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On Jacobi's Remarkable Curve Theorem 
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FOR DIRK STRUIK ON HIS |00TH BIRTHDAY 

One of the prettiest results in the global theory of curves is a theorem of Jacobi (1842): 
The spherical image of the normal directions along a closed differentiable curve in space 
divides the unit sphere into regions of equal area. The statement of this theorem is an 
afterthought to a paper in which Jacobi responds to the published correction by Thomas 
Clausen (1842) of an earlier paper, Jacobi (1836). In this note the context for this theorem 
and its proof are presented as well as a discussion of the 'error' corrected by Clausen. © 1994 
Academic Press, Inc. 

Einer der sch6nsten Sitze der globalen Theorie von Kurven ist der Satz von Jacobi 
( 1842): Das sphirische Bild der normallen Richtungen auf einer geschlosser differenzierbaren 
Raumcurve teilt die Kugelfliche in zwei gleiche Teile. Dieser Satz erscheint als Nachtrag 
zu einer Arbeit, in der Jacobi auf die ver6ffentlichte Berichtigung Thomas Clausens (1842) 
einer vorherigen Publikation Jacobis (1836) entgegnet. Die vorliegende Arbeit beschiftigt 
sich mit dem Zusammenhang dieses Satz und seines Beweis, ebenso wie mit dem 'Fehler, '  
den Clausen berichtigt hat. © 1994 Academic Press, Inc. 

Un des plus beaux r6sultats de la th6orie globale des courbes est celui de Jacobi (1842): 
l'image sph6rique des directions normales d'une courbe ferm6e et diff6rentiable divise la 
sphere-unit6 en deux r6gions 6gales. Ce th6or~me semble 6tre une r6flexion apr~s coup d'un 
article dans lequel Jacobi r6pond ~t une correction publi6e par Thomas Clausen (1842) d'un 
travail de Jacobi (1836). Ici, je mets ce th6or6me et sa d6monstration en contexte, et je mets 
en discussion la "faute" corrig6e par Clausen. ~ 1994 Academic Press, Inc. 
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In this work JACOBI touches on differential geometry in the large. 
Another example is his theorem that the spherical image of the principal 
normals to a closed continuously curved space curve divides the surface 
of a sphere into two equal parts, a corollary of GAUSS' theorem on 
geodesic triangles. 

D. J. Struik, Isis 1934 

I. INTRODUCTION 

In his Disquis i t iones  genera les  circa superf icies  curvas  [6, Sect. 20] Gauss 
proved the following classic theorem: a triangle A X Y Z  with sides made up of 
geodesics on a surface S in space ~3 satisfies the relation 

/ X + / Y + / Z - Tr = ( ( K dA = area(ABC) ,  
J JA XYZ 
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where K denotes the Gaussian curvature, and A B C  is the region on a sphere of 
radius 1 bounded by the curves AB,  BC, and CA which are determined by radii 
parallel to the normals to the surface S along the curves XY ,  YZ, and ZX,  respec- 
tively. This theorem, already remarkable, attracted the attention of the generation 
of geometers following Gauss (see [13]). In 1848 Ossian Bonnet [2] gave a more 
general formulation for triangles whose sides are arbitrary curves on a surface. 
This result involved the geodesic curvature, the key to the Gauss-Bonnet theorem. 

Between the publication of these two famous results, C. G. J. Jacobi proved a 
different sort of generalization of Gauss's theorem in Demonstratio et amplificatio 
nova theorematis Gaussiani de curvatura integra trianguli in data superficie e 
lineis brevissimis format i  [7]. Suppose one dispenses with the surface S and 
considers a triangle A X Y Z  made up of three space curves. The unit normal vectors 
along each curve, that is, the unit vector in the direction of the radius of the 
osculating circle at each point on the curve, determine a triangle A B C  of curves 
on the unit sphere if the space curves have normals that agree at the vertices. 
Under these assumptions Jacobi proved the following result. 

