edge (x → y) ∈ E(G)
which is nice in DTR(G).

Proof. Construct the left/right-partition of the vertices as in Example 2.4. If there are no edges crossing the dotted line,
all edges are on the left side, and there is only one maximal face. Hence there is an edge crossing the dotted line, and by
Proposition 2.5 that edge is nice. �

Definition 2.7. A simplicial complex ∆ is shellable if its maximal faces can be ordered F1, F2, . . . , Fn such that for all
1 ≤ i < k ≤ n, there are 1 ≤ j < k and e ∈ Fk, such that Fi ∩ Fk ⊆ Fj ∩ Fk = Fk \ {e}.

Lemma 2.8. Let Fi 6= Fk be maximal faces of DTR(G), and (x→ y) ∈ Fi \ Fk a nice edge in DTR(G). Then there is a maximal face
Fj of DTR(G), and an e ∈ Fk, such that Fi ∩ Fk ⊆ Fj ∩ Fk = Fk \ {e}.

Proof. There is an edge (z → y) in Fk, since it is maximal and y 6∈ R. Replace it with (x → y) to construct Fj. From the
definition of nice edges we have that Fj ∈ DTR(G). Now Fj ∩ Fk = Fk \ {(z → y)}. Since (x→ y) ∈ Fi and (z → y) 6∈ Fi, we
conclude that Fi ∩ Fk = Fi ∩ (Fk \ {(z → y)}) ⊆ Fk \ {(z → y)} = Fj ∩ Fk. �

Theorem 2.9. DTR(G) is shellable for any ∅ 6= R ⊆ V (G).

Proof. The proof is by induction over the number of maximal faces. If DTR(G) has one maximal face, it is a simplex, and
thus shellable. Assume that DTR(G) has more than one maximal face. By Lemma 2.6 there is a nice edge (x → y). Define
G′,G′′ ⊂ G as follows:

E(G′) = E(G) \ {(z → y) | z 6= x} E(G′′) = E(G) \ {(x→ y)}.

A maximal face of DTR(G) has exactly one edge to y, thus the set of maximal faces of DTR(G) is the disjoint union of the
sets of maximal faces of DTR(G′) and DTR(G′′). Since (x → y) is nice, it is in some, but not in all maximal faces of DTR(G).
Both DTR(G′) and DTR(G′′) have smaller numbers of maximal faces than DTR(G), so by induction they are shellable. Order
the maximal faces of DTR(G):

F1, F2, . . . , Ft ,︸ ︷︷ ︸
Shelling order of DTR(G′),(x→y)∈Fl.

Ft+1, Ft+2, . . . , Ft+s︸ ︷︷ ︸
Shelling order of DTR(G′′),(x→y)6∈Fl.

If for all 1 ≤ i < k ≤ s+ t , there are 1 ≤ j < k and (z → w) ∈ Fk such that Fi ∩ Fk ⊆ Fj ∩ Fk = Fk \ {(z → w)}, then DTR(G)
is shellable. If 1 ≤ i < k ≤ t or t < i < k ≤ s+ t we are done. Assume 1 ≤ i ≤ t < k ≤ s+ t .
The nice edge (x→ y) is in Fi, but not in Fk. Construct Fj as described in Lemma 2.8. The edge (x→ y) is in Fj, so j ≤ t < k,

and we have a shelling order. �

A directed acyclic graph is a directed graph without directed cycles. It is not hard to see that the vertices of a directed
acyclic graph G can be ordered so that if (x→ y) ∈ E(G), then x is before y. This is usually called the topological order. Let R
be the set of vertices of Gwith no edges directed to them. The first vertex in the order is in R, so the set is not empty. Since G
is a directed acyclic graph, so are all its subgraphs. Hence the maximal subgraphs, with at most one edge to each vertex, are
the maximal forests. All maximal forests contain an edge to each vertex in V (G) \ R. Hence the roots of all maximal forests
are R, and DT(G) = DTR(G).
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Corollary 2.10. If G is a directed acyclic graph, then DT(G) is shellable.

A pure shellable simplicial complex ∆ is homotopy equivalent to a wedge of spheres of the same dimension as ∆, or
it is contractible. Thus, by calculating the Euler characteristic of ∆, its homotopy type can be determined. See Björner and
Wachs, [6], for a proof of that, and further extensions.
Denote with d−(v) the number of edges directed to a vertex v.

Lemma 2.11. If G is a directed acyclic graph with at least one edge, then

χ̃(DT(G)) = −
∏

v∈V (G)\R

(1− d−(v)),

where R is the set of vertices without edges directed to them.

