
Respiratory Medicine (2013) 107, 841e847
Available online at www.sciencedirect.com

journal homepage: www.elsevier .com/locate/rmed
The prediction of in-flight hypoxaemia using
non-linear equations
C.G. Billings a, H.L. Wei b, P. Thomas a, S.J. Linnane c,
B.D.M. Hope-Gill a,*
aDepartment of Respiratory Medicine, University Hospital Llandough, Cardiff, UK
bDepartment of Automatic Control and Systems Engineering, University of Sheffield, UK
cBlackrock Clinic, Blackrock, Co., Dublin, Ireland
Received 5 December 2012; accepted 18 February 2013
Available online 21 March 2013
KEYWORDS
Flight assessment;
Hypoxia;
Predictive equations
* Corresponding author.
E-mail addresses: Ben.Hope-Gill@w

0954-6111/$ - see front matter ª 201
http://dx.doi.org/10.1016/j.rmed.201
Summary

Background: Respiratory disease may cause profound hypoxaemia during flight. Previously
derived linear equations poorly predict the need for supplemental oxygen during air travel.
The current gold standard assessment is the hypoxic challenge test (HCT). Recent guidelines
recommend HCT is performed for those patients with SpO2 < 95% at sea level. The HCT proto-
col is a costly and time consuming investigation.
Methods: Retrospective clinical and HCT data from 138 patients were applied to previous
linear equations to assess predictive value. Novel non-linear predictive models (NLMs) were
constructed from these data. The linear equations and the NLMs were then applied prospec-
tively to 44 patients undergoing HCT.
Results: Overall, 39% of historic patients had a positive HCT (PaO2N2 <50 mmHg). Existing
linear equations varied in sensitivity (52e87%) and specificity (40e74%) at predicting positive
HCT results. Seven novel NLMs (NLM1 to NLM7) were developed from the historic dataset. All
NLMs predicted PaO2N2 more accurately than the original linear equations when tested pro-
spectively. The best fit was observed using NLM2 which uses PaO2RA and PaCO2RA as input
terms. The NLMs are applicable to a broad range of conditions.
Conclusions: The novel NLMs represent a low cost option for the prediction of significant hyp-
oxia during flight and perform better than SpO2 in identifying those patients who require more
formal assessment with HCT.
ª 2013 Elsevier Ltd. All rights reserved.
ales.nhs.uk, bhopegill@netscape.net (B.D.M. Hope-Gill).
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Introduction

More than two billion passengers fly each year, a figure
predicted to double within two decades.1,2 Cabin pressur-
isation is set to a maximum altitude of 8000 feet, equiva-
lent to breathing 15.1% oxygen at sea level. At this partial
pressure of oxygen the PaO2 in a healthy person is reduced
to 7.0e8.5 kPa, an effect which is usually unnoticed.
However, patients with respiratory disease who are hypoxic
at sea level may experience profound hypoxia and respi-
ratory distress.3

Previous studies have examined the response to hypo-
xia.3e8 From these studies, a number of regression equa-
tions were developed to predict in-flight oxygenation from
measurements taken at sea level.3 However, these pre-
dictive equations were derived from measurements taken
from small series of patients with chronic obstructive pul-
monary disease (COPD). Therefore, their ability to reliably
predict in-flight hypoxaemia may be limited, particularly in
patients with respiratory disease other than COPD.

Protocols have also been developed to conduct hypoxic
challenge test (HCT) assessments to titrate the level of
oxygen supplementation that might be required during
flight.5e8 The HCT has been shown to reproduce degrees of
desaturation in normal subjects and in passengers with
COPD comparable to that observed during air travel.9,10

Recent guidelines from the British Thoracic Society11

recommend that clinicians consider HCT assessment in pa-
tients at risk with a SpO2 < 95% at sea level. In-flight oxygen
is recommended if PaO2 < 6.6 kPa (<50 mmHg) or
SpO2 < 85% during HCT.

Despite an increasing need for HCT assessments access is
limited, tests are time consuming and result in significant
use of healthcare resources. Therefore, there remains a
need for simple, accurate screening tools.

The Lung Function Department at the University Hospital
Llandough has historical HCT data from a large cohort of
patients. The current study aims to retrospectively analyse
these data using statistical methods to assess the utility of
current linear equations in predicting in-flight hypoxaemia,
and use non-linear modelling techniques to produce new
predictive equations from the retrospective data and then
prospectively evaluate the usefulness of these novel
equations in preflight assessment.

Methods

Clinical records, spirometry and HCT data from all patients
who had undergone hypoxia challenge testing at the Uni-
versity Hospital Llandough Lung Function Laboratory be-
tween August 2005 and August 2008 were analysed. Subject
age, sex, height, weight, FEV1, FVC, arterialised capillary
blood gas measurements and cardiorespiratory diagnosis at
the time of HCT were recorded. In cases where spirometry
was not performed at the time of the HCT, measurements
performed closest to the date of testing were used.

For the purpose of analysis patients were stratified into
broad diagnostic groups:

1. Cystic fibrosis; 2.Obstructive lungdisease; 3. Pulmonary
arterial hypertension; 4. Neuromuscular disease; 5. Intersti-
tial lung disease; 6. Chest wall disease; 7. Miscellaneous.
Hypoxia challenge tests

Hypoxic challenge tests were performed according using a
40% Venturi mask supplied with nitrogen to provide an
FiO2 of 15.1%.7 Capillary ear-lobe gases were collected
before and after hypoxic challenge and analysed for PO2

and PCO2 and SaO2 using a Radiometer ABL810 Blood Gas
Analyser.

