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ABSTRACT

Underwater sensor networks are deployed in marine environments, presenting specific challenges

compared to sensor networks deployed in terrestrial settings. Among the major issues that un-

derwater sensor networks face is communication medium limitations that result in low bandwidth

and long latency. This creates problems when these networks need to transmit large amounts of

data over long distances. A possible solution to address this issue is to use mobile sinks such

as autonomous underwater vehicles (AUVs) to offload these large quantities of data. Such mo-

bile sinks are called data mules. Often it is the case that a sensor network is deployed to report

events that require immediate attention. Delays in reporting such events can have catastrophic

consequences. In this dissertation, we present path planning algorithms that help in prioritizing

data retrieval from sensor nodes in such a manner that nodes that require more immediate attention

would be dealt with at the earliest. In other words, the goal is to improve the Quality of Information

(QoI) retrieved. The path planning algorithms proposed in this dissertation are based on heuristics

meant to improve the Value of Information (VoI) retrieved from a system. Value of information

is a construct that helps in encoding the valuation of an information segment i.e. it is the price an

optimal player would pay to obtain a segment of information in a game theoretic setting. Quality

of information and value of information are complementary concepts. In this thesis, we formulate

a value of information model for sensor networks and then consider the constraints that arise in

underwater settings. On the basis of this, we develop a VoI-based path planning problem statement

and propose heuristics that solve the path planning problem. We show through simulation studies

that the proposed strategies improve the value, and hence, quality of the information retrieved. It

is important to note that these path planning strategies can be applied equally well in terrestrial

settings that deploy mobile sinks for data collection.
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CHAPTER 1: INTRODUCTION

Traditional wireless sensor networks used for monitoring environmental conditions such as tem-

perature or humidity level [1] require only low data bandwidth and do not usually pose real-time

communication challenges. On the other hand, if the sensor network is used to monitor for in-

truder tracking or catastrophic events, it might require larger quantities of data, such as images or

video streams.

Monitoring in underwater sensor networks (UWSNs) has emerged as a subject of active research

with applications such as maritime security operations, infrastructure surveillance and mainte-

nance, sea-life monitoring and sea pollutant & contaminant measurements. Routing techniques in

UWSNs differ from traditional sensor networks. The physical deployment and maintenance of the

nodes are difficult and underwater sensing abilities can be hindered by cloudy water and debris.

Radio waves travel only very short distances underwater (as water tends to absorb a large part

of the electromagnetic spectrum). This limitation can be mitigated by using an acoustic commu-

nication medium. Acoustic signals can travel long distances underwater but they have relatively

high latency and low bandwidth. Such a bandwidth may be sufficient for transmitting compressed

data [2] but is not appropriate for greater volumes of data such video recordings.

As an alternative, the research community proposed the use of mobile sinks to gather and offload

the data in wireless multimedia networks [3, 4]. In the case of UWSN, an autonomous underwa-

ter vehicle (AUV) can be used as a mobile sink. The total energy consumption of the network

significantly drops by the use of an AUV to transport data. However, the physical transport of

the data creates a long latency during the path taken by the AUV. A potential solution is to use

short distance optical communication between the sensor node and a nearby AUV, and acoustic

communication for signaling of events for data offloading.

1



An important issue for data offloading in UWSNs is the path planning for an AUV, i.e. the sequence

in which the AUV visits the nodes for data offloading. An efficient planned path can reduce data

delivery latency and increase the collected information over a given period of time. Let us assume

a surveillance application that must report an important event. In a traditional sensor network,

the information can be sent to the sink node instantaneously by initiating the data transfer from

either the sink or the source nodes. But for a UWSN with a mobile sink, the sensor node must

signal the event to the AUV and the AUV must travel to the required node for data collection.

The time when the information is transferred to the customer depends on the speed of the AUV

(which depends on weather and oceanic currents), the current location of the AUV, its schedule of

diving and resurfacing. As the AUV needs to handle all the nodes of the network, the time until

the information about a given event is picked up can range from a couple of minutes to a few hours

depending on the choices made by the path planning algorithm.

1.1 Our Contributions

In this dissertation our primary contribution is developing techniques that will allow us to retrieve

data from a UWSN in an event prioritization fashion, thereby, allowing us to cater to emergency

situations at the earliest. We make use of Value of Information (VoI) for developing heuristics that

will be incorporated in path planning algorithms for the AUV that will traverse the sensor nodes

in the UWSN. Our contributions have two aspects: one is formulating the use of VoI as a temporal

construct, developing the VoI optimization problem statement for sensor networks and identifying

constraints for VoI based data retrieval in UWSNs; the other one is developing path planning

algorithms for AUVs that traverse the UWSN in a manner that it optimizes VoI retrieved under

constraints such as emergency situation requirements, resurfacing rules, and number of AUVs.
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1.1.1 Employing Value of Information in Underwater Sensor Networks

The first step is to determine the manner in which we want to employ the concept of VoI. For

this, we come up with a temporal definition of VoI; namely infotentials. Afterward, we use this

definition of infotentials to develop a VoI model in a sensor network. We apply this model to a

UWSN that uses AUVs for data retrieval and then determine a VoI optimization relation.

1.1.1.1 Temporality of VoI - Infotentials

VoI has been discussed in the literature in more of a non-temporal sense. In a game theoretic

setting, it is defined as the price of an optimal player would pay to acquire a segment of information.

We term the subject of an information segment as ‘asset’. The value of an information segment

is directly proportional to the valuation of the asset. Also, the value of an information segment is

dependent upon factors such as its reliability, accuracy, repetitiveness, uniqueness, etc.

We introduce VoI as a temporal entity; one that is decaying in time. We argue that the value of

an information segment decreases across time due to the depreciation of the asset the information

segment is reporting about. Specifically, if this depreciation is triggered due to a catastrophic event,

we can see a rapid decline in the valuation of the asset. This depreciation in time can be captured by

time decaying functions which we term as ‘infotential(s)’, which is short for Information-Potential.

An infotential is a function that captures the valuation of a piece of information about an event that

will depreciate the value of an asset.

Other factors that affect VoI such as reliability, accuracy, repetitiveness, uniqueness, etc. can be

categorized under the concept of Quality of Information. We have developed an equation that

captures the VoI in terms of asset valuation, event-based depreciation, and QoI. This equation is

what we term as the infotential.

3



1.1.1.2 VoI Model for Sensor Networks

We develop a VoI model for a single sensor node. From this, we develop a VoI model for a UWSN

which uses AUVs for data retrieval form sensor nodes. The model incorporates in it the geophys-

ical location of the sensor nodes, the information segments specifics at the sensor nodes such as

information class and VoI assignments and aspects of the AUV such as velocity and resurfacing

constraints. We developed a simulator that analyzes the performance of various path planners in

terms of VoI accumulated in the aforementioned UWSN setting. The AUV traverses the UWSN

and retrieves information segments from the sensor nodes in the simulation. Afterward, various

metrics are used and an analysis is run to gauge the performance of the path planners.

From this model, we derive the equation for the VoI optimization relation. The optimization prob-

lem is to maximize the amount of VoI accumulated from the UWSN in one complete tour of the

AUV. The goal of each path planner would be to maximize the value of this optimization relation.

1.1.2 VoI based Path Planning Algorithms for Data Mules (AUVs)

We have developed path planning algorithms for scheduling the sequence in which the sensor nodes

will be visited by the AUV in a UWSN. We identify two basic scenarios for which we propose the

path planning algorithms. In the first scenario, the AUV needs to resurface occasionally during its

tour for delivering data so that certain VoI objectives can be met. In the second scenario, the AUV

can meet the required objectives without the need to resurface. The decay of VoI of an information

segment stops at the time instant when the information segment is processed for certain decision-

making purposes. If the AUV is not equipped with the required decision-making ability then the

AUV needs to resurface and transmit to a remote sink node for the required decision. Alternately,

if it is equipped with the required ability then it does not need to resurface and can take the required
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decisions on its own. For both these scenarios, we propose heuristics and path planning algorithms

that solve the VoI optimization problem. The proposed algorithms involve a single AUV. Multiple

AUVs can be used to achieve a higher aggregate of VoI. We also propose heuristics and algorithms

for scheduling multiple AUVs. We have, therefore, proposed path planning algorithms for the

following scenarios: path planning for a single AUV without resurfacing, determining resurfacing

schedules in the case of resurfacing and path planning with multiple AUVs.

1.1.2.1 Path Planning for a Single AUV without Resurfacing

In this project, we design heuristics for path planning algorithms in a UWSN setting where resur-

facing is not required. We propose that visiting nodes with higher VoI first and minimizing AUV

travel time can serve as good heuristics for the path planning algorithms. We developed several

algorithms based on these heuristics.

The first algorithm, Lawn-Mower, is based on the time minimization heuristic. The heuristic min-

imizes the overall tour time and is approximates a solution to the traveling salesman problem in

a mesh setting of vertices (sensor nodes). The second one is the Greedy path planner and it is

based on choosing the next node to be visited as the one which has the highest amount of VoI to

offer. It is based on maximizing the VoI accumulated heuristic. The third path planner is Greedy

with Inter-Node Traversal that modifies Greedy with a subtle addition: while moving towards the

next destination as determined by the highest VoI offer, it visits any sensor node that it encounters

along the path and offloads data from them too, thereby, minimizing tour time. Hence, it uses VoI

maximization in conjunction with time minimization.

In our simulations, we consider two situations: with and without hot-spots. A hot-spot is a region

where a sensor node has identified a catastrophic event. Reporting of such an event carries high

priority and thus, the VoI retained at sensor nodes reporting hot-spots is higher than usual. In
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our simulations, we find out that the Lawn-Mower performs best in situations where there are

no hot-spots while the Greedy path planners perform better in the case of hot-spots. Keeping

these results in view we have developed two more algorithms; Hybrid & Hybrid with Inter-Node

Traversal which is a spin on Greedy & Greedy with Inter-Node Traversal respectively. The Hybrid

path planner variants behave as a Lawn-Mower when there are no hot-spots and as a Greedy path

planner when there are one or more hot-spots. In this way, these Hybrid algorithms achieve the

best of both worlds.

To have a detailed evaluation of the efficacy of the path planners, we introduced two metrics. The

first performance metric is the reciprocal of the product of VoI lost and tour time. The other one is a

measure of efficiency for the visitation schedule of hot-spots and is named as urgency ‘ efficiency’.

1.1.2.2 Determining Resurfacing Schedules

In the previous project, we worked with the assumption that the AUV has certain decision-making

abilities due to which it does not need to resurface to report the data for actuation purposes. In this

project, we consider that resurfacing is required so that data can be transmitted to a remote node

for further action. Therefore, the question we ask is that what would be a resurfacing schedule that

would result in a higher amount of VoI accumulated.

The way we go about developing a path planning algorithm for this scenario is that we break

it down into two steps. First, we figure out a path using the strategies in the previous project

i.e. assuming no need to resurface we determine a path that hypothetically maximizes VoI. In the

second step, we plug this path with the required resurfacing locations assuming that the AUV needs

to resurface if VoI of information segments is to be stopped from further decaying.

For plugging the path with resurfacing locations we first determine the effect of the ratio of sensor
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node deployment depth to intermediate node distance. We have determined that if the ratio is too

large then it makes more sense to visit all nodes before resurfacing. In contrast, if the ratio is

too small then resurfacing and transmitting at every node is more appropriate. However, there is

a range somewhere between these two extremes where determining a resurfacing schedule will

result in a higher VoI return. We have developed algorithms that, based on this range, determine

the appropriate resurfacing strategy, and then compute the optimum resurfacing schedule.

We propose a periodic resurfacing heuristic. On the basis of this, we developed an algorithm that

gives us the best periodic resurfacing schedule. We also developed a genetic algorithm for finding

the optimal resurfacing schedule. The choice between these algorithms is a trade-off between time

complexity or a more optimal VoI aggregate.

1.1.2.3 Path Planning with Multiple AUVs

The goal for this project is to develop path planners that assign the sensor nodes to different AUVs

for data offloading. We designed three more heuristics in addition to the heuristics proposed in the

aforementioned project; thereby, giving us a repertoire of six heuristics. Path planners for multiple

AUVs will use a combination from among these six heuristics to perform the scheduling task.

The first heuristic that we propose is balancing the number of nodes to be distributed among the

AUVs. This will in effect help in balancing tour time, and hence, can be considered a time min-

imization metric. The second heuristic assigns sensor nodes to AUVs in a manner that balances

the VoI distribution; the next node with highest VoI at offer should be assigned to the AUVs in a

round-robin fashion. Such round-robin assignment by default fulfills the first heuristic of balancing

nodes. This heuristic is essentially an attempt to maximize VoI by reducing time to higher priority

nodes by assigning them into schedules as early as possible. The third heuristic is to partition the

map into as many equal spaces as the number of AUVs. This will further reduce travel time. This
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heuristic also inherently fulfills the first heuristic i.e. balancing the number of nodes.

Based on various combinations of these six heuristics we develop a couple of algorithms. We

establish the efficacy of these algorithms and heuristics through simulation and analysis. The two

defining strategies are VoI balancing versus map partitioning. We find out that algorithms with the

map partitioning heuristic perform the best.

1.2 Dissertation Sequence

In Chapter 2 we present a review of the literature that serves as the motivation for this dissertation.

In Chapter 3 we define the concept of VoI and Infotentials in the UWSN scenario. In this chapter,

we also formulate the problem statements that we will be dealing with in this dissertation. In

Chapter 4 we present an analysis of Infotentials with the help of which we determine what can be

useful heuristics for VoI based path planning algorithms. In Chapter 5 we propose heuristics and

algorithms for the single AUV path planning problem. Using simulations, we discuss the results

for the case of a single AUV which does not resurface. In Chapter 6 we describe heuristics and

algorithms and carry out an analysis for the scenario of a single AUV that requires occasional

resurfacing. While Chapter 5 and 6 deal with single AUVs, Chapter 7 deals with multiple AUVs.

In Chapter 7 we discuss heuristics and path planning algorithms and their respective performance

for the case of multiple AUVs in the non-resurfacing scenario. We conclude in Chapter 8.

8



CHAPTER 2: LITERATURE SURVEY

2.1 Relationship between QoS, QoI, VoI & Routing

The over-arching goal of this dissertation is to improve the QoI (quality of information) that can

be obtained from a UWSN. In terms of the performance objectives, QoI is to sensor networks

what QoS (quality of service) is to conventional computer and wireless networks [5, 6, 7]; al-

though, technically speaking, in terms of implementation, QoI is built upon a QoS layer in sensor

networks [8, 9, 10]. It is shown in [5, 7] that the construct of QoI is intrinsically related to VoI,

therefore, we use VoI for path planning purposes to improve QoI garnered from the system.

Design of good routing algorithms is one of the fundamental aspects that dictates QoS and QoI

in conventional networks [11], ad hoc and sensor networks [12, 13, 14, 10, 15] and networks

with mobile elements [16, 17, 18, 19, 20, 21]. Routing in networks is tailored to meet certain

application-level or operational objectives [22]. Wang et al. [23] introduces m-limited forwarding

algorithm to reduce the power consumption of the nodes and improve the routing performance

through forwarding packets to the limited set of nodes. Rahmatizadeh et al. [24, 25] proposed a

directional virtual coordinate routing towards a mobile sink using virtual coordinates in a wireless

sensor network.

With the advent of IoT [26] and Fog-computing [27] paradigms, there continues to remain a keen

interest in the development of routing algorithms to meet the new emergent objectives and con-

straints [28, 29, 30]. In this dissertation, we employ a mobile sink (AUV) as part of the routing

effort to deliver a better measure of VoI and hence QoI.
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2.2 Applications of IQ & VoI in Sensor Networks

Information quality (IQ) aware routing schemes make data routing decisions based on the threshold

of information required by application or mission objectives [31, 32, 1]. The data is fused en-route

to the sink node and routed on paths which can potentially satisfy the aggregated IQ threshold or

constraints. Data is kept fusing incrementally on each of the next forwarding node until it reaches

the IQ threshold. When the threshold is met, the information is sent to the main fusion center or

sink node.

We use VoI in an event driven context. An event-based information quality aware routing (IQAR)

has been proposed in [33]. The unique aspect about IQAR is its use of event-based data fusion

whereas the previous IQ aware routing algorithms would initiate from the fusion centers. In the

initial phase of the IQAR method, an aggregation tree is constructed that spans the whole network.

In the case of an event, the sensors in vicinity forward the data using the preexisting links as

established during the tree initialization. After data reaches the fusion center, the network uses

a greedy approach to prune the initial tree in order to maximize the information retrieved and to

minimize the energy consumption of the nodes on the data forwarding links.

One of the applications where IQ and VoI have been used in sensor networks is for tracking [32,

34]. In [34] a VoI based approach has been proposed for intruder tracking objectives. The sensor

network, based on predictive measures centered around VoI, makes data routing decisions in the

network for more efficient target tracking. The network is able to prioritize among high and low-

value targets. Tracking a higher value target should result in a higher amount of VoI accumulated.

In [35], the authors further proposed IVE which is an improved version of the VoI based intruder

tracking system. The network is able to control the demand of data packets while balancing trade-

offs between network energy consumption and required VoI.

10



Concepts of quality and utility have been frequently applied to a variety of scheduling activities in

sensor networks. There are some examples of scheduling algorithms and protocols [36, 37, 38, 39,

40, 41, 42, 43] which employ concepts of quality based on priority and utility metrics.

2.3 Using Mobile Sinks in Underwater Sensor Networks

Mobile sinks have been used as data mules in both sensor networks [4, 44, 45, 46] and underwater

sensor networks [3, 47, 48, 49, 50]. Mobile sinks in UWSNs have been used in the form of AUVs

[48, 49] as well as dolphins [51]. In [51] it has been proposed to use a DDD (delay-tolerant data

dolphin) to harvest the data from sensor nodes in the region of interest. The data collection event

can be triggered by both the DDD or the sensor node. The DDD uses a bi-directional acoustic

communication medium. As the movement of DDDs is random, therefore, there is a randomness

associated with the event data collection, and this inhibits optimal performance.

VoI based transmission scheduling of sensor nodes via acoustic links to the sink has been explored

in [52, 17, 16, 18]. VoI based path planning of an AUV to collect data from sensor nodes has also

been explored in [53, 54, 55, 56, 57, 58].

2.4 AUV Path Planning

Path planning is a diverse subject and there is a lot of literature on it specifically in the artificial

intelligence community [59, 60]. In terms of route discovery, a path planner is an algorithm that

provides a sequence of steps which give a valid route between two points on a map (usually rep-

resented by a graph or a grid). Among the sub-goals or constraints of path planning algorithms is

to find the most optimal route in terms of shortest distance, minimal time, optimal fuel expendi-

ture, and so on. They essentially convert a set of high-level goal specifications into a sequence of
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low-level instructions, thus breaking down the problem solution into simpler steps.

Depending upon the nature of the environment path planners can be static or dynamic based on how

the information is being updated. Path planners, therefore, can also be classified as pre-computing

algorithms or reactive algorithms [60]. If the path is planned before the mobile agent starts the

course then the algorithm is pre-computing. If the plan is updated during the course, in reaction to

changes in objectives, constraints or new obstacles, then the algorithm is deemed reactive. Maps

represented by graphs are usually solved by planners that are variants of Dijkstra’s Algorithm. One

of the well-known variants is A∗ path planning which uses admissible heuristics to accelerate the

path planning. The path planned in [56] can be seen as a two-tiered approach; the higher level

algorithms, such LPP or GPP, determine the sequence of node visitation on the map, while A∗

provides the detailed sequence of steps required to travel from a source to a destination node.

AUVs are autonomous devices and hence require path planning techniques to help them navigate

beneath seas and oceans. In terms of navigation, they have certain issues that hamper them more

as compared to dry-land autonomous agents, which include communication limitations, limited

sensing, and power issues. AUV path planning has been around for a while now. One of the earlier

path planning techniques used for AUVs is case-based reasoning [61]. One of the first efforts to use

A∗ for path planning for AUVs is in [62]. FM∗ in [63] gives a continuous path based on a discrete

representation of the environment and also takes water currents into account. The path planning

approach in [64] uses methods based on potential field strategies. This approach has been further

improved on in [65]. Genetic Algorithms [66, 67, 68] and evolutionary algorithms [69] have also

been employed for AUV path planning. Path planning for data mules has also been explored from

the perspective of sensor networks in [45, 46]. We have proposed path planning techniques for

AUVs in UWSNs [55, 56, 57, 58].
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CHAPTER 3: VALUE OF INFORMATION MODELING FOR

UNDERWATER SENSOR NETWORKS

3.1 Value of Information

Information is knowledge that helps in developing and updating a model for monitoring an interest.