Proof. The proof is by induction over the number of vertices not in R. If there is only one vertex not in R, then the complex
DT(G) is homotopy equivalent to d−(v) disjoint points, and the formula is true.
If V (G) \R has at least two vertices, order the vertices so that if (x→ y) ∈ E(G), then x is before y, and so that all vertices

of R come before the other ones. Denote the last vertex in this order withw. Let G′ be the induced subgraph of Gwith vertex
set V (G) \ {w}. Sincew is the last one ordered, there are no edges fromw, and E(G) \ E(G′) are the d−(w) edges tow.
Let α(i) be the number of subgraphs of Gwhich are forests with i edges, and α′(i) similarly for G′. A forest with i edges in

G either has no edge tow, or one of the d−(w) edges tow, hence for i > 0

α(i) = α′(i)+ d−(w)α′(i− 1).

Clearly α(0) = α′(0) = 1. The reduced Euler characteristic of DT(G) is

χ̃(DT(G)) =
∑
i≥0

(−1)i+1α(i)

= −1+
∑
i≥1

(−1)i+1
(
α′(i)+ d−(w)α′(i− 1)

)
= −1+

∑
i≥1

(−1)i+1α′(i)+ d−(w)
∑
i≥1

(−1)i+1α′(i− 1)

=

∑
i≥0

(−1)i+1α′(i)− d−(w)
∑
i≥0

(−1)i+1α′(i)

= (1− d−(w))
∑
i≥0

(−1)i+1α′(i)

= (1− d−(w))χ̃(DT(G′)).

Substituting the formula for χ̃(DT(G′)) concludes the proof. �

Theorem 2.12. If G is a directed acyclic graph, then DT(G) is homotopy equivalent to a wedge of
∏
v∈V (G)\R(d

−(v)− 1) spheres
of dimension #V (G)− #R− 1, where R is the set of vertices without edges directed to them.

Proof. The complex DT(G) is shellable by Corollary 2.10, and the reduced Euler characteristic is ±
∏
v∈V (G)\R(d

−(v) − 1)
by Lemma 2.11. The maximal faces of DT(G) are the maximal forests of G. Since the forests have edges exactly to the
vertices with non-zero in-degree, there are #V (G)− #R edges in a maximal forest, and the dimension of a maximal face is
#V (G)− #R− 1. �

Corollary 2.13. If G is a directed acyclic graph, then the following statements are equivalent:

• DT(G) is a cone with one of the edges of G as apex.
• There is an edge of G which is in all maximal forests.
• There is a vertex in G with in-degree 1.
• The product of all (d−(v)− 1) for v ∈ V (G) is zero.
• DT(G) is contractible.

Proof. Follows directly from Theorem 2.12 and its proof. �

Several of the results in this section, in particular Theorem 2.9, can be put into the context of greedoids and proved with
methods from [4].
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3. Independence complexes

In the previous section the graphs were directed, but from now on all graphs are assumed to be undirected. A subset of
the vertex set of a graph is independent if no two vertices in it are adjacent. In a graph G, the neighborhood of a vertex v,
NG(v) is the set of vertices which are adjacent to v. If it is clear which G is meant, we just write N(v).
The vertex set of a simplicial complex∆ is denoted∆(0). The link of a vertex v of∆ is lk∆(v) = {σ ∈ ∆ | v 6∈ σ , σ ∪ {v}

∈ ∆}. The star of v in ∆ is st∆(v) = {v} ∗ lk∆(v). IfW ⊆ V (G) then G[W ] is the induced subgraph with vertex setW , and
G \W = G[V (G) \W ]. Similarly for simplicial complexes, ifW ⊆ ∆(0) then∆[W ] is the induced subcomplex of faces in∆
contained inW , and∆ \W = ∆[∆(0) \W ].

Definition 3.1. Let G be an undirected graph. The independence complex of G, denoted Ind(G), is a simplicial complex with
vertex set V (G), and σ ∈ Ind(G) if σ is an independent set of G.

Proving the following standard facts is a good exercise to get acquainted with independence complexes.
• If A ⊆ V (G) then Ind(G[A]) = Ind(G)[A].
• If A, B ⊆ V (G) then Ind(G[A]) ∩ Ind(G[B]) = Ind(G[A ∩ B]).
• If v ∈ V (G) then lkInd(G)(v) = Ind(G \ (N(v) ∪ {v})), and stInd(G)(v) = Ind(G \ N(v)) = v ∗ lkInd(G)(v).
• If Ind(G \ (N(v) ∪ {v})) is contractible, then Ind(G) ' Ind(G \ v)
• If v ∈ V (G) then Ind(G) is the union of stInd(G)(v) and ∪w∈N(v) stInd(G)(w).
• If v,w ∈ V (G) are adjacent and N(v) \ {w} ⊆ N(w) \ {v}, then stInd(G)(v) ⊇ lkInd(G)(w).

