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Traditional classification techniques assume samples are described by vectors of features.

However, in some domains samples are gathered by measuring a variable with respect to

two or more other variables: for a given value of x and y measure z. In such domains,

samples are more naturally described by matrices or by higher dimensional arrays.

We present a novel latent Dirichlet allocation (LDA)-based approach for modeling and

analyzing fluorescent spectroscopy excitation-emission Matrices (EEMs) and other three

way datasets. We introduce parallels between topic modeling and three-way arrays which

allow us to create adaptations to use LDA-based methods in latent fluorophore studies.

The proposed framework views the EEMs as being generated from an underlying hidden

pool of flourophore compounds, and provides a latent flourophore-space representation of

an EEM. We show that this LDA-based model can increase classification performance,

especially when paired with parallel factor analysis (PARAFAC) which may be regarded

as perhaps the most popular and widely used tool for dealing with EEMs. Our experiments

show that the proposed LDA-based algorithm is in some cases more robust than PARAFAC

to certain types of noise and data disturbances. We also observe that pairing this LDA-

based method with PARAFAC leads to an improvement in classification performance and

to added robustness at high peak-signal-to-noise-ration (PSNR) values.

We also present an extended graphical model that incorporates the effect of outside

variables that may affect fluorescent expression of certain compounds. The extended model



offers further insight into the interaction between these variables and the latent fluorophore

components while facilitating the model building process.

The performance of machine learning algorithms is known to be impaired if the repre-

sentation of the individual classes in the training set is imbalanced, i.e., one class outnum-

bering the other class(es). Such is the case for several experiments in this proposal. Many

approaches to deal with this problem have been developed, none of them totally satisfac-

tory. Here we propose membership-based minority oversampling (MeMO), as yet another

possible solution, and explores, experimentally, the conditions under which it outperforms

earlier attempts.

Finally we introduce a Dempster-Shafer based fusion model that is intended to adap-

tively merge the PARAFAC and LDA-based models when their outputs are being used for

classification purposes.
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Chapter 1

Introduction

Although machine learning applications typically employ samples, which are described

attributes expressed in vector form, in some domains the samples are more naturally ex-

pressed as matrices. This is the case of fluorescence spectroscopy where each example is

an excitation-emission matrix (EEM) with columns representing excitation wavelengths,

rows representing emission wavelengths, and each excitation-emission pair containing the

fluorescence corresponding to both.

Representing the matrices as vectors allows the use of traditional machine learning

algorithms for their classification and study. On the surface, this seems to be quite easy:

simply concatenate the rows of the matrix, thus obtaining a vector of n ·m attributes, where

n and m are the numbers of rows and columns, respectively. This, however, will likely

obscure critically important information about spectral interrelationships. Furthermore, in

chemomtrics and in psychometrics, where matrix-like samples are common, the objective

of the analysis is at times more subtle than simple classification. In certain applications it is

more important to understand the underlying structure of the data than to classify samples

according to their attributes.

In an attempt to overcome this weakness, some authors prefer to decompose their matrix

datasets by the use of parallel factor analysis (PARAFAC) [1, 2, 3, 4]. This approach

allows the analyst to represent the entire data set in terms of two loading matrices and one

1
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score matrix (plus residuals). The rows of the score matrix offer a representation of the

samples in the original dataset in terms of the two loading matrices. This approach allows

the analyst to understand the underlying structure of the data, represented in the loading

matrices, but it also offers a vector description of each sample, represented by the score

matrix. Nevertheless, this tool suffers from high sensitivity to outliers, forcing analysts to

discard samples which might offer other insight into the data.

Seeking an improvement, we developed a method that uses PARAFAC in collaboration

with a probabilistic graphical model based on latent Dirichlet allocation (LDA). Our graph-

ical model allows direct comparisons with studies in literature given that it also infers the

underlying or hidden structure of the data and the model is human readable. Furthermore,

the graphical model is capable of incorporating external variables that can affect the un-

derlying structure of each the matrix. This last advantage can help the analyst understand

not only the hidden structure of the data but also how this structure is affected by external

stimuli.

This dissertation is ordered in the following way: Chapter 1 introduces excitation-

emission matrices and multi-way analysis, chapter 2 explains graphical models and pa-

rameter estimation methods used in the field, chapter 3 describes the proposed graphical

model methods to study EEMs and addresses the matrix quantization problem, chapter 4

introduces a new oversampling techniques used for dataset imalances that can be used in

multi-way arrays, chapter 5 describes Non-Parametric regression and its advantages over

traditional approches, chapter 6 explains Dempster-Shafer theory and belief fusion, chap-

ter 7 contains experimental results for the proposed methods and finally, chapter 8 summa-

rizes the results and proposes possible avenues for future work.

1.1 Motivation

Many publications and studies in the area of fluorescence spectroscopy are based on de-

composition methods that offer insight about the family of fluorophores present in a sam-
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ple. Decomposition methods like PARAFAC are human readable and offer an easily inter-

pretable output that can be shared and understood across studies and research groups. Hu-

man readable decomposition outputs show the analyst the basic fluorescent groups present

in a set of measurements, allowing an analyst to quickly determine the type of compounds

related to said fluorescent groups. Techniques based on neural networks or in direct pre-

diction from the spectra do not offer a human readable output and their results cannot be

compared to other studies in literature. Thus, a technique that can offer a human inter-

pretable output, while also being backward compatible to the PARAFAC decomposition, is

highly desirable.

The PARAFAC model, calculated through an alternating least square algorithm, is

known to have a fit that is very sensitive to outliers. This disadvantage can add time con-

suming model validation procedures to the model building process. A model that can more

adequately handle noise and outliers would reduce the time necessary for model validation

and simplify the classification task.

Three-way datasets that do not follow a tri-linear pattern cannot appropriately be mod-

eled using PARAFAC. It would be advantageous for a model to have the ability to fit data

which follows a tri-linear pattern while also offering the flexibility to model datasets that

do not. In several applications such as chemometrics, the tri-linear nature of the data can

sometimes be affected by external parameters such as pH or temperature. The PARAFAC

model has no direct way of handling this variations and therefore falls short when the data

acquisition was not carefully calibrated to account for such variations. A model that can

incorporate these external variables could offer a deeper understanding of their effect on

the data while also simplifying the model building process.

1.2 Excitation Emission Matrices (EEMs)

An EEM is a matrix obtained through the concatenation of several fluorescence emis-

sion scans collected at periodical excitation wavelengths. It can be visualized as a three-
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dimensional surface where each point has a location given by an excitation-emission pair

and a height specified by a corresponding fluorescent value. The peak locations correspond

to types of fluorescent substances and their heights correspond to their concentrations.

EEMs have been used to characterize dissolved organic matter (DOM) in water and

soil [5, 6, 7], to study water fingerprinting [2, 8, 9] and, in general, to study fluorescent

organic substances. Fluorescence spectroscopy can measure concentrations down to parts

per billion [10], offering excellent sensitivity, simplicity and low cost as compared to other

analytical techniques.

In metabonomic diagnostics, the response of metabolites in biological systems is mea-

sured and used to predict disease. Over the past three decades the use of EEMs as a metabo-

nomic tool to analyse human blood plasma has been well documented [11, 12, 13]. Leiner

et al. [14] used deviations of tryptophan fluorescence of human blood serum to detect

gynecological malignancies. Madhuri et al. performed several studies using fluorescence

spectroscopic data of blood plasma to detect liver decease [15], oral malignancies [16] and

cancer [12, 17]. Most of these studies used maximum valued excitation-emission pairs or

ratio variables to describe peak locations. The feature extraction was therefore performed

in a supervised manner through expert analysis of spectral regions known for their fluores-

cent composition. The location of selected peaks was subsequently used to perform linear

discriminant analysis or to establish a correlation between peak locations and class labels.

Although informative, these approaches require expert domain knowledge and use only a

few wavelength pairs, while ignoring the full excitation-emission spectrum.

Recently, researchers have begun to use the whole spectral approach taking advantage

of the information of the entire EEM by introducing modern chemometric techniques for

data analysis. Lawaetz et al.[18] used EEM data on human blood plasma to detect colorec-

tal cancer and Hudson et al.[6] used EEM data for organic matter characterization. These
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studies applied parallel factor analysis (PARAFAC) to factorize the three-way EEM data

and to detect the chemical differences between samples.

As mentioned before, the PARAFAC model is highly sensitive to outliers and noise.

Consequently, an alternative approach to replace or supplement PARAFAC as a fluorescent

decomposition and pattern recognition method is highly desirable. In this paper we propose

a novel approach, using a probabilistic graphical model based on latent Dirichlet allocation

to transform the EEMs fluorescent information into an underlying fluorophore-like space.

Section 1.3 presents traditional multi-way analysis methods and introduces the PARAFAC

model, which is currently the state of the art technique used to study EEMs.

EEM measurements are usually pretreated for fluorescent artifacts before analysis.

When taking fluorescent measurements, small particles in the samples cause light to reflect

and deviate from its path producing what is known as scattering. This phenomenon pro-

duces distinctive fluorescent patterns in the samples that are completely unrelated to their

actual fluorescent properties. Rayleigh (elastic) and Raman (inelastic) scattering peaks,

along with their corresponding harmonic reflections, occur in all samples, even those not

exhibiting fluorescence[19]. The scattering forms distinctive diagonal lines across the flu-

orescent landscape as can be seen in fig. 1.1.

Elastic scattering has no energy loss; thus, the scattered excitation wavelength is iden-

tical to the detected emission wavelength. Inelastic scattering has some energy loss; there-

fore, the detected emission wavelength is slightly longer than the original excitation wave-

length. The zeroth harmonics of these scattering peaks can be seen as a diagonal lines that

pass through the matrix around the values where emission wavelength = excitation wave-

length. The first harmonics occur around the area of the matrix where emission wavelength

= 2*excitation wavelength.

The intensity of the scattering will vary depending on solvent type and on the con-

centration of particles in the solution [19]. Therefore, it is common practice to remove the
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Figure 1.1: EEM showing zeroth and first order scatter as prominent diagonal lines which
usually have higher magnitude than other fluorescent features.

Figure 1.2: EEM after removal of zeroth and first order scatter. Note that removed entries
are set to missing. Fluorescent features that were obscured by scattering become more
evident.
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scattering from the matrices by setting the matrix entries in those areas to missing as shown

in fig. 1.2.

1.3 Multi-way Analysis

Multi-way datasets are comprised of data samples having groups of variables measured in

a crossed fashion [20]. Two-way data describes a traditional dataset that can be organized

into a matrix (two-dimensional structure), where the rows are the samples and the columns

are the measured variables. Three-way data describes a dataset that can be organized into

a cube (three-dimensional structure), where the measured variables are entries in a matrix

and the samples are slices of the cube. In the same way, n-way data refers to a dataset that

can be organized into a hypercube (n-dimensional structure). In psychometrics this type of

data can be created by measuring a set of variables on a group of patients at different time

points. In chemometrics the clearest example of a three-way dataset is given by EEMs, but

two-way data measured with different control variables (time, pH or location) can also be

expressed as an n-way array.

Parallel factor analysis (PARAFAC) and other decomposition methods such as Tucker3

and two-way PCA have been the traditional methods of choice to analyze the multi-way

nature of EEM data in chemometrics. Given the correct number of factors or components,

PARAFAC scores represent relative concentrations while the loadings represent emission

and excitation spectra of the fluorophores in a sample [21].

Let X ∈ℜD×R×C denote a three-way array and let xdrc be an entry of X in the dth sam-

ple, at the rth emission wavelength and at the cth excitation wavelength. Such an array can

be analysed using two-way analysis methods by taking two-way data “slices” and con-

catenating them into a new array Y ∈ℜD×RC. However, such an approach cannot properly

capture the underlying structure of the high-dimensional array because two-way analysis

methods suffer from rotational freedom [22]. Furthermore, two-way PCA methods tend to

use the excess degrees of freedom to model noise or model the systematic variation redun-
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Figure 1.3: A three-way dataset where the matrix samples xd=1,rc,xd=2,rc, · · · ,xd=D,rc are
stacked on top of each other. A measured value at location (r,c) will be at the same location
for any sample k ∈ {1, · · · ,D}.

dantly [20]. This limitation is the main reason for the popularity of generalized multiway

data analysis techniques in high-dimensional array decomposition.

Leyard Tucker proposed an extension of bilinear factor analysis to higher-order datasets

[23], which led to a series of multi-way analysis models. This made Tucker one of the

initial contributors to “modern” multi-way analysis techniques, later called Turker models

or N-mode principal component analysis.

1.3.1 The PARAFAC Model

Among the current methods for multi-way analysis, the most popular model proposed in

[24] is Parallel factor analysis (PARAFAC). The PARAFAC model has been widely used in

chemometrics for EEM analysis1. Like Tucker3, this is also an extension of bilinear factor

models to multilinear data. Adopting ideas of Parallel Proportional Profiles [26], the model

1A similar idea has been proposed by Carroll & Chang [25] which they called Canonical Decomposition
(CANDECOMP)
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assumes that samples with same factors, but under different conditions, will have different

scaling depending only on the conditions.

The The T -component PARAFAC model for our three way data array X, is a decompo-

sition of X expressed as a linear combination of rank-1 tensors:

X =
T

∑
t=1

ut ◦vt ◦wt +E, (1.1)

where ut = {udt}, vt = {vrt} and wt = {wct} indicate the t-th column of component matri-

ces U ∈ RD×T , V ∈ RR×T , and W ∈ RC×T , respectively; E = {edrc} ∈ RD×R×C represent

the ‘residuals’. The symbol ◦ denotes the vector outer product: ut ◦ vt ◦wt generates the

matrix Y = {ydrc} ∈ RD×R×C, where ydrc = ∑t udtvrtwct . Thus, eq. (1.1) can be expressed

for a single element of X as

xdrc =
T

∑
t=1

udtvrtwct + edrc, (1.2)

where udt , vrt , and wct are referred to as the core-values. These core-values in three-way

analysis can be compared to the singular values of two-way analysis that one gets via the

singular value decomposition (SVD). The core-values gttt are explicitly shown in eq. (1.3)

as scaling parameters, such that the core-array is a diagonal three-way array G ∈RT×T×T ,

with diagonal entries g111, . . . ,gT T T :

xdrc =
T

∑
t=1

gttt ùdt v̀rtẁct + edrc. (1.3)

Here, we use ùt = {ùdt}, v̀t = {v̀rt} and ẁt = {ẁct} to differentiate the notation from the

components in eq. (1.2). Other than that, there is no difference between the two sets of

variables.

The aim in PARAFAC is to find unique estimates for the U, V and W component matri-

ces (up to permutation, sign and scaling indeterminacy)[21]. This is the reason PARAFAC

does not have rotational freedom; the calculated component matrices in a PARAFAC model

cannot be changed without changing the residuals E. This property is also known as the in-
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trinsic axes property. Thus, unlike Principal Component Analysis (PCA), PARAFAC pro-

vides unique basis vector orientations. This property makes PARAFAC a popular choice,

especially in the chemometrics community. If we pick the correct number of factors T , a

PARAFAC analysis provides a unique model for three-way EEM data such that the model’s

factors correspond directly to chemical mixture measurements. However, determining the

optimal number of factors for real data is not trivial and different techniques like core con-

sistency [18] must be used to optimize the analysis.

Like PARAFAC, Tucker models also decompose X into three component matrices

U ∈ ℜD×P, V ∈ ℜR×Q and W ∈ ℜC×T . Using the same notation, eq. (1.4) shows the

factorization with a Tucker3 model.

xdrc =
P

∑
p=1

Q

∑
q=1

T

∑
t=1

gpqtud pvrqwct + edrc (1.4)

The main difference in Tucker3 models resides in the core-array G ∈ℜP×Q×T , with el-

ements gpqt , as opposed to the diagonal core-array of PARAFAC. This makes the Tucker3

model more flexible as it allows interaction between factors. This appears to be a good

feature when analyzing three-way datasets. Nonetheless, this is the reason PARAFAC is

a more popular model in the chemometric community. The flexibility added by the filled

elements gpqt limits the Tucker model’s ability to provide unique component matrices. Con-

sequently, the relationship between factors and chemical measurements in a Tucker model

is complicated and difficult to interpret, unlike the direct and intuitive relationship that

results from the PARAFAC model.

1.3.2 Fitting a PARAFAC Model

The PRAFAC model can also be written using the Khatri-Rao product as follows:

X(D×RC) = U(V�W)′+E (1.5)
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where X(D×RC) is the unfolded array of size D×RC, otherwise known as the matricization

of the tree-way array in the first mode. An example of this process is shown in fig. 1.4.

This notation simplifies the notation in the algorithm formulation.

(a) Array slices along the third mode of a three-way array X with
dimension C = 5

(b) Matricizing X along the first mode.

Figure 1.4: The matricizing process in the first mode creates a matrix X(D×RC) ∈ ℜD×RC,
the same process in the second mode creates a matrix X(R×DC) ∈ ℜR×DC and in the third
mode a matrix X(C×RD) ∈ℜC×RD.

Most algorithms used to fit PARAFAC models are based on alternating least squares,

although some faster algorithms are based on a generalized eigenvalue problem to calculate

an approximate solution [21]. Here, we describe an alternating least squares approach

which is easy to implement and guarantees convergence.