It is based on this model that certain steps are taken to keep the situation in check. Value of

Information (VoI) is the valuation of an information segment relevant to and can be added to

this model.

Let us consider a marine environment that is being monitored by an underwater sensor network for

reporting any catastrophic event. An example could be an offshore oil-rig and pipeline system that

is under surveillance for events such as potential oil spills. The sensor nodes have video cameras

which record information that can be processed to ascertain aging, rust, accidental damage or oil

leaks. The higher the increase in the risk of an oil spill, as concluded from a model after adding

an information segment, proportional is the increase in valuation of the information segment that

leads to that conclusion.

From the perspective of multi-agent systems, VoI is the price a player would pay to acquire a piece

of information in a game theoretic setting. This description is consistent with the usage of the term

VoI by Howard in [70].

To have a more abstract view, let us consider a classic control theory scenario where, based on

feedback, an agent has a certain degree of observability and controllability over a system. The

actions taken are such that some measure of fiscal profit or loss is incurred. These profits or losses

are assessed from the current and future states of the system. The observations are part of the
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information based on which the future discourse of the steps is decided by the agent. Therefore,

information is a data report that can aid in building a more accurate model of a system such that

the newer model aids in alleviating for instance fiscal consequences.

3.2 VoI Temporality - Infotentials

Infotential is a term that we have coined for information potential. By potential, we imply the

potential of impact an event has on an asset, and therefore, the report of such an event can be

deemed to have a certain information potential. Infotentials are functions that encode the variability

of VoI. VoI of a report is subject to various factors such as the valuation of the asset being reported;

the impact of the event being reported on the asset; timeliness of the report; reliability, precision,

and accuracy of the report; and the fact that whether this report is a repetition or not. Asset

valuation dictates VoI but as there is a temporal dynamism to this valuation, therefore, VoI should

correlate with this variability across time. We quote two factors that result in asset valuation decay;

the first is that assets naturally depreciate with time; the other is that events of catastrophic nature

can result in a sharper decline in the valuation of an asset. As these fiscal attributes are decaying

in nature, therefore, VoI should be a monotonically decreasing function.

In the context of this dissertation, we define a function that encodes the temporal variability of VoI.

We consider this variability to be monotonically decreasing in time; we assume that at any point

in time the valuation of the asset does not increase due to any other factor. These functions can be

designed in a variety of different ways so as to fit the needs of an application scenario. We model

depreciation with a decaying exponential so as to maintain generality. Infotentials don’t necessar-

ily need to be in exponential form. In the physical world, however, most models and descriptions

of decay are exponential in nature. For example, both physical laws governing radio-active de-

cay and models of asset valuation depreciation in economics have exponential decay formulations.
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Therefore, we justify our use of decaying exponentials as a general model for infotentials. On the

other hand, functions such as descending staircases or any other complex combination of expo-

nentials can also be used. Ideally, the function should be constructed based on practical statistical

data or any realistic model that charts out the valuation accurately. Examples of various types of

infotentials are given in Figure 3.1.

υ1(t)
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υ2(t)

t
υ3(t)

t

υ4(t)

t
υ5(t) υ6(t)

Staircase Unit-Step

Ramp Ramp with Bias

Exponential Complex Exponential

t t

Figure 3.1: Examples of Infotentials
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As discussed earlier, these functions can be designed in a variety of different ways so as to suit

one’s narrative of an application scenario. We understand that these functions should generally

have two types of parameters that can control the shape of the monotonically decreasing curves.

These parameters respectively control the significance of the event (valuation of the information at

t = 0, i.e. when event is first observed) and decay of information valuation with time. Figure 3.1

shows different types of monotonically decreasing functions which we denote by υ(t). A stair-

case function can help in modelling valuations in discrete steps. A unit-step assumes no decay

in valuation; it is like assigning a packet to a certain priority class in networked systems that use

class based priority to meet QoS needs, where no packet is ever discarded due to absence of any

hard-real-time constraints. It is understood that, if an information valuation goes to zero then there

in no point in delivering that piece of information. Such a situation can be modeled using ramp

functions. This strategy is useful in situations with hard-real-time or soft-real-time-constraints.

But what if information still need to be delivered for historical records, although no further degen-

eration of an asset is taking place due to an event. In that case, it would be useful to add a bias

infotential as in the case of the ramp with bias function (unit-step added to ramp). We can also

have complex exponentials, which are a combination of multiple exponential functions, or whose

exponents are a combination of multiple parameters. One reason to use exponential is that they are

always approaching a limiting value, e.g. always approaching zero but not having the value zero

itself. This is a very effective way of encoding time precedence in various information segments

that have similar significance and decay rates but are never deemed to have zero valuation.

3.2.1 Infotentials - Exponential Models

In this study, we employ exponential functions of the form

υ(t) = Ae−B(t−τo) (3.1)
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Examples of the infotential υ(t) are shown in Figure 3.2. The parameters that control the function

are A and B and τo. The parameter τo is the time at which the event is reported. Parameters A and B

scale the VoI across the domain and range of the function. Parameter A represents the valuation of

information at t = τo while parameter B represents the decay in information valuation A for t > τo,

i.e. after the onset of the event being reported at τo. The two exponential functions in Figure 3.2

could be understood as representing two different classes of information in an application scenario.

The more the valuation of an asset is, the higher the number A would be. Likewise, higher the B

value is, greater is the rate of damage to an asset.

Let there be two events EH and EL with significance and damage rate {SH ,DH} and {SL,DL}

respectively. The subscript H corresponds to a high-priority event while the subscript L indicates

a low-priority event. We denote the corresponding VoI functions as,

υH(t) = AHe−BH(t−τoH)

υL(t) = ALe−BL(t−τoL) (3.2)

The relationship between significance and valuation, and between damage rate and decay, is given

as,

SH > SL =⇒ AH > AL

DH > DL =⇒ BH > BL (3.3)

These inequalities are general guidelines. The actual values of parameters Ax and Bx need to be

configured with the help of a system expert or should be based on statistical data.
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Figure 3.2: The figure is an example of exponentially decaying infotentials that we use for mod-
elling and analyzing high-priority and low-priority events.

3.3 UWSN Deployment Scenario and Infotential Application

Let us assume that the UWSN has been deployed to monitor disasters such as oil spills and leaks

from vessels or pipelines. Sensor nodes in the UWSN have the ability to detect and classify such

disasters. Therefore, we have two classes of information reported; one is normal routine data

while the other is data pertaining to disasters. Both classes of information are mapped to separate

infotentials. The information for high-priority events such as oil leaks is mapped to the function

υH(t) while normal routine information is classified as low-priority and is mapped to υL(t). The

UWSN considered in this dissertation is illustrated in Figure 3.3. We assume a UWSN with n

sensor nodes

S = {s1,s2, . . . ,s j, . . . ,sn} (3.4)
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These nodes are equipped with sensors that collect high-quality video data which makes their trans-

mission over acoustic channels unfeasible. An AUV is deployed to gather data from these sensor

nodes. The sensor nodes have acoustic communication modules for long distance communication

such as transmitting signaling and configuration messages while optical communication modules

are used for short distance transmissions such as offloading the data from the sensor nodes to the

AUVs. The sensor nodes have the ability to classify data into q different information classes

C = {c1,c2, . . . ,cp, . . . ,cq} (3.5)

Each information class is characterized by a unique infotential. The VoI functions that we use, as

discussed earlier, are of the form

υ(t) = Ae−B(t−τo) (3.6)

In this dissertation, we assume a binary class model for the information i.e. high-priority ver-

sus low-priority. The infotentials for the high-priority and low-priority information classes are as

follows respectively

υ
report
H (t) = AHe−BH(t−τoH)

υ
report
L (t) = ALe−BL(t−τoL) (3.7)
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Figure 3.3: An example of a UWSN which uses AUVs to offload data from sensor nodes.
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The sensor nodes process and save the data in the form of data reports. After time t the jth sensor

node has d data reports

Di = {d j1,d j2, . . . ,d jk, . . . ,d jd} (3.8)

Data reports are mapped to specific information classes such that the mapping is surjective. This

means that a classification function αdata (a computational procedure in the sensor node) may

assign more than one data report to the same information class

α
data : D→C (3.9)

In terms of the jth sensor node and kth data report, the infotentials are denoted with subscripts as

υ
r
jk(t) = A jke−B jk(t−τ jk) (3.10)

The information class identity is stored in a tag associated with each data report. This tag contains

the necessary information required to reconstruct the infotential at the remote user’s end. The tag

in our case is completely characterized by constants A, B and time stamp τo where τo is the time

at which the data report was recorded by the sensor node. A tag is 3-tuple entity. The tag for the

kth data report at the jth sensor node is

λ jk = (A jk,B jk,τo jk) (3.11)

Because the data reports are large in size, it is not possible to transmit them over the acoustic

channel as stated earlier. The acoustic channel will be used for broadcasting the λ jk tags residing

at a sensor node. The tags will be transmitted to a sink node. On the other hand, the optical

channel will be used for transmitting the actual data reports to the AUV during its tour. The packets
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transmitted over the acoustic communication channel by the jth sensor node are composed of the

payload λ jk (the VoI tag) and δ jk (protocol, header information etc.). These packets are intended

for delivery to a remote agent (sink node) and on the basis of this data, i.e. λ jk, the sink node will

plan a schedule of node visitation for the AUV. The packets transmitted on this channel are

Γ
Acoustic
j = {(λ jk,δ jk)1, . . . ,(λ jk,δ jk)x} (3.12)

The packets transmitted over the optical communication channel by the ith sensor node are com-

posed of the d jk (the data report), λ jk (the VoI tag) and δ jk (protocol, header information etc.).

These packets have the actual recorded data of the events. The data is offloaded from the sensor

nodes onto the AUV through this optical channel. The packets transmitted on this channel are

Γ
Optical
j = {(d jk,λ jk,δ jk)1, . . . ,(d jk,λ jk,δ jk)y} (3.13)

As soon as the data is received and processed at the remote user’s end, another time stamp τ f jk is

assigned to the data report which helps in determining it’s current VoI from the infotential. This

substitution yields

υ
r
jk = A jke−B jk(τ f jk−τo jk ) (3.14)

3.3.1 Using Multiple AUVs

The aforementioned formulation is for modeling a scenario which assumes there to be a single

AUV. For the case where there are multiple AUVs, the sensor nodes in S are visited by AUVs in A
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which are

A = {a1,a2, . . . ,ai, . . . ,aa} (3.15)

The sensor nodes are distributed into a subsets and each of these subsets will subsequently be

assigned to an AUV in A

(
SAll = {S1,S2, . . . ,Si, . . . ,Sa}

)
∧
(
Si|Si ⊆ S

)
(3.16)

In this dissertation, in the chapter that addresses multiple AUVs, we divide the nodes into disjoint

subsets such that there is no sensor node that has not been assigned to a subset, and hence, every

node is uniquely assigned to an AUV such that

Si ∈ SAll
∣∣( a⋃

i=1

Si = S
)
∧
((

Sx∩Sy = φ
)
∀
(
(x 6= y)∧ (x,y ∈ {1,2, . . . ,a})

))
(3.17)

A node distribution function/algorithm β assigns each subset of nodes to an AUV in A in a bijective

manner, i.e. it is a one-to-one correspondence

β : SAll → A (3.18)

In terms of the jth sensor node and kth data report, the infotentials are denoted with subscripts as

υ
r
jk(t) = A jke−B jk(t−τo jk ) (3.19)
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3.3.2 Resurfacing Locations

From an information fusion perspective, either the AUV has the ability to gather reports and fuse

them so as to make an informed decision for an actuation response, or, it might need to resurface

frequently so as to transmit to a remote sink node which would perform the information fusion

and actuation response initiation activity. If the latter is the case, then we have the following g

resurfacing locations

R = {r1,r2, . . . ,rh, . . . ,rg} (3.20)

It is on these resurfacing locations that the AUV will tranmsit data to the remote sink node.

3.3.3 An Alternate Scenario - Node Valuation instead Data Report Valuation

In the aforementioned model, the valuation is tied to data reports. A valuation can also be assigned

to sensor nodes instead of data reports. In such a case it would the nodes that would be deemed

as high-priority or low-priority. A mapping function αnode will assign the sensor nodes to the

information classes.

α
node : S→C (3.21)

The high-priority and low-priority infotentials to describe the nodes are

υ
sensor
H (t) = AHe−BH(t−τoH)

υ
sensor
L (t) = ALe−BL(t−τoL) (3.22)
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In terms of the jth sensor node, the infotential is described as

υ
s
j(t) = A je

−B j(t−τo j ) (3.23)

3.4 Constructing VoI Model and Path Planning Problem

The goal is to extract the maximum amount of VoI and to minimize system and asset losses. To

maximize the VoI collected, the path planners will need to determine a route that is efficient in

terms of accumulating VoI from the system. In this section, we first define the VoI aggregation

and maximization relations. Then we describe the role of final time stamp τ f in the resurfacing

versus non-resurfacing scenario. Then we give the path planning problem statements for the cases

of single AUV, single AUV with resurfacing, and Multiple AUVs scenarios. Finally, we describe

measures of VoI accumulated and VoI Lost and their role in determining path planning efficacy.

3.4.1 VoI maximization

Here we give the VoI accumulation and maximization relations. The two basic scenarios that we

cover are the data report valuation and the node valuation. In this dissertation, we use the data

report valuation model in the simulation but all the discussion and algorithms in this dissertation,

without much modification, can be directly applied to the node valuation model.
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3.4.1.1 Data Report Valuation

The VoI for the kth data report at the jth node is given as

υ
r
jk = A jke−B jk(τ f jk−τo jk ) (3.24)

Single AUV:

The VoI collected from the jth sensor node is the combined VoI of all data reports residing on the

sensor node and is given as

ϒ j =
d

∑
k=1

υ
r
jk =

d

∑
k=1

A jke−B jk(τ f j−τo jk ) (3.25)

Here τ f j is the time at which the AUV visits the jth sensor node. The total VoI accumulated from

the UWSN by the AUV after it has visited all the sensor nodes based on a planned tour can be

calculated as

ϒAcc =
n

∑
j=1

ϒ j.vvisit
j =

n

∑
j=1

d

∑
k=1

υ
r
jk.v

visit
j

=⇒ ϒAcc =
n

∑
j=1

d

∑
k=1

A jke−B jk(τ f j−τo jk ).vvisit
j (3.26)

where,

vvisit
j =


1 if jth node visited by AUV

0 otherwise

26



Therefore, maximizing VoI in the case of single AUV is defined as

ϒ
Single
Maximize→max

n

∑
j=1

d

∑
k=1

A jke−B jk(τ f j−τo jk ).vvisit
j (3.27)

Multiple AUVs:

The VoI collected from the jth sensor node by the ith AUV is the combined VoI of all data reports

residing on the sensor node and is given as

ϒi j =
d

∑
k=1

υ
r
i jk =

d

∑
k=1

A jke−B jk(τ fi j−τo jk ) (3.28)

Here τ fi j is the time at which the ith AUV visits the jth sensor node. The VoI collected by the ith

AUV is

ϒi =
n

∑
j=1

ϒi j.vvisit
i j =

n

∑
j=1

d

∑
k=1

υ
r
i jk.v

visit
i j (3.29)

where,

vvisit
i j =


1 if jth node visited by ith AUV

0 otherwise

The total VoI accumulated from the UWSN by all the the AUVs after they have visited all the

sensor nodes based on a planned tour can be calculated as

ϒAcc =
a

∑
i=1

ϒi =
a

∑
i=1

n

∑
j=1

ϒi j.vvisit
i j

=⇒ ϒAcc =
a

∑
i=1

n

∑
j=1

d

∑
k=1

υ
r
i jk.v

visit
i j
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=⇒ ϒAcc =
a

∑
i=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fi j−τo jk ).vvisit
i j (3.30)

Therefore, maximizing VoI in the case of multiple AUVs is defined as

ϒ
Multiple
Maximize→max

a

∑
i=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fi j−τo jk ).vvisit
i j (3.31)

Single AUV with Resurfacing:

The VoI collected by the AUV from the jth sensor node and then transmitted to the sink node by

the AUV at the hth resurfacing location is given as

ϒh j =
d

∑
k=1

υ
r
h jk =

d

∑
k=1

A jke−B jk(τ fh−τo jk ) (3.32)

Note the change in subscript from τ f j to τ fh . The time-stamp τ fh is the instant at which the AUV

resurfaces at the hth resurfacing location to transmit the data. The VoI delivered at the hth resurfac-

ing location is determined as

ϒh =
n

∑
j=1

ϒh j.vvisit
j =

n

∑
j=1

d

∑
k=1

υ
r
h jk (3.33)

where,

vvisit
j =


1 if jth node visited by AUV

0 otherwise
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The total VoI accumulated from the UWSN by the AUV, after it has visited all the sensor nodes

and resurfaced on certain locations based on a planned tour, can be calculated as

ϒAcc =
g

∑
h=1

ϒh.lvisit
h j =

g

∑
h=1

n

∑
j=1

ϒh j.vvisit
j .lvisit

h j

=⇒ ϒAcc =
g

∑
h=1

n

∑
j=1

d

∑
k=1

υ
r
h jk.v

visit
j .lvisit

h j

=⇒ ϒAcc =
g

∑
h=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fh−τo jk ).vvisit
j .lvisit

h j (3.34)

where,

lvisit
h j =


1 if data for jth node is transmitted at hth resurfacing location

0 otherwise

Therefore, maximizing VoI in the case of single AUV that resurfaces for transmitting data is de-

fined as

ϒ
Resur f ace
Maximize →max

g

∑
h=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fh−τo jk ).vvisit
j .lvisit

h j (3.35)

3.4.1.2 Node Valuation

VoI in terms of node valuation for the jth node is given as

υ
s
j = A je

−B j(τ f j−τo j ) (3.36)
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Single AUV:

For the scenario where valuation is made on sensor nodes instead of data reports, the VoI accumu-

lation and VoI maximization definitions for a single AUV are

ϒAcc =
n

∑
j=1

υ
s
j .v

visit
j

ϒ
Single
Maximize→max

n

∑
j=1

υ
s
j .v

visit
j (3.37)

Multiple AUVs:

For multiple AUVs it translates into

ϒAcc =
a

∑
i=1

n

∑
j=1

υ
s
i j.v

visit
i j

ϒ
Multiple
Maximize→

a

∑
i=1

n

∑
j=1

υ
s
i j.v

visit
i j (3.38)

Single AUV with Resurfacing:

For a single AUV that resurfaces the definitions are

ϒAcc =
g

∑
h=1

n

∑
j=1

υ
s
h j.v

visit
j .lvisit

h j

ϒ
Resur f ace
Maximize →

g

∑
h=1

n

∑
j=1

υ
s
h j.v

visit
j .lvisit

h j (3.39)
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3.4.2 Role of τ f in Infotentials

The VoI for the kth data report evaluated at the sink node, which can either be a remote sink node

or the AUV itself, is given as

υ
r
k = Ake−Bk(τ fk−τok ) (3.40)

The time-stamp τ f determines the VoI extracted from an information segment based on it’s info-

tential. Therefore, VoI of a data report varies according to the time instant at which the information

is gathered by an end-processing agent. In the given UWSN scenario, we have two different final

time-stamp τ f definitions. The definitions are based on who the end-processing agent is; the one

who is responsible for triggering an actuation response after processing the data. If the AUV is

equipped with the ability to process the data such that it can initiate an actuation response then τ f

is the time at which the AUV collects the data from the respective sensor node. But if the end-

processing agent is above the sea surface, then τ f is determined when the information is received

by the end-processing agent (for which the AUV will have to resurface). The time stamp τ f defi-

nition can crucially impact the design of AUV path planning algorithms for VoI maximization. In

this dissertation, we assume the AUV to be the end-processing agent which implies that τ f will be

determined by instant at which the information segment was offloaded from the sensor node on to

the AUV.