If the neighborhood of a vertex v is included in the neighborhood of another vertex, the removal of v from the graph
is called a fold. In the theory of Hom-complexes fold is a fundamental tool for reducing the size of the input graphs while
preserving the simple homotopy type, see [17]. But in contrast with folds for Hom-complexes, the vertex with the larger
neighborhood is removed to preserve the simple homotopy type of an independence complex.

Lemma 3.2. If N(v) ⊆ N(w) then Ind(G) collapses onto Ind(G \ {w}).
Proof. Match each maximal σ , such thatw ∈ σ and v 6∈ σ , with σ ∪ {v}, and remove them by an elementary collapse step.
Repeat this until all σ such thatw ∈ σ are gone. �

In particular, if N(u) = {v} andw ∈ N(v) \ {u}, then Ind(G) collapses onto Ind(G \ {w}).

Proposition 3.3 ([9]). If G is a forest then Ind(G) is either contractible or homotopy equivalent to a sphere.
Proof. It is sufficient to show that successive use of Lemma 3.2 starting with G gives a graphH with no adjacent edges, since
Ind(H) is either contractible or homotopy equivalent to a sphere, and each use of the lemma provides a collapse.
The proof is by induction on the number of edges. If there are no adjacent edges we are done. If G is a forest with some

adjacent edges, then there is a vertex uwith only one neighbor v, such that there is a vertexw in N(v) \ {u}. By Lemma 3.2,
we can removew from G, and by induction G \ {w} can be reduced to a graph without adjacent edges. �

Actually we proved something stronger, that Ind(G) collapses to either the boundary of a crosspolytope or a point.

Proposition 3.4. Let G be a graph, v,w distinct non-adjacent vertices of G, and G′ the graph G extended with an edge between
v andw. If Ind(G′) is k-connected and Ind(G′ \ (NG(v) ∪ NG(w))) is (k− 1)-connected, then Ind(G) is k-connected.

Proof. Recall the gluing lemma [3, 10.3(ii)]; if∆1 and∆2 are k-connected, and∆1 ∩∆2 is (k− 1)-connected, then∆1 ∪∆2
is k-connected. Let∆1 = Ind(G′) and∆2 = Ind(G \ (NG(v) ∪ NG(w))). The complex∆1 is k-connected by assumption, and
∆2 is k-connected since it is a cone. Using∆1 = {σ ∈ Ind(G) | {v,w} 6⊆ σ } and∆2 = {σ ∈ Ind(G) | σ ∪ {v,w} ∈ Ind(G)},
we get that ∆1 ∪ ∆2 = Ind(G), and ∆1 ∩ ∆2 = Ind(G′ \ (NG(v) ∪ NG(w))) which is (k − 1)-connected. The result follows
from the gluing lemma. �

We denote that two topological spaces X and Y are homotopy equivalent by X ' Y . Let {xi ∈ Xi}i∈I be a finite set of
pointed topological spaces. The wedge ∨i∈I Xi is the topological space one gets by identifying all of the xis. The topology of
the wedge of spaces does not depend on how the spaces are pointed [3].

Definition 3.5. A set of maximal simplices from a simplicial complex ∆ are generating simplices if the removal of their
interiors makes∆ contractible. Analogously, if G is a set of maximal open faces of∆ such that∆ \ G is contractible, then G
are generating faces of∆.

Note that if G are generating faces of ∆, then ∆ ' ∨σ∈G Sdimσ . A shellable complex has generating faces, they are exactly
the ones glued over their whole boundary when added. It is not hard to find complexes with generating faces that are not
shellable, or to find complexes without generating faces. If G are generating faces of∆′,∆ collapses onto∆′, and all σ ∈ G
are maximal in∆, then G are generating faces of∆.
To calculate the homotopy type of complexes in this section, a suitable subcomplex is found and contracted. Of course

one can smash any contractible subcomplex, but the resulting identifications can be ugly. Our main vehicle is this lemma
by Björner.
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Lemma 3.6 ([3, Theorem 10.4(ii)]). Let ∆ = ∆0∪∆1∪· · ·∪∆n be a simplicial complex with subcomplexes∆i. If ∆i∩∆j ⊆ ∆0
for all 1 ≤ i < j ≤ n, and∆i is contractible for all 0 ≤ i ≤ n, then

∆ '
∨
1≤i≤n

susp(∆0 ∩∆i).

Lemma 3.6 is a special case of [2, Theorem 2.1], which can be used to generalize both Theorems 3.7 and 3.11. However, the
amount of technicalities do not match the increased number of applications at this point.
Two degenerate cases working well with Lemma 3.6 are that susp(∅) = S0, and that the wedge of nothing is a point.