Using the notation in eq. (1.5) a least squares loss function L can be written as:
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L = min
U,V,W

‖X(D×RC)−U(V�W)′‖2 (1.6)

The ALS algorithm finds an estimate for U given V and W, then an estimate for V given

U and W and an estimate for W given U and V. The symmetry of the model allows the

updates to be formulated in the same way for the three modes by simply shifting the role

of each matrix [21]. In order to formulate the problem, let us define three different ways in

which the three-way array X will be matricized depending on which estimate U,V or W is

being performed:

Xmode(B) =



X(D×RC), if B = U

X(C×RD), if B = W

X(R×DC), if B = V

(1.7)

With this definition in place we can rewrite eq. (1.6) in more general terms as:

LB = min
B
‖Xmode(B)−B(Z)′‖2 (1.8)

where, B takes values W, U or V, and Z is given by the following equation:

Z =



V�W, if B = U

V�U, if B = W

W�U, if B = V

(1.9)

The solution to eq. (1.8) when B has full rank is:

B = XZ(Z′Z)−1 (1.10)

Thus, the algorithm can be summarized with the following steps



13

PARAFAC(X)

1 � Initialize V and W

2 repeat

3 for B ∈ {U,W,V}

4 do

5 Z← (V�W)

6 B← Xmode(B)Z(Z′Z)−1

7 until Change in fit is small.

As reported in [20], good initialization guesses for V and W can ensure that no lo-

cal minimum is found. A variety of techniques to speed up convergence and avoid local

minima have been proposed in the literature. Some authors [27, 28, 29] propose using

approximate solutions obtained from generalized rank annhilation methods or from direct

trilinear decomposition, where two samples are used to estimate the modes. On the other

hand, Harshman et al. [30] propose running several PARAFAC models with random initial

values so that repeated convergence to the same model minimizes the chance of finding a

local minimum.

Finally, the best number of components for a PARAFAC model can be determined by

cross-validation, by performing a core consistency diagnosis (CONCORDIA) [18] or by

analysing the residuals of the model. Systematic variation of the residuals tends to indicate

that more components are needed to represent the variation in the data. Thus, several

models with an increasing number of components are created while studying the behavior

of the residuals. If a plot of the residual sum of squares versus the number of components

abruptly flattens out for a certain number of components, it is highly probable that the true

number of components has been found [20].



Chapter 2

Probabilistic Modeling

The main purpose behind probabilistic modeling is to define, infer and use a statistical

model to represent a real world process. Probabilistic models vary greatly depending on

their purpose. Therefore, the number, the type and the model’s parameters is tailored to

represent a specific problem domain.

In order to use a statistical model we must find efficient ways to perform inference

and we must also find ways to use such a model to make predictions. Solving the infer-

ence problem allows us to find the parameters that best explain the observations. On the

other hand, solving the prediction problem allows us to use the model with predetermined

parameters to make predictions on new data.

2.1 Probabilistic Graphical Models

Graphical models (GMs) are illustrative diagrams that represent probability distributions.

The design and the interpretation of complex probabilistic interactions can be greatly sim-

plified when their GMs are used to represent them. Using GMs can help avoid the countless

and tedious algebraic manipulations needed to formulate models manually, while simulta-

neously, they can offer insights into the model itself by simple graph inspection. As defined

in [31] a GM can be described as a group of probability distributions factorizing according

to the structure of the underlying graph.

14
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(a) Latent vari-
able X .

(b) Observed variable Z dependent
on latent variable Y .

Figure 2.1: In a graphical model nodes represent random variables, edges represent possible
dependecies.

In a graphical model, clear nodes represent latent random variables, shaded nodes rep-

resent observed random variables and edges represent possible dependencies between vari-

ables.1 In order to enhance readability, plates are used to show substructure replication and

denote the replication factor in the lower right corner of the plate.

In the following discussion, we will limit our scope to directed acyclic graphs (DAGs).

A graph G = (V,E) is formed by a set of vertices or nodes V and a set of edges E, where

each node v ∈ V is associated with a random variable xv distributed according to a prob-

ability distribution pv. Edges in a DAG are directed from parent to child such that the

factorization of the graph can be written as follows:

p(x) = ∏
v∈V

pv(xv|xi∈parents(v)) (2.1)

where parents(v) denotes the set of nodes that have a directed edge pointing at v and p(x)

is the joint distribution of all variables.

Graphical models can be used to describe latent variable models, where the observed

variables interact in complex ways with unobserved variables through a distribution de-

scribed by the graph. Ultimately, the graph can be viewed as a representation of a gener-

ative process that describes the series of stochastic steps by which the data is generated.

1D-separation is used to define independence in graphical models. An introduction to this concept can be
found in [32]
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(a) Observed variables Wi, where
i ∈ 1,M, dependent on latent vari-
able V .

(b) Observed variable W dependent on la-
tent variable V . The plate indicates vari-
able W is repeated M times.

Figure 2.2: Plate notation is used to increase the readability of complex models. Plates
indicate repeating structures.
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Example. Gaussian mixture models, which can be expressed as latent variable mixture

distributions, have discrete latent variables that define the assignment of data points to

components of the mixture. From a generative stand point we can view the data set X as

being generated one sample at a time. Assuming a data-set of N samples, the process of

creating such samples takes the following form:

1. Assign n← 1 and BEGIN

2. Latent aspect assignment for each sample: Pick a mixture component zn ∈ 1,T

from a multinomial probability distribution with parameter Π = {πt}, where πt is the

probability of picking the t-th component.

3. Sample creation: Generate a sample xn ∼N (µzn ,σzn). If n < N then n← n+1 and

repeat from item 2, otherwise STOP.

These steps describe the hypothetical generative scenario that created the seen vari-

ables, viz., xn where n ∈ 1,N. The variables in the intermediate steps are the unseen or

latent variables of the model that help explain the underlying structure of the data. The

graphical model corresponding to this generative process can be see in fig. 2.3.

Figure 2.3: Graphical model for a mixture of gaussians
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2.2 Inference

Once a graphical model has been conceived, our focus turns to estimating the posterior

distribution of the latent variables conditioned on the observations. More formally, assum-

ing a model with observed variables xn ∈ X and latent variables zn ∈ Z with n ∈ 1,N, the

inference problem lies in finding p(Z|X). This posterior distribution can be written as,

p(Z|X) =
p(Z,X)

p(X)
=

p(X ,Z)
∑Z p(X ,Z)

(2.2)

where the joint distribution p(X ,Z) can be factorized according to the graph and p(X)

can be obtained by marginalizing the joint distribution p(X ,Z) over Z. This sum over all

possible values of Z increases exponentially with the possible values of zn. Thus, if zn ∈ 1,K

for n ∈ 1,N the sum in eq. (2.2) is over KN possible values. This marginalization step

becomes prohibitive as the number of variables in Z increases. Therefore, exact inference

in most models is intractable. Note that the same is true for continuous variables where the

summation sign is replaced by an integral.

Thankfully, several approximate inference techniques can be use in order to estimate the

posterior p(Z|X). Variational methods approximate the desired distribution p(Z|X) with

an approximate posterior q(Z) by minimizing the Kullback-Leiber divergence [31]. On the

other hand, Markov chain Monte Carlo (MCMC) sampling methods build a Markov chain

with a stationary distribution proportional to p(Z|X), and collect samples from the chain

after it has converged to the desired distribution.

2.2.1 Exponential Family

The distributions considered in GM literature are in the exponential family. This family of

distributions simplifies both variational and MCMC optimization techniques and encom-

passes many common distributions. The exponential family distributions take the following

form:
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Table 2.1: Common Exponential Family Distributions

Distribution η h(x) g(η) u(x)

Bernoulli ln
(

µ

1−µ

)
1 (1+ exp(η))−1 x

Beta
[

α

β

]
1

x(1−x)
η1η2

η1+η2

[
ln(x)

ln(1− x)

]

Gaussian
[

µ/σ2

−1/2σ2

]
(2π)−1/2 (−2η2)

1/2 exp
{

η2
1

4η2

} [
x
x2

]

Multinomial
ηk = ln

(
µk

1−∑ j µ j

)
1

(
1+∑

M−1
k=1 exp(ηk)

)−1 x(M states)

p(x|η) = h(x)g(η)exp{η>u(x)} (2.3)

where x is a scalar or vector that can be continuous or discrete, η are the natural parameters

of the distribution, u(x) are the sufficient statistics and g(η) is a normalization coefficient

that ensures the distribution satisfies

g(η)
∫

h(x)exp{η>u(x)}dx = 1. (2.4)

Several common distributions such as the Gaussian, the Beta and the multinomial distri-

bution are in the exponential family and can be expressed in the form of eq. (2.3). Table 2.1

shows how some common distributions are written as exponential family distributions and

a thorough review on the properties of exponential family distributions is given in [33].

2.2.2 Conjugate Priors

In Bayesian decision theory the posterior over the model parameters in eq. (2.2) is usually

expressed in terms of the likelihood p(X |Z) and the prior over the model parameters p(Z):

p(Z|X) =
p(X |Z)p(Z)

∑Z p(X |Z)p(Z)
(2.5)
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The likelihood function is usually fixed, as it is determined from the generative process

expressed through the graphical model. On the other hand, the prior function is not fixed

and its choice can change the form in which the posterior is expressed. Certain distributions

produce a posterior, which has the same algebraic form as the prior. Such distributions are

known as conjugate priors and they produce closed form posteriors that are still part of the

exponential family distributions.

Conjugate priors play an important role in approximate inference techniques as they

exhibit very useful properties, which simplify parameter optimization in both variational

and sampling methods.

2.2.3 Variational Methods

Variational methods have their roots in the calculus of variations, which emanated from the

work of Euler and Lagrange in the 18th century [32]. Variational approaches approximate

the posterior p(Z|X) with an approximate posterior q(Z). In order to apply variational

optimization to the inference problem, let us decompose the log marginal probability of the

observations ln p(X) as follows:

ln p(X) = ∑
Z

q(Z) ln p(X), Given that ∑
Z

q(Z) = 1

= ∑
Z

q(Z) ln
p(Z|X)p(X)

p(Z|X)

= ∑
Z

q(Z) ln
p(Z,X)

p(Z|X)

= ∑
Z

q(Z) ln p(Z,X)−q(Z) ln p(Z|X)

= ∑
Z

q(Z) ln p(Z,X)−q(Z) lnq(Z)− (q(Z) ln p(Z|X)−q(Z) lnq(Z))

= ∑
Z

q(Z) ln
p(X ,Z)

q(Z)
−∑

Z
q(Z) ln

p(Z|X)

q(Z)
.
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Using this decomposition the equation can then be written as

ln p(X) = L (q(Z))+KL(q(Z)||p(Z|X)). (2.6)

where KL(q(Z)||p(Z|X)) is the Kullback-Leibler (KL) divergence between p(Z|X) and

q(Z) which satisfies KL(q(Z)||p(Z|X)) ≥ 0. Thus, L (q(Z)) ≤ ln p(X), making L (q(Z))

the lower bound of the log marginal ln p(X). Note that the maximum lower bound is

achieved by minimizing the KL divergence, which by definition occurs when q(Z) =

p(Z|X).

The problem then becomes finding the optimum q(Z) that minimizes the KL diver-

gence. Since the true posterior is intractable, a restricted but tractable family of distribu-

tions is considered. There are several ways of restricting the family of distributions q(Z)

giving rise to a wide variety of variational approximations methods in literature.

One of the most widely used methods is known as mean field variational inference in

which the family of distributions q(Z) is assumed factorizable by assuming that Z can be

partitioned into disjoint subsets Zi , with i ∈ 1,M, such that:

q(Z) =
M

∏
i=1

q(Zi). (2.7)

Using this family of distributions to maximize the lower bound L (q(Z)) gives rise to a

set equations that can be used to iteratively estimate a solution [32]. A thorough review of

variational methods can be found in [31].

2.2.4 MCMC and Gibbs Sampling

MCMC methods have their beginnings in the Metropolis algorithm [34, 35], which was

originally conceived by physicists to estimate the value of complex integrals using a ran-

dom number generator. This process is known as Monte Carlo integration. The idea is

to express the integrals as expectations of some probability distribution and then estimate

the expectation by sampling the distribution. In the context of GMs, we are interested in
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finding the expectation of some function f (Z) with respect to a distribution p(Z). Note that

in eq. (2.5) f (Z) = p(X |Z).

The Gibbs sampler was introduced as a special case of Metropolis-Hastings sampling

in image processing [36]. The simplicity of the Gibbs sampler is due to the fact that it only

considers univariate conditional distributions instead of the more complex underlying join

distributions. Smith et al. [37] showed the usefulness of the sampler in Bayesian statistics

estimating posterior distributions.

Given a k-dimensional random variable, sampling from a joint distribution would imply

sampling a k-dimensional vector in a single pass. Instead, Gibbs sampling generates k

random variables sequentially from k univariate conditional distributions [38].

Example. Assuming three variables {z1,z2,z3} a sampler would cycle through the vari-

ables sampling each one from its conditional distribution. Let z j
i denote the value of the i-th

variable at the j-th step. A sampler running through τ iterations would initialize {z1
1,z

1
2,z

1
3}

and perform the following steps:

1. t← 1 and BEGIN

2. Sample zt+1
1 from p(z1|zt

2,z
t
3)

3. Sample zt+1
2 from p(z2|zt+1

1 ,zt
3)

4. Sample zt+1
3 from p(z3|zt+1

1 ,zt+1
2 )

5. if t < τ then t← t +1 and repeat from item 2, otherwise STOP.

This iterative process defines a Markov chain, which after a sufficient burn-in period

will reach its stationary distribution, which is proportional to the joint distribution of all

variables p(z1,z2,z3) as shown in eq. (2.8).

p(zi|z¬i) =
p(zi,z¬i)

p(z¬i)
∝ p(z) (2.8)
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where p(z¬i) is constant, with z¬i denoting all other variables except for zi and z = zi∪ z¬i.

Estimating the correct number of iterations required for the burn-in is one of the major

challenges and drawbacks of MCMC algorithms. Most efforts to determine convergence

have focused on theoretical solutions and on diagnostic tools. Theoretical solutions try to

analyze the transition kernel of the chain in order to estimate the minimum number of it-

erations needed [39, 40]. On the other hand, diagnostic tools are used in the output of the

algorithm in order to determine if the samples collected have reached the stationary dis-

tribution [41]. Convergence in the context of MCMC algorithms is notably difficult given

that, unlike other iterative algorithms, at convergence the output of an MCMC sampler

does not approach a specific number or even a distribution. The output of the sampler are

samples from a distribution that are highly correlated from one step of the chain to the next.

Several methods have been proposed in literature, but convergence of MCMC algorithms is

still an area of active research. A comparative review of different techniques can be found

in [42].

Features of the joint distribution can be computed by using the samples obtained from

the chain, but several iterations must pass between collected samples in order to minimize

correlation. Further details on the Gibbs sampler can be found in [43, 44].



Chapter 3

The Proposed Approach

Latent Dirichlet Allocation (LDA) is known as a topic model, originally introduced in

[45]. It is primarily used for discovering the main themes that compose large collections of

documents. LDA represents documents as a finite mixture of hidden aspects or latent topics

and was initially designed as a probabilistic model of text, casting the goal of discovering

themes in collections of documents as a posterior inference problem. The LDA model is

modular enough to be nested and tailored for specific problem domains, which has allowed

its application in a wide variety of fields. In this paper we tailor LDA for our application

domain. We introduce and explain LDA’s theoretical background as it relates directly to

our domain area.

3.1 LDA for EEMs

As in Section 1.3, we identify the collection of all EEMs in our data set as the three-way

array X = {xdrc} ∈RD×R×C. Note that, d ∈ 1,D, r ∈ 1,R, and c ∈ 1,C. For a fixed d value,

xd ∈ RR×C refers to the d-th EEM sample in the data set. As mentioned before, D such

matrices can be obtained by slicing the first dimension of the original data set X.

A discrete EEM x̂d = {x̂drc} ∈ NR×C, where x̂drc ∈ N, can now be generated as

x̂drc =

⌊
xdrc

δ

⌋
, (3.1)

24
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where δ is the quantization parameter defining the smallest step size with which fluores-

cence can change. Note that x̂drc× δ ≤ xdrc; equality for all r and c values are achieved

when δ equals the sensitivity of the spectrometer. In Section 3.5, we specify an adaptive

approach to obtain a location specific quantization value to better retain information crucial

to class separability. However, it is worth mentioning that when the objective is quantitative

in nature (i.e., when we are interested in not only the presence/absence of compounds, but

their concentrations as well), a fixed value of δ should be used to quantize all entries in a

matrix.

For the purpose of expressing the EEM data set in terms of an LDA model, we now

provide an alternate characterization of the d-th discrete EEM sample x̂d = {x̂drc}. Towards

this purpose, it is more convenient to identify the elements x̂drc by indexing them row-wise

so that we may drop the triple subscript notation in x̂drc in favor of the double subscript

notation x̂di, where x̂di = x̂drc, with i = (r−1)×C+ c. Let us now characterize x̂d = {x̂di}

via a landscape of ‘fluorescence blocks’ in the following manner: corresponding to each

element x̂di, i ∈ 1,RC, of x̂d , pick an x̂di number of fluorescence blocks, each block having

a ‘value’ or ‘weight’ of i. The total number of such blocks required to capture the complete

d-th discrete EEM sample x̂d is Ld = ∑
RC
i=1 x̂di. We can enumerate these fluorescence blocks

of x̂d via qd`, ` ∈ 1,Ld; the weight associated with qd` can be expressed via

qd` = i, for `=
i−1

∑
j=1

x̂d j +1, . . . ,
i

∑
j=1

x̂d j, (3.2)

for i∈ 1,RC. Note that, qd` ∈ 1,RC. In essence, this process yields an equivalent character-

ization of the d-th discrete EEM x̂d = {x̂di} in the form of qd = {qd`}, which is a landscape

made of fluorescence blocks. Each block has a height of δ and blocks that share the com-

mon position i (and hence having the same weight) are stacked on top of each other; the

height of the stack represents the fluorescence at the location i.
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Figure 3.1: The top two figures depict a 2× 2 EEM sample xd and its discretized version
x̂d = {x̂di}, i ∈ 1,4, assuming a quantization parameter δ = 1 (numbers at the middle and
bottom-right of each box depict fluorescence and value of i, respectively). The bottom
figure depicts the equivalent characterization qd = {qd`}, ` ∈ 1,15 = Ld (numbers at the
middle and bottom-right of each box depict the values of i and `, respectively).
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Example. The quantized matrix x̂d in Figure 3.1 may be described as having 5 blocks

at location 1, 6 blocks at location 2, 1 block at location 3, and 3 blocks at location 4, i.e.,

qd1, . . . ,qd5 = 1; qd6, . . . ,qd11 = 2;

qd12 = 3; qd13, . . . ,qd15 = 4.