3.4.3 The Path Planning Problem

The problem definition for AUV path planning is to devise an algorithm that attempts to maximize

VoI accumulated from the UWSN. More formally, given sensor nodes S and VoI profile ϒAcc(t) of

data reports D; what is the sequence of node visitation PS in S that will result in the accumulation
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of VoI ϒ
AlgPP

Acc

[
ϒ

AlgPP

Acc ← PS
]
← AlgPP[S,D,ϒAcc(t)

]
(3.41)

For multiple AUVs it translates into P(S,A) which is a mapping of nodes in S to AUVs in A i.e.

which nodes s j in S and in what sequence should mapped to an AUV ai in A

[
ϒ

AlgPP

Acc ← P(S,A)
]
← AlgPP[A,S,D,ϒAcc(t)

]
(3.42)

For a single AUV that need to resurface, as described earlier, we introduce the set of resurfacing

location R to the problem statement. The visitation schedule then becomes a sequence of nodes

and resurfacing locations intertwined with other. The problem statement for this case is

[
ϒ

AlgPP

Acc ← PS+R
]
← AlgPP[S,R,D,ϒAcc(t)

]
(3.43)

where,

ϒ
AlgPP

Acc is the VoI accumulated from the sensor nodes S by employing the traversal sequence PS,

P(S,A) is the set of all node visitation sequences for various AUVs determined by AlgPP in 3.42,

PS is the node visitation sequence determined by AlgPP in 3.41,

PS+R is the node visitation sequence intertwined with the resurfacing locations in AlgPP in 3.43,

AlgPP is a path planning algorithm that generates path PS or P(S,A) such that ϒ
AlgPP

Acc is accumulated,

A is the set of all AUVs,

S is the set of all sensor nodes,

R is the set of all resurfacing locations,

D is the set of all data reports,

ϒAcc(t) is the function total VoI accumulated.
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ϒMax

ϒL

τTour

τStart τFinish

ϒAcc

ϒAva

ϒAcc(t)

t

Figure 3.4: The figure shows various parameters and measures that we use for comparative analysis
of path planning algorithms.

3.4.4 Path Planning Performance - VoI Accumulated versus VoI Lost

To determine the effect of a path planner on VoI we need to use a measure of VoI. The basic

measures of performance that we use are VoI accumulated ’ϒAcc’ and VoI lost ’ϒL’. To discuss

what these measures are we refer to Figure 3.4. ϒAcc(t) is the decaying VoI profile in the system

and is represented in abstract terms by a straight line. It is a general statement on the depreciation of

the valuation, whereas, in an actual situation the dynamics of this depreciation i.e. the actual shape

of the curve, will be governed by system variables and type of information recorded. This chart

assumes that no measurements are recorded after t = 0, hence, the chart only shows a monotonic

decay in the valuation after t = 0. τstart and τ f inish are the start and end times for the complete

AUV tour. In our case, a tour is a visitation sequence that is a permutation on the set of all sensor

nodes i.e. the tour is a ’simple path’ on a graph that has the sensor nodes as vertices. ϒAva is the

VoI available in the system at the start of the tour while the ϒAcc is the VoI accumulated by the
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AUV by the end of its tour. ϒL, for example in the case of multiple AUVs, can be determined as

ϒL = ϒAva−ϒAcc (3.44)

ϒL =
a

∑
i=1

n

∑
j=1

d

∑
k=1

[
A jke−B jk(τStart−τo jk )−A jke−B jk(τ fi j−τo jk )

]
(3.45)

The loss in ϒAcc is a result of a combination of factors that can be attributed to physical system

limitations such as the AUV speed, delay in starting time of the tour τStart , and inefficiencies

resulting from the planned path. It is the path planning part of this problem that we want to explore

in this dissertation. To filter out effects of a delay in τStart we use ϒL as it is a measure of loss

between the range t = [τStart : τFinish]. Any loss other than ϒL is not a result of path planning

inefficiencies. ϒL gives a more clear picture in terms of comparative performance of various path

planning techniques as compared to ϒAcc.
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CHAPTER 4: PATH PLANNING HEURISTICS

In this dissertation, path planning algorithms will be responsible for both allocating the sensor

nodes in the UWSN to AUVs. Not only will they determine which AUV visits which sensor node,

but they will also schedule the sequence in which these nodes will be visited. In this chapter, we

propose path planning heuristics on the basis of which we design the path planning algorithms

for the AUVs. The algorithms are formulated around one or more of the following heuristics:

next node visit based on maximum VoI, HMaxVoI; minimize tour time, HShPath; visit intermediate

nodes, HIntVisit ; balance node distribution, HNodeBal; balance VoI distribution, HVoIBal; & partition

the map, HMapPart . Heuristics HNodeBal , HVoIBal & HMapPart specifically address the scheduling of

multiple AUVs while heuristics HMaxVoI , HShPath & HIntVisit are more generic and foundational in

nature as they are part of the single and the multiple AUV path planning algorithms.

4.1 Path Planning with Infotentials

In this section, we propose various scenarios to understand the ramifications of the exponential

infotential model in relation to a planned path for VoI collection. We use the same infotential

model as in Equation 3.1

υ(t) = Ae−B(t−τo)

Of the two aspects that we want to study, one is a comparative magnitude and decay-rate of infoten-

tials, and the other is time. To study comparative magnitude and decay-rates, we use coefficients

{A,B} in the exponential infotential. To figure out the role of time we use t in the infotential. The

analysis for valuation and decay coefficients {A,B} is given in Section 4.1.1 and analysis for the
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role of time t in accumulating VoI is given in Sections 4.1.2 & 4.1.3.

4.1.1 Effect of Valuation and Decay Coefficients

Coefficients {A,B} control the shape of the infotential. The goal is to study their effect on VoI

collected through certain paths given that the paths are similar in construction in terms of inter-

node distance. This will help us in isolating the role of time in terms of distance traveled in this

study. Consider the scenario shown in Figure 4.1.1 (a) on the left-hand side. Let the VoI for sensor

node x be υx(t) and the VoI for sensor node y be υy(t)

υx(t) = Axe−Bx(t−τox)

υy(t) = Aye−By(t−τoy) (4.1)

The VoI that can be accumulated from these nodes is calculated as

ϒxy(tx, ty) = υx(tx)+υy(ty)

=⇒ ϒxy(tx, ty) = Axe−Bx(tx−τox)+Aye−By(ty−τoy) (4.2)

The mobile sink can traverse the nodes in two different ways. One is from node x to y and we

denote the path as m→ x→ y and the corresponding VoI gained from this path as

ϒ
m→x→y
xy = υx(tx = τmx)+υy(ty = τmx + τxy) (4.3)

36



The other path is one in which the mobile sink first visits node y and afterwards node x. This path

is denoted in the superscript as m→ y→ x. The VoI accumulated in this case is

ϒ
m→y→x
xy = υy(ty = τmy)+υx(tx = τmy + τyx) (4.4)

dxy y

m

Mobile SinkSensor Node

z

dmy

d
m

x

y

x

m

Traversal 1 Traversal 2

x

Figure 4.1: Traversals are the routes that the mobile sink m will use to navigate through the map to
collect data from the sensor nodes x, y & z.
(a) The configuration on the left side will be used to study valuation and decay coefficients.
(b) The configuration on the right side will be used to understand the effect of tour time.

The values τmx, τmy, τxy & τyx give the time that is required to traverse between the positions as

marked in the subscripts. For example, τmx corresponds to the time taken to travel from the current

opposition of the mobile sink m to the sensor node x as shown in Figure 4.1.1 (a). Similarly, τxy

and τyx give inter-node travel time required by the mobile sink to move from node x to y.

In terms of the valuation coefficients and decay coefficients {(Ax,Bx),(Ay,By)} we will discuss

four different equality/inequality scenarios. These scenarios have been developed to show the
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effect of {(Ax,Bx),(Ay,By)} on the path planning sequences m→ x→ y and m→ y→ x. Therefore,

we keep the travelling distances equal, and this gives τmx = τmy, τxy = τyx and τox = τoy = 0 in

these scenarios.

4.1.1.1 Scenario I-a:

Let us assume the following scenario in which the infotentials are exactly the same in their con-

struction

Ax = Ay = A

Bx = By = B

τmx = τmy = τ1 > 0

τxy = τyx = τ2 > 0

τox = τoy = 0 (4.5)

Under these conditions the VoI accumulated by vising the nodes in any order should be the same

ϒ
m→x→y
xy = ϒ

m→y→x
xy (4.6)

We can verify by plugging in the values

ϒ
m→x→y
xy = ϒ

m→y→x
xy

=⇒ υx(t = τmx)+υy(t = τmx + τxy) = υy(t = τmy)+υx(t = τmy + τyx)

=⇒ Ae−B(τmx)+Ae−B(τmx+τxy) = Ae−B(τmy)+Ae−B(τmy+τyx)

=⇒ Ae−B(τ1)+Ae−B(τ1+τ2) = Ae−B(τ1)+Ae−B(τ1+τ2) (4.7)
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Hence, if the infotentials are identical, then their is no priority in choosing which node to visit first

in the given setting.

4.1.1.2 Scenario I-b:

Here we assess the effect of difference in valuation co-efficient i.e. Ax > Ay. Let the constraints be

the following in this case

Ax > Ay

Bx = By = B

τmx = τmy = τ1 > 0

τxy = τyx = τ2 > 0

τox = τoy = 0 (4.8)

Under these constraints we hypothesize that visiting node x before node y will result in a higher

VoI accumulated. The following hold the following inequality to be true

ϒ
m→x→y
xy > ϒ

m→y→x
xy (4.9)

We can verify this by substituting values to solve this inequality

ϒ
m→x→y
xy > ϒ

m→y→x
xy

=⇒ υx(tx = τmx)+υy(ty = τmx + τxy)> υy(ty = τmy)+υx(tx = τmy + τyx)

=⇒ Axe−B(τmx)+Aye−B(τmx+τxy) > Aye−B(τmy)+Axe−B(τmy+τyx)

=⇒ Axe−B(τ1)+Aye−B(τ1+τ2) > Aye−B(τ1)+Axe−B(τ1+τ2)
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=⇒ Ax(e−B(τ1)− e−B(τ1+τ2))> Ay(e−B(τ1)− e−B(τ1+τ2))

=⇒ Ax > Ay (4.10)

Therefore, the inequality holds true. This result can also be easily mapped to the scenario where

Ay > Ax, thereby implying that node y should be visited first to accumulate higher VoI.

4.1.1.3 Scenario I-c:

Here we assess the effect of difference in decay co-efficient i.e. Bx > By. Let the constraints be the

following in this case

Ax = Ay = A

Bx > By

τmx = τmy = τ1 > 0

τxy = τyx = τ2 > 0

τox = τoy = 0 (4.11)

Under these constraints we hypothesize that visiting node x before node y will result in a higher

VoI accumulated. The following hold the following inequality to be true,

ϒ
m→x→y
xy > ϒ

m→y→x
xy (4.12)

We verify this by solving this inequality

ϒ
m→x→y
xy > ϒ

m→y→x
xy

=⇒ υx(tx = τmx)+υy(ty = τmx + τxy)> υy(ty = τmy)+υx(tx = τmy + τyx)
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=⇒ Ae−Bx(τmx)+Ae−By(τmx+τxy) > Ae−By(τmy)+Ae−Bx(τmy+τyx)

=⇒ e−Bx(τ1)+ e−By(τ1+τ2) > e−By(τ1)+ e−Bx(τ1+τ2)

=⇒ e−Bx(τ1)− e−By(τ1) > e−Bx(τ1+τ2)− e−By(τ1+τ2) (4.13)

Because τ1 < (τ1 + τ2) , therefore, we can conclude that the inequality holds true. Another way to

understand is through the following rearrangement of terms

e−Bx(τ1)− e−Bx(τ1+τ2) > e−By(τ1)− e−By(τ1+τ2)

∆x(τ1,τ2)> ∆y(τ1,τ2) (4.14)

Because Bx > By, hence, it contributes contributes to a faster decaying exponential which leads to a

larger ∆(τ1,τ2). The inequality, therefore, holds true and validates the hypothesis in this scenario.

4.1.1.4 Scenario I-d:

Here we assess the effect of both the valuation and decay co-efficient i.e. Ax > Ay and Bx > By.

Let the constraints be the following in this case

Ax > Ay

Bx > By

τmx = τmy = τ1 > 0

τxy = τyx = τ2 > 0

τox = τoy = 0 (4.15)
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These constraints lead to us hypothesize that node y should be visited after node x has been visited.

ϒ
m→x→y
xy > ϒ

m→y→x
xy (4.16)

Verifying the inequality yields

ϒ
m→x→y
xy > ϒ

m→y→x
xy

=⇒ υx(tx = τmx)+υy(ty = τmx + τxy)> υy(ty = τmy)+υx(tx = τmy + τyx)

=⇒ Axe−Bx(τmx)+Aye−By(τmx+τxy) > Aye−By(τmy)+Axe−Bx(τmy+τyx)

=⇒ Axe−Bx(τmx)−Axe−Bx(τmy+τyx) > Aye−By(τmx+τxy)−Aye−By(τmy)

=⇒ Ax(e−Bx(τ1)− e−Bx(τ1+τ2))> Ay(e−By(τ1)− e−By(τ1+τ2))

=⇒ Ax∆x(τ1,τ2)> Ay∆y(τ1,τ2) (4.17)

As inequality 4.10 and inequality 4.13 hold true, therefore, inequality 4.17 automatically holds

true. We can show this by multiplying both sides of the inequalities with each other respectively

to yield inequality 4.17.

Up till now, in all the aforementioned scenarios, the path that gives the higher VoI can be as-

certained by just evaluating the relationship between the valuation and decay coefficients, i.e.

{(Ax,Bx),(Ay,By)}, but the forthcoming scenario is slightly different in this regard.

4.1.1.5 Scenario I-e:

Here we again assess the effect of both the valuation and decay co-efficient but in a way that one

of the inequalities is reversed e.g. Ax > Ay and Bx < By. Let the constraints be the following in
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this case

Ax > Ay

Bx < By

τmx = τmy = τ1 > 0

τxy = τyx = τ2 > 0

τox = τoy = 0 (4.18)

Under such constraints there is no conclusive hypothesis that which path is better. The reason is

that infotential curves for ϒ
m→x→y
xy and ϒ

m→y→x
xy should intersect each other at a certain time τc. The

point τc depends upon the coefficients {(Ax,Bx),(Ay,By)}. Still, the following can be ascertained

with guarantee

τ1 ≥ τc =⇒ ϒ
m→x→y
xy < ϒ

m→y→x
xy

τ1 + τ2 ≤ τc =⇒ ϒ
m→x→y
xy > ϒ

m→y→x
xy (4.19)

But for τ1 < τc < τ1+τ2 we cannot determine the better path by just looking at the inter-coefficient

{(Ax,Bx),(Ay,By)} relationships. Instead, we will have to plug in the actual values of τ1 and τ2 to

figure out which node would be better to visit first for accumulating higher VoI.

These are pretty basic scenarios that shed light on the behavior of infotentials in regards to path

planning and VoI collected. This gives us the ability to derive intuitive heuristics for VoI based

path planning. For example, we can say that creating a VoI-aware path planner, e.g. one that

greedily chooses which node to visit based on the time-based VoI offer at the sensor nodes, should

yield a higher amount of VoI as compared to a path planner that is not aware of the time-based VoI

being offered.

43



4.1.2 Effect of Tour Time

To study time we will use identical infotentials but will vary the inter-node distance. In this way,

we will be able to see the effect of time in terms of distance traveled on VoI collected. Consider

the scenario shown in Figure 4.1.1 (b). Let the VoI for sensor node x be υx(t), the VoI for sensor

node y be υy(t) and the VoI for sensor node z be υz(t)

υx(t) = Axe−Bx(t−τox)

υy(t) = Aye−By(t−τoy)

υz(t) = Aze−Bz(t−τoz) (4.20)

The VoI that can be accumulated from these nodes is calculated as

ϒxyz(tx, ty, tz) = υx(tx)+υy(ty)+υz(tz)

=⇒ ϒxyz(tx, ty, tz) = Axe−Bx(tx−τox)+Aye−By(ty−τoy)+Aze−Bz(tz−τoz) (4.21)

Let us consider only two ways in which the mobile sink can traverse the nodes. The first path is

denoted as m→ x→ y→ z from which the VoI accumulated is

ϒ
m→x→y→z
xyz = υx(tx = τmx)+υy(ty = τmx + τxy)+υz(tz = τmx + τxy + τyz) (4.22)

The other path is denoted in the superscript as m→ x→ z→ y and the VoI accumulated from

traversing this path is

ϒ
m→x→z→y
xyz = υx(tx = τmx)+υz(tz = τmx + τxz)+υy(ty = τmx + τxz + τzy) (4.23)
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In this scenario we wish to study the effect of tour time, therefore, we set τxy, τyz, τzy and τxz in

such a way that one tour is shorter than the other.

4.1.2.1 Scenario II:

Let us have the following set of constraints where the valuation and decay coefficients are same

while τxy > τxz = τyz

Ax = Ay = Az = A

Bx = By = Bz = B,

τmx = τxz = τzy = τyz = τ1 > 0

τxy = τ2 > τ1 > 0

τox = τoy = τoz = 0 (4.24)

m→ x→ z→ y is shorter in terms of distance as compared to m→ x→ y→ z. We hypothesize

that the shorter tour m→ x→ z→ y should yield more VoI than the tour m→ x→ y→ z

ϒ
m→x→z→y
xyz > ϒ

m→x→y→z
xyz (4.25)

We verify by substitution

ϒ
m→x→z→y
xyz > ϒ

m→x→y→z
xyz

=⇒ υx(tx = τ1)+υz(tz = 2τ1)+υy(ty = 3τ1)> υx(tx = τ1)+υy(ty = τ1 + τ2)+υz(tz = 2τ1 + τ2)

=⇒ Ae−B(τ1)+Ae−B(2τ1)+Ae−B(3τ1) > Ae−B(τ1)+Ae−B(τ1+τ2)+Ae−B(2τ1+τ2)

=⇒ e−B(2τ1) > e−B(τ1+τ2) (4.26)
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As τ2 > τ1, therefore, the inequality 4.26 holds true. This observation implies that if the infotentials

are identical, then a path planning algorithms based on a shortest distance or minimal time heuristic

would give the highest amount of VoI collected. Note that although the heuristic is not explicitly

aware of the VoI on the sensor nodes, yet it should perform well because of its influence on time,

which is a variable in the infotential.

4.1.3 Navigating Tours

The goal is to show that there can be smart choices one can take will developing path planning

algorithms. The analysis in this section is similar to the minimal time analysis in Section 4.1.2,

but it slightly differs in the aspect that we will not use identical infotentials. This will help us in

developing an intermediate node visitation heuristic based on in which we can develop algorithms

that are primarily VoI greedy (Section 4.1.1), but can still make an attempt to minimize tour time

(Section 4.1.2), thereby, improving VoI collected.