Theorem 3.7. If all vertices in the neighborhood of u ∈ V (G) are adjacent then

Ind(G) '
∨
v∈N(u)

susp(Ind(G \ (N(u) ∪ N(v)))),

and the union of⋃
v∈N(u)

G\(N(u)∪N(v))=∅

{{v}} and
⋃
v∈N(u)

G\(N(u)∪N(v))6=∅

{{v} ∪ σ | σ ∈ Gv}

are generating faces of Ind(G), if Gv are generating faces of Ind(G \ (N(u) ∪ N(v))).

Proof. We prove this by smashing the star of uwith Lemma 3.6 in two ways. First let∆u = stInd(G)(u), and∆v = stInd(G)(v)
for all v ∈ N(u). Clearly their union is Ind(G), and they are all contractible. If v and w are different vertices in N(u), then
∆v ∩∆w = stInd(G)(v)∩ stInd(G)(w) = v ∗ lkInd(G)(v)∩w ∗ lkInd(G)(w) = lkInd(G)(v)∩ lkInd(G)(w) since v andw are adjacent.
Using that N(u) \ {v} ⊆ N(v) \ {u} and N(u) \ {w} ⊆ N(w) \ {u}, we get that lkInd(G)(v) ∩ lkInd(G)(w) ⊆ stInd(G)(u) = ∆u.
The conditions of Lemma 3.6 are satisfied, and therefore

Ind(G) '
∨
v∈N(u)

susp(∆u ∩∆v)

=

∨
v∈N(u)

suspInd(G \ (N(u) ∪ N(v))).

Now to the second part of the theorem. Let V = {v ∈ N(u) | G \ (N(u) ∪ N(v)) 6= ∅}. Assume that Gv are generating faces
of Ind(G \ (N(u) ∪ N(v))) for v ∈ V . Let G be the union of⋃

v∈N(u)\V

{{v}} and
⋃
v∈V

{{v} ∪ σ | σ ∈ Gv} .

To begin with, we need to prove that each element of G is a maximal face of Ind(G). Let σ be a maximal face of
Ind(G \ (N(u) ∪ N(v))). Then {v} ∪ σ is maximal in Ind(G \ (N(u) \ {v})), and also in Ind(G), since all vertices in N(u) \ {v}
are adjacent to v. If G \ (N(u) ∪ N(v)) = ∅ for a v ∈ N(u), then N(v) = V (G) \ {v}, and {v} is maximal in Ind(G).
To conclude thatG are generating faces of Ind(G)we also need to prove that∆′ = ∆\G is contractible. For each v ∈ V let

∆′v = v ∗ (Ind(G \ (N(u)∪ N(v))) \ Gv). It is not hard to see that∆′ is the union of∆u and ∪v∈V ∆′v . All∆
′
v are contractible,

and for different v,w ∈ V ,∆′v ∩∆
′
w ⊆ ∆v ∩∆w ⊆ ∆u. By Lemma 3.6

∆′ '
∨
v∈V

susp(∆u ∩∆′v)

=

∨
v∈V

susp(stInd(G)(u) ∩ v ∗ (Ind(G \ (N(u) ∪ N(v))) \ Gv))

=

∨
v∈V

susp(Ind(G \ (N(u) ∪ N(v))) \ Gv)

'

∨
v∈V

susp(point)

'

∨
v∈V

point

' point.

Thus G are generating faces of Ind(G). �

In [18] the complex Lkn was defined as the independence complex of the graph with vertex set {1, 2, . . . n}, and two
vertices i < j are adjacent if j− i < k. The homotopy typeLkn, as well as its generating faces, were calculated for k = 2, and
for k > 2 stated as an open question. For convenience defineLkn = ∅ if n ≤ 0.
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Corollary 3.8. For all k ≥ 2 and n > 1

Lkn '
∨

1≤i<min(k,n)

susp
(
Lkn−k−i

)
.

Proof. The neighborhood of 1 is {2, 3, . . . ,min(k, n)}, and any two different vertices of it are adjacent.

Lkn '
∨
i∈N(1)

susp(Ind(G \ (N(1) ∪ N(i))))

=

min(k,n)∨
i=2

susp(Ind(G[{j | k+ i ≤ j ≤ n}]))

'

min(k,n)∨
i=2

susp(Ind(G[{j | 1 ≤ j ≤ n− k− i+ 1}]))

=

min(k,n)∨
i=2

susp
(
Lkn−k−i+1

)
=

∨
1≤i<min(k,n)

susp
(
Lkn−k−i

)
. �

Example 3.9. The generating faces ofL3n produced by recursive use of Theorem 3.7, with u = 1, are

n g.f. 4 {2}, {3} 8 {2, 6}, {2, 7}, {3, 7}, {3, 8}
1 ∅ 5 {3} 9 {2, 7}, {3, 7}, {3, 8}
2 {2} 6 {2, 6} 10 {3, 8}, {2, 6, 10}
3 {2}, {3} 7 {2, 6}, {2, 7}, {3, 7} 11 {2, 6, 10}, {2, 6, 11}, {2, 7, 11}, {3, 7, 11}