Due to the equivalence of the representations x̂d = {x̂d`} and qd = {qd`}, we will con-

tinue to use x̂d to refer to either representation.

3.2 Generative Process

In our implementation, we view the discrete EEM samples x̂d, d ∈ 1,D, as being generated

from an underlying pool of T compounds with different fluorescent properties. Henceforth,

these ‘latent’ compounds, indexed via {1, . . . ,T}, will be referred to as the latent aspects

of our model. It is worth noting that, in the original LDA implementation in [45] and in

most work related to LDA, the latent aspects of a model represent the topics that could be

present in a document. More formally, from a generative standpoint, they represent the

topic set from which the underlying structure of the document originates.

For each latent aspect enumerated via t = 1,T , let φ t = {φti}, i ∈ 1,RC, denote a multi-

nomial distribution over the RC EEM matrix entries; for each discrete EEM sample enu-

merated via d = 1,D, let θ d = {θdt}, t ∈ 1,T , denote a multinomial distribution over the T

latent aspects. We assume that φ t and θ d are drawn from Dirichlet distributions

φ t = {φti} ∼ DirRC(β = {βi}), for t ∈ 1,T ;

θ d = {θdt} ∼ DirT (α = {αt}), for d ∈ 1,D,

where DirN(v) denotes the N-dimensional Dirichlet distribution with parameter v. For

example, the probability density function (p.d.f.) p(θ d |α) is given by the Dirichlet distri-

bution

p(θ d |α) =

Γ

(
∑
t

αt

)
∏

t
Γ(αt)

∏
t

θ
αt−1
dt , (3.3)
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Figure 3.2: The LDA graphical model. Shaded and clear nodes represent observed ran-
dom variables and latent random variables, respectively. The rectangles represent repeated
structures and the arrows represent dependencies.

where Γ(·) is the Gamma function and α = {αt} is the T -dimensional vector parameter of

the Dirichlet distribution. In a similar manner, the random variable φ t follows a Dirichlet

distribution but conditioned on the RC-dimensional vector parameter β = {βi}.

Using MultiN(w) and Poisson(ϑ) to denote the N-dimensional multinomial distribu-

tion with parameter w and the Poisson distribution with parameter ϑ , respectively, the

generative process of creating the d-th discrete EEM sample takes the following form:

1. Latent aspect distributions in samples, φ t: For each latent aspect, i.e., for each

t ∈ 1,T , choose a multinomial distribution over the RC EEM matrix entries from

φ t ∼ DirRC(β ).

2. Latent aspect proportions, θ d: Choose a multinomial distribution over the T latent

aspects from θ d ∼ DirT (α).
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3. Number of fluorescence blocks, Ld: Choose the number of fluorescence blocks from

Ld ∼ Poisson(ϑ).

4. Consider the fluorescence blocks `= 1,Ld . Assign `← 1 and BEGIN:

(a) Latent aspect assignment for each block, zd`: Choose a latent aspect from

zd` ∼MultiT (θ d).

(b) Landscape of fluorescence blocks, {qd`}: For this latent aspect zd`, choose the

weight of the associated fluorescence block from qd` ∼MultiRC(φzd`
).

(c) Fluorescence intensity, x̂d = {x̂d`}: Increase the fluorescence intensity at the

location corresponding to qd` by incrementing the value of x̂dqd`
by 1.

(d) If ` < Ld , assign `← `+1 and repeat from Step 4a; otherwise, STOP.

Note that, as in the original description of the LDA [45], the Poisson assumption in Item 3

is not critical to the formulation of the problem given that it is independent from the data

generating variables φ t , θ d and zd`. Thus, we ignore it in the discussion to follow.

The graphical model in Figure 3.2 represents this generative process. The shaded nodes

represent observed random variables; the clear nodes represent hidden or latent random

variables; the arrows represent dependencies between variables; the plates represent re-

peating structures; and the number at the lower right corner of each plate represents the

repetition factor. As can be seen from Figure 3.2, there are T multinomial distributions

φ t (one per latent aspect), D latent aspect distributions θ d (one per EEM sample), and Ld

fluorescence blocks in the d-th EEM. More importantly, Figure 3.2 provides a factorization

of the joint p.d.f. p(Z, X̂,Θ,Φ |α,β ) as

p(Z, X̂,Θ,Φ |α,β ) =

(
T

∏
t=1

p(φ t |β )

)
D

∏
d=1

p(θ d |α)
Ld

∏
`=1

p(zd` |θ d) p(qd` |φ zd`
). (3.4)

Here, Φ = {φ t}, Θ = {θ d}, Z = {zd} where zd = {zd`}, and X̂ = {x̂d} is represented via

{qd`}, with t ∈ 1,T , d ∈ 1,D, and ` ∈ 1,Ld .
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3.3 Parameter Estimation

Given the discrete EEM sample data set X̂ = {x̂d}, the utility of the LDA model is to

estimate the posterior distributions over the latent aspect assignments zd`, the latent aspect

proportions θ d , and the latent aspect distributions φ t . This is conducted by drawing samples

from the joint p.d.f. p(Z, X̂,Θ,Φ |α,β ), for which we employ Gibbs sampling, a Markov

chain-Monte Carlo (MCMC) algorithm. When sampling directly from a joint distribution

is difficult or when the joint distribution is unknown, Gibbs sampling provides a strategy to

obtain a sequence of random samples from the joint distribution from its conditional distri-

butions (which are typically easier to sample from). One may simplify the procedure even

further by noting that the Dirichlet distributions of φ t and θ d constitute conjugate priors

for the multinomial distribution of zd`. This allows one to use a modification referred to as

collapsed Gibbs sampling [46] where φ t and θ d can be marginalized out when sampling

the latent aspect assignments zd`.

3.3.1 Sampling the Conditional Distribution

In essence, our objective is to sample from the conditional distribution of zd` corresponding

to the `-th fluorescence block of the EEM sample x̂d conditioned on all the other remaining

variables, i.e., p(zd` |z¬(d`), X̂), where X̂ = {x̂d} and z¬(d`) denotes all other fluorescence

blocks except zd` itself. Note that

p(zd` |z¬(d`), X̂,α,β ) =
p(Z | X̂,α,β )

p(z¬(d`) | X̂,α,β )
, (3.5)

where Z = zd`∪ z¬(d`) is the totality of the fluorescence blocks across all the D EEM sam-

ples. The denominator in eq. (3.5), which is devoid of the variable zd` being sampled, is

essentially a normalizing constant. Note also that

p(Z | X̂,α,β )

p(z¬(d`) | X̂,α,β )
=

p(Z, X̂ |α,β )

p(z¬(d`), X̂ |α,β )
. (3.6)

Thus, the conditional distribution on the left hand side of eq. (3.5) is proportional to the joint

distribution of all latent variables p(Z, X̂ |α,β ). It is this observation that eventually leads
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to the conclusion that sampling from the conditional distribution of all variables iteratively

will lead to the distribution we are interested in.

3.3.2 MCMC Gibbs Sampling Algorithm

Given that the Dirichlet distribution is the conjugate prior of the multinomial distribution,

we are able to integrate out of the multinomial parameters. Such approach is known as

the collapse of the sampler. To find p(Z, X̂ |α,β ) on the right-hand side of eq. (3.5) from

the original joint distribution p(Z, X̂,Θ,Φ |α,β ) given in eq. (3.4), rearrage the terms and

integrate out the multinomial parameters Φ and Θ,

p(Z, X̂ |α,β )

=
∫

Θ

∫
Φ

(
D

∏
d=1

p(θ d |α)
Ld

∏
`=1

p(zd` |θ d)

)(
T

∏
t=1

p(φ t |β )

)(
D

∏
d=1

Ld

∏
`=1

p(qd` |φ zd`
)

)
dΦdΘ.

(3.7)

To develop the MCMC Gibbs sampling algorithm, we will utilize the following count-

ing variable:

n(t)di =
Ld

∑
`=1

1t(zd`) ·1i(qd`), (3.8)

where 1v(u) is the indicator function

1v(u) =


1, for u = v;

0, otherwise.
(3.9)

We will use the sub/superscript ∗ to indicate that the corresponding variable has been

‘summed’ out. So, for example,

n(t)d∗ =
RC

∑
i=1

n(t)di ; n(t)∗i =
D

∑
d=1

n(t)di ; n(t)∗∗ =
RC

∑
i=1

D

∑
d=1

n(t)di . (3.10)

Note that, n(t)d∗ is a count of the number of fluorescent blocks which belong to aspect t in

the d-th EEM sample x̂d; n(t)∗i is a count of the number of blocks positioned at i which are

assigned to aspect t in the complete set X̂ of D EEM samples; and n(t)∗∗ is a count of all the
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blocks which belong to aspect t in the complete data set. Let us also use ¬n(t)d′∗ and ¬n(t)∗i

which are defined similar to n(t)d∗ and n(t)∗i , except that the counts for block qd′`′ (i.e., the `′-th

block in the d′-th EEM sample) are ignored.

Then, as we demonstrate in section 3.3.3, we can show that the conditional distribution

in eq. (3.5) is proportional to

p(z
d′`′ |z¬(d′`′), X̂,α,β ) ∝

¬n
(z

d′`′
)

d′∗ +αzd′`′

¬n(∗)d′∗+
T

∑
t=1

αt

·
¬n

(z
d′`′

)
∗q

d′`′
+βq

d′`′

¬n
(z

d′`′
)

∗∗ +
RC

∑
i=1

βi

. (3.11)

The MCMC Gibbs sampling algorithm is initialized by assigning random values from

{1, · · · ,T} to all variables zd`, thus effectively establishing the values at the first step of

the Markov chain. After initialization, the Gibbs sampler iterates through all variables zd`

several times until the Markov chain approaches the target distribution. Determination of

this burn-in period is one of the difficulties associated with MCMC algorithms. The inter-

ested reader can find several methods to check convergence in [47]. At the completion of

the burn-in period, the converged values for the sampled variables are recorded. Now the

matrix latent proportions θ d and the latent aspect distributions φ t can be found by sampling

Z via

θ
(t)
d =

n(t)d∗+αt

n(∗)d∗ +
T

∑
t=1

αt

; φ
(i)
t =

n(t)∗i +βi

n(∗)∗i +
RC

∑
i=1

βi

. (3.12)

With symmetrical Dirichlet priors, i.e., αt = α and βi = β , we have ∑
T
t=1 αt = T α and

∑
RC
i=1 βi = RCβ .

The values calculated in eq. (3.12) can be estimated using a single draw from a read out

of the sampler or by sampling several times allowing enough iterations between read outs

so as to minimize correlation and then obtaining an average of the sampled variables zd`.
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3.3.3 Gibbs Sampling Derivation

Note that eq. (3.7) can be expressed as

p(X̂,Z |α,β )

=
∫

Θ

(
D

∏
d=1

p(θ d |α)
Ld

∏
`=1

p(zd` |θ d)

)
dΘ︸ ︷︷ ︸

P1

·
∫

Φ

(
T

∏
t=1

p(φ t |β )

)(
D

∏
d=1

Ld

∏
`=1

p(qd` |φ zd`
)

)
dΦ︸ ︷︷ ︸

P2

.

(3.13)

The conjugacy between the Dirichlet priors and the multinomial distributions significantly

simplifies the Gibbs sampling algorithm. Substitute the Dirichlet priors and the multino-

mial distributions into eq. (3.13):

P1 =
∫

Θ

D

∏
d=1

Γ

(
T

∑
t=1

αt

)
T

∏
t=1

Γ(αt)

(
T

∏
t=1

θ
αt−1
dt

)

︸ ︷︷ ︸
p(θ d |α)

Ld

∏
`=1

θdzd`︸︷︷︸
p(zd` |θ d)

dΘ;

P2 =
∫

Φ

(
T

∏
t=1

Γ

(
RC

∑
i=1

βi

)
RC

∏
i=1

Γ(βi)

(
RC

∏
i=1

φ
βi−1
ti

)

︸ ︷︷ ︸
p(φ t |β )

)
D

∏
d=1

Ld

∏
`=1

φzd`qd`︸ ︷︷ ︸
p(qd` |φ zd`

)

dΦ. (3.14)

Let us now consider the following:

• Term
Ld

∏
`=1

θdzd` in P1: The probability of observing a given set of aspect variables

zd`, ` ∈ 1,Ld , in the d-th EEM, where θdzd` is the zd`-th component of θ d (i.e., the

probability of aspect zd` given θ d). Then, we observe that exponentiating the proba-

bilities θdt , t ∈ 1,T ,d ∈ 1,D to the count variable that indicates how many times the

probability appears in the factorization, we get

Ld

∏
`=1

θdzd` =
T

∏
t=1

θ
n(t)d∗
dt , (3.15)
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where n(t)d∗ denotes the count of fluorescent blocks which belong to aspect t in the

d-th EEM sample.

• Term
D

∏
d=1

Ld

∏
`=1

φzd`qd` in P2: The probability of observing a set of block positions qd`

given aspect zd` , where φzd`qd` refers to the qd`-th component of φ zd`
. As shown

before we can observe that by exponentiating the probabilities φti, t ∈ 1,T , i ∈ 1,RC

to the count variable that indicates how many times the probability appears in the

factorization, the term can be rewritten as

D

∏
d=1

Ld

∏
`=1

φzd`qd` =
T

∏
t=1

RC

∏
i=1

φ
n(t)∗i
ti . (3.16)

Substitute eq. (3.15) and eq. (3.16) in eq. (3.14) and switch the integral and the product

operators:

P1 =
∫

Θ

D

∏
d=1

Γ

(
T

∑
t=1

αt

)
T

∏
t=1

Γ(αt)

(
T

∏
t=1

θ
αt−1
dt

)
T

∏
t=1

θ
n(t)d∗
dt dΘ;

=
D

∏
d=1

∫
θd

Γ

(
T

∑
t=1

αt

)
T

∏
t=1

Γ(αt)

T

∏
t=1

θ
n(t)d∗+αt−1
dt dθd;

P2 =
∫

Φ


T

∏
t=1

Γ

(
RC

∑
i=1

βi

)
RC

∏
i=1

Γ(βi)

(
RC

∏
i=1

φ
βi−1
ti

)
(

T

∏
t=1

RC

∏
i=1

φ
n(t)∗i
ti

)
dΦ

=
T

∏
t=1

∫
φt

Γ

(
RC

∑
i=1

βi

)
RC

∏
i=1

Γ(βi)

RC

∏
i=1

φ
n(t)∗i +βi−1
ti dφt . (3.17)

Take the constant terms out of the integrals in eq. (3.17), and noting that the integrals are

unnormalized Dirichlet distributions, multiply the inside of the integral by a normalization
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factor and the outside by the factor’s reciprocal:

P1 =


Γ

(
T

∑
t=1

αt

)
T

∏
t=1

Γ(αt)


D

D

∏
d=1

T

∏
t=1

Γ(n(t)d∗+αt)

Γ

(
T

∑
t=1

n(t)d∗+αt

)

∫
θ d

Γ

(
T

∑
t=1

n(t)d∗+αt

)
T

∏
t=1

Γ(n(t)d∗+αt)

T

∏
t=1

θ
n(t)d∗+αt−1
dt dθ d

︸ ︷︷ ︸
=1

;

P2 =


Γ

(
RC

∑
i=1

βi

)
RC

∏
i=1

Γ(βi)


T

T

∏
t=1

RC

∏
i=1

Γ(n(t)∗i +βi)

Γ

(
RC

∑
i=1

n(t)∗i +βi

)

∫
φ t

Γ

(
RC

∑
i=1

n(t)∗i +βi

)
RC

∏
i=1

Γ(n(t)∗i +βi)

RC

∏
i=1

φ
n(t)∗i +βi−1
ti dφ t

︸ ︷︷ ︸
=1

. (3.18)

With the multivariate integrals over θ d and φ t simplifying to yield 1, and the terms con-

taining only αt and βi terms treated as constants, we have

P1 ∝

D

∏
d=1

T

∏
t=1

Γ(n(t)d∗+αt)

Γ

(
T

∑
t=1

n(t)d∗+αt

) ; P2 ∝

T

∏
t=1

RC

∏
i=1

Γ(n(t)∗i +βi)

Γ

(
RC

∑
i=1

n(t)∗i +βi

) . (3.19)
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Isolate the terms corresponding to the assignments of the `′-th block in the d′-th EEM

sample:

P1 ∝ ∏
d 6=d′

T

∏
t=1

Γ(n(t)d∗+αt)

Γ

(
T

∑
t=1

n(t)d∗+αt

) ·
T

∏
t=1

Γ(n(t)d′∗+αt)