Consider the scenario in shown in Figure 4.2. The source and destination in this case are s2 and

s23 respectively. We denote the nodes s2,s9,s16,s23 by w,x,y,z respectively. Similarly, let the VoI

for sensor nodes s2,s9,s16,s23 be υw(t),υx(t),υy(t),υz(t) respectively

υw(t) = Awe−Bw(t−τow)

υx(t) = Axe−Bx(t−τox)

υy(t) = Aye−By(t−τoy)

υz(t) = Aze−Bz(t−τoz) (4.27)
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The VoI that can be accumulated from these nodes is calculated as

ϒwxyz(tw, tx, ty, tz) = υw(tw)+υx(tx)+υy(ty)+υz(tz)

=⇒ ϒwxyz(tw, tx, ty, tz) = Awe−Bw(tw−τow)+Axe−Bx(tx−τox)+Aye−By(ty−τoy)+Aze−Bz(tz−τoz) (4.28)

The inter-node distance among all the diagonal nodes is τd . Let us consider three ways in which

the mobile sink can traverse the nodes. The paths are denoted as m→ w→ x→ y→ z, m→ w→

z→ y→ x and m→ w→ z→ x→ y. The VoI accumulated from these paths is determined as

ϒ
m→w→x→y→z
wxyz = υw(tw = τd)+υx(tx = 2τd)+υy(ty = 3τd)+υz(tz = 4τd)

ϒ
m→w→z→y→x
wxyz = υw(tw = τd)+υz(tz = 4τd)+υy(ty = 5τd)+υx(tx = 6τd)

ϒ
m→w→z→x→y
wxyz = υw(tw = τd)+υz(tz = 4τd)+υx(tx = 6τd)+υy(ty = 7τd) (4.29)

s4

s10

s22 s24

s3

s20s19

s13

s2s1 s5

s21 s23

s18

s7 s8 s9

s14 s15

s11

s17

s12

s6

s16

Figure 4.2: Alternate source to destination routes with approximately equal lengths.
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4.1.3.1 Scenario III:

Let us have the following set of constraints where τmw = τwx = τxy = τyz = τzy = τyx

τmw = τwx = τxy = τyz = τzy = τyx = τd > 0

τow = τox = τoy = τoz = 0 (4.30)

We hypothesize that

ϒ
m→w→x→y→z
wxyz > ϒ

m→w→z→y→x
wxyz > ϒ

m→w→z→x→y
wxyz (4.31)

We separately verify two segments of inequality 4.31 by substitution

ϒ
m→w→x→y→z
wxyz > ϒ

m→w→z→y→x
wxyz

=⇒ υx(tx = 2τd)+υy(ty = 3τd)> υy(ty = 5τd)+υx(tx = 6τd)

=⇒ Axe−2Bxτd +Aye−3Byτd > Axe−6Bxτd +Aye−5Byτd (4.32)

ϒ
m→w→z→y→x
wxyz > ϒ

m→w→z→x→y
wxyz

=⇒ υx(tx = 5τd)> υx(tx = 7τd)

=⇒ Axe−5Bxτd > Axe−7Bxτd (4.33)

As Axe−2Bxτd > Axe−6Bxτd and Aye−3Byτd > Aye−5Byτd , hence, the inequality 4.32 holds true. In-

equality 4.32 also holds true.

Just as in the Section 4.1.2, this is a tour time and distance traveled analysis from which we can

again infer that developing time minimization heuristics could aid in improving the amount of VoI

collected.
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4.1.3.2 Selection of Intermediate Nodes

The source and destination nodes in the aforementioned scenario were s2 and s23 as shown in

Figure 4.2. The intermediate node selection for this route is relatively straightforward as the nodes

chosen for this purpose, s9 and s16, are directly on the straight line route between s2 and s23.

Visiting nodes s9 and s16 does not change the travelling distance between s2 and s23. Alternatively,

consider the scenario where the source and destination are s5 and s18. There are no nodes directly

on the path from s5 to s18. We can use a distance based metric to determine the intermediate nodes.

For thus, we first define a neighborhood, and then use a distance based metric to select a node

from this neighborhood. We use a Moore neighborhood definition for the given mesh arrange-

ment, e.g. the neighborhood for s8 is Ns8 = {s1,s2,s3,s7,s9,s13,s14,s15} and for s5 is Ns5 =

{s4,s6,s10,s11,s12}. Even though we use a mesh arrangement of nodes to illustrate the concept,

this concept can be generalized to other arrangements as well. The general idea is to choose the

intermediate node from a subset of nodes, i.e. the neighborhood, based on a distance metric.

Let sr, sd and si be the source, destination and the intermediate node respectively. Their inter-node

distances are defined as drd , dri and did . One metric can be to choose the next node based on

{si|(si ∈ Nsr)∧ (did < drd)}. This means that the intermediate node chosen should be one whose

distance from the destination node (did) should be smaller than the distance between the source

node and destination node (drd). All dotted lines and solid red lines in Figure 4.2 fulfill this metric.

Another metric can be {si|(si ∈ Nsr)∧ (did = min{did|did < drd})} which implies that the interme-

diate node chosen from the neighborhood should have the smallest distance to the destination node.

The solid red lines in Figure 4.2 represent all such paths. We use this definition for intermediate

node visitation in this dissertation. Note that for the source destination pair s1 and s21, the three

intermediate paths shown have the same length but only the red one fits the second definition.
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4.2 Heuristics for VoI based Path Planning

4.2.1 Next Node Visit based on VoI Maximization - HMaxVoI

This heuristic suggests that the mobile sink should visit nodes in a prioritized sequence based

upon the amount of VoI being offered at the sensor nodes. It is a greedy heuristic and is based

on observations from the discussion in Section 4.1.1. This heuristic attempts to maximize the

amount of value collected at every node visit. It does it by scheduling the next visit to the node

that has the highest VoI to offer. In Figure 4.3 we have nodes with priority marked as Px, such

that in terms of VoI they have the precedence ϒP1 > ϒP2 > ϒP3 > ϒP4 > ϒP5 . The blue colored

path in the right hand side of the Figure 4.3 maintains this precedence by following the sequence

P1→ P2→ P3→ P4→ P5. The path on the left hand side violates this precedence by traversing the

nodes in the sequence P3→ P5→ P4→ P1→ P2.

P1

P2

P3

P4

P5

P1

P2

P3

P4

P5

Figure 4.3: Heuristic HMaxVoI - VoI Maximization
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4.2.2 Minimize Tour Time for Path Traversal - HShPath

The proposal in this heuristic is to minimize the tour time of the AUV because time has been shown

to be a factor that affects VoI collected. Based on the discussion in Section 4.1.2, we propose the

heuristic HShPath which is to find the shortest traveling path given a set of sensor nodes. An example

of this is shown on the right-hand side of Figure 4.4. On the contrary, a non-optimal path in terms

of time is shown on the left-hand side of Figure 4.4.

Figure 4.4: Heuristic HShPath - Shortest Path

4.2.3 Visit Intermediate Nodes - HIntVisit

This heuristic is based on the discussion in Section 4.1.3. According to this heuristic, tours should

be planned in a manner that nodes lying near the path of a source-destination pair should be visited

also along the tour. Let us imagine a scenario where nodes are visited in-order of the VoI they offer
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just as in HMaxVoI . It might be useful that we couple it with a time heuristic as suggested by e.g.

HShPath to further improve the VoI collected. This will help in minimizing the tour time and, hence,

VoI loss by avoiding delayed visits to nodes whose visitation at an earlier point in time would

have had been less taxing in terms of VoI collected. This also helps in reducing fuel expenditure.

In the aforementioned scenario, HIntVisit can be seen as being applied as a combination HMaxVoI

followed by HShPath. The definition of nodes encountered on the path can be determined, for

example, by choosing the intermediate node which is in the neighborhood of current source node

and is also closer to the destination. This definition is applied recursively by setting the current

intermediate node to be the next source node and then choosing the next intermediate node from

the neighborhood of the current intermediate node.

Figure 4.5: Heuristic HIntVisit (Intermediate Node Visitation)
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4.2.4 Load Balancing in terms of Nodes Visited - HNodeBal

This heuristic is for multiple AUV path planning. It enforces an identical allocation in terms of

the number of nodes assigned to each AUV for their respective tours. The intuition behind this

heuristic is that it can help in improving the chances of minimizing tour time for data collection.

We argue that this is because the chance of some AUVs collecting data while others sitting idle

due to finished with their visitation tasks is minimized because of a more balanced distribution of

nodes. On the left-hand side in the Figure 4.6 the blue path has lesser nodes as compared to the

grey path, i.e. 5 nodes are covered by the blue path while 11 nodes visited by the grey path. Note

how the blue path is much shorter than the grey path. While on the right-hand side of Figure 4.6,

the blue dotted line shows additional nodes assigned to the blue path, by off-loading them from the

grey path, in order to balance the tours, thereby, giving both tours eight nodes each.

Figure 4.6: Heuristic HNodeBal (Node Balancing)
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4.2.5 Balanced Distribution of Nodes in terms of VoI - HVoIBal

This heuristic suggests that the nodes should be assigned to AUVs in a round-robin fashion such

that at each iteration the node with the highest VoI at offer is chosen to be assigned to the next

AUV. In this way, no single AUV will be scheduled to visit a disproportionate number of high

priority nodes, i.e. nodes that have a higher VoI than usual. This, in a certain manner, imitates the

HMaxVoI heuristic by ensuring that nodes with higher priority will be scheduled to be visited earlier,

thereby, collecting higher VoI. In Figure 4.7, we have labeled three nodes as CH colored in red and

indicating a higher priority, while three are colored in blue and marked as CL so as to indicate a

lower priority. On the left-hand side of Figure 4.7, we have two paths uniquely assigned to the

CH and CL nodes, thereby, violating VoI balancing. While on the right-hand side in Figure 4.7, we

have two paths that have a more balanced distribution of high and low priority nodes.

CH

CH

CH

CL

CL

CL

CH

CH

CH

CL

CL

CL

Figure 4.7: Heuristic HVoIBal - VoI Balancing
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4.2.6 Partitioning Map on basis of Node Proximity - HMapPart

The goal with HMapPart is to reduce the average traveling time of each AUV by creating map

partitions. This reduction in travel time should improve the overall VoI collection. This heuristic

proposes to partition the map into non-overlapping segments such that each segment is uniquely

assigned to an AUV, i.e. there is a one-to-one mapping between the partitioned segments and the

AUVs. The partitions in the mesh arrangement are such that nodes in a partition are reachable to

one another by recursively traversing one-hop through their neighbors.

This heuristic should reduce the map traversal time by reducing the travel time for each AUV on

average. This reduction in travel time is because each AUV now has a lesser area to cover because

of the partitioned regions that are smaller in size as compared to the whole map.

Figure 4.8: Heuristic HMapPart - Map Partitioning
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Another way to understand this is that if N number of nodes are concentrated in a smaller region,

then it is more likely that the AUV will travel a shorter distance to traverse all of these nodes. This

is illustrated by the paths shown in Figure 4.8, all of which are assigned eights nodes each, but the

paths on the left-hand side are longer then the ones on the right-hand side.

Partitioned maps leads to shorter travel distances for each AUV and, therefore, on a collective

basis, the map is traversed completely in a shorter amount of time by all the AUVs.
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CHAPTER 5: SINGLE AUV PATH PLANNING

5.1 VoI Maximization and Path Planning Problem

In this chapter we will develop path planning algorithms that will address the following VoI accu-

mulation and maximization definitions, as given in Equation 3.26 & 3.27

ϒAcc =
n

∑
j=1

d

∑
k=1

A jke−B jk(τ f j−τo jk ).vvisit
j

ϒ
Single
Maximize→max

n

∑
j=1

d

∑
k=1

A jke−B jk(τ f j−τo jk ).vvisit
j

The path planning problem statement we will solve in this chapter is described by Definition 3.41

[
ϒ

AlgPP

Acc ← PS
]
← AlgPP[S,D,ϒAcc(t)

]
Where,

ϒ
AlgPP

Acc is the VoI accumulated from the sensor nodes S by employing the traversal sequence PS,

PS is the node visitation sequence determined by AlgPP,

AlgPP is a path planning algorithm that generates path PS or P(S,A) such that ϒ
AlgPP

Acc is accumulated,

S is the set of all sensor nodes,

D is the set of all data reports,

ϒAcc(t) is the function total VoI accumulated.
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5.2 Path Planning Algorithms

The path planning algorithms provide us with the sequence of nodes which the AUV will traverse

for data collection. As suggested earlier, the sequence of node visitation by the AUV will affect the

overall accumulated VoI. We propose a few different path planning algorithms for experimentation

and analysis. The first algorithm is the Lawn-Mower path planner (LPP) based on minimizing

total tour time. The Greedy path planner (GPP) is based on accumulating VoI in a greedy fashion.

Greedy with Intermediate-Node-Visitation (GIPP) is a variant which is based on greedily accumu-

lating VoI while aiming to minimize the tour time. Hybrid path planner (HPP) is a combination

of LPP and GPP. Hybrid with Intermediate-Node-Visitation (HIPP) is a combination of LPP and

GIPP. The Random path planner (RPP) is used as a baseline algorithm for the analysis purposes.

5.2.1 Lawn-Mower Path Planner - LPP

The LPP algorithm is based on a pre-computing strategy. It determines the route before-hand and

it does not take into account the VoI profiles of the sensor nodes for its path planning decisions.

The crux of this algorithm is to find the most optimal tour in terms of time traveled. This, in

essence, is like solving the traveling salesman problem (TSP). The title Lawn-Mower is motivated

by the analogy that the AUV will cover the area in parallel tracks in the same fashion as the grass

is mowed down on a lawn using a lawn-mowing engine. A potential path planned using the LPP

algorithm is shown with the blue colored trail in Figure 5.1.
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Nodes marked as visited 

Nodes yet to be visited

Next node to be visited

Hot-Spot marked as visited
AUV - Lawn Mover Path 

Planner

Hot-Spot yet to be visited

Acoustic links

AUV - Greedy Path Planner

AUV - Greedy with Intermediate 

Node Traversal Path Planner

Figure 5.1: The UWSN mesh setting used for the simulation study. The same arrangement will

be used for simulation and experimentation in the results section. The blue colored path is of the

AUV that uses LPP, red of the AUV that uses GPP and green of the AUV that uses GIPP. The

GPP visits one hot-spot after another. Notice how LPP stumbles upon a hot-spot, i.e., discovers it

by chance. Also, observe how GIPP visits intermediate nodes in-between hot-spot visits.
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Algorithm 1 Shortest Path Lawn-Mower Path Planner – LPP
1: procedure LPP(S)

2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: V ← /0 . Visitation sequence

4: PD←{(East,West,South,North)} . Direction priority list

5: i← s1 . Tour starting node

6: while S 6= /0 do

7: N← NEIGHBORHOOD(i,S)

8: j← sx from N in the direction given by PD

9: TOURECULIDEAN(i, j)

10: V ←V + j

11: S← S− j

12: i← j

13: end while

14: return V

15: end procedure

Please note that this path planner does not explicitly take VoI into account but it should give effec-

tive results as it essentially takes into consideration the minimization of time t, which is a parameter

in determining VoI as suggested by Equations (3.14). Therefore, this algorithm implicitly improves

VoI by taking care of overall visitation time.

Algorithm 1 highlights the steps involved in the Lawn-Mower path planner. The AUV maintains

a history of nodes already visited and the ones not yet visited. Besides this, it also maintains a

direction priority list. This list contains elements related to all the sensor nodes such that each

element contains the information about which node among the neighbors of a sensor node needs

to be visited next. For our implementation, we prioritize the selection of the next neighbor that

is located on the East of the current node, then West, followed by South and finally North. The

complexity of LPP is O(n) where n is the number of sensor nodes.
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A more generic implementation of this algorithm, for any topology other than a mesh, would be

to use an algorithm that solves the TSP. However, for a mesh, instead of using a computationally

expensive TSP algorithm, one can just simply use the LPP.

5.2.2 Greedy Path Planner - GPP

GPP and its variants are reactive path planning algorithms. This path planner provides a visitation

sequence of nodes in descending order of their VoI aggregate profiles, i.e., the AUV will visit the

node with maximum VoI available first and then other nodes in decreasing order of VoI. The VoI is

determined as the value available at the time instant when the AUV visits the sensor node. This is

a greedy approach as the algorithm tries to maximize the VoI accumulated by determining which

node has the highest amount to offer and then visit it. A potential path planned using the GPP

algorithm is shown with the red colored trail in Figure 5.1.

VoI accumulation is dependent on the final time-stamps τ f as suggested by Equation (3.14). The

lesser the value of τ f , the higher the VoI accumulated, i.e., the earlier the data is collected from a

node, the more quickly the value decay is locked down, hence, resulting in greater value dividends.

It would, therefore, make more sense to lock down VoI at nodes that have higher values to offer.

Otherwise, more VoI would be potentially lost.

If there is a scenario where high-priority events are being reported because of a catastrophe, then

it is imperative that it be reported at the earliest. The more the delay in reporting catastrophic data,

the more losses would be incurred. Moreover, as the UWSN has been deployed to report of catas-

trophic events, therefore, it is necessary that the AUV visits the nodes reporting the catastrophe

first.

Algorithm 2 details the steps for the greedy approach. The algorithm maintains a history of nodes
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already visited and the ones not yet visited. From the nodes not visited yet, it selects the ones that

give it the maximum VoI at its time of arrival. Once it selects a node as its next destination, it takes

a direct Euclidean route to it. The complexity of GPP is O(n2) where n is the number of sensor

nodes.

5.2.3 Greedy Path Planner with Intermediate-Node-Visitation - GIPP

It is a similar algorithm to GPP but with the added notion that while the AUV is on its way to the

next node with the highest VoI offer, it can visit intermediate nodes that (by some definition e.g.,

distance) lie on the prescribed path. It is a reasonable idea to visit intermediate nodes (i.e. nodes

that lie on the path to the destination node), because this may help in minimizing tour time and,

therefore, can improve VoI accumulated.

Algorithm 3 lays out the steps for GIPP. It is similar to GPP except for the intermediate node

visitation which is a slight detour. For the intermediate node visitation, the algorithm selects the

next node to be visited from the neighbors of the current node in a manner that the distance between

the neighbor node and the node with the maximum VoI (destination node) is minimum among all

the neighboring nodes. This algorithm is inspired by concepts behind both the GPP and LPP,

i.e., visit sequence is greedy but tour time is minimized by visiting nodes that lie across the path.

However, when it comes to reporting catastrophes at the earliest, it is a tad slower than GPP

because of the intermediate node visitations. A potential path planned using the GIPP algorithm

is depicted by the green colored trail in Figure 5.1.

The complexity of GIPP is O(n2 + n× d×m) where n is the number of sensor nodes, d is the

count of nodes in the longest intermediate tour, and m is the maximum number of nodes in a

neighborhood definition. Because d < n and also m < n, therefore, it follows that the complexity

of GIPP is O(n3).
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Algorithm 2 Greedy Path Planner – GPP
1: procedure GPP(S, so)

2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: V ← /0 . Visitation sequence

4: i← so . Tour starting node

5: while S 6= /0 do

6: j← GETNODETHATHASMAXVOI(S)

7: TOURECULIDEAN(i, j)

8: V ←V + j

9: S← S− j

10: end while

11: return V

12: end procedure

13: procedure GETNODETHATHASMAXVOI(Sr)

14: ∀sx ∈ Sr determine ϒsx using DETERMINENODEVOI(Dsx , t)

15: k← sx ∈ Sr such that ϒsx is max∑Ae−B(t−τo)

16: return k

17: end procedure

18: procedure DETERMINENODEVOI(D, t)

19: D←{d1,d2, ...,dk} . Data reports at node

20: ϒ← 0

21: τ f ← t . AUV arrival time at node

22: while D 6= /0 do

23: j← GETNEXTDATAREPORT(D)

24: α ← GETAx( j)

25: β ← GETBx( j)

26: τo← GETτox( j)

27: ϒ += αe−β (τ f−τo)

28: D← D− j

29: end while

30: end procedure
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Algorithm 3 Greedy Path Planner with Intermediate-Node-Visitation – GIPP
1: procedure GIPP(S, so)

2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: V ← /0 . Visitation sequence

4: i← so . Tour starting node

5: while S 6= /0 do

6: j← GETNODETHATHASMAXVOI(S)

7: T ← /0

8: T ← TOURINTERMEDIATE(i, j,S)

9: V ←V +T

10: S← S−T

11: i← j

12: end while

13: return V

14: end procedure

15: procedure TOURINTERMEDIATE(source,destination,Sr)

16: p← source

17: q← destination

18: TI ← /0 . Intermediate Visitation Sequence

19: while p 6= q do

20: N← GETNEIGHBORHOOD(p,Sr)

21: i← sx ∈ N such that ECULIDEANDISTANCE(sx,q) is minimized

22: TOURECULIDEAN(p, i)

23: p← i

24: TI ← p

25: end while

26: return TI

27: end procedure
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Algorithm 4 Hybrid Path planner – HPP
1: procedure HPP(S, so)

2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: V ← /0 . Visitation sequence

4: SHP←{sm | sm ∈ S∧ sm is high-priority} . Set of high-priority sensor nodes

5: SLP← S−SHP . Set of low-priority sensor nodes

6: V ← GPP(SHP, so)

7: V ←V+ LPP(SLP)

8: return V

9: end procedure

5.2.4 Hybrid Path Planner - HPP

The algorithms for path planners HPP and HIPP were devised after studying results from our

simulation experiments. What we observed was that the LPP would perform the best, in terms of

VoI accumulation, when there where no catastrophes, i.e., VoI profiles were similar across all the

sensor nodes. On the other hand, GPP and GIPP performed better in the scenario where the sensor

nodes were reporting catastrophes.