Corollary 3.10. Let G be a graph with three distinct vertices u, v and w, such that N(u) = {v,w}, and {v,w} 6∈ E(G). If
Ind(G \ (N(u) ∪ N(v))) and Ind(G \ (N(u) ∪ N(w))) are (k− 1)-connected, and Ind(G \ (N(u) ∪ N(v) ∪ N(w))) is (k− 2)-
connected, then Ind(G) is k-connected.

Proof. Let G′ be the graph G extended with an edge between v and w. By Proposition 3.4 it suffices to prove that Ind(G′) is
k-connected and Ind(G′ \ (NG(v) ∪ NG(w))) is (k− 1)-connected. The neighborhood of u in G′ is the complete graph, so by
Theorem 3.7,

Ind(G′) ' susp(Ind(G′ \ (NG(u) ∪ NG(v)))) ∨ susp(Ind(G′ \ (NG(u) ∪ NG(w))))
= susp(Ind(G \ (NG(u) ∪ NG(v)))) ∨ susp(Ind(G \ (NG(u) ∪ NG(w)))).

The suspension of a (k − 1)-connected complex is k-connected, and the wedge of k-connected complexes is k-connected,
thus Ind(G′) is k-connected. The neighborhood of v inG′\(NG(v)∪NG(w)) is a complete graph, so once again by Theorem3.7,

Ind(G′ \ (NG(v) ∪ NG(w))) ' susp(Ind((G′ \ (NG(v) ∪ NG(w))) \ {v,w}))
= susp(Ind(G \ (NG(u) ∪ NG(v) ∪ NG(w)))).

The suspension of a (k−2)-connected complex is (k−1)-connected, hence Ind(G′\(NG(u)∪NG(v))) is (k−1)-connnected. �

The previous theorem can be used when we find a complete subgraph of Gwith a vertex without neighbours outside the
subgraph. Removing the condition of the special vertex forces other conditions.

Theorem 3.11. Let K be a subset of V (G) such that G[K ] is a complete graph, and G are generating faces of Ind(G \ K), such
that for each k ∈ K and σ ∈ G, at least one of the vertices in σ is adjacent to k. Then

Ind(G) ' Ind(G \ K) ∨
∨
k∈K

susp(Ind(G \ (K ∪ N(k)))).

Let K ′ = {k ∈ K | G \ (K ∪ N(k)) 6= ∅}. If Gk are generating faces of Ind(G \ (K ∪ N(k))) for each k ∈ K ′, then the union of

G,
⋃
k∈K\K ′

{{k}}, and
⋃
k∈K ′
{{k} ∪ σ |σ ∈ Gk}

are generating faces of Ind(G).
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Proof. The proof is in the same spirit as that of Theorem 3.7. The subcomplex ∆0 = Ind(G \ K) \ G will be contracted. Let
∆k = Ind(G \ N(k)) for each k ∈ K , and∆τ = {σ | σ ⊆ τ } for each τ ∈ G.
If σ ∈ Ind(G) does not contain any vertex from K , then σ ∈ ∆σ if σ ∈ G, and σ ∈ ∆0 if σ 6∈ G. If σ ∈ Ind(G) and k ∈ σ

for a k ∈ K , then σ ∈ ∆k. Hence the union of these subcomplexes is∆ = Ind(G).
Now we check that the required intersections are subcomplexes of∆0. Note that if σ ∈ G and k ∈ K , then σ 6∈ ∆k since

by assumption there is a vertex in σ adjacent to k. If k1 and k2 are two different elements of K , then∆k1 ∩∆k2 ⊆ Ind(G \ K)
since G[K ] is a complete graph and k1, k2 ∈ K . Since σ 6∈ ∆k1 for any σ ∈ G,∆k1 ∩∆k2 ⊆ Ind(G \ K) \ G = ∆0. If k ∈ K and
σ ∈ G, then ∆k ∩ ∆σ ⊆ Ind(G \ K) since σ ∈ Ind(G \ K), moreover ∆k ∩ ∆σ ⊆ Ind(G \ K) \ G = ∆0 since ∆k is disjoint
from G. If σ1 and σ2 are different elements of G, then∆σ1 ∩∆σ2 ⊆ ∆0 since σ1 6∈ ∆σ2 and σ2 6∈ ∆σ1 .
By Lemma 3.6

Ind(G) '

(∨
k∈K

susp(∆0 ∩∆k)

)∨(∨
σ∈G

susp(∆0 ∩∆σ )

)
.