THEOREM I. (Theorem I of[7] and Theorem II of  [8]). The area o f  the triangle 
ABC  on the sphere o f  radius 1 satisfies 

area(ABC) = /_X + L Y + / Z - rr. 

The purpose of this article is to reconsider Jacobi's proofs of this theorem. One 
reason for doing so concerns the historical context that prompted Jacobi's second 
paper on this subject. In the opening sentence of that paper [8] he wrote: 

In No. 457 of the Astronomische Nachrichten Mr. Clausen put forward some unfounded 
doubt about the correctness of a theorem proved by me in the 16th volume of Crelle's Journal 
of which a famous theorem of Gauss is a special case. 

Thus, this paper was written as part of a public mathematical dispute between 
Jacobi and Thomas Clausen (1801-1885), and we examine the nature of this conflict 
of opinion below. 

A second reason to look at these papers by Jacobi arises from their intrinsic 
mathematical interest, as they provide a snapshot of the methods employed by 
differential geometers during this pivotal period. The first half of the 19th century 
brought a groundswell of activity in geometry. Jacobi, in particular, lectured often 
throughout his career on the analytic theory of curves and surfaces in space. What 
emerges from a close reading of his papers [7] and [8] is not an extension of 
Gauss's methods, but an attempt by Jacobi to get at the geometric principles that 
underlie Gauss's result and its generalization. In these papers Jacobi not only 
proved a beautiful result on space curves but demonstrated the power of methods 
of spherical trigonometry to obtain new results. This is differential geometry driven 
by spherical geometry together with infinitesimal arguments. The methods go 
back to Jacobi's idol, Leonhard Euler, and Euler's study of duality in spherical 
trigonometry (see, e.g., [5]). 

The contrast between the analytic and synthetic approaches to geometry is clear 



HM 21 JACOBI'S CURVE THEOREM 379 

in the mathematical argument between Jacobi and Clausen as well as from views 
expressed by Jacobi in [7]. 

II. THE MATHEMATICAL DISPUTE 

Jacobi opens the paper [7] with an argument for Theorem I: 

To consider arbitrary curves, however, it may be granted that they are geodesics on some 
surface: . . . .  

From this statement he concludes that Theorem I follows from Gauss's result. 
The rest of the paper is occupied with Jacobi's real point--to reduce Theorem I, 
and hence Gauss's theorem, to another key theorem concerning the normal images 
of space curves, a result connected with the images of space curves provable by 
using spherical trigonometry and duality. Jacobi describes this main result, Theo- 
rem II of [7], as one '~quibus genuina eius indoles melius prespicitur," that is, 
from which the innate quality is seen better. The details of his proof are given in 
Sections III and IV. Our presentation of the results follows the reverse order of 
Jacobi's argument, however. He begins by attempting to establish Theorem I via 
an argument that utilizes Gauss's Theorem and then goes on to review some 
results from spherical trigonometry. Through a series of substitutions and analyses 
of certain angles, he obtains a formula which forms the crux of his Theorem II 
and which he proves independently of Gauss's Theorem. Moreover, Jacobi closes 
the paper with an analytic proof of Theorem II, a tour de force in the spirit of 
Gauss's Disquisitiones that he prefaces with the remarks: 

If Theorem II . . . needs a proof by analytic formulas one falls into rather complicated 
calculations.., they become so troublesome that one easily shrinks back from them. 

Given Jacobi's prowess at computation and his obvious understanding of Gauss's 
methods, it is fairly certain that the inclusion of this second proof was meant to 
support his search for appropriate foundations for the proof of Gauss's famous 
theorem and his own generalization of it. 

In fact, Jacobi's appeal to Gauss's result to prove Theorem I was incorrect. 
Six years after the publication of [7], Thomas Clausen, the self-taught mathemati- 
cian and astronomer, published Berichtigung eines yon Jacobi aufgestellten Theo- 
rems [4], in which he gave an argument using the methods ofGauss's Disquisitiones 
to show that it may not be granted that even a pair of space curves with common 
normal at their intersection can be thought to lie on a surface as a pair of geodesics. 