So the thought process behind this path planner is to use a greedy algorithm (GPP or GIPP) for

collecting data from nodes reporting catastrophes, while, using TSP like algorithms (LPP) for

collecting data from the rest of the nodes. This implies switching a greedy and a shortest path

algorithm and so the name Hybrid Path Planner. HPP switches between GPP and LPP.

The algorithm for HPP is given as Algorithm 4. The complexity of this algorithm is O(h2 + l)

where h is the number of high-priority sensor nodes while l is the count of low-priority sensor

nodes. O(h2) is the complexity of GPP being used within HPP while O(l) is the complexity of

LPP. As h≤ n and l ≤ n, therefore, the complexity of HPP is determined as O(n2).
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Algorithm 5 Hybrid Path Planner with Intermediate-Node-Visitation – HIPP
1: procedure HIPP(S, so)

2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: V ← /0 . Visitation sequence

4: SHP←{sm | sm ∈ S∧ sm is high-priority } . Set of high-priority sensor nodes

5: i← so . Sensor node to start tour from

6: while SHP 6= /0 do

7: j← GETNODEMAXVOI(SHP)

8: T ← /0

9: T ← TOURINTERMEDIATE(i, j,S)

10: V ←V +T

11: SHP← SHP−T

12: i← j

13: end while

14: SLP← S−V . Set low-priority sensor nodes

15: V ← V + LPP(SLP)

16: return V

17: end procedure

5.2.5 Hybrid Path Planner with Intermediate-Node-Visitation - HIPP

HIPP has the same logic behind it as HPP but the only difference is that it uses GIPP instead of

GPP. The algorithm first discovers the hot-spots, i.e., catastrophe reporting nodes and then it finds

the intermediate nodes that can be visited. Afterwards, these nodes are visited using GIPP while

the rest of the nodes are visited using LPP.

The algorithm for HIPP is given as Algorithm 5. The complexity of this algorithm is O(h3 + l)

where h is the number of high-priority sensor nodes while l is the count of low-priority sensor

nodes. Similarly, as in the case of HPP, h ≤ n and l ≤ n, therefore, the complexity of HIPP is

determined as O(n3).
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5.2.6 Random Path Planner - RPP

For evaluation purposes, we also implemented a random path planner (RPP) where the AUV ran-

domly chooses the next sensor node for data collection. The route towards the selected node

employs Euclidean shortest path. This path planner can be thought of as a planner which does not

take into account VoI or time while scheduling visits to nodes, i.e., AUV schedules its visitation

activity irrespective of the critical nature of the VoI in the UWSN.

5.3 Performance Measures, Simulation Setup and Results

5.3.1 Performance Measures and Experiments

The basic measures of performance used are VoI accumulated ’ϒAcc’ and VoI lost ’ϒL’. To discuss

what these measures are, we refer to Figure 3.4. ϒAcc(t) is the decaying VoI profile in the system

and represented in abstract terms by a straight line. It is a general statement on the depreciation of

the valuation, whereas, in an actual situation the dynamics of this depreciation, i.e., the actual shape

of the curve, will be governed by system variables and type of information recorded. This chart

assumes that no measurements are recorded after t = 0, hence, the chart only shows a monotonic

decay in the valuation after t = 0. τstart and τ f inish are the start and end times for the complete

AUV tour. In our case, a tour is a visitation sequence that is a permutation on the set of all sensor

nodes, i.e., the tour is a simple path on a graph that has the sensor nodes as vertices. ϒAva is the VoI

available in the system at the start of the tour while the ϒAcc is the VoI accumulated by the AUV

by the end of its tour. ϒL is determined as

ϒL = ϒAva−ϒAcc

67



The loss in ϒAcc is a result of a combination of factors that can be attributed to physical system

limitations such as the AUV speed, delay in starting time of the tour τStart , and inefficiencies

resulting from the planned path. It is the path planning part of this problem that we explore in this

chapter. To filter out effects of a delay in τStart , we use ϒL as it is a measure of loss between the

range t = [τStart : τFinish]. Any loss other than ϒL is not a result of path planning inefficiencies. ϒL

gives a more clear picture in terms of comparative performance as compared to ϒAcc.

Other than VoI based performance markers, we can also use time as a metric to determine certain

aspects of performance. Time taken by an AUV for a complete traversal of the set of sensor nodes

can be employed for this purpose. The earlier an AUV completes the tour of a UWSN, the more

readily it is available for a new tour of this or another neighboring UWSN. Time can be useful

in understanding energy EAUV consumed by the AUV to complete its tour. Energy consumed is

proportional to the distance it travels Dtour which is proportional to the time taken by the AUV to

complete the tour Ttour. Shorter tours also result in less wear and tear of the AUVs.

∆τ = τ f inish− τstart = Ttour ∝ Dtour ∝ EAUV (5.1)

A measure of the efficiency Ω of a planner can be determined by combining ϒL and Ttour. Ω is

inversely proportional to both ϒL and Ttour, therefore,

Ω ∝
1

ϒL
· 1

Ttour
=⇒ Ω =

p
qϒL · rTtour

=
k

ϒL ·Ttour
(5.2)

where, k = p
q·r is a constant and is set to 1 in this experimental study. Other than the measures

of ϒAcc, ϒL, Ttour & Ω, we also need to have some specific measures for ’response to emergency

situations’. These would be VoI accumulated from first hot-spot υHSAcc , VoI lost from first hot-spot

υHSL , time taken to arrive at first hot-spot τHS and a measure of urgency Ψ. We define Ψ as the

ratio of the score of the path planner schedule for visiting hot-spots SI to the score of an expected
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perfect schedule to visit hot-spots SP. Let there be n sensor nodes and m hot-spots. Then, the score

SI & SP are determined as

SI =
m−1

∑
i=0

n− seq#si , SP =
m−1

∑
i=1

n− i (5.3)

where seq#si is the number at which a node is visited in the schedule of visitation given by a path

planner. Ψ is, therefore, determined as

Ψ =
SI

SP
=

∑
m−1
i=0 n− seq#si

∑
m−1
i=1 n− i

(5.4)

The intuition behind urgency score Ψ can be understood by the following example. Assume that

there is a sensor network with 8 sensor nodes {s1,s2,s3,s4,s5,s6,s7,s8} and 3 hot-spots {s3,s6,s7}.

Here n = 8 & m = 3. The hot-spots in sequence of their precedence are [s6,s3,s7], i.e., it is

most urgent to visit s6 on priority, then s3 and then s7. The perfect visitation sequence should

be [s6,s3,s7, . . .]. Let there be a path-planner PP such that it gives us the following schedule of

visitation [s1,s3,s2,s6,s5,s7,s8,s4]. In this visitation sequence s6 has a seq#s6 = 3, s3 has seq#s3 = 1

while s7 has seq#s7 = 5. In a perfect visitation sequence s6 should have seq#s6 = 0, s3 should have

seq#s3 = 1 while s7 should have seq#s7 = 2. We can now calculate SI and SP as SI = (8− 3)+

(8− 1)+ (8− 5) = 15 and SP = (8− 0)+ (8− 1)+ (8− 2) = 21. The smaller a seq#si is, the

higher the difference n− seq#si will be and hence the greater the score. The urgency score for PP

is Ψ = SI/SP = 15/21 = 0.714.

Therefore, the complete list of measures that we use in this study for adjudication are ϒACC, ϒL,

Ttour, Ω, υHSL , τHS & Ψ.

69



5.3.2 Simulation Setup

To investigate our various hypotheses regarding VoI based path planning we have used a simulation

approach. We assume a scenario with two types of classes for the events; normal routine events

while the other events require an emergency response. To monitor these events a UWSN has been

deployed. The nodes in the UWSN collect multimedia information through cameras. Due to a

limited finite capacity, data needs to be offloaded from these nodes by an AUV. The nodes commu-

nicate infotential data using the acoustic communication medium. A path planning agent, based on

the infotential data received, schedules a visitation sequence of the nodes for the AUV. During its

tour, the AUV off-loads multimedia data from the nodes using the optical communication medium.

A node that has recorded an event which can be classified as an emergency is marked as a hot-spot.

The simulation has 100 nodes arranged in a 10×10 mesh/grid. The horizontal/vertical inter-node

distance is 1000 m while the diagonal distance is 1414.2 m. The AUV traverses the UWSN at a

constant speed of 10 m/s. We assume that before the AUV embarks on its tour, the UWSN has

been recording data for 24 hours. Each node has video data reports of length 15 minutes each.

Therefore, the reports have been recorded starting at intervals in the multiples of 15 minutes and

with no recording overlap. The event coverage of the nodes is such that they have minimum or no-

overlap, and hence, the recorded events are unique. Each node records data reports and classifies

them either as a high-priority or a low-priority event. A {valuation,decay} tuple, corresponding to

significance and damage rate, is appended to each data report. If it is a routine low-priority event,

then the {valuation,decay} tuple {AL,BL} are appended to the data report. Alternatively, if it is an

emergency event, then the tuple {AH ,BH} are attached to it. The UWSN nodes communicate with

the remote path-planning agent over the acoustic channel and transmit to it the {valuation,decay}

and time-stamp details of the data reports they have recorded. Based on these details, the path-

planning agent determines the visitation sequence for the AUV.
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5.3.3 Results

In this section, we attempt to make a comparative analysis of the path planning algorithms. We

ascertain the performance of algorithms that take into consideration VoI or time or both, versus

those algorithms, that do not. The regions where a high-priority event takes place are deemed as

hot-spots. The effect of parameters such as valuation ratio AH/AL and number of hot-spots NHS

is assessed.

We make a performance comparison among six path planners; RPP, LPP, GPP, HPP, GIPP, and

HIPP. At various points in this section, we normalize results. The normalization is with respect

to RPP as it is our base-case. Except for in anomalous cases, RPP is the worst performing among

all path planning algorithms. This is expected as it does not take into account time or information

valuation for generating the node visitation sequence. Each reading in the results has been averaged

over 100 different VoI profiles across the same UWSN map.

5.3.3.1 Valuation Ratio

We first investigate the valuation ratio. The valuation ratio is the ratio between the valuation

of information of a high-priority event versus valuation of information of a low-priority event at

t = τo, i.e., the ratio AH/AL. In hindsight of the results for NHS = 0, we found that if the VoI profile

in a UWSN is similar or homogeneous, i.e. all the sensor nodes have almost a similar amount of

VoI to offer, then the shortest path algorithm proved quite effective. This effectiveness is a result of

distance minimization which results in minimization of time, and this time minimization helps to

lock-in decaying VoI profiles at the earliest. However, so should be the case if AH ≈ AL, because,

even though there are hot-spots, yet the VoI profile of the system is as if NHS = 0. In such a case,

there would be no real advantage of using a greedy planner. Therefore, there should be a particular
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Figure 5.2: The top two graphs (colored in blue) are for ϒAcc while the bottom two are for ϒL while the graphs on the left are for
the valuation ratio range [100 : 109] while the graphs on the right are a magnification between [104 : 105] : (a) The top-left graph
is for ϒn

Acc which is charted in the range [100 : 109]; (b) The top-right graph is for ϒn
Acc which is charted in the range [104 : 105];

(c) The bottom-left graph is for ϒn
L which is charted in the range [100 : 109]; (d) The bottom-right graph is for ϒn

L which is charted
in the range [104 : 105].
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range after which we can observe a performance gain for the greedy planners as compared to the

shortest path planners. In this experiment, we determine the effective performance range for the

lawn-mower, greedy and hybrid algorithms. The results for ϒn
Acc and ϒn

L versus AH/AL are shown

in Figure 5.2. The superscript n implies that the results have been normalized with respect to RPP.

ϒ
n
Acc =

ϒPP
Acc

ϒRPP
Acc

, ϒ
n
L =

ϒPP
L

ϒRPP
L

(5.5)

In Figure 5.2, the left two graphs are for the range AH/AL = [100:109]. The right two graphs are a

magnification of the results between the range AH/AL = [104:105]. Also, the top two graphs are for

ϒn
Acc (colored in tones of blue), while the bottom two graphs are for ϒn

L (colored in tones of red).

We can observe that LPP performs better early on but once the ratio AH/AL becomes considerably

large, the greedy algorithms start giving better performance. It is somewhere between a valuation

ratio of 103 and 104 units that LPP loses its top spot on performance. At 104 GIPP, HPP, and

HIPP start performing better. While at 105 GPP also starts performing better than LPP. LPP

clearly performs best up to 103, while afterward, the greedy or hybrid algorithms start performing

better. If we magnify the range between AH/AL = [104:105], we find that the switch in performance

takes place at AH/AL = 3×104.

It is based on these results that we use a setting of AH/AL = 5×104 for the rest of this chapter. This

is a reasonable number for practical situations as, for example, it may imply a $1 versus $50,000

valuation. However, it is worth to note that the hybrid or intermediate node visitation algorithms

perform better as early as a fiscal value of $10,000; as suggested by the performance improvement

at AH/AL = 104.

5.3.3.2 Justification of Heuristics

The algorithms proposed in this chapter are based on different heuristics. In this section, we verify

whether our intuitions behind those heuristics are valid or not. We use ϒn
ACC (values normalized
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with respect to RPP) and study the performance of the path planners for the case where the number

of hot-spots NHS = {0,1,10}.

Our first hypothesis was that using VoI aware algorithms may help in accumulating a higher amount

of VoI. From the results in Figure 5.3 we can see that all path planners have a value greater than

1.0, i.e., they are all better than RPP, and hence, suggesting that the hypothesis is correct.

Our second hypothesis was that greedy path planners amass a higher VoI when there are hot-spots.

However, when there are no hot-spots, a time minimization planner like the Lawn-Mower accumu-

lates a higher VoI. This hypothesis is validated through the results in Figure 5.3 (a). When NHS = 0,

LPP performs best, but in the case of hot-spots, the greedy approach accumulates more VoI.

Our third hypothesis was that inter-node traversal helps in minimizing time while still maintaining

its VoI greedy character, thereby, improving the VoI accumulated. GIPP, for instance, visits hot-

spots on priority but also visits other nodes that lie along the path. Figure 5.3 (b) confirms this

intuition where GIPP accumulates more VoI than GPP.

Our fourth hypothesis was that hybrid path planners can provide the best of both worlds, i.e., when

NHS = 0, they behave like time minimization path planners and when there are hot-spots they use

greedy techniques for scheduling purposes (until all hot-spots have been visited). To understand

this, observe Figure 5.3 (c) & (d). When there are no hot-spots HPP performs as good as the LPP

(because their algorithmic construction, in this case, is the same) and in case of hot-spots, they

accumulate more VoI than their greedy counterparts, i.e., GPP and GIPP. Figure 5.3 (c) shows

that the hybrid algorithm is better than both LPP and GPP while Figure 5.3 (d) shows that hybrid

algorithms are better than their greedy counterparts in both cases, i.e., with or without intermediate

node visitation.
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Figure 5.3: Bar graphs for justifying the use of various heuristics : (a) Greedy vs. Lawn-Mower; (b) Inter-Node Traversal
Advantage; (c) Hybrid Advantage; (d) Hybrid vs. Greedy counterparts.
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5.3.3.3 Comparative Analysis

In this section, we do a thorough comparative analysis to have a better understanding of the per-

formance dynamics of the various path planners. The parameters we explore for this purpose are

ϒACC, ϒL, Ttour & Ωn. We vary the number of hot-spots NHS from 0 to 10 and see the effect on the

path planners’ performance.

For this section, we have used stacked bar-plots (Figures 5.4 & 5.5). The results have not been

normalized to give a more clear picture of the actual values obtained from the simulation. Each

reading for a {Planner, Hot-Spot(s)} tuple is averaged over 100 different VoI profiles and is repre-

sented by a block in the stacked bar-plot. The exact value of a block is given in a corresponding

cell in the table below. The changing color gradient of the blocks matches to the index column

NHS in the table. The changing color tones of the table cells correspond to a change in intensity

of values. The better the performance, the darker the color tone is in the table. Color tones for

comparative performance can only be compared across a row, i.e., values can be only compared

across a particular NHS value.

VoI Accumulated and VoI Lost

This discussion refers to graphs in Figure 5.4. The bar graph in Figure 5.4 (a) is for VoI accumu-

lated ϒACC by various path planners, while Figure 5.4 (b) pertains to VoI lost ϒL. They have the

same conclusions in terms of performance but the performance results for ϒL are more pronounced

as compared to ϒACC and this is because, as stated earlier, they remove the bias due to loss before

t = τStart . LPP performs best when there are no hot-spots. In this case, the performance of HPP

and HIPP is same as LPP. With NHS > 0 the greedy and hybrid approaches start to perform better.

The hybrid algorithms always perform better than their greedy counterparts. Also, GIPP always
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performs better than GPP. An interesting thing to note is that initially HPP has better performance

than GIPP but after NHS = 4 the GIPP path planner starts outperforming HPP; which is due to

the fact that the AUV using GIPP might start encountering lesser valued hot-spots more frequently

while on its way towards a higher valued hot-spot; a benefit in hindsight of using intermediate node

visitation. The cumulative performance rank for NHS = [0 : 10] is : HIPP > GIPP > HPP > GPP

> LPP > RPP.

Tour Time

The best performing algorithm in terms of time is shortest path algorithm LPP and this can be

seen from the results in Figure 5.5 (a). HIPP and HPP come in close in terms of minimizing

time, but as the number of hot-spots increase, their performance gap to LPP also widens. GIPP

performs better than GPP because of using the intermediate node visitation heuristic. GPP is as

worse as RPP in terms of time, which is understandable as the VoI profile is distributed randomly

across the UWSN map. It is important to note that when NHS = 0 then LPP = HPP = HIPP. The

performance rank precedence across NHS = [0 : 10] is : LPP > HIPP > HPP > GIPP > GPP

≈ RPP.

Efficiency

This is a useful metric as it takes into account both the VoI lost and tour time. The results are

shown in Figure 5.5 (b). The hybrid algorithms turn out to be the best in terms of efficiency.