For σ ∈ G,∆0 ∩∆σ = ∆σ \ {σ } ' Sdimσ−1. Hence∨
σ∈G

susp(∆0 ∩∆σ ) '
∨
σ∈G

suspSdimσ−1 '
∨
σ∈G

Sdimσ ' Ind(G \ K).

For all k ∈ K , ∆0 ∩ ∆k = (Ind(G \ K) \ G) ∩ Ind(G \ N(k)) = Ind(G \ K) ∩ Ind(G \ N(k)) = Ind(G \ (K ∪ N(k))) since
for any σ ∈ G there is a v ∈ σ adjacent to k, which implies that σ 6∈ Ind(G \ N(k)). Inserting this in the conclusion of the
lemma proves the first part of the theorem.
Now the second part. LetH1 = G,H2 = ∪k∈K\K ′{{k}}, andH3 = ∪k∈K ′{{k}∪σ |σ ∈ Gk}. To show thatH = H1∪H2∪H3

are generating faces of Ind(G), we need that all σ ∈ H are maximal faces of Ind(G), and that Ind(G) \H is contractible.
If k ∈ K \ K ′, then K ∪ N(k) = V (G). The neighborhood of k is V (G) \ {k} since K \ {k} ⊆ N(k), and k is an isolated point

in Ind(G). Thus all elements ofH2 are maximal faces of Ind(G). If σ ∈ H1 = G, then σ is a maximal face of Ind(G \ K). For
each vertex k ∈ K there is a vertex of σ adjacent to it by assumption, so no vertex of K can be added to σ . Hence σ is also a
maximal face of Ind(G). Therefore, all elements ofH1 are maximal faces of Ind(G). If k ∈ K ′ and σ ∈ Gk, then σ is a maximal
face of Ind(G \ (K ∪ N(k))) = lkInd(G)(k), so {k} ∪ σ is a maximal face of Ind(G). All elements ofH3 are therefore maximal
faces.
Recall that∆0 = Ind(G\K)\G. For k ∈ K ′ let∆′k = {k}∗(Ind(G\(K∪N(k)))\Gk). Wewill use Lemma 3.6with∆0 and∆

′

k
for k ∈ K ′, which are all contractible. Firstwe show that Ind(G)\H = ∆0∪(∪k∈K ′ ∆′k). Clearly, Ind(G)\H ⊇ ∆0∪(∪k∈K ′ ∆

′

k).
If σ ∈ Ind(G) \ H and no vertex of σ is in K ′, then σ ∈ ∆0. If σ ∈ Ind(G) \ H and k ∈ σ , where k ∈ K ′, then σ ∈ ∆′k. If
k1, k2 ∈ K ′ are different, then ∆′k1 ∩ ∆

′

k2
= {k1} ∗ (Ind(G \ (K ∪ N(k1))) \ Gk1) ∩ {k2} ∗ (Ind(G \ (K ∪ N(k2))) \ Gk2) =

(Ind(G \ (K ∪ N(k1))) \ Gk1) ∩ (Ind(G \ (K ∪ N(k2))) \ Gk2) ⊆ ∆0.
By Lemma 3.6

Ind(G) \H '
∨
k∈K ′
susp

(
∆0 ∩∆

′

k

)
=

∨
k∈K ′
susp ((Ind(G \ K) \ G) ∩ ({k} ∗ (Ind(G \ (K ∪ N(k))) \ Gk)))

=

∨
k∈K ′
susp ((Ind(G \ K) \ G) ∩ (Ind(G \ (K ∪ N(k))) \ Gk))

=

∨
k∈K ′
susp (Ind(G \ K) ∩ (Ind(G \ (K ∪ N(k))) \ Gk))

=

∨
k∈K ′
susp (Ind(G \ (K ∪ N(k))) \ Gk)

'

∨
k∈K ′
susp (point)

'

∨
k∈K ′
point

' point.

The equalities need clarification. The first one is by definition. The second one follows from the fact that k 6∈ Ind(G \ K) \ G.
Pick a generating face σ ∈ G. By assumption, there is a v ∈ σ for every k ∈ K ′, such that v and k are adjacent, that is
v ∈ N(k). Thus σ 6∈ Ind(G \ (K ∪ N(k))) \ Gk, which gives the next equality. The final one follows from Ind(G \ K) ⊇
Ind(G \ (K ∪ N(k))) ⊇ Ind(G \ (K ∪ N(k))) \ Gk. �

A relative of Lkn is its cycle version Ckn . It is the independence complex of a graph with vertex set {1, 2, . . . n}, and two
vertices i < j are adjacent if j − i < k or (n + i) − j < k. The case k = 2 was computed in [18], and used by Babson and
Kozlov [1] in the proof of the Lovász conjecture. The Z2-homotopy types ofL2n and C2n were studied by Živaljević [21].
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Example 3.12. Using the generating faces of L3n listed in Example 3.9, and Theorem 3.11, with K = {1, 2}, we get these
generating faces for C3n :

n generating faces

8 {1, 5}, {1, 6}, {2, 6}, {2, 7}, {4, 8}
9 {1, 5}, {1, 6}, {2, 6}, {2, 7}, {4, 8}, {4, 9}, {5, 9}
13 {1, 5, 9}, {1, 5, 10}, {1, 6, 10}, {1, 6, 11}, {2, 6, 10}, {2, 6, 11},

{2, 7, 11}, {2, 7, 12}, {4, 8, 12}, {4, 8, 13}, {4, 9, 13}, {5, 9, 13}

Thus C38 is a wedge of five S
1, C39 is a wedge of seven S

1, and C313 is a wedge of twelve S
2.

This theorem is molded after Theorem 1.1 in [5]. There is a homology version of it in [19]. Szabo and Tardos [20] also
proved it, but with explicit triangulations from discrete geometry.

Theorem 3.13. If G is a graph with n vertices and maximal degree d, then Ind(G) is b n−12d − 1c-connected.

Proof. The proof is by induction on n. If 1 ≤ n ≤ 2d then b n−12d − 1c = −1 and Ind(G) is (−1)-connected since it is
nonempty.
Recall [3, Theorem 10.6(ii)]: If ∆ is a simplicial complex and {∆i}i∈I is a family of subcomplexes such that ∆ = ∪i∈I ∆i,

and every nonempty intersection ∆i1 ∩ ∆i2 ∩ · · · ∩ ∆it is (k − t + 1)-connected, then ∆ is k-connected if and only if the
nerveN (∆i) is k-connected.
If n > 2d define ∆v = Ind(G \ N(v)) for each v ∈ V (G). Clearly ∆ = ∪v∈V (G)∆v . The complex ∆v is a cone with apex

v and in particular k-connected for all k. Let T be a subset of V (G) with t ≥ 2 elements. There are at most d vertices in a
neighborhood and

⋂
v∈T

∆v =
⋂
v∈T

Ind(G \ N(v)) = Ind

(
G \

⋃
v∈T

N(v)

)
,

so G \ ∪v∈T N(v) has at least n− td vertices and Ind(G \ ∪v∈T N(v)) is b n−td−12d − 1c-connected by induction. For t ≥ 2⌊
n− 1
2d
− 1

⌋
− t + 1 =

⌊
n− td− 1
2d

−
t
2

⌋
≤

⌊
n− td− 1
2d

− 1
⌋
,

thus ∩v∈T ∆v is (b n−12d − 1c − t + 1)-connected as required. We need to show that the nerve is b
n−1
2d − 1c-connected, and

it will follow from that the intersection of b n−12d − 1c + 2 arbitrary ∆v is nonempty. Indeed, if T is a subset of V (G) with
b
n−1
2d − 1c + 2 elements, then G \ ∪v∈T N(v) has at least n− d(b

n−1
2d − 1c + 2) vertices, and

n− d
(⌊
n− 1
2d
− 1

⌋
+ 2

)
≥ n− d

(
n− 1
2d
− 1+ 2

)
=
n− 2d
2
+
1
2
>
1
2
,

so ∩v∈T ∆v = Ind(G \ ∪v∈T N(v)) is nonempty. The conditions of [3, Theorem 10.6(ii)] are checked and thus Ind(G) is
b
n−1
2d − 1c-connected. �

The independence complex ofm disjoint complete bipartite graphs Kd,d can be collapsed onto the independence complex of
m disjoint edges using Lemma 3.2. That complex is homotopy equivalentwith an (m−1)-dimensional sphere. Them disjoint
Kd,d have 2md vertices andmaximal degree d, thus by Theorem 3.13 the independence complex is (m−2)-connected, which
is optimal.
It was proved in [11] that if G is claw-free then the constant 12d in Theorem 3.13 can be replaced by

2
3d , pushing up the

connectivity slightly.

4. Anti-Rips complexes

Anatural interpretation ofLkn is as the complex on {1, 2, . . . n} ⊂ R, with two different points p and q in the same simplex
if, and only if, |p− q| > k− 1. Many independence complexes in literature are based on graphs with natural embeddings in
low-dimensional metric space, see for example [7,12,16] and the references therein.