While hardly a well-known figure today, Clausen produced a number of signifi- 
cant mathematical contributions that earned him the respect of Gauss, Bessel, 
and Jacobi. His best known results concerned the factorization of the seventh 
Fermat number, 2 26 + 1 (by a method still unpublished), results on the Bernoulli 
numbers (shared with yon Staudt), and his computations of the paths of comets 
for which he received a prize from the Copenhagen Academy in 1840. As related 
in Biermann's biographical essay [1], Clausen's professional life was made difficult 
through bouts with mental illness. He spent the years 1824 to 1828 at the Altona 
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Astronomical Observatory as an assistant to H. C. Schumacher, editor of Astro- 
nomische Nachrichten and a close colleague of Gauss. After a falling out with 
Schumacher, Clausen worked under J. von Utzschneider at the Optical Institute 
in Munich, where he was able to develop his mathematical and astronomical ideas 
freely. In 1840, after several years of difficulty with his physical and mental 
health, Clausen returned to Altona and Schumacher without any means of support. 
Schumacher made many appeals to well-placed mathematicians for the support 
of a position for Clausen. He was finally called to Dorpat in 1842 as observateur 
and later succeeded J. H. M~idler as director of the observatory. 

It was during this particularly vulnerable period, 1840-1842, that Clausen pub- 
lished his correction of Jacobi's paper [7]. By that time, Schumacher had prompted 
Bessel to ask Jacobi to seek support for Clausen while he was in Altona. Jacobi 
succeeded in securing 250 Talers from the Berlin Academy for Clausen in order 
for him to complete certain calculations associated with Jacobi's perturbation 
theory. Nothing seems to have come from this commission. Jacobi related to his 
brother (letter of February 28, 1841 [9]) that Clausen suffered severe headaches 
which stood in the way of his computations. 

On the receipt of Clausen's paper [4] Schumacher wrote Gauss to inquire about 
its appropriateness for publication in the Astronomische Nachrichten. Gauss re- 
plied (September 3, 1842) that Clausen's refutation of the "alleged generalization" 
was completely founded and appropriate (see [1]). In short order (between Septem- 
ber and October 1842) Jacobi replied with a new proof of Theorem I [8], this time 
relying solely on area relations in spherical geometry. The proof develops directly 
without the searching rhetoric of reduction that is found in [7]. Jacobi sought to 
establish not only the correctness of his results, but the correctness of his approach. 

At the end of [8] Jacobi called attention to a corollary of Theorem I: 

COROLLARY. I f  an arbitrary continuously curved closed curve is given in space 
and one takes radii from the center of  a sphere parallel to the radii of  curvature 
of  the curve, the curve on the sphere so constructed divides the sphere into two 
equal parts. 

The corollary, stated without proof, follows from the theorem by choosing three 
points on the closed curve and calling them vertices of a triangle of space curves. 
This is the only result from this pair of interesting papers that has remained in 
the standard literature on differential geometry, where it is usually presented in 
the context of the Gauss-Bonnet Theorem, that is, through analytic formulas (see, 
e.g., [14, 407-409]). 

In Sections III and IV below we present Jacobi's first proof ([7]) of Theorem I 
which, in fact, is correct. By reversing the rhetoric, we expose the "innate quali- 
ties" at the foundations of geometry that Jacobi judged to be the "fount"  of 
Gauss's result and his generalization. 