Γ

(
T

∑
t=1

n(t)d′∗+αt

) ;

P2 ∝

T

∏
t=1

∏
i6=qd′`′

Γ(n(t)∗i +βi) ·Γ(n(t)∗qd′`′ +βq
d′`′

)

Γ

(
RC

∑
i=1

n(t)∗i +βi

) . (3.20)

Incorporate the terms that do not depend on d′ and qd′`′ into the proportionality constants:

P1 ∝

T

∏
t=1

Γ(n(t)d′∗+αt)

Γ

(
T

∑
t=1

n(t)d′∗+αt

) ; P2 ∝

T

∏
t=1

Γ(n(t)∗q
d′`′

+βq
d′`′

)

Γ

(
RC

∑
i=1

n(t)∗i +βi

) . (3.21)

Let us also define a value ¬n the same way we defined n but without the count for the

current `′-th block in matrix x̂d′ . Note that, ¬n(·)·· = n(·)·· , when the counts are independent

of d′ and `′; otherwise, n(·)·· = ¬n(·)·· +1. Next, isolate the terms that depend on z
d′`′ :

P1 ∝

∏
t 6=z

d′`′

Γ(¬n(t)d′∗+αt) ·Γ(¬n
(z

d′`′
)

d′∗ +αz
d′`′

+1)

Γ

(
1+

T

∑
t=1
¬n(t)d′∗+αt

) ;

P2 ∝ ∏
t 6=z

d′`′

Γ(¬n(t)∗q
d′`′

+βq
d′`′

)

Γ

(
RC

∑
i=1
¬n(t)∗i +βi

)

·
Γ(¬n

(z
d′`′

)
∗q

d′`′
+βq

d′`′
+1)

Γ

(
1+

RC

∑
i=1
¬n

(z
d′`′

)

∗i +βi

) . (3.22)
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We also know that Γ(u+1) = uΓ(u). Use these to get

P1 ∝

∏
t 6=z

d′`′

Γ(¬n(t)d′∗+αt) ·Γ(¬n
(z

d′`′
)

d′∗ +αz
d′`′

)

·(¬n
(z

d′`′
)

d′∗ +αzd′,`′ )

Γ

(
T

∑
t=1
¬n(t)d′∗+αt

)
·

(
T

∑
t=1
¬n(t)d′∗+αt

) ;

P2 ∝ ∏
t 6=z

d′`′

Γ(¬n(t)∗q
d′`′

+βq
d′`′

)

Γ

(
RC

∑
i=1
¬n(t)∗i +βi

) · Γ(¬n
(z

d′`′
)

∗q
d′`′

+βq
d′`′

)

Γ

(
RC

∑
i=1
¬n

(z
d′`′

)

∗,i +βi

)

·
(¬n

(z
d′`′

)
∗q

d′`′
+βq

d′`′
)(

RC

∑
i=1
¬n

(z
d′`′

)

∗,i +βi

) . (3.23)

Fold the terms Γ(¬n
(z

d′`′
)

d′∗ +αz
d′`′

) and
Γ(¬n

(z
d′`′ )∗q
d′`′

+βq
d′`′

)

Γ

(
∑

RC
i=1¬n

(z
d′`′ )
∗,i +βi

) back into the products:

P1 ∝

T

∏
t=1

Γ(¬n(t)d′∗+αt) · (¬n
(z

d′`′
)

d′∗ +αzd′,`′ )

Γ

(
T

∑
t=1
¬n(t)d′∗+αt

)
·

(
T

∑
t=1
¬n(t)d′∗+αt

) ;

P2 ∝

T

∏
t=1

Γ(¬n(t)∗q
d′`′

+βq
d′`′

)

Γ

(
RC

∑
i=1
¬n(t)∗i +βi

) · (¬n
(z

d′`′
)

∗q
d′`′

+βq
d′`′

)(
RC

∑
i=1
¬n

(z
d′`′

)

∗,i +βi

) . (3.24)

Finally, incorporating the products over t into the proportionality constants, conclude that

the conditional distribution in eq. (3.5) is proportional to

p(z
d′`′ |z¬(d′`′), X̂,α,β )

∝
¬n

(z
d′`′

)

d′∗ +αzd′`′

¬n(∗)d′∗+
T

∑
t=1

αt

·
¬n

(z
d′`′

)
∗q

d′`′
+βq

d′`′

¬n
(z

d′`′
)

∗∗ +
RC

∑
i=1

βi

. (3.25)
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3.4 Latent Fluorescent Dirichlet Allocation (LFDA)

In fluorescence spectroscopy many variables have complex interactions affecting the mea-

surements in many different ways. For example, higher temperatures cause faster diffusion

and thus a larger amount of collisional quenching. On the other hand, higher temperatures

also cause disassociation of weakly bound compounds and thus a smaller amount of static

quenching [10]. Therefore, an increase in temperature may or may not cause a quenching

effect depending on the actual temperature change, the specific quencher and the particular

fluorophore. A model that can naturally incorporate these variables would offer a more re-

liable interpretation and could offer more accurate predictions. Extending the LDA model

to incorporate such control variables can improve the flexibility of the model to deal with

the factors that may impact the fluorescence of a sample.

3.4.1 Model Definition

The LFDA model is an extension of the model introduced in section 3.1. The new model

incorporates a set of M control variables (pH, temperature, etc.). These variables can affect

the measured fluorescence of a given sample through a variety of chemical and physical

interactions. We assume each control variable is drawn from a multinomial distribution Λm

with m ∈ 1,M with dimension |Λm| corresponding to the number of discretized values of

the m-th control variable. Let us denote these control variable via ξdm ∈ 1, |Λm|,d ∈ 1,D.

The extended graphical model can be seen in fig. 3.3.

Note that in this model the matrix Φ is no longer an RC× T matrix but a RC× T ×

|Λ1| × |Λ2| × · · ·× |ΛM| multidimensional array. The distribution φ t for aspect t over the

RC matrix elements is dependent of the the observed variables ξ dm with m ∈ 1,M and

d ∈ 1,D. This differs from our previous generative model in that the fluorescent block qd` is

no longer picked from a probability distribution conditioned only on the aspect assignment

p(qd`|Φ,zd`), denoted as p(qd`|φ zd`
), but from a distribution conditioned also on the control
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Figure 3.3: The LFDA model as an extension of the LDA model incorporating observed
control variables.

variables p(qd`|Φ,zd`,ξd1,ξd2, · · · ,ξdM), denoted as p(qd`|φ zd`ξd1···ξdM
). Thus, we must

redefine the multinomial distributions φ t = {φti} with t ∈ 1,T and i ∈ 1,RC previously

defined in section 3.2.

3.4.2 Model Derivation

For each latent aspect enumerated via t = 1.T and for each value of the control variables

λm ∈ 1, |Λm|, let φ tλ1···λM
= {φtλ1···λM i}, i ∈ 1,RC denote a multinomial distribution over

the RC EEM matrix entries, conditioned on aspect t and control variables λ1, · · · ,λM. As

before we assume that φ tλ1···λM
is drawn from a Dirichlet distribution DirRC(β = {βi}).

Also in order to take a fully Bayesian approach we assume the multinomial distributions

Λm have Dirichlet priors ϒm with m ∈ 1,M.

Under this graphical model, the generative process of creating the d-th discrete EEM

matrix takes the following form:
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1. Latent aspect distributions in samples, φ tλ1···λM
: For each t ∈ 1,T and for each value

of the control variables λm ∈ 1, |Λm|, m∈ 1,M, choose a multinomial distribution over

the RC EEM matrix entries from φ tλ1···λM
∼ DirRC(β ).

2. Multinomial control variables, Λm: For each control variable choose a multinomial

distribution Λm ∼ Dir|Λm|(ϒm).

3. Latent aspect proportions, θ d: Choose a multinomial distribution over the T latent

aspects from θ d ∼ DirT (α).

4. Control variables ξdm: Choose a value for each control variable by drawing it from

its multinomial distribution ξdm ∼Multi|Λm|(Λm).

5. Number of fluorescence blocks, Ld: Choose the number of fluorescence blocks from

Ld ∼ Poisson(ϑ).

6. Consider the fluorescence blocks `= 1,Ld . Assign `← 1 and BEGIN:

(a) Latent aspect assignment for each block, zd`: Choose a latent aspect from

zd` ∼MultiT (θ d).

(b) Landscape of fluorescence blocks, {qd`}: For this latent aspect zd`, choose the

weight of the associated fluorescence block from qd` ∼MultiRC(φzd`ξd1,··· ,ξdM
).

(c) Fluorescence intensity, x̂d = {x̂d`}: Increase the fluorescence intensity at the

location corresponding to qd` by incrementing the value of x̂dqd`
by 1.

(d) If ` < Ld , assign `← `+1 and repeat from Step 6a; otherwise, STOP.

The joint p.d.f. p(Z, X̂,Ξ1, · · · ,ΞM,Λ1, · · · ,ΛMΘ,Φ |α,β ,ϒ1, · · · ,ϒM), where Ξm =

{ξdm} with m ∈ 1,M, d ∈ 1,D factorizes according to the graph in fig. 3.3 as:
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p(Z, X̂,Ξ1, · · · ,ΞM,Λ1, · · · ,ΛMΘ,Φ |α,β ,ϒ1, · · · ,ϒM)

=

(
|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

p(φ tλ1···λM
|β )

)(
D

∏
d=1

p(θ d |α)

(
M

∏
m=1

p(Λm|ϒm)p(ξdm|Λm)

)
Ld

∏
`=1

p(zd` |θ d) p(qd` |φ zd`ξd1···ξdM
)

)
. (3.26)

As in section 3.3.3, the parameters Λm,m ∈ 1,M, Θ and Φ can be integrated out and

a sampler can be derived to find the value of the latent variables. However, note that

knowledge of the variables Λm does not offer information about the chemical composition

of each sample. Instead, these variables offer information about the distribution of the

control parameters in the chemical experiment. In general, the analyst is interested in the

way control variables affect fluorescence but not in the distribution of these variables. This

fact can be used to simplify the distribution in eq. (3.26).

The objective is finding the joint distribution of X̂ and Z from this new graphical model.

Thus, given the control variables ξdm, the variables qd` and zd` are d-separated from the vari-

ables Λm and ϒm. Therefore, the joint distribution of the graphical model can be rewritten

as:

p(Z, X̂,Θ,Φ |Ξ1, · · · ,ΞM,α,β )

=

(
|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

p(φ tλ1···λM
|β )

)(
D

∏
d=1

p(θ d |α)
Ld

∏
`=1

p(zd` |θ d) p(qd` |φ zd`ξd1···ξdM
)

)
.

(3.27)

Note that as shown in section 3.3.3 integrating out the parameters Θ and Φ from

eq. (3.27) requires separating the equation into two factors labeled P1 and P2. Factor P1

contains the integral over Θ and has the same form and derivation process as shown in

section 3.3.3. Factor P2 has now the form:
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∫
Φ

(
|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

p(φ tλ1···λM
|β )

)(
D

∏
d=1

Ld

∏
`=1

p(qd` |φ zd`ξ1···ξM
)

)
dΦ︸ ︷︷ ︸

P2

. (3.28)

Substituting the Dirichlet priors and the multinomial distributions

P2 =
∫

Φ

(
|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

Γ

(
RC

∑
i=1

βi

)
RC

∏
i=1

Γ(βi)

(
RC

∏
i=1

φ
βi−1
tλ1···λM i

)

︸ ︷︷ ︸
p(φ tλ1···λM

|β )

)
D

∏
d=1

Ld

∏
`=1

φzd`ξ1···ξMqd`︸ ︷︷ ︸
p(qd` |φ zd`ξ1···ξM

)

dΦ.

(3.29)

In order to define this sampler, we will redefine the counting variable introduced in

eq. (3.30) for factor P2 as:

n(t)di 〈λ1 · · ·λM〉=
Ld

∑
`=1

1t(zd`) ·1i(qd`) ·1λ1···λM(ξd1 · · ·ξdM), (3.30)

Let us now consider the term
D

∏
d=1

Ld

∏
`=1

φzd`ξ1···ξMqd`
in P2. As shown in eq. (3.16) we can

observe that by exponentiating the probabilities φtλ1···λM i, t ∈ 1,T , i ∈ 1,RC,λm ∈ 1, |Λm| to

the count variable that indicates how many times the probability appears in the factoriza-

tion, the term can be rewritten as

D

∏
d=1

Ld

∏
`=1

φzd`ξ1···ξMqd`
=
|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

RC

∏
i=1

φ
n(t)∗i 〈λ1···λM〉
tλ1···λM i . (3.31)
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Substitute eq. (3.31) in eq. (3.29) and switch the integral and the product operators:

P2 =
∫

Φ


|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

Γ

(
RC

∑
i=1

βi

)
RC

∏
i=1

Γ(βi)

(
RC

∏
i=1

φ
βi−1
tλ1···λM i

)
(
|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

RC

∏
i=1

φ
n(t)∗i 〈λ1···λM〉
tλ1···λM i

)
dΦ

=
|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

∫
φtλ1···λM

Γ

(
RC

∑
i=1

βi

)
RC

∏
i=1

Γ(βi)

RC

∏
i=1

φ
n(t)∗i 〈λ1···λM〉+βi−1
tλ1···λM i dφtλ1···λM . (3.32)

Following the steps used in eq. (3.18) the terms containing only βi can be treated as con-

stants. Noting that the integrals are unormalized Dirichlet distributions, multiply the inside

of the integral by a normalization factor and the outside by the factor’s reciprocal:

P2 ∝

|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

RC

∏
i=1

Γ(n(t)∗i 〈λ1 · · ·λM〉+βi)

Γ

(
RC

∑
i=1

n(t)∗i 〈λ1 · · ·λM〉+βi

)

∫
φtλ1···λM

Γ

(
RC

∑
i=1

n(t)∗i 〈λ1 · · ·λM〉+βi

)
RC

∏
i=1

Γ(n(t)∗i 〈λ1 · · ·λM〉+βi)

RC

∏
i=1

φ
n(t)∗i 〈λ1···λM〉+βi−1
tλ1···λM i dφtλ1···λM

︸ ︷︷ ︸
=1

. (3.33)

With the multivariate integral over φtλ1···λM simplifying to yield 1, we have

P2 ∝

|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

T

∏
t=1

RC

∏
i=1

Γ(n(t)∗i 〈λ1 · · ·λM〉+βi)

Γ

(
RC

∑
i=1

n(t)∗i 〈λ1 · · ·λM〉+βi

) (3.34)

Following the steps on eq. (3.22) through eq. (3.25) we can show

P2 ∝

|Λ1|

∏
λ1=1
· · ·
|ΛM |

∏
λM=1

¬n
(z

d′`′
)

∗q
d′`′
〈λ1 · · ·λM〉+βq

d′`′

¬n
(z

d′`′
)

∗∗ 〈λ1 · · ·λM〉+
RC

∑
i=1

βi

. (3.35)
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Isolating the terms that still depend on d′:

P2 ∝

¬n
(z

d′`′
)

∗q
d′`′
〈ξd′1 · · ·ξd′M〉+βq

d′`′

¬n
(z

d′`′
)

∗∗ 〈ξd′1 · · ·ξd′M〉+
RC

∑
i=1

βi

∏
λ1 6=ξd′1

· · · ∏
λM 6=ξd′M

¬n
(z

d′`′
)

∗q
d′`′
〈λ1 · · ·λM〉+βq

d′`′

¬n
(z

d′`′
)

∗∗ 〈λ1 · · ·λM〉+
RC

∑
i=1

βi

. (3.36)

Incorporating the constant terms in the products into the proportionality constants:

P2 ∝

¬n
(z

d′`′
)

∗q
d′`′
〈ξd′1 · · ·ξd′M〉+βq

d′`′

¬n
(z

d′`′
)

∗∗ 〈ξd′1 · · ·ξd′M〉+
RC

∑
i=1

βi

. (3.37)

Finally, conclude that the joint distribution p(Z, X̂,Θ,Φ |Ξ1, · · · ,ΞM,α,β ) is propor-

tional to:

p(z
d′`′ |z¬(d′`′), X̂,Ξ1, · · · ,ΞM,α,β )

∝
¬n

(z
d′`′

)

d′∗ +αzd′`′

¬n(∗)d′∗+
T

∑
t=1

αt

·
¬n

(z
d′`′

)
∗q

d′`′
〈ξd′1 · · ·ξd′M〉+βq

d′`′

¬n
(z

d′`′
)

∗∗ 〈ξd′1 · · ·ξd′M〉+
RC

∑
i=1

βi

.

(3.38)

This expression can be intuitively understood. The first term is the probability of ob-

serving aspect zd′`′ in matrix d′; the second term is the probability of placing a fluorescent

block at location qd′`′ given aspect zd′`′ and control variables ξd′1···ξd′M
. This sampler would

allow the modeling of fluorescent matrices while taking into account the other parameters

that affect fluorescence.

Using this sampler we can run an experiment using dummy control valiables that af-

fects the way in wich a fluorophore presnets in an EEM. Assuming an EEM that can be

represented in a 6×6 matrix we generate a simple fluorescence representation, consisting

of four fluorophores affected by a single control variable that can take 1 out of 9 states.

Figure 3.4 shows all possible representations fof these dummy fluorophores under all pas-

sible 9 states of the control variable such that φab represents fluorophore t = a under control

variable λ1 = a.
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Figure 3.4: Ground truth structure of 4 fluorophores under a single control variable.
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Figure 3.5: Samples generated from the underlying structure shown in 3.4.
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Having knowledge of the ground truth structure, we can generate samples by random-

izing diffrent proportions of fluorophores under different values of the control variable λ1

as shown in 3.5. Once the samples have been generated we run the sampler using 3.38, 3.6

shows the state of the sampler at diffrent stages of the calculation.