Definition 4.1. Let P be a subset of a metric space with distance function d, and r ≥ 0. The anti-Rips complex ARr(P) has
vertex set P , and two different points p and q of P , are in the same simplex if and only if d(p, q) > r .
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Equivalently, ARr(P) = Ind(G), where G is the graph with vertex set P , and two different points p and q are adjacent if
d(p, q) ≤ r . Notice that moving r from 0 to∞ creates a family of complexes which is ordered by inclusion, and its limits are
the simplex on P , and P as disjoint points.
Why name it anti-Rips complexes? Substituting d(p, q) > r with d(p, q) ≤ r defines Rips complexes. According to

Hausmann [15] Lefschetz called them Vietoris complexes, but the notation changedwith Rips’ reintroduction of them in the
study of hyperbolic groups.
Complexes of Anti-Rips type are common in the interaction between combinatorial topology and statistical physics, see

for example [7,12,16]
Corollary 3.8 can now be generalized.

Proposition 4.2. If P is a finite subset of R and m = min(P) then

ARr(P) '
∨
p∈P

m<p≤m+r

susp(ARr({q ∈ P | q > p+ r})).

Proof. Let u = m in Theorem 3.7. �

If P ⊂ Z2 has n vertices, then AR1(P) is b n−98 c-connected by Theorem3.13 since there are atmost 4 pointswithin distance
one from a point in Z2. Using the geometry of the plane, b n−98 c can be improved to b

n−9
6 c.

Proposition 4.3. If P ⊂ Z2 has n vertices, then AR1(P) is b n−96 c-connected.

Proof. The proof is by induction on n. If 1 ≤ n ≤ 8 then AR1(P) is b n−96 c-connected since it is (−1)-connected, and
b
n−9
6 c ≤ −1. Now assume that n > 8. Pick a u ∈ P such that the sum of its x and y coordinates is maximal among the

points in P . There is no restriction to assume that u = (0, 0) since the proposition is translation invariant. Consider P as an
induced subgraph of the Z2 lattice. Let v = (0,−1) andw = (−1, 0). Depending on N(u) ⊆ {v,w}we have four cases.
If N(u) = ∅ then AR1(P) is a cone and in particular b n−96 c-connected.
If N(u) = {v} then AR1(P) ' susp(AR1(P \ (N(u) ∪ N(v)))) by Theorem 3.7. The complex AR1(P \ (N(u) ∪ N(v))) is

b
(n−5)−9
6 c-connected by induction since N(u) ∪ N(v) ⊆ {u, v, (1,−1), (0,−2), (−1,−1)}. The suspension increases the

connectivity by one, and b (n−5)−96 c + 1 ≥ b n−96 c, thus AR1(P) is b
n−9
6 c-connected. The case N(u) = {w} is analogous.

The final case is N(u) = {v,w}. By induction AR1(P \ (N(u) ∪ N(v) ∪ N(w))) is (b n−96 c − 2)-connected since
N(u) ∪ N(v) ∪ N(w) ⊆ {u, v, w, (−1, 1), (−2, 0), (−1,−1), (1,−1), (0,−2)} and b (n−8)−96 c ≥ b

n−9
6 c − 2. The complex

AR1(P \ (N(u)∪ N(v))) is (b n−96 c − 1)-connected by induction since N(u)∪ N(v) ⊆ {u, v, w, (−1,−1), (1,−1), (0,−2)}.
Analogously AR1(P \ (N(u) ∪ N(w))) is (b n−96 c − 1)-connected. By Corollary 3.10, AR1(P) is b

n−9
6 c-connected. �

It is not known if the proposition is sharp. If P is the disjoint union ofm starswith 4 edges thenAR1(P) is an (m−1)-sphere
by repeated foldings. This shows that the 16 constant in the proposition at best can be replaced by

1
5 .

5. Open questions

We conclude with some open questions.

Question 5.1. One approach to bound the connectivity of a simplicial complex is to chop it up in pieces for which the connectivity
can be calculated easily, and then use the Nerve Lemma (cf. [5,10] and Theorem 3.13). Suitable subcomplexes for complexes of
directed trees are thosewith the same roots and Theorem2.12 shows their connectedness. However the subcomplexes’ intersections
are in general cumbersome. Can this class of subcomplexes be adapted to prove a nontrivial bound for the connectivity?

Question 5.2. Theorem 3.11 puts conditions on the generating faceswhich aremaybe even not possible to achieve by choosing the
generating faces correctly. In practice, when all generating faces are ‘‘far from a certain vertex’’, that vertex can often be collapsed
away, or discrete Morse theory [14] can be used. Can this be formalized to a method for removing vertices not in generating faces?

Question 5.3. The homotopy type of Ckn in general is still unsolved. A larger class to investigate is the anti-Rips complex of a finite
subset of a circle. In [13] the roots of the f -polynomial of such complexes were studied by extending a theorem by Chudnovsky
and Seymour [8].
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