III. POLAR RECIPROCITY 

"Quae ea est reciprocitas"--What is reciprocity? wrote Jacobi in his prepara- 
tory remarks to the proof of his main theorem in [7]. Given a great circle on a 
unit sphere, its pole is the point on the sphere determined by the line through the 
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center of the sphere in the direction normal to the plane that gives the great circle. 
This can be one of two antipodal points and the choice is made by orienting the 
great circle and choosing the binormal direction (see [12]). Given a spherical 
triangle A A B C  made up of great circle segments, the poles of each side determine 
another spherical triangle A a ~ y  where o~ is the pole of side BC, etc. This triangle 
is called the polar triangle associated to A A B C  and it has the following properties 
that are recalled by Jacobi (see [3] for a discussion of polar reciprocity from Euler 
onward): 

1. The polar triangle of A~/3y is A A B C .  
2. The lengths of the sides of A a ~ 7  are given by 

aft = ~ - /_BCA; a y  = ~ - /_ABC; f ly  = 7r - / C A B .  

More generally, an angle between great circle arcs has polar reciprocal equal to 
an arc whose length is the supplement of the given angle, and vice versa. 

It follows immediately from these properties and the formula for the area of a 
spherical triangle that 

area(AABC)  + circumference(Aa/37) = 27r. 

We can extend this relation to spherical n-gons and their polar reciprocals, 
giving the sum of the area of the n-gon and the circumference of its polar reciprocal 
equal to 2~-. Given an arbitrary curve on the sphere, its polar reciprocal is another 
curve with each point corresponding to the pole of the great circle determined by 
a point on the given curve and the tangent to the curve at that point. 

Let ?~: [0, l] ~ ~3 denote a unit speed space curve with X = M0), Y = ?,(1), 
and denote by X Y  the image of ?,. For convenience we fix a sphere of radius 1, 
namely S z with center O = (0, 0, 0). The tangents at each point on X Y  determine 
a curve ab on S 2. The basic construction of Jacobi is the normal image of X Y  
which is given by the curve A B  on S z of points with radii parallel to the radii of 
curvature of XY.  The following remark links these curves and lies at the heart of 
Jacobi's proof of theorem I: 

The curve o f  tangents ab is the polar reciprocal o f  the normal image A B  o f  the 
curve XY .  

IV. JACOBFS MAIN THEOREM 

Let ?~: [0, l] ~ ~3 be as above with the trace of ?, denoted by X Y .  The analytic 
description of the normal directions N(s) along X Y  given by the radius of the 
osculating circle at each point is fixed by ?,"(s) = K(s)N(s) with K(s) > 0 and N(s) 
of length one. 

The osculating plane along X Y  is the plane spanned by the tangent X'(s) and 
the normal N(s). Jacobi defines the plane o f  the osculating radii to be the plane 
spanned by the normal N(s) and its derivative (d/ds) (N(s)). Jacobi's main theorem 
is the following result: 

THEOREM II (in [7]). Consider the curve ab on S 2 determined by the tangents 
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X'(s) along XY.  The length o f  ab is equal to the difference o f  the angles which 
the plane o f  the osculating radii makes with the osculating plane at the extremities 
X and Y. 

Let 0 < sj < I and write p = h'(sl), q = h'(sl + dsj) = h'(Sz), r = ~'(s 2 + ds2) = h ' ( s 3 ) ,  etc. Let P = N(s0, Q = N(s2), R = N ( s 3 ) ,  etc. We have then 

pP = qQ = rR = 7r/2. 

For dsi infinitesimal the arc of the great circle pq goes through P, qr through Q, 
etc. With this notation the osculating plane to X Y  at h(s~) is OpP = OqP, at h(s2) 
it is OpQ = OrQ, etc., where O denotes the center of the sphere. Let QQ' be 
the direction (d/ds) (N(s)) at s = s~; the plane of the osculating radii at h(sl) is 
OPQ = OQQ'.  We can then write the angle between the osculating plane and 
the plane of the osculating radii as/_qPQ = / _ p P Q .  The differential of that angle 
is given by/_qQR - /_qPQ: 

P ~ R  \Q' 

A typical element of arc length along ab is given by pq. Jacobi next showed 
that summing pq, qr, rs . . . .  is the same as summing the angles/_qQR - /__qPQ. 