3.5 Classification Enhancement Technique (CET)

For the task at hand, we introduce a classification enhancement technique using the scatter

matrix separability measure to enhance the difference between EEMs that represent differ-

ent classes. We make use of this technique to highlight EEM features that might be more

important for classification purposes and as a means of selecting an appropriate parameter

δ for the discretization step in Section 3.1. It is worth mentioning that such a step is use-

ful in classification problems but may introduce unwanted artifacts when the goal of the

analysis is quantitative in nature. In a categorical classfication analysis we can have a clear

picture of which areas of the spectrtum are the most relevant for the task. However, when

the purpuse of the analysis is estimating fluorescent proportions or regresing a variable we

simply make sure that the discretization parameter is constant and offers enough resolution

to correctly repressent the full spectrum.

Assuming a binary classification problem, let us separate our original data set X into

two three-way arrays X(1) = {x(1)drc} ∈R
D(1)×R×C and X(2) = {x(2)drc} ∈R

D(2)×R×C containing

the samples for class 1 and 2, respectively. To establish which excitation-emission pairs are

the most useful for classification purposes, we utilize the matrix Ω = {ωrc} ∈RR×C where

ωrc =
P(1)(µ

(1)
·rc −µ·rc)

2 +P(2)(µ
(2)
·rc −µ·rc)

2

P(1)σ
(1)2

·rc +P(2)σ
(2)2

·rc
. (3.39)
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(a) Random initialization. (b) Iteration 100.

(c) Iteration 200. (d) Iteration 300.

(e) Iteration 400. (f) Iteration 500.

Figure 3.6
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Here, for i = 1,2,

µ
(i)
·rc , σ

(i)2

·rc = mean and variance of samples x(i)drc in X(i);

µ·rc = mean of all samples x·rc in X;

P(i) = prior probability for class i,

i.e., P(i) = |D(i)|/|D|.

The numerator and denominator of eq. (3.39) are referred to as the between-class scatter

and the within-class scatter, respectively. The value of ωrc is a measure of intra-class sim-

ilarity and inter-class separability defined as the ratio between intra-class and inter-class

variance. Larger values of ωrc indicate excitation-emission pairs that are highly descrip-

tive and useful for classification purposes; smaller values indicate excitation-emission pairs

with information that is not correlated with class membership.

Our objective is to find an optimal value for the quantization parameter δ so that small

but informative entries in the matrix can be appropriately quantized with minimum loss

of information. To accomplish this, we will first scale the matrix Ω = {ωrc} to generate

Ω′ = {ω ′rc} such that its elements ω ′rc lie within the interval (0,1]. We then use a location

specific fluorescence quantization parameter δrc which is inversely proportional to ω ′rc:

δrc ∝
1

ω ′rc
. (3.40)

This enables δrc to be adaptively changed based on the relevance of the location for classifi-

cation. Locations having a higher ω ′rc value correspond to a lower quantization value, thus

offering a higher resolution; locations having a lower ω ′rc value identifies areas of lower

importance for the classification task, thus offering a higher quantization value which cor-

responds to a lower resolution.

Once all entries δrc are found, the EEM data set can be quantized to generate discrete

EEM data as

x̂drc =

⌊
xdrc

δrc

⌋
. (3.41)



Chapter 4

Minority Oversampling

Due to the nature of some application domains, it is common for many of the available

datasets to be highly biased. These biased or skewed datasets are commonly referred to in

literature as imbalanced datasets. The imbalanced learning problem is not new to the ma-

chine learning and data mining communities and several approaches to address it have been

proposed in the past [48], [49], [50]. Nevertheless, some of these approaches change the

underlying structure of the data, while others precipitate over-fitting [51], [52]. Learning

from imbalanced data is a common and recurring problem that affects a wide range of ap-

plication domains and causes a variety of difficulties for automated systems [53], [54], [55].

Thus, a method that preserves the underlying structure of the data and avoids over-fitting,

while synthetically balancing the dataset, is highly desirable.

In real world applications, imbalanced datasets are common in a variety of fields in-

cluding fraud detection [53], [56], text classification [54] and medical diagnosis [57]. Given

that most classification mechanisms assume balanced training sets, imbalanced datasets can

pose a significant challenge, especially when a high precision classification of the minority

class is desired. Obtaining a balanced dataset is not always practical and in certain cases

can be even impossible. In fields such as fraud detection and network intrusion detection,

imbalanced datasets are the norm and approaches to efficiently and soundly address this

issue are necessary. While the machine learning and data mining communities have devel-

50
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oped some classifiers to make do with imbalanced data, it is advantageous to synthetically

balance a dataset in order to apply existing and proven learning methods, which are usually

sensitive to class imbalance.

4.1 Previous Work

Most of the techniques in the machine learning literature that address the class imbalance

problem can be classified into two categories: 1) Data balancing methods, which change

the training data so that a balanced training set can be used by the classifier; and 2) al-

gorithmic methods, which modify the classifier so that misclassifications of minority class

instances have a higher penalty. The idea behind both approaches is to artificially bias the

classifier or the dataset in such a way as to neutralize the original bias present in the train-

ing data. In this paper, we will focus on data balancing methods, which can be used in

conjunction with any existing standard learning algorithm.

4.1.1 Random Under-Sampling and Oversampling Methods

The simplest data balancing methods make use of random oversampling, random under-

sampling, or a mixture of both. Suppose a training set T = (xi,yi), i = 1, ...,n, where xi =

[x1,x2, ...,xk] is a k-dimensional feature vector and yi ∈ 1, ...,C is a class label associated

with feature vector xi, is given. Let Tmi ⊂ {T} and Tma ⊂ {T} be the subsets representing

the minority and majority class respectively such that Tmi∩Tma = { /0} and Tmi∪Tma = {T}.

Furthermore, the sets generated by sampling randomly from Tmi and Tma will be referred to

as Smi and Sma respectively.

Random oversampling techniques balance the dataset by replicating randomly selected

samples from Tmi and thus increase the underrepresented class by |Smi|. This method,

though simple, can be very effective in cases where data is not noisy and classes are clearly

separable. Nevertheless, random oversampling can precipitate over-fitting, greatly limiting

a classifier’s ability to generalize [58], [59].
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Random undersampling techniques balance the dataset by randomly removing samples

from the majority class and thus decreasing the number of samples in the overrepresented

class to |Tma|−|Sma|. As is the case with random oversampling, random undersampling can

be effective, but suffers from a very specific shortcoming that can be extremely problematic.

Namely, the removal of data from the training set may result in the deletion of crucial

information from the dataset. Randomly removed samples may be more important for

concept learning and pattern recognition than the samples left in the balanced dataset [60].

The shortcomings of random undersampling and oversampling are the main reasons

informed undersampling methods were developed. We will not discuss these methods here

for space considerations but, for the interested reader, a thorough explanation and study of

these and other methods can be found in [52].

4.1.2 Clustering Methods

A class can usually be represented in feature space as a heterogeneous or a homogeneous

concept. A heterogeneous concept is a conglomeration of sub-concepts or disjoint clusters

in feature space, representing a single class. A homogeneous concept can be seen as a class

that can be represented as a single cluster in feature space. Cluster-based oversampling

methods were developed to deal with general imbalanced learning while also addressing

the problem known as the within-class imbalance. The within-class imbalance problem

describes a situation in which certain sub-clusters of a heterogeneous concept are under-

represented in the training set [52].

Clustering methods such as cluster-based oversampling (CBO) [61] attempt to identify

these sub-clusters and oversample the ones that are underrepresented in order to restore

within-class balance. In this approach, a clustering algorithm such as k-means is used on

samples of a single class. Once the clusters have been defined and the number of samples in

each cluster are calculated, the oversampling is done so that the smallest clusters are inflated

to match the size of the largest one. By using cluster based methods only in the minority
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class, the within-class imbalance problem and the between-class imbalance problem can

be addressed simultaneously.

4.1.3 SMOTE : Synthetic Minority Oversampling Technique

The SMOTE class balancing method [62] has had great success in several applications,

producing improvements to precision and recall that supersede those of other oversampling

techniques.

The SMOTE algorithm creates a set of synthetic new samples Smi by using the similar-

ities between exiting minority samples. During the oversampling procedure, the k nearest

neighbors for each sample xi ∈ Tmi are selected by picking the K samples possessing the

smallest Euclidean distance to sample xi. A new sample is then generated via a convex

combination of a randomly selected neighbor from this K-neighborhood of xi and xi itself:

xnew = αxi +(1−α)x j, (4.1)

where x j is a random sample selected from the K-neighborhood of xi, xnew is the newly

generated sample, and α is a random number in the interval [0,1]. So, the new sample is

situated somewhere on the line that joins sample xi and sample x j.

This type of synthetic oversampling helps address the severe over-fitting introduced by

regular oversampling, while still balancing the dataset and frequently improving learning.

However, the SMOTE algorithm has a propensity to over generalize when data is noisy

and/or when the class distributions overlap in feature space [63]. Several variations to

the original SMOTE algorithm have been proposed, such as adaptive synthetic sampling

(ADA-SYN) [63], Borderline-SMOTE [64], and SMOTEBoost [65]. These techniques

attempt to generate sets of samples that lie close to the decision boundary by trying to for-

mulate probability distributions which give a higher weight to borderline samples or simply

by heuristically selecting a subset of borderline samples to pass through a SMOTE algo-

rithm. The idea behind these techniques is that the samples that lie closer to the decision

boundary carry more information and are more important to concept learning than other
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samples. However, it is worth mentioning that these techniques, like the original SMOTE,

can hinder the learning algorithm in cases where the data is noisy and/or where there is

considerable class overlap.

4.1.4 Data Cleaning Methods

Some data cleaning methods have been used in conjunction with oversampling techniques

in order to address the problem of class overlap [66], [67], [68]. Tomek links, defined

as those samples whose nearest neighbor belongs to the opposite class, are an excellent

example of these methods. More formally, let d(xi,x j) be the Euclidean distance between

samples xi and x j ∈ T ĩ, where T ĩ is the set including all samples except for sample xi. The

pair (xi,x j) is called a Tomek link if the minimum distance d(xi,x j) given a sample xi ∈ Tmi

corresponds to a sample x j ∈ Tma.

Once a pair that forms a Tomek link is identified, the pair is removed from the dataset

as it is considered to be noisy or an ambiguous borderline sample. This school of thought

believes that removing samples from these borderline areas leads to better defined clusters

and boundaries that will facilitate the classification task.

Some studies have been performed combining oversampling techniques and other data

cleaning methods such ass one-sided selection (OSS) [66], condensed nearest neighbor rule

(CNN) [69], and neighborhood cleaning rule (NCL) [68], reporting favorable results.

4.2 The Proposed Approach: MeMO

4.2.1 The Basic Concept

Our membership-based minority oversampling method merges concepts from cluster-based

methods and synthetic oversampling techniques. The method we propose addresses both,

the within-class imbalance and between-class imbalance problems, while implementing the

oversampling techniques used in the SMOTE algorithm in order to avoid the over-fitting

problem present in other oversampling techniques.
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The first step in our approach uses a k-means clustering algorithm to divide the minority

class samples in Tmi into V clusters T ν
mi ⊂ Tmi, ν = 1, ...,V . Then, we select which cluster

to sample by randomly selecting one cluster from a probability distribution that is inversely

proportional to the number of samples in each cluster. The probability of selecting the

cluster T ν
mi is:

p(T ν
mi) = 1−

|T ν
mi∪Sν

mi|
|Tmi∪Smi|

, (4.2)

where |T ν
mi∪Sν

mi| is the number of samples in cluster ν and |Tmi∪Smi| is the total number of

minority class samples, including original samples and newly created ones. Initially, when

additional samples have not yet been created, both Sν
mi and Smi are empty sets.

The imbalance present within the clusters of the minority class is adaptively restored by

giving smaller clusters a higher probability of being sampled. However, it is worth noting

that once within-class balance is restored cluster selection converges to equal probability

for every cluster.

Each sample in a cluster is assigned a membership value proportional to the distance

of the sample to the center of its cluster. Once a cluster has been chosen (with probability

p(T ν
mi) determined according to eq. (4.2), we select two samples from this cluster. Each

sample will be chosen with a probability proportional to its membership. In other words,

we perform a membership-based selection. We assume that the samples closer to the cluster

center are more representative of the cluster’s “concept” and we assign a probability of

selection that is proportional to this membership. Let d(cν ,xi) be the Euclidean distance

between the cluster center cν and sample xi. Then, the probability of picking sample xi is

p(xi) =
d(cν ,xi)

∑
x j∈T ν

mi

d(cν ,xj)
. (4.3)

Once two samples have been selected according to this probability distribution, we

use eq. (4.1) to generate a new minority class sample. Note that unlike other SMOTE



56

variants, we favor sampling near the cluster centers as we believe these samples to be more

representative of the minority class, especially in cases of considerable class overlap.

Other SMOTE-like oversampling techniques use the k-NN approach to select the sam-

ples to use in eq. (4.1). However, if a minority class is composed of several concepts, it is

a non trivial problem to find the best number k of nearest neighbors. The selected value of

k must be large enough to generalize the concept but not so large as to introduce unwanted

artifacts. It must also be a value that will be small enough to minimize noise, but not so

small as to increase the risk of over-fitting.

In other words, the best value of k for a specific locality might not be optimal to the to-

tality of the feature space. The cluster-based oversampling strategy that we propose allows

the algorithm to tailor its function to specific areas of the feature space. If an optimum

number of clusters is identified through a technique such as cross-validation, the above

k-NN related difficulties no longer apply.

4.2.2 Example

To demonstrate this point, we created a toy dataset with two attributes for easy visualiza-

tion. The data was created by generating 12 random clusters, 6 clusters per class, containing

a total of 440 samples, such that the majority class (red) has 300 samples and the minority

class (blue) has 140 samples.

The toy domain training set can be seen in Fig. fig. 4.1 and the outcomes of perform-

ing MeMO and SMOTE on this dataset can be seen in Fig. 4.2a and in Fig. fig. 4.2b,

respectively. MeMO keeps the oversampling limited to the convex hull of each cluster,

thus maintaining the underlying structure of the data. On the other hand, SMOTE and

SMOTE-like approaches can introduce artifacts, thereby increasing the risk of overlap and

noise.
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Figure 4.1: Point distribution for initial synthetic dataset.
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(a) With MeMO.

(b) With SMOTE.

Figure 4.2: Point distribution after minority class oversampling of synthetic dataset.



Chapter 5

Non-parametric Regression

Nonparametric(NP) estimation techniques allow data to model the relationships among

variables, thus, it possesses the ability to detect structures which sometimes remain unde-

tected by traditional parametric estimation techniques[70]. A histogram, the most primi-

tive of non-parametric density estimation techniques, can reveal information that would be

hidden under parametric approaches. For example, a histogram is capable of discovering

multimodality in a dataset that would be lost with an approach assuming a Gaussian dis-

tribution. However, a crude histogram approach has it’s limitations, namely, it is highly

dependent on the bucket size (or bandwidth) and it is also discontinuous which implies that

the gradient along with other important information is lost [71]. These drawbacks lead to

the natural conclussion of using a continuous and smooth estimator which consequently

lead to the preferred estimators used in literature known as kernel density estimators.

In NP regression, the regression functions are estimated using a local sample for each

point, hence the term local estimators. In contrast, parametric estimators are global estima-

tors and in many applied scenarios these regressors enter the conditional mean linearly or

with ‘judicious’ choice of parametric functional form[71]. NP kernel regression estimators

use local fits to construct the global function estimator preserving the local unique features

inherent to the dataset.
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5.1 Overview

In this work we will also explore multivariate density estimators given that univariate den-

sity estimation is limited. As an example a univariate density estimation can show bi-

modality that is not necesarily inherent to the data but rather a dependence on a secondary

variable. A well documented example of this drawback was published in [72], where The

authors have a visually bimodal univariate density (202 observations) of lean body mass.

Subsequent analysis shows that the bimodal nature of this density is linked to the gender of

the individual. By splitting the data into 100 men and 102 women, each individual density

is strongly unimodal [71].

There are several techniques to find the nonparametric kernel estimator that can com-

pute the smooth function of interest. Here we will present the two most popular methods,

local-linear least-square (LLLS) and local-constant least-squres (LCLS) estimator. The-

oretically the LLLS estimator has advantages over LCLS providing more accurate mea-

surements of the conditional mean and also an estimator of its first derivative. Using the

notation in [71] we can elaborate more on nonparametric estimators. Let a particular mal-

tivariate data point x be a q-tuple q ∈ N, such that x = (x1,x2, · · · ,xq). Then a multivariate

kernel K(x) on Rq→ R has to satisfy, K(x) ≥ 0, ∀x ∈ Rq, and
∫
Rq K(x)dx = 1. A kernel

which satisfies this requirement is given in (5.1).

Kh(xi,x) =
q

∏
d=1

k
(

xid− xd

hd

)
(5.1)

where, hd refers to as the bandwidth(which is diferent to the meaning in spectral analysis)

of dth dimension and k(·) could be any univariate kernel, such as, uniform, Epanechnikov,

biweight, triweight, Gaussian etc . . . .