The conclusion is not a surprise as they combine the best of both the shortest path and greedy

algorithms. The cumulative efficiency rank is: HIPP > HPP > LPP > GPP > GIPP > RPP.
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RPP LPP GPP HPP GIPP HIPP
NHS : 10 361595.4 400829.5 404611.3 404983.5 405468.5 405516.9
NHS : 9 326395.9 361057.7 364523.1 364901.6 365244.2 365293.6
NHS : 8 292002.5 323427.9 327192.9 327581.5 327786.2 327840.6
NHS : 7 256323.3 284358.4 287720.7 288118.4 288303.9 288359.7
NHS : 6 219145.3 242761.1 245905.3 246317.5 246408.4 246466.5
NHS : 5 183448.0 203295.8 206043.4 206463.9 206465.3 206531.2
NHS : 4 148766.3 164253.6 166627.1 167057.6 167007.7 167081.8
NHS : 3 111524.7 123135.2 124885.6 125325.4 125264.0 125339.8
NHS : 2 76813.6 84899.4 85990.1 86442.2 86369.3 86451.5
NHS : 1 41046.4 45409.3 45780.3 46238.0 46156.4 46244.0
NHS : 0 4807.9 5321.1 4831.9 5321.1 5212.5 5321.1
Total 2021869.5 2238748.9 2264111.7 2268750.9 2269686.5 2270446.7
Rank 6 5 4 3 2 1
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RPP LPP GPP HPP GIPP HIPP
NHS : 10 49308.2 10074.1 6292.3 5920.0 5435.1 5386.7
NHS : 9 43423.5 8761.7 5296.3 4917.8 4575.2 4525.8
NHS : 8 39433.9 8008.5 4243.5 3854.9 3650.2 3595.8
NHS : 7 35093.6 7058.6 3696.2 3298.6 3113.0 3057.3
NHS : 6 29559.6 5943.8 2799.6 2387.4 2296.5 2238.3
NHS : 5 24896.9 5049.1 2301.6 1881.0 1879.6 1813.8
NHS : 4 19639.2 4152.0 1778.4 1347.9 1397.8 1323.7
NHS : 3 14702.2 3091.7 1341.3 901.5 962.9 887.1
NHS : 2 10173.4 2087.7 997.0 544.8 617.8 535.5
NHS : 1 5507.0 1144.1 773.1 315.4 397.1 309.4
NHS : 0 645.8 132.6 621.9 132.6 241.2 132.6
Total 272383.4 55503.9 30141.2 25502.0 24566.4 23806.2
Rank 6 5 4 3 2 1
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Figure 5.4: Comparative analysis for ϒACC & ϒL : (a) The top stacked bar graph is for VoI accu-
mulated ϒACC; (b) The bottom stacked bar graph is for VoI lost ϒL.
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RPP LPP GPP HPP GIPP HIPP
NHS : 10 51862.4 9900.0 51717.2 15565.8 25396.1 14966.0
NHS : 9 51754.7 9900.0 51794.4 15148.6 25631.8 14806.9
NHS : 8 51539.2 9900.0 51648.6 14526.4 25698.2 14255.4
NHS : 7 51458.4 9900.0 51536.6 14147.2 25296.4 13857.5
NHS : 6 51313.3 9900.0 51637.0 13535.6 25031.3 13265.8
NHS : 5 51719.4 9900.0 52027.4 13172.0 25550.3 13040.3
NHS : 4 51697.6 9900.0 51818.2 12638.2 25852.0 12576.3
NHS : 3 51710.5 9900.0 51528.0 12166.7 25307.8 12050.2
NHS : 2 51954.5 9900.0 51706.5 11605.6 25679.0 11502.3
NHS : 1 51906.9 9900.0 51817.7 11195.4 25673.5 11039.9
NHS : 0 51293.2 9900.0 51482.1 9900.0 25368.4 9900.0
Total 568209.9 108900.0 568713.6 143601.5 280484.9 141260.6
Rank 5 1 6 3 4 2

0

100000

200000

300000

400000

500000

T T
ou

r :
 T

ou
r T

im
e

TTour - Tour Time

RPP LPP GPP HPP GIPP HIPP
NHS : 10 1.00 25.64 7.86 27.75 18.53 31.72
NHS : 9 1.00 25.91 8.19 30.17 19.16 33.54
NHS : 8 1.00 25.63 9.27 36.29 21.67 39.65
NHS : 7 1.00 25.84 9.48 38.70 22.93 42.62
NHS : 6 1.00 25.78 10.49 46.94 26.39 51.08
NHS : 5 1.00 25.76 10.75 51.97 26.81 54.44
NHS : 4 1.00 24.70 11.02 59.60 28.10 60.99
NHS : 3 1.00 24.84 11.00 69.32 31.20 71.12
NHS : 2 1.00 25.57 10.25 83.59 33.32 85.80
NHS : 1 1.00 25.24 7.14 80.96 28.04 83.68
NHS : 0 1.00 25.23 1.03 25.23 5.41 25.23
Total 11.00 280.14 96.49 550.50 261.55 579.87
Rank 6 3 5 2 4 1
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Figure 5.5: Comparative analysis for Ttour & Ω : (a) The top stacked bar graph is for time to
complete the tour Ttour; (b) The bottom stacked bar graph is for the efficiency measure Ω.
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Figure 5.6: Scaling of response w.r.t. number of hot-spots NHS : (a) Percentage improvement in VoI accumulated ϒACC; (b) Per-
centage reduction in VoI lost ϒL; (c) Percentage reduction in tour time TTour; (d) Normalized measure of efficiency Ω.
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5.3.3.4 Scalability with an increase in Hot-Spots

In the context of this discussion, a hot-spot is an anomalous event of probably catastrophic propor-

tions and needs to be taken care of as quickly as possible. Such an anomalous event should be a

rare occurrence and it would be a bit unlikely to find more than a few at the same time. It can also

be argued that the whole system is compromised if such a situation arises. Our scalability study

is based on this hypothetical assumption that there might be a drastic increase in the number of

hot-spots. Our goal is to see how the path planners behave when we vary the number of hot-spots

(NHS) across the range of nodes.

The results are shown as heat-maps in Figure 5.6. Darker color tones imply better comparative

performance in the heat-maps. We start from 5 hot-spots and ramp up to 95 hot-spots. We record

percentage improvement in VoI accumulated (ϒACC% ↑), percentage reduction in VoI lost (ϒL% ↓),

percentage reduction in tour time (TTour% ↓) and a normalized measure of efficiency (
ΩPP

ΩRPP
). The

percentages are calculated with respect to the RPP path planner performance:

ϒACC% ↑= ϒACC

ϒRPP
ACC
×100 (5.6)

ϒL% ↓= ϒL

ϒRPP
L
×100 (5.7)

TTour% ↓=
TTour

T RPP
Tour
×100 (5.8)

ΩPP

ΩRPP
=

ϒRPP
L ×T RPP

Tour
ϒL×TTour

(5.9)

For ϒACC and ϒL, as the number of hot-spots increase, the performance of HPP and LPP decreases

drastically. GIPP and HIPP also experience a degradation in performance but the change is not

that drastic. The performance of LPP remains the same at average. The reason for this is that

an increase in hot-spots results in a map that is increasingly homogeneous in terms of VoI. When
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there are no hot-spots, there is a homogeneity in terms of VoI in the sensor map. In such a case,

as discussed earlier, LPP performs the best. With one and up till a few hot-spots, greedy path-

planners perform better. However, at a certain tipping point in terms of NHS, the performance falls

below than that of LPP. With a large NHS, the sensor map is similar to the one with no hot-spots.

This explains the better performance of LPP in such a scenario.

In terms of Ttour, there is no effect in the performance of LPP, GPP or GIPP with an increase in

NHS. However, the performance of HPP deteriorates to the level of GPP eventually and HIPP

degrades to GIPP. The reason lies in the algorithmic construction of the hybrid path planners.

They are designed in such a way that they switch to LPP once all the hot-spots have been visited.

The time performance of hybrid algorithms is good because they incorporate LPP. Therefore, if

there is a large NHS, there will be a lesser involvement of LPP in the path-planning process and

this leads to an increase in the Ttour for hybrid path-planners.

The measure of efficiency, normalized to RPP, has a very high value for hybrid algorithms at 5 hot-

spots. However, onward 15 hot-spots, we see a very sharp decline in this performance measure.

LPP is not affected in this regard. The reason is that Ω depends upon ϒL and Ttour and LPP is not

affected by an increase in NHS.

5.3.3.5 Response to Emergency

The basic reason to employ VoI was to have a mechanism to distinguish between higher and lower

priority situations in an organic fashion, thus enabling a more appropriate response to the situa-

tion. The greedy and hybrid algorithms were designed to address high-priority situations such as

emergencies. Here, we look at some measures that shed light on how the various path planners

perform under emergency. Again, all results are described with respect to RPP in terms of percent-

age improvement in performance. The results are shown in Figure 5.7. We vary NHS from 1 to 10
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Figure 5.7: Emergency Response w.r.t. number of hot-spots NHS : (a) Percentage improvement in VoI accumulated from first
hot-spot υHSACC ; (b) Percentage reduction in VoI lost from first hot-spot υHSL ; (c) Percentage reduction in time to reach first
hot-spot τHS; (d) Normalized urgency score Ψ.
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hot-spots. We record percentage improvement in VoI accumulated from first hot-spot (υHSACC% ↑),

percentage reduction in VoI lost at first hot-spot (υHSL% ↓), percentage reduction in tour time to

first hot-spot (τHS% ↓) and the normalized urgency score (
ΨPP

ΨRPP
). The percentages are calculated

with respect to the RPP path planner performance:

υHSACC% ↑=
υHSACC

υRPP
HSACC

×100 (5.10)

υHSL% ↓= υHSL

υRPP
HSL

×100 (5.11)

τHS% ↓= τHS

τRPP
HS
×100 (5.12)

ΨPP

ΨRPP
=

SI

SP
× SRPP

P
SRPP

I
(5.13)

GPP and HPP are best when it comes to accumulating VoI from the first hot-spot. GIPP and HIPP

follow closely in terms of performance but the gap widens with increasing NHS. The reason, as

discussed earlier, is that the intermediate path planners start to hit lesser valued hot-spots on their

way to the highest valued hot-spot. As an intermediate lesser valued hot-spot maybe encountered

first by the AUV, therefore, υHSACC performance should decrease.

In terms of υHSL , GPP and HPP are better for NHS = 1 or 2. For NHS ≥ 3, GIPP and HIPP start

performing better, i.e., they avoid a higher loss in terms of VoI from the first hot-spot encountered.

The reason is the same as stated above, i.e., they encounter other hot-spots on the tour while

traveling towards the highest-priority one. Because, hot-spots are encountered earlier, therefore,

the respective VoI loss υHSL at that node should be lower. This phenomenon of encountering hot-

spots earlier than planned can be verified from the time to arrive at the first hot-spot τHS results.

These results for τHS follow exactly υHSL in character. Again, GPP and HPP perform better for

NHS = 1 or 2, while for NHS ≥ 3, GIPP and HIPP are better. This thus corroborates the speculation

that hot-spots are being encountered earlier by path planners that are based on the intermediate
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node visitation strategy.

The urgency measure Ψ sheds light on response to an emergency. This is because it generates

a score based on the sequence of visitation to the hot-spots. It encodes, that how much priority

was maintained while visiting the nodes. GPP and HPP have the highest urgency score. This is

because they visit the nodes in the exact order of descending priority as dictated by VoI advertised.

The intermediate node visitation algorithms, GIPP and HIPP, come in second. This is expected

as intermediate nodes are being attended to en-route to the highest-priority node. The performance

gap widens between algorithms with or without intermediate node visitation with an increasing

NHS. The performance of LPP is as worse as RPP throughout the NHS range. This is inferred from

normalized result value of ΨLPP/ΨRPP ≈ 1.

This shows that GPP and HPP are best for addressing emergencies as they directly go to the

highest priority node first. Close in second are GIPP and HIPP. They lose out marginally because

of visiting intermediate nodes. LPP has no capacity for dealing with emergencies.

5.4 Remarks

In this chapter, we have used VoI in the form of infotentials for solving data off-loading precedence

issues in UWSNs. We have used a VoI model for UWSNs and developed various path planning

algorithms based on heuristics. We have also proposed measures and metrics to evaluate system

performance in such a scenario. A relationship has already been identified between the quality

of information, QoI, and value of information, VoI, in [5, 7]. Based on this relationship and the

extensive experiments that we have performed, it is reasonable to conclude that employing VoI for

path planning algorithms improves the quality of information gained from a UWSN.

The path planner performance depends on the context of the situation. If the VoI profile in the
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system is homogeneous, i.e., there are no hot-spots or the valuation ratio AH/AL is small, then the

shortest path algorithm like LPP should be used. LPP is also fuel optimal. In the case of hot-spots,

given the valuation ratio AH/AL is considerably large, greedy algorithms perform better. Hybrid

algorithms offer the best strategy by combining greedy and shortest path algorithms.

Intermediate node visitation improves VoI by saving tour time and, therefore, GIPP and HIPP

perform better than their GPP and HPP counterparts respectively. However, if an emergency is

classified as serious such that its priority should not be marginalized, then GPP or HPP should be

used as they directly visit the node of concern.
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CHAPTER 6: DETERMINING RESURFACING SCHEDULES

6.1 VoI Maximization and Path Planning Problem

In this chapter, we develop path planning algorithms to address the following VoI accumulation

and maximization definitions, as given in Equation 3.34 & 3.35

ϒAcc =
g

∑
h=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fh−τo jk ).vvisit
j .lvisit

h j

ϒ
Resur f ace
Maximize →max

g

∑
h=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fh−τo jk ).vvisit
j .lvisit

h j

The path planning problem statement we solve in this chapter is described by Definition 3.43

[
ϒ

AlgPP

Acc ← PS+R
]
← AlgPP[S,R,D,ϒAcc(t)

]

where,

ϒ
AlgPP

Acc is the VoI accumulated from the sensor nodes S by employing the traversal sequence PS,

PS+R is the node visitation sequence intertwined with the resurfacing locations in AlgPP,

AlgPP is a path planning algorithm that generates path PS or P(S,A) such that ϒ
AlgPP

Acc is accumulated,

S is the set of all sensor nodes,

R is the set of all resurfacing locations,

D is the set of all data reports,

ϒAcc(t) is the function total VoI accumulated.
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6.1.1 Scheduling AUV Resurfacing

In this chapter, we consider the end-processing agent, i.e. the sink node, to be above the sea surface.

Therefore, the AUV has to resurface to transmit data to a base station which serves as a part of

the end-processing agent system. Three of the many possible tours (paths) involving resurfacing

schedules are shown in Figure 6.1. The instant at which the AUV resurfaces and transmits data

to the base station serve as our final time stamp in determining the VoI gained. This resurfacing

affects the VoI gathered. A balance is required in terms of the number of times an AUV resurfaces

because resurfacing at each node visit or resurfacing after visiting all nodes may not be the most

optimal option. We present two contrasting scenarios to draw an intuitive inference. We work

with two sensor nodes to illustrate the concept in a similar setting as described in Figure 6.1. Both

sensor nodes have solitary information segments that were recorded at the same time and have the

same VoI profile e−Bt . The AUV can take two routes, the visitation sequences of which are:

• P1 : s1→ r1→ s2→ r2

• P2 : s1→ s2→ r2

where s1 and s2 are sensor nodes while r1 and r2 are the resurfacing points above them.

Consider the case when the sensor nodes are very near to the sea surface such that the distance

of the sensor nodes to the sea surface (SD) is almost zero and the inter-node distance (SI) is much

greater than this i.e. SD ∼= 0 and SI � SD. Let us calculate the VoI accumulated by the two paths
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Sensor Nodes Resurfacing Spots AUV

Remote Sink

AUV Tour - A

Sea Surface

SI

SD

AUV Tour - B

AUV Tour - C

Figure 6.1: Side view of the underwater sensor network showing inter-node distance SI and node depth from sea surface SD.
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assuming SI 6= 0 and SD = 0:

ϒ
P1 = e−Bt1 + e−Bt2

= e−B(tSI+tSD)+ e−B(t1+tSD+tSI+tSD)

= e−BtSI + e−B(t1+tSI )

= e−BtSI + e−2BtSI

ϒ
P2 = e−Bt2 + e−Bt2

= 2e−B(tSI+tSI+tSD)

= 2e−2BtSI

Clearly ϒP1 > ϒP2 which implies that it is better to resurface and transmit data at each node in the

given distance (SI,SD) settings.

In contrast, consider the case when the sensor nodes are deep in the sea such that inter-node dis-

tance is much smaller than the distance to the surface of the sea i.e. SD� SI . Let us calculate the

VoI accumulated by the two paths assuming SD 6= 0 and SI = 0:

ϒ
P1 = e−Bt1 + e−Bt2

= e−B(tSI+tSD)+ e−B(t1+tSD+tSI+tSD)

= e−BtSD + e−B(t1+2tSD)

= e−BtSD + e−3BtSD

ϒ
P2 = e−Bt2 + e−Bt2

= 2e−B(tSI+tSI+tSD)

= 2e−BtSD
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Clearly, ϒP2 > ϒP1 which implies that it is better to resurface and transmit data after both nodes

have been visited.

From this we can infer that there should be a ratio of SD to SI at which ϒP2 = ϒP1 and an in-

crease or decrease in this ratio will lead to one path performing better than the other in terms of

accumulating VoI.

6.2 Genetic Algorithms for Resurfacing Schedules

We propose two alternative genetic algorithms, namely, GPR and GOpt , the former reaching quick

convergence while latter offers a more optimal solution.

GPR is modeled with an intuitive heuristic HPR - a periodic resurfacing template. The algorithm

has a low computational (running) cost as compared to GOpt as it explores only a subset of the

range of all the possible solutions. Due to the reduced search space, the algorithm might not yield

the most optimal solution.

GOpt has higher time complexity as it searches in the full domain of the possible solution set.

Hence, it leads to a more optimal solution in comparison to GPR. To improve the convergence time

of GOpt , and hence, the algorithmic runtime, we provide the algorithm with good seeds (based on

HPR) as a part of the initial generation of the population.

6.2.1 HPR - Periodic Resurfacing Heuristic

From the derivations in Section 6.1.1, we infer that the choice of intermediate resurfacing points

may improve or degrade the accumulated VoI. Moreover, shifting a resurfacing point in the sched-

ule changes the potential VoI accumulated up to that point. VoI functions are time-dependent and
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a reconfiguration in resurfacing points affects the distance traveled by AUV, thereby affecting the

final time stamp of a batch of information chunks.

Let S be a UWSN with n sensor nodes as defined in Chapter 3. Let the AUV resurface after every p

sensor nodes, implying, that after visiting p nodes the AUV will resurface and transmit the batch of

the information to the base station. The AUV will then visit the next p nodes before resurfacing to

transmit and will keep on doing this until all n nodes have been visited. Period P can take on values

P = {1,2, . . . , p, . . . ,n}

As the number of the periods is n, a basic linear search based on HPR will be of the order of

O(n) ∗O(V ), where O(V ) is the complexity of the VoI evaluation procedure. In contrast, a basic

linear search to find the most optimum schedule (maybe periodic or not) will have a complexity

of the order of O(2n) ∗O(V ), hence, advocating our use of HPR for reducing complexity, albeit

sacrificing optimality.

The number of resurfacing iterations for an AUV would be

α = dn/pe

One anomaly to this periodic visitation is that in the last iteration, the AUV might not be able to

visit p nodes as n may not be exactly divisible by p. Besides this anomaly, the rest of the schedule

will have a periodic resurfacing pattern. In this last iteration, the number of nodes the AUV will

visit will be

n−bn/pc× p
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6.2.2 Genetic Algorithms

Both of the proposed genetic algorithms, GPR & GOpt , use the same fitness function for evaluating

the chromosomes. The fitness function is based on Equation 3.34,

FC = ϒAcc =
g

∑
h=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fh−τo jk ).vvisit
j .lvisit

h j (6.1)

6.2.2.1 GPR:A for Optimal Periodic Resurfacing Schedule

This GA is based on the heuristic HPR to find the optimal period for a resurfacing schedule that

maximizes the VoI accumulated. The optimal period is an integer that varies between 0 and n

(number of sensor nodes), therefore, the chromosome is simply a binary string where each gene

can take on a binary value (0 or 1). GPR employs the uniform crossover operator and tournament

selection for evolving the population. It also uses elitism to retain the best solution after each

generation during evolution.

6.2.2.2 GOpt:A for Optimal Resurfacing Schedule

The chromosome for this optimal resurfacing schedule is a strand of genes where each gene rep-

resents a unique resurfacing location. The number of genes in each chromosome is equal to the

number of resurfacing locations. Each gene can take on two values encoded to represent whether

the corresponding resurfacing location should be visited or not. GOpt construction is similar to

GPR. The crossover operator is uniform and the selection methodology is tournament selection.

Elitism is employed to retain the best combinatorial solution while evolving through the various

population generations.
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Table 6.1: Simulation Parameters

Parameter Values
UWSN Deployment Parameters

Deployment area 10 x 10 km2

Node deployment Uniform Grid
Inter-node distance - SI 1 km
Network deployment depth - SD Ratio * SI
Ratio - RDI - SD/SI 0 - 1000
Number of sensor nodes 100
Transmission range 120 - 140 m
Sensing range 70m
Mobile sink speed 2 m/s

Experimental Parameters
Genetic algorithms GPR, GOpt , REnd , RAll , RRand
Runs per experiment 50

Genetic Algorithm Parameters
Genetic algorithm GPR GOpt
Generations (iterations) 20 100
Population size 25 50
Selection mechanism Tournament Selection
Tournament size 5 5
Elitism Yes
Crossover operator Uniform Crossover
Crossover rate 0.5 0.5
Mutation rate 0.1 0.15

The initial population is supplemented with good seeds, i.e. chromosomes with high fitness score

that will yield good solutions. These seeds are obtained from the top best solutions generated by

GPR. This small variation could lead to a fast convergence time towards the optimal solution.

6.3 Simulation Setup & Results

The simulation parameters are given in Table 6.1. It is a 100 node UWSN deployed in a uniform

grid over a 10 km x 10 km area. An AUV moving with a speed of 2 m/s is used to collect the data.
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The AUV can offload data from sensor nodes using 10 Mbps optical links.