By the earlier discussion the curve that is polar reciprocal to the normal image 
of X Y  is the curve of the tangent directions ab. By the polar correspondence 
/_PQR has polar reciprocal given by the great circle segment pq of length rr - 
/_PQR = /_RQQ'.  Thus to sum pq, qr . . . .  we sum (integrate)/_RQQ'. 

In the limits involved in integration, it suffices to show that if pq, qr . . . .  are 
of first order, then /_qPQ - /_qQQ' is of second order. This implies that 
/_qQR - /__RQQ' - /_qQQ' is of second order or that /_RQQ' = /_qQR - 
/_qQQ' = /_qQR - /_qPQ up to second order. 

Consider the spherical triangle A q p Q .  By the spherical law of sines we have 

sin(/_qPQ) _ sin(/_qQP) 

sin qQ sin qP 

Since L q Q Q '  = ¢r - /_qQP, we have that sin(/_qQQ') = s in( /  qQP). Since 
pP  = 7r/2 we have 

qP = pP  - pq  = ~/2 - pq. 

It follows that 
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s in( /_qPQ) - s i n ( / q Q Q ' )  = 1 - sin(Tr/2 - p q )  _ 1 - cos(pq) _ 2 sin2(1/2pq) 

s i n ( / q P Q )  sin(qQ) 1 1 

Thus if p q  is of  first order,  then s in( /_qPQ) - s in ( /_qQQ' )  is of  second order.  
This is Jacobi 's  proof  of  the theorem. 

Theorem I of  the Introduction follows from Theorem II. Suppose that A X Y Z  
is a triangle of  space curves satisfying the condition that the radii of  curvature of  
each pair of  curves point in the same direction at their intersection. Let  A B C  
denote the normal images of these curves on S 2 with A B  = N(XY), B C  = N(YZ), 
and CA = N(ZX). 

The polar reciprocal o f  A B C  is a hexagon aa tbb lcCl ,  where aa~, bb~, and cc~ 
are arcs of  great circles of length 7r - /_BAC,  7r - /_ABC,  and 7r - B C A ,  
respectively, and the curves a jb, b~c, and c la correspond to the tangent images 
of X Y ,  YZ, and Z A ,  respectively. 

By the discussion of polar reciprocity we know that 

area(ABC)  + c i r c u m f e r e n c e ( a a l b b l c c O  = 2rr. 

Now introduce angles 

x '  = angle between X)r(O) and d d @  (0) 

x" = angle between )t)z(0 ) and r id@ (0), 

Xxz(O) 

where Xxr(S) is a unit speed parametrization of the curve X Y  and Xxz(S) is a unit 
speed parametrization of  the curve X Z .  Since / Y X Z  + x" = / B A C  + x ' ,  by 
Theorem II we have that 

/ A  - / X  = / B A C  - / _ Y X Z  = x '  - x" = length(alb).  

If we define angles y ' ,  y", z ' ,  and z" in a similar manner, then Theorem II implies 
that 
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l e n g t h ( b l c )  = y '  - y"  = /_B - /_Y, l e n g t h ( c l a )  = z '  - z" = / C  - /_Z.  

I t  f o l l o w s  tha t  

c i r c u m f e r e n c e  ( a a  1 b b  i c c  1 ) 

= 7 r -  / _ A  + / _ A -  / _ X + T r -  /_B  + A B -  / Y + ~ -  / _ C +  / C -  / Z  

= 3 7 r -  / _ X -  / Y -  / Z .  

I n s e r t i n g  th is  i d e n t i t y  in to  o u r  f o r m u l a  f r o m  p o l a r  r e c i p r o c i t y  w e  o b t a i n  

T h e o r e m  I: 

a r e a ( A B C )  = / _ X  + /_ Y + / Z  - 7r. 
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