Let fx,y(·) denote the joint density of (x,y) and fx(·) denote the marginal density of

x, whereas the estimators of joint and marginal densities by f̂x,y(x,y) and f̂x(x). As-

sume that we were given a dataset with n instances, {x1, · · · ,xn} with corresponding labels
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{y1, · · · ,yn}. The estimators of the marginal and joint densities are given in (5.2) and (5.3)

as:

f̂x(x) =
1

n|h|

n

∑
i=1

Kh(xi,x) (5.2)

where |h|= h1h2 · · ·hq, the product of the q bandwidths and,

f̂x,y(x,y) =
1

n|h|hy

n

∑
i=1

Kh(xi,x)k
(

yi− y
hy

)
(5.3)

where hy is the smoothing parameter associated with y. Applying the statistical definition

of conditional densities, fy|x(y|x) = fx,y(x,y)/ fx(x), with f̂x,y(x,y) and f̂x(x), we can write

an expression for f̂y|x(y|x), the estimate of conditional density as in (5.4).

f̂y|x(y|x) =
1

nhy

n

∑
i=1

Ai(x)k
(

yi− y
hy

)
, (5.4)

where

Ai(x) =
Kh(xi,x)

n−1 ∑
n
j=1 Kh(x j,x)

. (5.5)

Hence, the nonparametric estimator of the conditional expectation Ê(y|x) (or m̂(x)) can

be given as in (5.6).

Ê(y|x) =
∫

y f̂ (y|x)dy

m̂(x) =
n

∑
i=1

Ai(x)yi.
(5.6)

The selection of the form of ˆm(X), referred to hence forth as a, makes the difference

between local-constant estimator and local-linear estimator. When a local-constant estima-

tor is used, we minimize a kernel weighted least-square regression of y on a constant as in

(5.7).

min
a

n

∑
i=1

[yi−a]2Kh(xi,x). (5.7)
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In a local-linear estimator approach, instead of minimizing a constant, we try to fit a line

locally as in (5.8).

min
a,b

n

∑
i=1

[yi−a− (xi−x)b]2Kh(xi,x). (5.8)

5.2 Non-parametric Regression for Microtox Prediction

We use the popular, LLLS estimator [73], over the LCLS estimator (also known as Nadaraya-

Watson estimator[74, 75]). In our analysis y represents the percentage drop of Microtox R©

measurement and x presensents EEM scores obtained from LDA, LFDA or PARAFAC

accompanied with other measurements, namely pH, Conductivity, Dissolved Oxygen and

Turbidity. The conditional expectation Ê(y|x) (or m̂(x)) is estimated using training data.

During the testing phase the non parametric regression will predict the drop in Microtox R©

measurements using a generalized product kernel [70].



Chapter 6

Fusion-based Classification

Preliminary experiments conducted using PARAFAC and LDA/LFDA, as techniques to

analyze EEMs, have shown promising classification results. The combination of both

techniques seems to improve overall classification. Thus, we have developed a system

that can make predictions using the PARAFAC and LDA/LFDA models independently and

in parallel, providing independent class predictions that can subsequently be fused using

Dempster-Shaffer theory.

6.1 Dempster-Shafer Theory

Probability theory does not offer a consice and mathematically strict way of representing

ignorance or lack of information. Assuming evidence exists for A to occurr with probability

P(A) = 0.6 the additivity axiom of probability theory imposes that P(Ā) = 1−P(A). In

this case the evidence for A might be satisfactory but the evidence for Ā is being modeled

directly from A there is no way to introduce a lack of knowledge or evidence for P(Ā).

To handle lack of evidence or knowledge a relaxation of the additivity axiom is usually

used. One approcah used in literature to fuse informtion using this method is known as

Depmster-Shafer theory [76].

Consider a set of mutually exclusive and exhaustive propositions, Θ = {θ1, ...,θn}, re-

ferred to as the frame of discernment (FoD) representing the “scope of expertise” of some
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problem domain. A proposition θi, referred to as a singleton, represents the lowest level of

discernible information and the elements in 2Θ, the power set of Θ, form all propositions

of interest. We refer to any proposition that is not a singleton, e.g. (θ1,θ2), as a composite.

For simplicity the cardinality of Θ is assumed to be finite and it is denoted by |Θ|.

DS theory models beliefs by assigning to any set A⊆Θ, a numeric value m(A) ∈ [0,1].

The mapping m : 2Θ 7→ [1,0] is a basic belief assignment (BBA) or mass structure if m( /0) =

1 and ∑A⊆Θ m(A) = 1. The BBA constitutes the counterpart to the probability measure in

probability theory. However, in Dempster-shafer theory the masses can be assigned to non

singleton prepositions. The mass is free to move through all the prepositions in Θ creating

the notion of ignorace or lack of evidence. In this way evidence commited to a preposition

does not inherently imply that the remaining support should be commited to the negation

of said preposition. In DS theory, lack of support for a preposition implies support for all

others.

The state of complete ignorance is known as a vacuous BBA and it can be modeled as:

m(A) = 1Θ =

 1, for A = Θ

0, for A ∈Θ

(6.1)

Propositions possessing a non-zero BBA are referred to as focal elements and the set of

focal elements is referred to as the core and is denoted by F . The triple {Θ,F , m} is the

body of evidence (BoE) and |F | is its corresponding number of focal elements.

The set A\B denotes all singletons in A⊆Θ that are not included in B⊆Θ i.e., A\B =

{θi ∈Θ | θi ∈ A,θi /∈ B}; Ā = Θ\A. Propositions for which there is no information are not

assigned an a priori mass; therefore, as we mentioned previously, committing support for

an event A⊆Θ does not imply committing support for its complement Ā.
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6.1.1 Belief and Plausability

The belief that directly supports a given proposition A ⊆ Θ is quantified via the belief

function Bel : 2Θ 7→ [1,0], where

Bel(A) = ∑
B⊆A

m(B) (6.2)

and the plausibility, which quantifies the upper bound of evidence that can support a given

proposition is given by the function Pl : 2Θ 7→ [0,1], where

Pl(A) = 1−Bel(Ā) (6.3)

Thus, m(A) measures the support assigned to proposition A only; Bel(A) quantifies the

support from all proper subsets of A, representing the mass that can move into A without

ambiguity; and Pl(A) represents the mass that can move into A and elsewhere, indicating

the extent to which one finds A plausible. Note that when F is composed exclusively of

singletons, all the above notions collapse to probability theory

m(A) = Bl(A) = Pl(A) = P(A),∀A ∈F (6.4)

Using the above notions of belief and plausability we can also define the notions of

doubt and uncertainty as:

Dou(A) = Bel(Ā) (6.5)

Un(A) = [Bel(A),Pl(A)] (6.6)

respectively, where [Bel(A),Pl(A)] is the interval of the uncertainty associated with the

reposition A.

6.1.2 Evidence Combination

Dempster’s rule of combination (DRC) is the most popular and widely used combination

strategy in DS theory. DRC makes it possible to fuse the information from several indepen-
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dent BoEs that span the same FoD to form a single BoE. Consider two BoEs {Θ,Fi,mi},

i = 1,2, that span the same FoD Θ. Then,

K12 = ∑
B∈F1,C∈F2 C∩B= /0

m1(B)m2(C) (6.7)

quantifies the conflict between the evidence present in both BoEs. The amount of conflict

can give us information about the compatibility of the BoEs:

1. If K12 = 1 the two BoEs are incompatible.

2. If K12 < 1 the two BoEs are compatible.

3. If K12 = 0 the two BoEs are completely compatible.

The DRC approach works only if the combined BoEs are compatible. The fused BBA

m(·) : 2Θ 7→ [0,1] can be obtained as follows:

m(A) = ∑
B∈F1,C∈F2 C∩B=A

m1(B)m2(C)

1−K12
,∀A⊆Θ. (6.8)

This fusion is denoted as m(·) = (m1⊕m2)(·) which is the orthogonal sum of m1 and m2.

The ⊕ operator is both associative and commutative allowing the straightforward combi-

nation of of multiple BoEs. A variation of the DRC which accounts for evidence reliability

makes use of a discounting factor. The BoE would be updated using the reliability of the

source as hown bellow

m̂k(A) =

 bkm(A) for A⊂Θ

(1−bk)+bkmk(Θ) for A = Θ

(6.9)

Where bk ∈ [0,1] is referred to as the discounting factor [77]. Note that bk = 0 indicates a

fully unreliable source while bk = 1 indicates a fully reliable source.
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6.2 DS-Model

In the scope of this work we have experimented with two main methods for EEM analy-

sis. Namely, PARAFAC, LDA and the extension of LDA to EEMs with control variables

LFDA. As it will be discussed in 7 these methods can complement each other and can

show robustness when used in tandem. Therfore, a method that can offer a reliable and

mathematically sound way of fusing the evidence gathered form these different approaches

is highly desirable. This section explains the model used to express the results from these

methods as a BoE in the context of examining water quality using Microtox measurements.

The scores obtain from PARAFAC-based and LDA-based (LDA/LFDA) models, are

used in a non-parametric regression analysis (Section 5) to predict the percentage decrease

in Microtox measurements. A Dempster-Shafer mass structure will then be fitted to each

prediction and will be referred to as mPA(·), mLDA(·) and mLFDA(·) for the PARAFAC-based

LDA-based and LFDA-based models, respectively.

Let us select a threshold value π to discriminate between samples which are acceptable

and samples which are not. A frame of discernment can then be defined as Θ = {A,U},

where A stands for acceptable and U stands for unacceptable. The regressed variable,

henceforth referred to as x, will be compared to the threshold π and the mass structure can

then be defined using the following equation:

m(i) =



β for i = A ,x≥ π

0 for i = A ,x < π

β for i =U ,x < π

0 for i =U ,x≥ π

1−β for i = Θ

(6.10)

where β is given by:
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Figure 6.1: Plot of the function β with σ = 5.
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β =

∣∣∣∣ 2
1+ e−σx −1

∣∣∣∣ (6.11)

where σ controls how fast the uncertainty flows into Θ as x converges to π . Fig. 6.1 shows

a graph of how the value of β changes as a function of x.

In order to pool the evidences and test the best performing combination with fused

mass structures, we fuse mPA(·) with mLDA(·) and mPA(·) with mLFDA(·) to obtain (mPA⊕

mLDA)(·) and (mPA⊕mLFDA)(·) respectively, using (6.8). Results and experiments of using

this approach will be reviewd and discussed in 7.4.2



Chapter 7

Results

7.1 MeMO

MeMo creates less noise in cases of class overlap, while allowing an adaptive enlargement

of the minority class clusters. The results show that MeMO compares favorably to other

techniques in cases of considerable class overlap. However, when class overlap is less,

MeMO produces comparable results to SMOTE.

7.1.1 Testbeds

Experiments were performed using the PIMA Indians diabetes dataset, the breast cancer

Wisconsin dataset, the LandSat satellite image dataset and a two dimensional toy domain

for illustration purposes. In order to quantify the degree of imbalance in each dataset we

will use the following imbalance measure:

d = 1− 2|Tmi|
|T |

. (7.1)

Note that d = 0 when the cardinality of the minority set |Tmi| is half the cardinality of the

entire training set |T |. In other words, the imbalance measure d vanishes only when the

training set is perfectly balanced. On the other hand, d = 1 in the extreme case when the

dataset has no minority samples and is completely imbalanced, i.e., |Tmi|= 0.
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The properties of the datasets along with their corresponding imbalance measures are

shown in Table 7.1.

Table 7.1: Test beds

# of instances
Dataset # of attributes Training Testing d (Training)
Breast cancer (UCI) 30 469 100 0.71
PIMA (UCI) 8 568 200 0.60
LandSat (UCI) 36 4435 2000 0.79
Toy (synthetic) 2 240 200 0.67

7.1.2 Classification Results

The experiments were performed 10 times for each dataset and the samples used in training

and testing were randomly chosen during each iteration. The values of k for SMOTE

and L for MeMO were set by using cross-validation on the training set. The linear SVM

and SMOTE implementations were obtained from the R package “e1071” and “DMwR”

respectively. The ROC curves corresponding to the entries in Table 7.1 can be seen in Fig.

7.1, Fig. 7.2, Fig. 7.3 and Fig 7.4.

In Fig. 7.1 we can see the ROC plots and the area under the curve (AUC) for the

experiments on the breast cancer Wisconsin dataset. It can be clearly seen that MeMO and

SMOTE produce similar results while undersampling actually worsens the prediction. In

this particular example the AUC is very high even for the unbalanced dataset. This allows

us to conclude that classes are more separable permitting an easier prediction even for the

imbalanced case.

Fig. 7.2 shows the results for the PIMA dataset. In this figure we can see that MeMO

produces a better peformance than SMOTE and undersampling. It can be seen from the

trends of the ROC plots that the classes are not easily separable in feature space. In cases

like these, SMOTE can cause the classifier to overgeneralize which makes MeMO a better

option.
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Figure 7.1: ROC curve for Breast Cancer Wisconsin dataset (UCI)

In Fig. 7.3 we can see the ROC and AUC results for the LandSat data. In this figure we

can see the clear disadvantages of undersampling. In cases of extreme class imbalance, the

undersampling necessary to balance the dataset is harmful for classification. In this case,

MeMO shows a slightly better improvement over SMOTE.

Fig. 7.4 shows results obtained for the toy dataset. This domain was synthetically

created to have large class overlap and to demonstrate the issues that arise from the k-NN

approach, as mentioned in Section 4.2. Therefore, it’s not a surprise that MeMO compares

favorably to SMOTE in this domain.

A t-test was used to evaluate the statistical significance of our results using MeMO

and SMOTE. Our results were comparable to SMOTE in the breast cancer dataset where
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Figure 7.2: ROC curve for Pima Indians Diabetes dataset (UCI)

there seems to be less overlap between classes and the performance of the classifiers is

consistently high. In the PIMA dataset we obtained a p-value of 0.0137 and in the Land-

Sat dataset we obtained a p-value of 0.00015 with 95% confidence of rejecting the null

hypothesis, showing the improvement to be statistically significant in both datasets.

Given the fact that we could control the degree of imbalance present in the toy dataset,

we thought it would be interesting to see how SMOTE and MeMO compared to each other

as the imbalance was increased systematically. Table 7.2 shows AUC values for SMOTE

and MeMO for a toy domain starting at an value of d = 0.9 and proceeding to a value of

d = 0.1.
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Figure 7.3: ROC curve for LandSat dataset (UCI)

In Table 7.2 we can observe that at higher degrees of imbalance MeMO tends to com-

pare favorably to SMOTE. We believe that this behaviour is due to the fact that at high

values of d, SMOTE is prone to overgeneralizing. The lack of neighboring minority sam-

ples forces SMOTE to pick minority samples that are too far away, unwillingly causing

an increase in noise. On the other hand, MeMO preserves cluster integrity and prevents

overgeneralizing under high degrees of imbalance. We can also observe in Table 7.2 that at

lower values of d, SMOTE seems to outperform MeMO. This result seems to suggest that

different strategies might work better given different degrees of imbalance. Thus, a k-NN

approach could be more effective when dealing with a slightly imbalance dataset while a
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Table 7.2: Area under the curve of ROC curves for different degree of imbalances with
MeMO and SMOTE.

Area under the curve
Degree of imbalance MeMO SMOTE

0.9 0.65 0.59
0.8 0.70 0.67
0.7 0.80 0.77
0.6 0.88 0.84
0.5 0.88 0.85
0.4 0.89 0.86
0.3 0.89 0.88
0.2 0.89 0.90
0.1 0.89 0.91

cluster based approach might be more appropriate when working with a dataset with a high

value of d.

7.2 Classification Using PARAFAC and LDA

7.2.1 Performance Criteria

Traditional binary classification tasks use performance measures that are based on the per-

centage of correctly or incorrectly labeled samples. Such performance measures can be

misleading, especially in cases of class imbalance or when the prediction of one class is

more important than the other. In statistics, a more complete understanding of the classifier

can be obtained by analysing Type I and Type II errors. Type I errors, also known as false

positives (FP), occur when a classifier gives a positive label to a negative sample. Type II

errors, also known as false negatives (FN), occur when a classifier gives a negative label

to a positive sample. On the other hand, positive samples that are correctly classified are

called true positives (TP) and negative samples that are correctly classified are called true

negatives (TN).

We make use of precision (Pr) and recall (Re) measures, commonly used in information

retrieval literature, because of their ability to offer a more complete characterization of
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Figure 7.4: ROC curve for synthetic dataset

a predictor in terms of Type I and Type II errors. For simplicity let us assume we are

interested only in one particular class. We can define precision (Pr) and recall (Re) as:

Pr =
T P

T P+FP
, Re =

T P
T P+FN

(7.2)

A measure that combines these two into a single metric is the harmonic mean, also

called the F1-measure proposed by Vilar et al. [78]:

F1 =
2×Pr×Re

Pr+Re
(7.3)



77
Table 7.3: Micro Averaging and Macro averaging of Precision and Recall

Macro (M) Micro (µ)

Precision
∑

C
i=1 Pri

C
∑

C
i=1 T Pi

∑
C
i=1 T Pi+FPi

Recall
∑

C
i=1 Rei

C
∑

C
i=1 T Pi

∑
C
i=1 T Pi+FNi

F1 2×PrM×ReM
PrM+ReM

2×Prµ×Reµ

PrM+Reµ

In the multi-class case, each sample can belong to more than one class at the same time.

We want to average the performance over all classes in order to have a global performance

metric for the predictor. Godbole and Sarawagi [79] proposed two different ways to obtain a

global performance measure. The first one, micro-averaging, calculates the above measures

by summing over each individual decision. The second one, macro-averaging, calculates

the average of the above measures over all classes .