6.3.1 Studying the effect of Deployment Depth on AUV Resurfacing

This study is to validate inferences made in Sec 6.1.1 by shedding light on the relationship between

the number of times an AUV resurfaces and the ratio RDI .

RDI = SD/SI

where SD is the network deployment depth and SI is the inter-node distance. The tour size for

these experiments is 25 sensor nodes. The results in Figure 6.2 are averaged over 50 simulation

runs per experiment.

Section 6.1.1 hypothesizes that if nodes are nearer to the water surface then more frequent resur-

facing is required as compared to when the nodes are deeper in the sea. The results in Figure 6.2

can validate this argument. As RDI increases, i.e. the nodes are placed deeper into the sea, the

number of times the AUV resurfaces reduces. Note that there is a range of RDI for which there is a

significant change in the number of times an AUV resurfaces. Below that range, the AUV almost

always resurfaces after every single node visit and above that range, the AUV rarely resurfaces be-

fore the end of the tour. In this experiment (at least) up to RDI = 0.5 the AUV resurfaces 25 times

in its 25-node tour and after RDI = 25 it starts to taper to 1 (a single resurfacing event at the end

of the tour). This implies that the scheduling algorithms for our setting of VoI functions (setting

parameters A jk and B jk) are only effective within this range. Outside this range a deterministic

approach such as REvery and REnd would suffice.

95



R
es

u
rf

ac
in

g
 C

o
u

n
t

0
5

1
0

1
5

2
0

2
5

RD = SD / SI

0.10 0.60.5 0.90.75 21 10 3525 1000100

Always Resurfaces

Scheduling Algorithm

Never Resurfaces

Figure 6.2: The average number of times the AUV resurfaces as a function of the ratio RDI = SD/SI .
The results are averaged over 50 simulation runs.

6.3.2 Performance Analysis of GPR & GOpt Heuristics

We use REvery, REnd & RRand as scheduling procedures that serve as a baseline for comparison with

the GA schedulers GPR & GOpt . These schedulers are described below:

• REvery - AUV resurfaces after every node visit.

• REnd - AUV resurfaces at the end of the tour i.e. after visiting all of the sensor nodes in

the tour.

• RRand - AUV randomly chooses the number of times it resurfaces during a tour and also after

which node visit should it resurface.
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Figure 6.3: The VoI accumulated (ϒS) by different schedulers as a function of the number of sensor
nodes. The results are averaged over 50 simulation runs and have been normalized w.r.t. REnd .

The performance of a schedule is determined by the amount of VoI it accumulates, i.e. ϒS. The

results are shown in Figure 6.3. We use tour lengths of 10, 25, 50 and 100 sensor nodes for

our experiments. In light of the results in Section 6.3.1, the ratio of SD to SI is set 1.0 for this

experiment. ϒS is an absolute measure and does not have units in our definition. Any amount

of difference is a good result as it implies that more information has been gained in time for

actuation purposes. The amount of difference can be magnified or diminished by controlling A jk

& B jk settings but the results still signify the same information content. We have normalized all

results w.r.t. REnd for interpretation purposes. All results are averaged over 50 simulation runs for

each experiment.

From the results in Figure 6.3, we can infer that GPR & GOpt perform better than the baseline

schedulers. The effectiveness of Heuristic HPR is validated by the better results of GPR over the
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baseline schedulers. Moreover, GOpt generates more optimal schedules than GPR, albeit its higher

running cost. Choosing between GPR & GOpt is run time versus VoI optimization trade-off.

6.4 Remarks

In this chapter, we have developed a path planning approach for the case when an AUV needs to

resurface to transmit collected data to a remote sink node. We propose a two-tiered approach to

the path planning problem. As the first tier, we discover a path that optimizes VoI using algorithms

in Chapter 5. This is an implicit step in the course of this chapter as it has already been discussed

in Chapter 5. The second tier is to find the optimal resurfacing schedule for the AUV. So in this

chapter, we address the problem that given a path PS, what is the path with the resurfacing schedule

PS+R that can maximize the VoI collected.

We discover that the ratio RDI has an important role to play in the resurfacing schedule. There

are two extreme cases: if RDI is too large then it makes sense to resurface only at the end of the

tour; otherwise, if it is too small then the AUV should resurface after every node visit. From the

analysis, we discover a range for RDI in which it is reasonable to use an algorithm for determining

a resurfacing schedule.

We develop two algorithms for this purpose. GOpt is a combinatorial-optimization genetic algo-

rithm for optimizing the resurfacing schedule in terms of VoI. GPR uses a periodic resurfacing

heuristic HPR to find the VoI optimized route. While GOpt is better at accumulating VoI, GPR

gives quite a comparable performance in this regard. The advantage of GPR is its simplicity which

requires far less computation time than GOpt .
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CHAPTER 7: MULTIPLE AUV PATH PLANNING

7.1 VoI Maximization and Path Planning Problem

In this chapter, we develop path planning algorithms to address the following VoI accumulation

and maximization definitions, as given in Equation 3.26 & 3.27

ϒAcc =
a

∑
i=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fi j−τo jk ).vvisit
i j

ϒ
Multiple
Maximize→max

a

∑
i=1

n

∑
j=1

d

∑
k=1

A jke−B jk(τ fi j−τo jk ).vvisit
i j

The path planning problem we solve in this chapter is described by Definition 3.42

[
ϒ

AlgPP

Acc ← P(S,A)
]
← AlgPP[A,S,D,ϒAcc(t)

]

where,

ϒ
AlgPP

Acc is the VoI accumulated from the sensor nodes S by employing the traversal sequence PS,

P(S,A) is the set of all node visitation sequences for various AUVs determined by AlgPP,

AlgPP is a path planning algorithm that generates path PS or P(S,A) such that ϒ
AlgPP

Acc is accumulated,

A is the set of all AUVs,

S is the set of all sensor nodes,

D is the set of all data reports,

ϒAcc(t) is the function total VoI accumulated.
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Figure 7.1: Physical strategies to improve VoI accumulated by improving speed of a mobile sink
(MS) or by using multiple mobile sinks.
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7.2 Multiple AUVs - A Physical Strategy to Improve VoI

This chapter addresses the question of how to develop path planning algorithms for multiple AUVs.

In this dissertation, for a single AUV, the planning path problem is to find a node visitation se-

quence for data collection such that it maximizes VoI accumulated. The multiple AUV path prob-

lem requires an additional step that is to determine how to distribute the nodes among the AUVs.

So the question is whether there are any physical tangible design choices that can improve VoI

accumulated in a mobile sink based sensor network system. Examples of such design choices

are shown in Figure 7.1. One possibility is to improve the rate of data collection from the sensor

network. This minimizes time and should, therefore, improve VoI accumulated. This can be

accomplished by a mobile sink that has a faster speed as shown in Figure 7.1(b). Another design

choice can be using multiple AUVs as shown in Figure 7.1(c). Multiple AUVs can help to reduce

the overall traversal time for covering all the nodes in the sensor network.

Let us assume a sensor network sn with n nodes and an AUV a1 that travels distance d to traverse

all of these nodes. The map traversal time for this case is TCase−1. We can divide these nodes into

non-overlapping subsets sn1 and sn2 of sizes n1 and n2 respectively, such that, n > n1, n > n2 and

n = n1 + n2. These subsets of nodes are assigned to a1 and another new AUV a2, i.e. a1 ← sn1

and a2← sn2 . Let us assume that the schedule of visitation for subsets sn1 and sn2 is in the same

sequence as it is in the visitation schedule for sn. Let a1 travel distance d1 to cover n1 nodes in

time t1, and a2 travel distance d2 to cover n2 nodes in time t2. Then, as the visitation sequences

are in the same order, we can infer d = d1 +d2 and also d > d1 & d > d2. Now, if the tours have

started such that their operational time overlaps each other, then the new map traversal time TCase−2

should guarantee the condition TCase−2 < TCase−1 = t1+ t2. Moreover, if the AUVs start their tours

at the same time, then we can determine traversal time as either TCase−3 = t1 or as TCase−3 = t2,

depending upon which is longer among t1 and t2.
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This implies that TCase−3 ≤ TCase−2 < TCase−1. Thus, it can be easily inferred that if the nodes are

split into subsets and assigned to AUVs which start their tour with a time overlap, then there should

be a reduction in the overall map traversal time T .

We argued in Chapter 4 that time minimization heuristics can help in improving VoI accumulated.

Therefore, we can safely say that using multiple AUVs can improve VoI accumulated by reducing

the map traversal time.

7.3 Various Heuristic Combinations for Path Planning Algorithms

In Chapter 5, a tour is defined as a sequence of sensor nodes that the AUV traverses for data col-

lection. The goal of a path planning algorithm is to find a tour for AUV that maximizes the VoI

accumulated from the underwater sensor networks. Therefore, in the case of multiple AUVs, the

path planning algorithms should find a schedule for each AUV, such that all the schedules collec-

tively contribute towards maximizing VoI. The tours planned in this dissertation are all classified

as Hamiltonian, i.e. any sensor node is only visited once during the traversal of a map. Hence,

each sensor node will be uniquely assigned to an AUV. The algorithms assume a mesh deployment

of nodes and can be easily extended to other node arrangements once the underlying concepts have

been grasped. The concepts we are referring to are the heuristics developed in Chapter 4. The al-

gorithms in this chapter employ the aforementioned heuristics in various combinations. Table 7.1

provides a listing of these combinations for each multiple AUV path planning algorithm. The

columns in the table present the names of the heuristics while the rows correspond to the names

of the path planning algorithms. Details of these various combinations are discussed in following

subsections for each path planning algorithm.
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Table 7.1: A listing of heuristics employed by various algorithms

Heuristics

HMaxVoI HShPath HIntVisit HNodeBal HVoIBal HMapPart

RPP X

ZPP X X

LPP X X X

Pa
th

Pl
an

ni
ng

A
lg

or
ith

m
s GPPN X X

GIPPN X X X !

GPPV B X X X

GIPPV B X X X ! X

GPPMP X X X

GIPPMP X X X ! X

In Table 7.1, an exclamation mark ‘!’ is used to identify combinations of the heuristic HNodeBal

and path planning algorithms that are IPPs. IPPs implement HIntVisit using the TourIntermediate()

procedure. This TourIntermediate() procedure, detailed in Algorithm 9, disturbs the exact node

balancing which was earlier enforced due to HNodeBal . The node balancing disturbance is because

of the addition of smaller sub-tours. These smaller sub-tours, when incorporated in the main

AUV tours, result in varying the length of the main tours. The algorithms that use HIntVisit are

GIPPN , GIPPV B (Algorithm 11) and GIPPMP (Algorithm 13). For all the path planners, supporting

procedures are listed in Algorithm 8 and Algorithm 9. The procedures that help in determining

VoI are given Algorithm 8, while Algorithm 9 includes procedures that assist in path planning by

discovering sub-tours or by planning detailed geo-physical tours (although geo-physical tours are

not in the scope of this dissertation, there is extensive literature on this topic).
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7.4 Multiple AUV Path Planning Algorithms

The algorithms described in this section are:

• RPP - Random Path Planner

RPP← HNodeBal

• ZPP - Zig-Zag Path Planner

ZPP← HNodeBal +HMapPart

• LPP - Lawn-Mower Path Planner

LPP← HNodeBal +HMapPart +HShPath

• GPPN - Greedy Path Planner with Node Balancing

GPPN ← HNodeBal +HMaxVoI

• GIPPN - Greedy Path Planner with Node Balancing and Intermediate Node Visitation

GIPPN ← HNodeBal +HMaxVoI +HIntVisit

• GPPV B - Greedy Path Planner with VoI Balancing

GPPV B← HNodeBal +HMaxVoI +HVoIBal

• GIPPV B - Greedy Path Planner with VoI Balancing and Intermediate Node Visitation

GIPPV B← HNodeBal +HMaxVoI +HVoIBal +HIntVisit

• GPPMP - Map Partitioned Greedy Path Planner

GPPMP← HNodeBal +HMaxVoI +HMapPart

• GIPPMP - Map Partitioned Greedy Path Planner with Intermediate Node Visitation

GIPPMP← HNodeBal +HMaxVoI +HMapPart +HIntVisit
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7.4.1 Random Path Planner - RPP

This is the baseline path planner against which the performance of other path planning algorithms

will be judged. In RPP nodes that have not yet been visited are chosen randomly from the map and

then assigned to the AUVs in a round-robin fashion that helps node balancing. Therefore, the only

heuristic RPP implements is HNodeBal . This heuristic has been kept in the random path planner so

that comparison with the other path-planners becomes more meaningful.

7.4.2 Zig-Zag Path Planner - ZPP

This is also a baseline path planner which implements two heuristics, namely HMapPart and HNodeBal .

Compared to RPP it shows the incremental effect of using map partitioning. However, the route

it plans for the AUVs is predetermined like LPP path planner but it is non-optimal in terms of

distance. To be precise, the routes ZPP generates are approximately double in length to the LPP

algorithm.

It plans a row-by-row traversal of the mesh just as the LPP algorithm. However, once it reaches

the end of a row, it starts traversing the immediate next row from the node that is farthest from the

last node of the current row that the AUV just visited. In this manner, the AUVs traverse the nodes

in the map in a row-by-row zig-zag manner, and so the name ZPP.

7.4.3 Lawn-Mower Path Planner - LPP

The Lawn-Mower path planner for multiple AUVs is a simple variant of the Lawn-Mower Algo-

rithm in Chapter 5. This path planner is detailed as Algorithm 6. As the first step, this algorithm

partitions the map into equal sized regions using procedure PartitionMap(). This enforces the
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heuristic HMapPart and HNodeBal in the path planner. Then, using a direction-priority-list, the al-

gorithm plans a Lawn-Mower path for each AUV, thus encoding the heuristic HShPath. The final

result of this path planner is each AUV having the shortest path tour in a mesh setting of nodes.

Algorithm 6 Shortest Path Lawn-Mower Path Planner – LPP
1: procedure LPP({s1,s2, ...,sn},{a1,a2, ...,aa})

2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: A←{a1,a2, ...,aa} . Set of AUVs

4: PD←{(East,West,South,North)} . Direction priority list

5: for m← 1 to a do

6: Sm← /0 . Subset of sensor nodes to be visited by mth AUV

7: Vm← /0 . Visitation sequence for mth AUV

8: end for

9: ST ←{S1,S2, ...,Sa} . Set of subsets Sm

10: PARTITIONMAP(ST ,S) . HMapPart & HNodeBal - Partition map while balancing nodes

11: for m← 1 to a do

12: i← GETTOURSTARTNODE(Sm,am)

13: while Sm 6= /0 do

14: N← NEIGHBORHOOD(i,Sm)

15: j← sx from N in the direction given by PD

16: Vm←Vm + j

17: Sm← Sm− j

18: i← j

19: end while

20: end for

21: VT ←{(a1,V1),(a2,V2), ...,(aa,Va)} . Set of key-value pairs of AUVs and visitation sequences

22: return VT

23: end procedure
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7.4.4 Greedy Path Planner with Node Balancing - GPPN

This path planner is a simple greedy algorithm for scheduling visits by multiple AUVs. It is based

on heuristics HMaxVoI and HNodeBal . Note that this algorithm does not employ HVoIBal .

Algorithm 7 lists the details of GPPN . The set of nodes are first divided into smaller non-overlapping

subsets of size approximately n/a, where n is the number of sensor nodes and a is the number of

AUVs. Because the subsets are chosen with no VoI-specific metric, therefore, the subsets may

have a disproportionate number of hot-spots in them. After division into subsets, each subset is

assigned to an AUV. The algorithm then uses HMaxVoI to determine the traversal sequence for each

AUV from among the subset of nodes that it has been assigned.

GPPN serves as our basic greedy algorithm for scheduling multiple AUVs. We use it as a baseline

for comparison with GPPV B which employs the HVoIBal heuristic for VoI balancing so as to avoid

a disproportionate assignment of hot-spots. Results for GPPN are also compared against GPPMP

which uses HMapPart to reduce average travelling times while still maintaining the node balancing

heuristic HNodeBal .

7.4.5 Greedy Path Planner with Node Balancing and Intermediate Node Visitation - GIPPN

This algorithm is exactly similar to GPPN in construction, except that, it uses HIntVisit to plan sub-

tours between a source-destination pair once a destination node has been selected using HMaxVoI .

This sub-tour discovery is done using the procedure TourIntermediate(). Therefore, HIntVisit is

enforced by the procedure TourIntermediate(). As stated earlier node balancing can be disturbed

by TourIntermediate() i.e. some AUVs might end up visiting slightly more number of nodes than

the others. Hence, IPP algorithms can be termed as best effort algorithms for HNodeBal and not

necessarily optimal.
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Algorithm 7 Naive Greedy Path Planner – GPPN
1: procedure GPPN({s1,s2, ...,sn},{a1,a2, ...,aa})
2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: A←{a1,a2, ...,aa} . Set of AUVs

4: for m← 1 to a do
5: Vm← /0

6: if m≤ (n mod a) then . HNodeBal - Divide nodes as equally as possible

7: q←
⌈n

a

⌉
8: else
9: q←

⌊n
a

⌋
10: end if
11: i← GETTOURSTARTNODE(S,am) . Last node visited by the mth AUV

12: for p← 1 to q & S 6= /0 do
13: j← GETNODETHATHASMAXVOI(S, i) . HMaxVoI - Visit node with highest VoI on priority

14: Vm←Vm + j

15: S← S− j

16: i← j

17: end for
18: end for
19: VT ←{(a1,V1),(a2,V2), ...,(aa,Va)} . Set of key-value pairs of AUVs and visitation sequences

20: return VT

21: end procedure
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Algorithm 8 Procedures for Handling Value of Information
1: procedure GETNODETHATHASMAXVOI(Sremaining,scurrent)

2: Sr← Sremaining

3: sc← scurrent

4: if Valuation is based on Data Reports then
5: ∀sx ∈ Sr determine ϒsx using DETERMINENODEVOI(sc,sx,Sr,data)

6: else if Valuation is based on Node then
7: ∀sx ∈ Sr determine ϒsx using DETERMINENODEVOI(sc,sx,Sr,node)

8: end if
9: k← sx ∈ Sr such that ϒsx is max∑Ae−B(t−τo)

10: return k

11: end procedure
12: procedure DETERMINENODEVOI(Sremaining,scurrent ,starget ,ValuationBasis)

13: Sr← Sremaining

14: sc← scurrent

15: st ← starget

16: τ f ← GETEXACTTOURTIME(Sr,sc,st)

17: if ValuationBasis is data then
18: D←{dst 1,dst 2, ...,dst d} . Data reports at node starget

19: ϒ← 0

20: while D 6= /0 do
21: dy← GETNEXTDATAREPORT(D)

22: α ← GETA(dy)

23: β ← GETB(dy)

24: τo← GETτo(dy)

25: ϒ += αe−β (τ f−τo)

26: D← D−dy

27: end while
28: else if ValuationBasis is node then
29: α ← GETA(st)

30: β ← GETB(st)

31: τo← GETτo(st)

32: ϒ← αe−β (τ f−τo)

33: end if
34: end procedure
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Algorithm 9 Intermediate Node Traversal and Exact Travel Time Procedures
1: procedure TOURINTERMEDIATE(source,destination,SensorNodes)

2: p← source

3: q← destination

4: SN ← SensorNodes

5: TInt ← /0 . Tour for intermediate node visitation sequence

6: while p 6= q do
7: N← GETNEIGHBORHOOD(p,SN)

8: i← sx ∈ N such that INTERNODEDISTANCE(sx,q) is minimized

9: TInt ← TInt + i

10: p← i

11: end while
12: TInt ← TInt +q

13: return Tint

14: end procedure
15: procedure PLANINDEPTHTOUR(source,destination,SensorNodes,PathPlannerType)

16: Tour← /0

17: Tour← Tour+ source

18: if PathPlannerType is intermediate node visitation then
19: Tour← Tour+ TOURINTERMEDIATE(source,destination,SensorNodes)

20: else
21: Tour← Tour+destination

22: end if
23: time← RUNGEOPHYSICALSIMULATION(Tour,PhysicalDeploymentMap)

24: return Tour, time

25: end procedure
26: procedure GETEXACTTOURTIME(Sremaining,scurrent ,starget)

27: Sr← Sremaining

28: sc← scurrent

29: st ← starget

30: Tour, time← PLANINDEPTHTOUR(Sr,sc,st)

31: return time

32: end procedure
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7.4.6 Greedy Path Planner with VoI Balancing - GPPV B

This path planner is based on proposition HMaxVoI , HNodeBal & HVoIBal . The details of this algo-

rithm can be seen in Algorithm 10.