Table 7.3 shows the formulas to calculate these measures for both approaches, where

C is the number of classes in the classification problem, Pri and Rei are the precision and

recall measured for class i and finally T Pi, FNi and FPi denote the values of the basic

performance variables for class i.

Given that the proportion of samples that belong to each class is very similar in the

cancer and the synthetic datasets, macro-averaging was used to obtain global performance

measures. On the other hand, class proportions are varied in the fluorophore dataset; thus,

micro averaging was used to obtain a more accurate global performance measure.

7.2.2 Testbeds

For testing and validation of our proposed method, we conducted several experiments us-

ing three different datasets. The first two datasets were made available at http://www.

models.life.ku.dk/datasets by the Department of Food and Science at the Uni-



78
Table 7.4: Description of Data Sets

Data Set Excitation Wavelength (nm) Emission Wavelength (nm) # of ClassesStart End Increment Start End Increment
Cancer 250 450 5 300 600 1 4
Fluorophores 230 320 5 230 500 2 6
Synthetic 250 450 1 300 500 1 5

versity of Copenhagen. The third dataset is a toy domain that we have synthetically created

in order to introduce different types of noise and artifacts to test the robustness of our

approach. Table 7.4 summarizes the datasets we used.

Cancer Data Set: The first dataset contains samples from undiluted human blood

plasma obtained from a study conducted at six Danish hospitals. The samples were taken

from patients undergoing large bowel endoscopy due to symptoms associated with colorec-

tal cancer. The dataset also contains samples from three control groups, namely, healthy

subjects, subjects with other non-malignant diagnosis and subjects with pathologically ver-

ified adenomas.

Fluorophores Dataset: The second dataset contains a total of six different fluorophores:

catechol, hydroquinone, indole, resorcinol, tryptohpane and tyrosine. The samples contain

different combinations of fluorophores at different concentrations. We used this dataset to

test the robustness of our approach to fluorescent noise by artificially and systematically

reducing the peak-signal-to-noise-ratio (PSNR) of the matrices. Five different versions of

the dataset were created, each one with a lower PSNR than the previous dataset. Precision

and recall values were recorded for each fluorophore at the different noise levels.

Table 7.5: Major Fluorescent Components With Peaks Designated With Letters as in Coble
et al. [80]

Peak Exmax Emmax Remarks
(nm) (nm)

B 275 310 Tyrosine-like, protein-like
T 275 340 Tryptophan-like, protein-like
A 260 380-460 Humic-like
M 312 380-420 Marine humic-like
C 350 420-480 Humic-like
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Synthetic Dataset: We created a toy domain using the peak locations for the major

fluorescent components reported in [80]. Table 7.5 shows the peak locations and their

corresponding compound type. In order to test the robustness of our algorithm, we system-

atically increased the noise present in the dataset in three different ways. The first noise

artifact added was white noise, in order to decrease the PSNR of the spectrum. The sec-

ond noise artifact added was peak location variability, which will decrease the similarity

between samples that belong to the same class while increasing class overlap. Finally, the

third noise artifact added was girth and height variability for each peak, in order to try to

mimic real world difficulties such as quenching and background fluorescence. Figures 7.5a

to 7.5d show a sample under the three different noise conditions.

The samples with white noise were obtained by adding a random number in the interval

[0,nWN ], where nWN is the white noise parameter. The samples with peak location variability

were obtained by shifting the peak location of each sample by a random amount in both the

excitation and emission directions. The shift is limited to a square of area nSN×nSN centered

at the location of the original peak, where nSN is the shift noise parameter. Finally, the

samples with girth and height variation were obtained by adding variability to the variance

of the underlying Gaussian used to create the peak. The variability was obtained by adding

a number in the interval [0,nHN ], where nHN is the girth/height noise parameter.

NetZero Water treatment system Dataset: The residential urban ambient net-zero

water treatment system was presented in [81]. The treatment system proposes a design

using a membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum

ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2

disinfection residual. This system neither takes nor releases water off-site, but rather pu-

rifies the wastewater by filtration, aeration, oxidation and other methods. The quality of

the treatment process is monitored at different stages of the treatment system by taking

measurements of pH, turbidity, conductivity, dissolved oxygen, temperature, EEM and
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(a) Original sample with no noise. (b) Sample with added Gaussian noise.

(c) Sample with shifted peak positions. (d) Sample with girth and height changed.

Figure 7.5: An EEM sample subjected to different types of noise. Figure 7.5a shows a
noiseless sample containing all fluorescent components in the toy domain. Figure 7.5b
shows the same sample with added Gaussian noise. Figure 7.5c shows the sample after the
peak positions have been randomly changed causing some peaks to overlap. Figure 7.5d
shows the sample after a random variation of the girth and height of the peaks has been
applied.
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Microtox R© to name a few. The data provided from this treatment facility is used to test

the LFDA model using the aditional measurements of pH, turbidity, conductivity, dissolved

oxygen and temperature as control variables. The interested reader can find further infor-

mation about the water treatment mechanism in [81]. Microtox R© is a testing system used

to examine water, soil and air. The system uses non-pathogenic bioluminescent bacteria

(Vibrio fischeri) to detect toxic substances invitro. The bacteria emit light as part of their

regular metabolism. When exposed to toxic substances that disrupt their respiration the

bacteria undergo a drop in luminescence that can be measured and correlated to the level

of toxicity found in a substrate. The residential urban ambient net-zero water treatment

process [81] uses an analysis of Microtox R© measurements on water samples collected at

different stages of the purification process. The treatment also uses a collection of fluores-

cence spectroscopic data along with other water quality measurements. It is worth men-

tioning that Microtox R© testing protocols are labor intensive and require specially trained

technicians to conduct the test, which can be very sensitive to lab conditions. This offers

an opportunity to apply machine learning techniques to assess or predict Microtox R© read-

ing and the water quality while reducing Microtox R© testing time, training and complexity.

LFDA has been utilized for modeling and analysis of fluorescent spectroscopic excitation-

emission matrices (EEMs) along with parallel factor analysis (PARAFAC).

7.2.3 Results

The data sets used for testing contain samples belonging to more than one class. Therefore,

classification was performed using the one-versus-all method. This approach tends to create

a very slight class imbalance which as reported in [82] can cause problems in probabilistic

graphical models such as LDA. The reported experiments show that rare topics, or in our

case rare latent aspects are not accurately modeled when underrepresented in the training

dataset. To test if this was indeed the case we tested one class from each dataset used

at different degrees of imbalance d, by using MeMO to balance the training samples. The
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results can be seen in Table 7.6, Table 7.7 and Table 7.8. We can note that the balancing step

does not improve or change the performance of the cancer dataset, however, the balancing

step seems to offer some improvement on the synthetic dataset and the Fluorophore dataset.

Colorectal Cancer Dataset
d Other Cancer Adenoma None
0 0.43±0.07 0.45±0.06 0.38±0.09 0.43±0.08

0.1 0.44±0.06 0.47±0.05 0.39±0.08 0.43±0.09
0.2 0.42±0.08 0.44±0.07 0.38±0.08 0.44±0.07
0.3 0.41±0.05 0.46±0.06 0.37±0.09 0.43±0.08
0.4 0.45±0.06 0.44±0.04 0.36±0.07 0.42±0.09
0.5 0.43±0.07 0.45±0.06 0.37±0.06 0.42±0.07

Table 7.6: LDA F1 Prediction performance at different levels of imbalance

Synthetic Dataset
d Peak M Peak T Peak C Peak B Peak A
0 0.94±0.15 0.69±0.12 0.98±0.04 0.87±0.11 0.92±0.06

0.1 0.93±0.16 0.68±0.15 0.97±0.06 0.83±0.14 0.95±0.09
0.2 0.91±0.14 0.69±0.10 0.94±0.07 0.80±0.14 0.92±0.06
0.3 0.87±0.19 0.65±0.08 0.96±0.09 0.85±0.21 0.89±0.13
0.4 0.87±0.21 0.66±0.13 0.93±0.07 0.78±0.17 0.83±0.09
0.5 0.85±0.17 0.67±0.12 0.95±0.04 0.78±0.21 0.86±0.11

Table 7.7: LDA F1 Prediction performance at different levels of imbalance

Fluorophore Dataset
d Hydroquinone Catechol Indole Resorcinol Tryptophane Tyrosine
0 0.97±0.03 0.85±0.05 0.95±0.05 0.76±0.10 0.94±0.09 0.62±0.06

0.1 0.97±0.06 0.85±0.05 0.95±0.03 0.76±0.08 0.94±0.11 0.61±0.10
0.2 0.96±0.05 0.85±0.07 0.91±0.07 0.73±0.13 0.91±0.07 0.60±0.11
0.3 0.96±0.06 0.79±0.09 0.91±0.09 0.76±0.14 0.91±0.10 0.61±0.14
0.4 0.92±0.10 0.79±0.11 0.88±0.05 0.76±0.11 0.91±0.09 0.59±0.10
0.5 0.92±0.13 0.79±0.10 0.88±0.07 0.71±0.13 0.88±0.13 0.58±0.13

Table 7.8: LDA F1 Prediction performance at different levels of imbalance

From the experiments presented in chapter 4, we can conclude that for our level of

imbalance and for the multi-class nature of the datasets involved, MeMO is a better choice

than other oversampling techniques.

Membership-based oversampling partitions the minority samples into K clusters and

then generates new samples by creating convex combinations of sample-pairs from the
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same minority cluster. In order to apply this method to the problem at hand, we first gen-

erate a similarity matrix, S = {si, j}, where the Euclidean norm is used to generate the

similarity score between samples i and j:

si j = exp
(
−‖xi−x j‖2

2σ2

)
. (7.4)

Here, σ controls the extent to which the value of the matrix norm ‖xi−x j‖2 is given a high

or low similarity score.

We then use a spectral clustering algorithm described in [83] to partition the minor-

ity samples into K clusters and consequntly apply MeMO. The training data set is bal-

anced in this manner to ensure that all classes are equally represented for model building

in PARAFAC and LDA.

In the following experiments, the feature vectors used to train the classifiers are the

PARAFAC model’s scores and the LDA model’s aspect proportions. The PARAFAC +

LDA combination uses a concatenation of the PARAFAC model’s scores and the LDA

model’s aspect proportions. We use the term raw data to refer to the direct concatenation

of the rows and columns of the original EEM matrices. Each experimental result reported

was performed 10 times using 80% of the data for training and 20% for testing.

Table 7.9: Cancer Dataset: Performance Values

Cancer Other Adenoma None

LDA + SVM
Precision 0.37±0.06 0.31±0.06 0.28±0.06 0.31±0.06
Recall 0.59±0.12 0.75±0.15 0.65±0.23 0.75±0.15
F1 0.45±0.06 0.43±0.07 0.38±0.09 0.43±0.08

PARAFAC + SVM
Precision 0.40±0.09 0.25±0.08 0.27±0.04 0.31±0.05
Recall 0.64±0.18 0.44±0.17 0.54±0.10 0.64±0.16
F1 0.49±0.12 0.32±0.11 0.36±0.06 0.42±0.08

LDA + PARAFAC + SVM
Precision 0.40±0.08 0.25±0.08 0.27±0.05 0.32±0.05
Recall 0.64±0.18 0.46±0.15 0.57±0.13 0.67±0.12
F1 0.49±0.12 0.32±0.10 0.37±0.07 0.43±0.06

Raw + SVM
Precision 0.44±0.10 0.34±0.09 0.35±0.11 0.27±0.07
Recall 0.46±0.11 0.35±0.15 0.36±0.12 0.34±0.09
F1 0.44±0.06 0.33±0.11 0.35±0.10 0.30±0.07

Cancer Dataset: The results for the cancer dataset appear in Table 7.9. For these

experiments, we used only the data from the undiluted samples and, unlike the pairwise
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Table 7.10: Fluorophore Dataset: Micro Precision, Recall, and F1 Values Under Different
Noise Levels

PSNR LDA PARAFAC PARAFAC + LDA Raw

Micro

N/A
Precision 0.83±0.18 0.87±0.13 0.91±0.10 0.98±0.02
Recall 0.88±0.12 0.91±0.08 0.94±0.04 0.93±0.05
F1 0.85 0.89 0.92 0.95

43
Precision 0.82±0.18 0.87±0.14 0.93±0.08 0.81±0.03
Recall 0.87±0.14 0.89±0.09 0.93±0.06 0.71±0.07
F1 0.84 0.88 0.93 0.76

39
Precision 0.80±0.19 0.81±0.20 0.90±0.10 0.76±0.07
Recall 0.85±0.10 0.87±0.10 0.92±0.08 0.70±0.05
F1 0.82 0.84 0.91 0.73

37
Precision 0.77±0.21 0.78±0.17 0.90±0.10 0.73±0.06
Recall 0.83±0.13 0.83±0.12 0.92±0.07 0.68±0.05
F1 0.80 0.81 0.91 0.70

35
Precision 0.81±0.17 0.87±0.12 0.92±0.07 0.72±0.03
Recall 0.82±0.12 0.87±0.12 0.91±0.09 0.67±0.03
F1 0.81 0.87 0.91 0.69

results presented in [11], our results use the one-versus-all method for classification. Our

results show that both, PARAFAC + SVM and the combination PARAFAC + LDA + SVM

are the most effective methods to distinguish cancer from all other control groups. On

the other hand, we can also observe that LDA + SVM seems to perform favorably when

compared to the other approaches at identifying all other classes. It is worth mentioning that

a random classifier would produce a precision value of approximately 0.25 and a recall of

approximately 0.5, given that the four classes have approximately equal proportions in the

dataset. However, overall performance is relatively low for all approaches when tested on

this dataset. This result was not unexpected. Lawaetz et al. [11] performed an exploratory

analysis of this data and concluded that there was no clear separation of cancer and control

samples. In fact, the variability in the data was not due to age, gender, or other control

variables, but it was most likely due to individual differences.

Fluorophores Dataset: Sections 7.2.3 to 7.2.3 show the F1 values for the fluorophore

dataset at different levels of white noise, measured as PSNR. We can see that when the

data contains no noise, the raw data vector is enough to obtain a very good prediction.

However, a slight increase in the noise level shows how sensitive the raw data classifier is
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(a) Class 1: Catechol (b) Class 2: Hydroquinone

(c) Class 3: Indole (d) Class 4: Resorcinol

(e) Class 5: Tryptophane (f) Class 6: Tyrosine

Figure 7.6: F1 vs. PSNR for fluorophore dataset
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to a decrease in the PSNR value. The graphs show how both LDA + Logistic Regression

and PARAFAC + Logistic Regression offer robustness to white noise, given that their per-

formance does not decrease as dramatically as the performance of the classifier using raw

data. It is also apparent from the results that the combination of both LDA + PARAFAC

+Logistic Regression offers additional robustness and the best performance of the tested

approaches.

The Fluorophore dataset contains 6 different classses that are not present in the same

proportions. Thus, in order to average the classification performance over all classes, we

made use of the micro averaging technique in Table 7.3. The overall performance of the

approaches in this dataset appear in Table 7.10. We can, once again, clearly see how sen-

sitive the raw data classifier is to a decrease in PSNR values while the PARAFAC + LDA

combination offers a consistent and reliable result.

Synthetic Dataset: Sections 7.2.3 to 7.2.3 show the results for the synthetic dataset

under different levels of white noise. The same trend of sensitivity to noise seen in the

fluorophore dataset results is mirrored here. The most robust method continues to be LDA

+ PARAFAC and the method that is the most sensitive to noise continues to be the one

using raw data.

Tables 7.11 and 7.12 show the results for the other two types of noise using macro

averaging. These results indicate a higher robustness from LDA when shift noise and

height-girth variability are introduced. PARAFAC relies on a trilinear model to describe

the data. In such a model, variability comes from the scores as fixed loadings are shared by

all samples. Shift noise violates trilinearity assumptions and inhibits the performance of the

PARAFAC model. On the other hand, the robustness of the LDA model can be attributed to

the fact that it makes no such assumption. The underlying distribution of each latent aspect

is fixed, but there is an inherent flexibility in probabilistic models that allows for sample
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(a) Peak A (b) Peak C

(c) Peak B (d) Peak T

(e) Peak M

Figure 7.7: F1 vs. PSNR for synthetic dataset.
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Table 7.11: Synthetic Dataset: Macro Precision, Recall, and F1 Values Under Noise Created
by Shifting Peak Locations

nSN LDA PARAFAC PARAFAC + LDA Raw

Macro

10
Precision 0.90±0.07 0.90±0.11 0.90±0.07 0.81±0.12
Recall 0.90±0.09 0.87±0.12 0.90±0.08 0.81±0.11
F1 0.90 0.88 0.90 0.81

20
Precision 0.88±0.13 0.88±0.12 0.90±0.12 0.77±0.17
Recall 0.84±0.12 0.85±0.11 0.88±0.09 0.71±0.16
F1 0.86 0.86 0.89 0.74

30
Precision 0.89±0.13 0.85±0.13 0.91±0.08 0.78±0.16
Recall 0.83±0.13 0.79±0.13 0.85±0.12 0.73±0.17
F1 0.86 0.82 0.87 0.76

40
Precision 0.89±0.09 0.84±0.11 0.88±0.07 0.75±0.15
Recall 0.82±0.11 0.85±0.12 0.90±0.05 0.72±0.18
F1 0.85 0.84 0.89 0.73

50
Precision 0.84±0.07 0.77±0.12 0.86±0.05 0.72±0.11
Recall 0.81±0.09 0.73±0.14 0.82±0.07 0.67±0.14
F1 0.83 0.75 0.84 0.69

variations without a trilinear structure. We can also see that there is an advantage and a

measurable enhancement offered by the LDA + PARAFAC combination in both tables.

7.3 Classification Using PARAFAC and LFDA

Microtox R© is a testing system used to examine water, soil and air. The system uses non-

pathogenic bioluminescent bacteria (Vibrio fischeri) to detect toxic substances invitro. The

bacteria emit light as part of their regular metabolism. When exposed to toxic substances

that disrupt their respiration the bacteria undergo a drop in luminescence that can be mea-

sured and correlated to the level of toxicity found in a substrate. This section will focus on

predicting Microtox R© measurements using LFDA, PARAFAC, non-parametric regression

and DS theory.

7.4 Regression Using PARAFAC and LFDA

A residential urban ambient net-zero water treatment system was presented in [81]. The

treatment system proposes a design using a membrane bioreactor, iron-mediated aeration

(IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with

minor rainwater make-up and H2O2 disinfection residual. This system neither takes nor
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Table 7.12: Synthetic Dataset: Macro Precision, Recall, and F1 Values Under Type 3 Noise

nHN LDA PARAFAC PARAFAC + LDA Raw

Macro

10
Precision 0.89±0.04 0.84±0.10 0.97±0.06 0.75±0.11
Recall 0.84±0.14 0.77±0.11 0.84±0.05 0.69±0.11
F1 0.88 0.84 0.90 0.76

20
Precision 0.89±0.07 0.84±0.08 0.87±0.08 0.75±0.11
Recall 0.84±0.09 0.77±0.12 0.84±0.07 0.69±0.08
F1 0.87 0.80 0.85 0.72

310
Precision 0.83±0.11 0.74±0.09 0.82±0.09 0.68±0.11
Recall 0.82±0.09 0.74±0.08 0.82±0.08 0.64±0.10
F1 0.82 0.74 0.82 0.66

40
Precision 0.88±0.08 0.80±0.15 0.88±0.06 0.75±0.09
Recall 0.83±0.04 0.68±0.12 0.86±0.03 0.67±0.12
F1 0.86 0.74 0.87 0.71

50
Precision 0.79±0.11 0.77±0.16 0.85±0.09 0.70±0.07
Recall 0.71±0.11 0.70±0.13 0.78±0.07 0.66±0.14
F1 0.75 0.74 0.81 0.68

releases water off-site, but rather purifies the wastewater by filtration, aeration, oxidation

and other methods. The quality of the treatment process is monitored at different stages

of the treatment system by taking measurements of pH, turbidity, conductivity, dissolved

oxygen, temperature, EEM and Microtox R© to name a few. In this work we use the data

provided from this treatment facility, the interested reader can find further information

about the water treatment mechanism in [81].

The residential urban ambient net-zero water treatment process [81] uses an analysis of

Microtox R© measurements on water samples collected at different stages of the purification

process. The treatment also uses a collection of fluorescence spectroscopic data along

with other water quality measurements. It is worth mentioning that Microtox R© testing

protocols are labor intensive and require specially trained technicians to conduct the test,

which can be very sensitive to lab conditions. This offers an opportunity to apply machine

learning techniques to assess or predict Microtox R© values and water quality while reducing

technitian training and testing time and complexity. A novel probabilistic graphical model

technique, anmely, Latent Fluorescent Dirichlet allocation (LFDA) has been utilized for

modeling and analysis of fluorescent spectroscopic excitation-emission matrices (EEMs)

along with parallel factor analysis (PARAFAC).
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7.4.1 Microtox R© Assessment Process

In this section we focus on Microtox R© measurement prediction. The objective is to build a

model that can ultimately be used to analyse water quality. In order to start our analysis we

dichotomize samples into a positive and a negative set. We refer to the positive instances as

the water samples for which the Microtox reading has dropped more than the given thresh-

old in a fifteen minute time period. All other samples are considered negative instances.

The following is our hypothesis:

H0 : The sample is a negative instance,(i.e. Microtox luminescence reading does not drop

below the given threshold in fifteen minutes)

H1 : The sample is a positive instance.

As explained in Section 1.2 we use fluorescence spectroscopic excitation-emission ma-

trices (EEMs) based scores along with pH, turbidity, conductivity and dissolved oxygen.

EEM scores are extracted using two main techniques: Parallel factor analysis (PARAFAC),

and the novel Latent Fluorescent Dirichlet Allocation (LFDA) based probabilistic graph-

ical approach. These techniques are explained in Sections 1.3 and 3.4 respectively. The

extracted scores from PARAFAC and LFDA along with other measurements are given as

inputs to a non-parametric (NP) regression system, details are given in section 5. The out-

put values of the regression obtained by using PARAFAC scores and LFDA scores are used

to create two Dempster-Shafer (DS) theoretic Bodies of Evidence (explained in section 6)

which are then fused to give an evidence based classification result. Given sufficient ev-

idence in favour of sample being positive instance leads to a rejection of null-hypothesis

H0.

If we reject H0, i.e. when the water sample can not be regarded as a negative sample by

the above features, further tests are done in order to look for possible cause via extensive

laboratory experiments.
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Testing was done on a dataset consisting of data points collected over the period April

2013 to December 2014. The data was filtered to avoid missing records and measurements

and a subset of 489 samples were used in the analysis with LDA/LFDA and PARAFAC.

Non-parametric(NP), linear models(LM) and support vector machine(SVM) based regres-

sion methods were applied on the dataset with three sets of variables to predict the drop in

Microtox measurement y. The first set of variables xLDA, consists of variables,

xLDA =



xL1−First LDA score,

xL2−Second LDA score,

xpH−pH value,

xCon−Conductivity value,

xDO−Dissolved Oxygen value,

xTur−Turbidity value



,

where xL1 and xL2 have been obtained from the LDA-based probabilistic graphical model.

Figure 7.8 shows the receiver operating characteristic (ROC) curves for NP, LM and SVM

based regressions for y labels obtained from assigning class ‘1’ for Microtox reading

dropped more than 50% in fifteen minutes, and assigning ‘0’ otherwise. The area un-

der the curve for NP regression was around 75% while for SVM based regression it was

around 65%. Under the optimum threshold the sensitivity of 78% and specificity of 60%

was reported for NP regression.
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Figure 7.8: The receiver operating characteristic (ROC) curves for non-parametric(NP),
linear (LM) and support vector machine(SVM) based regressions are given with variables
xLDA. A threshold of 50% reduction in luminescence reading in Microtox has been used
to label the positive samples y. The area under the curve (AUC) is given only for NP and
SVM based regressions.



93

The second set of variables xPA, consists of variables,

xPA =



xP1−First PARAFAC score,

xP2−Second PARAFAC score,

xpH−pH value,

xCon−Conductivity value,

xDO−Dissolved Oxygen value,

xTur−Turbidity value



,

where xP1 and xP2 have been obtained using PARAFAC.

Figure 7.9 shows the ROC curves for NP, LM and SVM based regressions having the

same setup that of in figure 7.8, except with variables xPA. The area under the curve for

NP regression was around 75% whereas for SVM based regression it was around 66%. For

NP regression, under the optimum threshold, the sensitivity and specificity was recorded as

63% and 78%. However, it should be noted that this relatively higher specificity has been

given by compromising the sensitivity. For instance, when the threshold of classification

was slightly increased sensitivity and specificity values of 73% and 59% can be obtained.

The third set of variables xLDA, consists of variables,

xLFDA =


xLF1−First LFDA score,

xLF2−Second LFDA score

 ,

where xLF1, xLF2 and xLF3 have been obtained from the LFDA-based probabilistic graphical

model. Figure 7.10 shows the receiver operating characteristic (ROC) curves for NP, LM

and SVM based regressions for y labels obtained from assigning class ‘1’ for Microtox

reading dropped more than 50% in fifteen minutes, and assigning ‘0’ otherwise. The area

under the curve for NP regression was around 78% while for SVM based regression it was

around 67%. Under the optimum threshold the sensitivity of 83% and specificity of 60%

was reported for NP regression.
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Figure 7.9: The receiver operating characteristic (ROC) curves for non-parametric(NP),
linear (LM) and support vector machine(SVM) based regressions are given with variables
xPA. A threshold of 50% reduction in luminescence reading in Microtox has been used to
label the positive samples y. The area under the curve (AUC) is given only for NP and
SVM based regressions.
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Figure 7.10: The receiver operating characteristic (ROC) curves for non-parametric(NP),
linear (LM) and support vector machine(SVM) based regressions are given with variables
xLFDA. A threshold of 50% reduction in luminescence reading in Microtox has been used
to label the positive samples y. The area under the curve (AUC) is given only for NP and
SVM based regressions.
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It was seen that non-parametric regression is a better suited approach for our data set.

One reason for this improvement maybe related to the fact that non-parametric regression

as a local estimator can handle class imbalance in data sets better than global estimators.

In contrast, linear regression is a global estimator and support vector machines can be

regarded as a ‘fusion’ of local and global estimators. From Figures 7.8, 7.9 and 7.10 it can

be seen the performance gets better when the estimator becomes ‘more local’

7.4.2 DS Performance Measures

Since we are getting evidences from two sources, we have used the DS fusion method

elaborated in section 6. To report the performance we use DS theoretic specificity and

sensitivity based on the definition given for DS theoretic precision and recall in [84]. For

that, let us first define the DS framework to use the DS-Model described in section 6.2.

The positive samples (with labels ‘1’) are denoted with θ1 and the negative samples are

denoted with θ2, hence the FoD Θ = {θ1,θ2}. For each testing sample s after fusing the

corresponding results of m̂PA and m̂LDA, the fused BoE can be obtained, say {Θ,F,ms}.

Using pignistic transformations [85] c Under this setting the ‘true positives’(TP), ‘false

positives’(FP), ‘false negatives’(FN) and ‘true negatives’(TN) can be given as:

T PDS ∑s∈S(+)
B̂etP(θ1)

FPDS ∑s∈S(−) B̂etP(θ1)

FNDS ∑s∈S(+)
B̂etP(θ2)

T NDS ∑s∈S(−) B̂etP(θ2)

Now the DS-Sensitivity, DS-Specificity and the F-measure are given in (7.5), (7.6), and

(7.7) respectively, following the conventional definitions.

DS-Sensitivity =
T PDS

T PDS +FNDS
. (7.5)
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DS-Specificity =
T NDS

FPDS +T NDS
. (7.6)

Fβ (DS) =
(1+β 2) ·T PDS

(1+β 2) ·T PDS +β 2 ·FNDS +FPDS
(7.7)

In this application of assessing Microtox R© measurements it is desirable to have a higher

sensitivity to detect all the sudden changes in Microtox readings. As mentioned in Section

7.4.1, Microtox R© readings mimic the impurity of the corresponding water sample. In our

analysis we ran five fold cross validation and calculated non-parametric regression values

corresponding to xLDA, xPA and xLFDA for each training sample. Then for each training

sample Dempster-Shafer mass structures mLDA(·), mPA(·) and mLFDA(·) were assigned. The

fused mass structures (mLDA⊕mPA)(·) and (mLFDA⊕mPA)(·) were obtained as explained

in Section 6.2. Then T PDS, FPDS, FNDS and T NDS we calculated separately under mass

structures mLDA(·), mPA(·), mLFDA(·), (mLDA⊕mPA)(·) and (mLFDA⊕mPA)(·).

From DS theory, a large value of m(Θ) for a particular water sample, essentially means

there is a high uncertainty on the prediction for the corresponding sample. Hence when

calculating T PDS, FPDS, FNDS and T NDS we only consider samples with low uncertainty.

In this analysis 37 samples with uncertainty greater than 90%, in any of the independent

evidence sources (i.e., mLDA, mPA(·) or mLFDA(·)) were reserved for further analysis. In

the remaining 452 samples there were 32 positive samples and 420 negative samples. The

DS-sensitivity, DS-specificity and F1(DS) measure obtained for five fold cross validation for

the 452 samples are presented in Table 7.13.

Table 7.13: Water Dataset: Performance Values

DS-Sensitivity DS-Specificity F1(DS)

mLDA 0.7860 0.5978 0.2218
mPA 0.7831 0.6065 0.2273
mLFDA 0.8201 0.6276 0.2451
mLDA⊕mPA 0.8486 0.6446 0.2637
mLFDA⊕mPA 0.8976 0.6858 0.3002
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Statistical comparison of F1(DS) values for five fold cross validation on 452 samples

have been carried using the post-hoc Nemenyi test on significant results of the Friedman

test (for interesting readers we refer [86]). The Friedman test is a non-parametric equivalent

of ANOVA whereas Nemenyi test is similar to Tukey test for ANOVA. The main reason

for us to use a non-parametric test is not to assume the distribution, for instance normal

distribution, of the compared data. It can be seen that LFDA scores fused with PARAFAC

accompanied with pH, Conductivity, DO and Turbidity yields the best results.

Table 7.14 gives the p− values of the pairwise comparisons using Nemenyi post-hoc

test with F1(DS) values obtained from five fold cross validation with mLDA, mPA, mLFDA,

mLDA⊕mPA and mLFDA⊕mPA.

Table 7.14: Friedman Nemenyi Post-hoc Test

p-values with F1(DS) mLFDA⊕mPA mLDA⊕mPA mLFDA mPA
mLDA⊕mPA 0.8555 - - -

mLFDA 0.2659 0.8555 - -
mPA 0.0120 0.1796 0.7514 -

mLDA 0.0014 0.0409 0.3735 0.9751

For our discussion let us use the loose notation X∗ to denote X accompanies pH, Con-

ductivity, DO and Turbidity in regression step. For instance LDA∗ denotes that, LDA scores

are used along with pH, Conductivity, DO and Turbidity measurements in regression step.

In contrast LFDA (without ∗) denotes, only LFDA scores are used in regression step.

According to the Nemenyi test fused LFDA and PARAFAC∗ differs significantly (p <

0.01) compared to using only LDA∗. The former also differs (p < 0.05) compared to using

only PARAFAC∗. The fused LDA∗ and PARAFAC∗ differs (p < 0.05) from using LDA∗

only.

In practice each sample’s final fused mass structure should be checked. Samples with

higher m(θ1), i.e., positive with higher evidence, should be considered unsafe as they cor-

relate to severe drops in Microtox R© measurements within a 15 minute period. If m(θ2)

is higher for a particular water sample, then it should not be regarded as unsafe as they
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correlate to constant Microtox R© measurements within a 15 minute period. However, when

m(Θ) is higher, due to the uncertainty, further testing is necesary to check the quality of

water.

7.4.3 LFDA Drawbacks

Like many machine learning algorithms LFDA has certain drawbacks that were made

aparent during the testing phase. Given the number of observed variables incorporated into

the model the need for data is increased. The multidimensional array Φ has a number of

dimesions proportional to the number of control variables in the model. This is applicable

not only to the number of observed variables but also to the cardinality of the discretization

of each one of the variables.

The model needs to learn the behavior of the fluorescent latent aspects given several

dependencies, the larger the number of dependencies the larger the needed dataset. In

our specific use case data was readily available given that water samples are tested at the

treatment facility on a weekly basis. Other problem domains might not have such a readily

available large dataset and might be ill suited for analysis using LFDA. Several runs of

experiments were conducted to measure the sensitivity of LFDA compared to the other

approaches presented in this work. Table 7.15 shows the results of this test.

Table 7.15: AUC for NP regression

Percent of full dataset 20% 40% 60% 80% 100%
PARAFAC 70% 73% 74% 75% 75%

LDA 63% 70% 72% 75% 75%
LFDA 59% 68% 70% 74% 78%

These experiments show the over-sensitivity of LFDA to a reduction of the dataset size.

PARAFAC and LDA show some reduction of performance but LFDA is specially afected

by the curse of dimensionality due to the inter-dependency of the control variables in the

model.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

We have presented a novel LDA-based approach to analyze two-way data. Our exper-

iments demonstrate an improved accuracy and robustness to different types of noise on

EEM matrices. Our proposed probabilistic graphical model based approach seems to offer

advantages specifically for shift and height-girth variability of the peaks corresponding to

fluorescent components. Improvements on precision and recall values were observed when

classifiers using both PARAFAC and LDA are combined.

We have also presented a technique on assessing Microtox R© measurements with EEMs.

We have introduced the novel LFDA model which is based on our previous LDA based

graphical model in [87]. In our analysis we have used LDA and LFDA along with the three

way analysis technique PARAFAC to generate fetures for each EEM. Non-parametric re-

gression techniques were applied to get regression values which were used in a DS frame-

work to generate DS masses for each testing sample. These DS masses were then fed

to a DS fusion method to obtain DS theoretic predictions on water quality as indicated

by Microtox R© measurements. The use of LDA along with PARAFAC for EEM analysis

was already justified in [87]. In this work it was evident that the novel LFDA along with

100
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PARAFAC accompanied with pH, Conductivity, DO and Turbidity gave the best perfor-

mance in predicting Microtox R© measurements.

8.2 Future Work

The LFDA model offers insights into changes induced by external variables. In recent liter-

ature other extended graphical models have included prediction models such as supervides

latent Dirichlet allocation (sLDA) presented in [88]. In these extended models a response

variable is included to predict a class or rating for each sample. These extended models

not only perform latent aspect modeling but also make predictions by incorporating a class

variable. The results of these models illustrate certain benefits of sLDA versus modern reg-

ularized regression, as well as versus an unsupervised LDA analysis followed by a separate

regression. Extending the LFDA model to include a prediction variable might be able to

improve prediction further.

Furthermore, the evidential belief methods used in this work apply Dempster’s rule

of combination (DRC), which is the most basic fusion method used in DS theory. Other

methods such as the conditional update equation (CUE) might offer better prediction results

and might offer an interesting area of reserach for future work.
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