The nodes are assigned in a round-robin fashion to the AUVs based on the VoI they have to offer.

In descending priority they are assigned to an AUV. This priority-based round-robin arrangement

enforces HVoIBal and HNodeBal . After each assignment, a tour is planned towards the node, thereby,

encoding HMaxVoI into the algorithm.

Algorithm 10 VoI Balanced Greedy Path Planner – GPPV B
1: procedure GPPV B({s1,s2, ...,sn},{a1,a2, ...,aa})
2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: A←{a1,a2, ...,aa} . Set of AUVs

4: for m← 1 to a do
5: Vm← /0 . Visitation sequence for mth AUV

6: im← GETTOURSTARTNODE(S,am) . Last node visited by the mth AUV

7: end for
8: l← 0

9: while S 6= /0 do
10: m← (l mod a)+1 . HVoIBal & HNodeBal - Switch AUV in each iteration

11: j← GETNODETHATHASMAXVOI(S, im) . HMaxVoI - Visit node with highest VoI on priority

12: Vm←Vm + j

13: S← S− j

14: im← j

15: l← l +1

16: end while
17: VT ←{(a1,V1),(a2,V2), ...,(aa,Va)} . Set of key-value pairs of AUVs and visitation sequences

18: return VT

19: end procedure
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7.4.7 Greedy Path Planner with VoI Balancing and Intermediate Node Visitation - GIPPV B

The construction of this algorithm is identical to GPPV B in Algorithm 10, except that, it uses

HIntVisit to plan sub-tours between a source-destination pair once a destination node has been se-

lected using HMaxVoI . This sub-tour discovery is done using the procedure TourIntermediate().

The details of this path planner are given in Algorithm 11.

Algorithm 11 VoI Balanced Greedy Path Planner with HIntVisit – GIPPV B
1: procedure GIPPV B({s1,s2, ...,sn},{a1,a2, ...,aa})
2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: A←{a1,a2, ...,aa} . Set of AUVs

4: for m← 1 to a do
5: Vm← /0 . Visitation sequence for mth AUV

6: im← GETTOURSTARTNODE(S,am) . Last node visited by the mth AUV

7: end for
8: l← 0

9: while S 6= /0 do
10: m← m is index of am such that Vm has fewest nodes . HVoIBal & HNodeBal

11: j← GETNODETHATHASMAXVOI(S, im) . HMaxVoI - Visit node with highest VoI on priority

12: T ← /0

13: T ← TOURINTERMEDIATE(im, j,Sm) . HIntVisit - Intermediate node visitation sequence

14: Vm←Vm +T

15: Sm← Sm−T

16: im← j

17: end while
18: VT ←{(a1,V1),(a2,V2), ...,(aa,Va)} . Set of key-value pairs of AUVs and visitation sequences

19: return VT

20: end procedure

7.4.8 Map Partitioned Greedy Path Planner - GPPMP

The path planner GPPMP first employs the HMapPart heuristic to partition the Map. The partitioning

is done in a way to maintain heuristic HNodeBal . Afterward, it employs HMaxVoI to visit nodes
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with maximum VoI first. Algorithm 12 states the procedure for this path planner. Note how

the algorithm uses heuristics HMapPart , HNodeBal and HMaxVoI in sequence for the path planning

process. This algorithm does not implement the heuristic HVoIBal as it is irrelevant here. This is

because there in cross-sharing of nodes across partitions of the map for traversal purposes, and

hence, no VoI balancing procedure can be implemented. If there are multiple high priority nodes

such as hot-pots in a region, then they can only be visited by the AUV assigned to that partition.

Algorithm 12 Map Partitioned Greedy Path Planner – GPPMP
1: procedure GPPMP({s1,s2, ...,sn},{a1,a2, ...,aa})
2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: A←{a1,a2, ...,aa} . Set of AUVs

4: for m← 1 to a do
5: Sm← /0 . Subset of sensor nodes to be visited by mth AUV

6: Vm← /0 . Visitation sequence for mth AUV

7: end for
8: ST ←{S1,S2, ...,Sa} . Set of subsets Sm

9: PARTITIONMAP(ST ,S) . HMapPart & HNodeBal - Partition map while balancing nodes

10: for m← 1 to a do
11: i← GETTOURSTARTNODE(Sm,am) . Last node visited by the mth AUV

12: while Sm 6= /0 do
13: j← GETNODETHATHASMAXVOI(Sm, i) . HMaxVoI - Visit node with highest VoI

14: Vm←Vm + j

15: Sm← Sm− j

16: i← j

17: end while
18: end for
19: VT ←{(a1,V1),(a2,V2), ...,(aa,Va)} . Set of key-value pairs of AUVs and visitation sequences

20: return VT

21: end procedure
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7.4.9 Map Partitioned Greedy Path Planner with Intermediate Node Visitation - GIPPMP

The construction of GIPPMP is similar to GPPMP as in Algorithm 12, but in additon it uses HIntVisit

for intermediate node visitation. GIPPMP is given as Algorithm 13. Note how the algorithm uses

heuristics HMapPart , HNodeBal , HMaxVoI and HIntVisit for its planning process.

Algorithm 13 Map Partitioned Greedy Path Planner with HIntVisit – GIPPMP
1: procedure GIPPMP({s1,s2, ...,sn},{a1,a2, ...,aa})
2: S←{s1,s2, ...,sn} . Set of sensor nodes

3: A←{a1,a2, ...,aa} . Set of AUVs

4: for m← 1 to a do
5: Sm← /0 . Subset of sensor nodes to be visited by mth AUV

6: Vm← /0 . Visitation sequence for mth AUV

7: end for
8: ST ←{S1,S2, ...,Sa} . Set of subsets Sm

9: PARTITIONMAP(ST ,S) . HMapPart & HNodeBal - Partition map while balancing nodes

10: for m← 1 to a do
11: i← GETTOURSTARTNODE(Sm,am) . Last node visited by the mth AUV

12: while Sm 6= /0 do
13: j← GETNODETHATHASMAXVOI(Sm, i) . HMaxVoI - Visit node with highest VoI

14: T ← /0

15: T ← TOURINTERMEDIATE(i, j,Sm) . HIntVisit - Intermediate node visitation sequence

16: Vm←Vm +T

17: Sm← Sm−T

18: i← j

19: end while
20: end for
21: VT ←{(a1,V1),(a2,V2), ...,(aa,Va)} . Set of key-value pairs of AUVs and visitation sequences

22: return VT

23: end procedure
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7.5 Simulation Setup & Results

We consider an underwater sensor network of 100 nodes deployed in a uniform grid over a 10x10

km2 area as shown in Figure 3.3. This renders an inter-node distance of 1 km each for the vertical

and horizontal neighbors, while the distance between neighboring nodes in the diagonals is 1.41

km. We consider an AUV that operates at a speed of 10 m/s. Such a setting can, for example, be

deployed in the Strait of Gibraltar. This is shown in Figure 7.2 where the deployment is to scale

and the nodes are approximately a kilometer apart each.

We evaluate the comparative performance of the path planning algorithms through three different

experiments. First, we assess the VoI collected in the case of two AUVs and five AUVs. We

also experiment with various distributions of hot-spots to see their effect on VoI collected by the

path planners. Then we asses the time required to reach the first hot-spot so as to compare the

emergency response of various path planning algorithms. Lastly, we analyze the average distance

traveled by the AUVs given one, two, five and ten AUVs.

For the simulation setup, we iterate over multiple scenarios, each of which corresponds to a partic-

ular UWSN VoI setting. The results are averaged over 150 different arrangements of the UWSN

setting for VoI. Over each arrangement, all the path planners are executed to gauge their perfor-

mance. In all of the scenarios, we consider four hot-spots which are situated at variable locations

across the simulation iterations. All the valuation coefficients A are set to unity i.e. A = 1 for all

data segments residing on nodes either inside or outside the hot-spot regions. We have a binary

model for the decay coefficient B i.e. it has a different value for indicating whether a data segment

is reporting a hot-spot or a normal event. To each sensor node, we assign a random number of

data segments. The starting point of the AUVs is located at the boundary of the mesh deployment.

Multiple AUVs are deployed in an equidistant fashion from each other.
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Figure 7.2: An example of UWSN deployed in the Strait of Gibraltar. The inter-node distance is approximately equal to 1 km
and is drawn to-scale in the figure.
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7.5.1 VoI Accumulated in various Spatial Distributions of Hot-Spots

By spatial distribution we imply how the hot-spots are distributed across the UWSN map; are they

in close proximity i.e. collocated on the map, or are they evenly distributed across the map, or

are they just randomly occurring in nature. These spatial distributions will help us in specifically

assessing the performance of path planners in terms of map partitioning i.e. the heuristic HMapPart .

In this experiment, we consider four different deployments of the hot-spots:

• No Hot-Spots: This will be used as a baseline in which all events reported will be normal.

During the course of the simulation, no active hot-spot will be reported.

• Random: Here we will generate hot-spots in randomly selected locations of the map.

• Even: This scenario is to simulate a balanced distribution of hot-spots across the map. The

map is divided into as many similarly sized regions as are the number of hot-spots. A hot-

spot is initialized in every region of the map.

• Skewed: In this scenario, we will randomly select a portion of the map and then initialize

hot-spots in only this selected portion of the map.

We analyze results for the case where two AUVs (Figure 7.5.1) and five AUVs (Figure 7.5.1) are

deployed for data collection. From the results in Figure 7.5.1, we can see that in the No Hot-Spots

scenario, LPP performs the best in terms of VoI accumulated, and this is because it minimizes

the AUV traversal time. This result is consistent with the results for the single AUV LPP path

planner in Chapter 5. For the remaining scenarios, i.e. Random, Even and Skewed distribution of

hot-spots, the greedy algorithms with map partitioning and load balancing perform better in terms

of VoI accumulated.
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Figure 7.3: VoI accumulated by various path planners with two AUVs.

With algorithms GPPN and GIPPN we show that it was not enough to just distribute the node

equally among the AUVs. Therefore, these algorithms are designed with only the HNodeBal multiple

AUV heuristic. Other than this they also have the heuristics HMaxVoI and HShPath encoded in them

with HIntVisit present additionally in GIPPN . From the results, we can see that GPPN and GIPPN do

worse than the other greedy variants that are GPPV B, GIPPV B, GPPMP and GIPPMP. It is interesting

to note that it is also outperformed by the other map partitioning algorithms LPP and ZPP. This

speaks of the effectiveness of using HMapPart in the path planning algorithms.
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Figure 7.4: VoI accumulated by various path planners with five AUVs.

The greedy algorithms GPPV B and GIPPV B are designed with keeping VoI balancing in the view

using the heuristic HVoIBal . The utility of this heuristic is immediately apparent in the results where

they perform better than their GPPN and GIPPN counterparts.

The best performing algorithms are GPPMP and GIPPMP. The collect the highest amount of VoI. In

all the distribution of hot-spots, including the case of No Hot-Spots, the best-performing algorithms

are always those which deploy the HMapPart heuristic. Note that in case of Skewed the hot-spots

have been deployed in a manner that they’ll be assigned only to a single AUV if the algorithm

uses HMapPart , therefore, implying that there will be no VoI balancing. Even in this case where VoI
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balancing is at its worst, the map partitioning algorithms work very well, thereby, highlighting the

highly positive impact of time minimization heuristics.

The effect of time minimization can also be seen by comparing between the IPP variants of the

greedy algorithms. The IPP variants employ HIntVisit which reduces travelling time. All IPPs pere-

form better than their non-IPP counterparts i.e. GIPPN , GIPPV B and GIPPMP perform better than

GPPN , GPPV B and GPPMP respectively. Again, this result is consistent with findings in Chapter 5

where GIPP collected more VoI than GPP for a single AUV.

The results for five AUVs in Figure 7.5.1 corroborate the results for two AUVs shown in Fig-

ure 7.5.1. Therefore, the results can be scaled to an increasing number of AUVs.

Other than these comparisons, what is most important to note is that five AUVs collect more VoI

than two AUVs. This reiterates the argument, which is the basis of this chapter, that using multiple

AUVs improves the amount VoI collected.

As a closing remark to this analysis we can make two general inferences on performance of heuris-

tics in terms of VoI collection; one is that for multiple AUVs HMapPart > HVoIBal > HNodeBal; while

in terms of a singular AUV entity among multiple AUVs HIntVisit +HMaxVoI > HMaxVoI .

7.5.2 AUV Tour Time with increasing number of AUVs

In this experiment, we study that how an increasing number of AUVs contribute to lesser map

traversal time and, therefore, a higher VoI collected. Moreover, the conjecture while proposing the

HMapPart heuristic was that it contributes to reducing AUV travel time. In this experiment, we will

gauge whether this conjecture is correct.
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Figure 7.5: Average distance travelled by each AUV with increasing number of AUVs.

In this study we have recorded distance traveled, but as the underlying operation of our simulations

strictly based upon the equation S = V × T i.e. distance traveled S is directly proportional to

velocity V and traveling time T , therefore, we can use the results of distance traveled to make

factually correct inferences of tour time.

We record the average distance traveled by the AUVs for various path planning algorithms. We

vary the number of AUVs from one to ten. The hot-spots are located randomly on the map, how-

ever, their existence should not affect this study at all i.e. even in the case that there are no hot-spots,

the results should be similar to the graphs generated for this study.
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From results in Figure 7.5, we see that the shortest path algorithm LPP performs the best in terms

of distance traveled. Also the IPPs have a lesser traveling distance as compared to their non-IPP

counterparts. This explains why algorithms that employ HIntVisit perform better than those that

do not employ this heuristic. All of these results are consistent with the single AUV findings in

Chapter 5.

We can also observe that greedy map partitioning algorithms travel a smaller distance to traverse

the map as compared to greedy algorithms that do not employ HMapPart . This establishes the

conjecture that map partitioning should result in lesser traveling time.

With an increase in the number of AUVs, we observe a reduction in the average distance traveled

by the AUVs. This should be intuitive as the responsibility of visiting and collecting data from all

the nodes is now being shared by a greater the number of AUVs. Therefore, the more the AUVs

the lesser is the tour time and hence greater the VoI collected.

Map partitioning algorithms, and for that matter also IPPs can also be advocated on the basis that

they result in fuel savings because of shorter tour times or distances.

Overall, GIPPMP seems to be a good candidate for being the best algorithm as it combines the

good in both experiments i.e. highest VoI collection with shorter tour times and good fuel savings.

7.5.3 Emergency Response - Time to hit First Hot-Spot

In Chapter 5 we performed an emergency response analysis on the path planning algorithms. We

will do a similar analysis in this section by analyzing the time required to hit the first hot-spot by

various path planning algorithms.
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Figure 7.6: Time taken to hit the first hot-spot given the hot-spots are randomly distributed.

For this experiment, we use a Random spatial distribution for deploying hot-pots in the map. The

first observation from the results in Figure 7.6 is that the greedy algorithms are best in terms

of hitting the target at the earliest. Moreover, in this experiment, the non-IPP versions of the

algorithms come out on top of the IPP variants. Clearly, if reaching a hot-spot is a priority then

HIntVisit should be skipped for that segment of the tour.

Map partitioned algorithms perform the best in this experiment. The reason is that the algorithms

have been not designed in a way that the AUV closest to the hot-spot visits it first, but the map-

partitioned algorithms have this feature automatically encoded in them. Because each AUV is
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assigned to a specific region, therefore, if there is a hot-spot in its region then the AUV would be

automatically the closest one to visit it. This feature i.e. assigning a hot-spot to the closest AUV

can be included in the algorithms with ease by not assigning nodes in a blind round-robin fashion.

If this is made part of the algorithms then the other GPP and GIPP variants will also perform as

good as the GPPMP and GIPPMP path planners in terms of emergency response

The result for 10 AUVs is an anomaly in terms of the performance of LPP. Here LPP is as good

as GPPMP and GIPPMP. This result is an artifact of the way the map has been partitioned for this

case as here the partitions are singular rows with 10 nodes each. The AUV only has to follow a

straight line to get to the hot-spot and, hence, the identical performance in terms of getting to the

first hot-spot.

7.6 Remarks

In this chapter we conclude, that uses multiple mobile sinks for data collection improves VoI accu-

mulated. Scheduling node visitation sequences for multiple AUVs introduces challenges that are

different from the single AUV path planning problem. We have developed a number of algorithms

based on a combination of heuristics. Through detailed simulations, we demonstrated the efficacy

of different heuristics and algorithms. We conclude that node balance map partitioning is a very

effective heuristic for VoI accumulation. Coupling this with intermediate node visitation gives us

the highest VoI accumulation results.
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CHAPTER 8: CONCLUSION

In this dissertation, we have used value of information (VoI) in the form of Infotentials for path

planning of autonomous underwater vehicles (AUVs) in underwater sensor networks (UWSNs).

These types of networks have wireless communications issues and transferring large amounts of

data can be problematic due to low-bandwidth acoustic channels. Therefore, one of the strategies

proposed by the researchers is the use of AUVs which act as data mules for retrieving data from

the subsurface sensor nodes.

We propose the use of time-decaying VoI as a means to develop a mechanism in which nodes in

high-priority regions can be distinguished from nodes in low-priority regions. We develop a UWSN

model for VoI using Infotentials and based on this, we further develop the VoI maximization and

AUV path planning algorithms for various scenarios.

We propose a greedy approach in which the nodes advertise the VoI they offer at various times

and the AUV traverses the nodes in descending order of the VoI gains from the node visits. We

explore this approach in greater detail by discovering factors that affect VoI in path planning and

then proposing several path planning algorithms accordingly. We also propose three heuristics,

namely, VoI maximization, tour time minimization by shortest-path, and tour time minimization

by intermediate node visitation. Based on these heuristics, we develop various algorithms and then

discuss various factors and scenarios under which these algorithms perform comparative to each

other.

One of these factors is the valuation ratio which tells whether a VoI maximization strategy or a

time minimization strategy would perform better for a certain value of this ratio. The other factor

is the emergency response, which gives insights for the manner in which one wants to design a

node visitation strategy in case of emergency situations.
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We also explore the multiple AUV path planning with the goal of maximizing VoI retrieved from

the underwater sensor networks. We propose an extended range of heuristics for aiding path plan-

ning algorithms. We argue that an equal distribution of nodes among various AUVs, i.e. load-

balancing among AUVs, improves the VoI accumulation. We further show that distributing the

nodes in a way that VoI is distributed more fairly, i.e. balancing-VoI, increases the amount of VoI

gathered. Lastly, we discover that if the map is partitioned in a way that the AUVs have to travel

a smaller distance on average as compared to roaming the whole map, then VoI accumulation is

improved by virtue of saving time which is in turn a factor in minimizing losses in Infotentials, i.e.

time decaying VoI functions.

In the aforementioned problems the AUV acts as the sink node and, therefore, VoI decay stops once

the AUV has retrieved data from the sensor nodes. In such a case the AUV is acting as the node

where sensor fusion takes place and, hence, can be deemed as a sink node. The other scenario can

be where the AUV is not well-equipped or informed-enough to perform the required sensor fusion

activity or trigger any necessary actuation decisions. In such a case the AUV will need to resurface

to transmit data to a remote sink node, and hence, the VoI will stop decaying once it is received by

the remote sink node. This dramatically changes the path planning strategies. We highlight various

challenges in this regard. We study the impact of inter-node distance and resurfacing distance on

VoI accumulation. We then find a range where optimizing a resurfacing schedule for path planning

purposes should yield better results. We also find the range where resurfacing at every node or

not resurfacing until the very end of the tour makes more sense. Given a planned path, using path

planning algorithms in Chapter 5 & 7, we augment it with optimal resurfacing locations. We use

genetic algorithms for discovering these optimal resurfacing schedules. We also propose the use

of a periodic resurfacing heuristic to develop an algorithm that is almost as efficient as the optimal

VoI genetic algorithm.
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