Linear predictive equations

Previously derived predictive equations3 were applied to
the data and in-flight oxygen requirement predictions were
compared with actual HCT results. The previously derived
linear equations were:

1. LM1 e This relates PaO2 at altitude (Alt) to PaO2 at sea
level (Ground):

PaO2 Alt (mmHg) Z 0.410 � PaO2 Ground
(mmHg) þ 17.65

2. LM2 e This relates PaO2 Alt to PaO2 Ground and includes
FEV1 in litres:

PaO2 Alt (mmHg) Z 0.519 � PaO2 Ground
(mmHg) þ 11.855 � FEV1 (litres) � 1.760

3. LM3 e This relates PaO2 Alt to PaO2 Ground and includes
FEV1 as %predicted:

PaO2Alt Z 0.453 � PaO2 Ground
(mmHg) þ 0.386 � (FEV1 %pred) þ 2.44.

Development of non-linear models (NLMs)

New predictive equations were generated from the histor-
ical data using the NARMAX [nonlinear autoregressive
moving average with exogenous input] modelling
approach.12,13 This allows the model to be built up term by
term in a manner that exposes the significance of each new
term that is added to the model. Individual patient’s data
were then fitted to these equations and compared with
actual HCT results.

The previously derived predictive equations and the
novel equations were then prospectively applied to
data from 44 number of HCT tests performed after August
2008.

Statistical methods

The mean square error (MSE) was calculated for each pre-
dictive equation for the whole data and separate data
subsets. Bland and Altman plots14 were used to assess the
agreement between the values obtained from the predic-
tive equations and from the HCT. The sensitivity and
specificity of the predictive equations were also calculated
using cut off points of PaO2N2 < 50 mmHg or SaO2N2 < 85%.
The study was approved by the Local Research Ethics
Review Board (Reference 08/cmc/4398).



Table 1 Demographic data.

N Z 139 Mean � SD

Age (years) 56 � 19
Male:female (%) 62:38
Height (m) 1.66 � 0.10
FEV1 (L) 1.45 � 0.68
FEV1 %predicted 52 � 25
PaO2RA (mmHg) 73 � 10
PCO2RA (mmHg) 39 � 6
SaO2RA (%) 95 � 2
PaO2N2 (mmHg) 53 � 9
PCO2N2 (mmHg) 37 � 5
SaO2N2 (%) 89 � 4

Diagnostic groups (n)
1. Cystic fibrosis 32
2. Obstructive lung disease 49
3. Pulmonary arterial hypertension 7
4. Neuromuscular disease 10
5. Interstitial lung disease 16
6. Chest wall disease 18
7. Miscellaneous 7
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Results

Data from one hundred and ninety consecutive HCTs were
collected. Complete data were available for 138 patients
(Table 1). 54/138 (39%) patients had a positive HCT defined
as PaO2N2 < 50 mmHg but only 20/138 (14%) had
SaO2N2 < 85%. Sixty two of the 138 patients (45%) had
baseline SaO2 � 96% and of these 9 (14.5%) had
PaO2N2 < 50 mmHg.

Table 2 shows how well the current linear equations
predict the need for in-flight oxygen in the retrospective
data from the 138 patients. The MSE between the PaO2

predicted by the current linear equations and that found on
HCT, the mean � standard deviation (SD) of the difference
between the predicted PaO2 and that found on HCT and the
sensitivity and specificity of each equation in predicting a
positive HCT defined as PaO2N2 < 50 mmHg or
SaO2N2 < 85%.

New non-linear predictive equations

Seven non-linear predictive equations were identified by
using the NARMAX method. These are shown in Table 3.12,13

The equations used between 1 and 10 independent vari-
ables (Fig. 1). The size of font used for each variable in
Table 2 Comparison of predicted with actual HCT results e his

Predictive
equation

MSE
(mmHg2)

Bland Altma
mean differe
� SD of diffe
(mmHg)

LM1 64.79 5.33 � 6.0
LM2 72.15 �0.42 � 8.5
LM3 104.01 �2.74 � 9.8
Fig. 1 denotes the relative contribution made by that var-
iable. In equations NLM 1, 2 and 4 PaO2RA contributed most
whilst SaO2RA% was the greatest contributor to equations 3
and 5e7.

Prospective data

Following the development of the new nonlinear equations,
full HCT data were prospectively collected from 44
consecutive patients (Table 4). 11/44 (25%) had a positive
HCT defined as PaO2N2 < 50 mmHg but only 5 had
SaO2N2 < 85%. Using the data from the 44 patients, the
utility of both the current linear and the newly developed
non-linear predictive equations is shown in Table 5a and b.
The sensitivity and specificity of the linear equations was
similar to that found in the historic data (LM1 87%, 40% vs.
100%, 33%; LM2 69%, 71% vs. 72%, 83%; LM3 52%, 74% vs.
55%, 89%). The new non-linear models predict the PaO2N2

more accurately than the original linear equations. Looking
at the group as a whole, the lowest MSE was for NLM2 which
uses the 2 terms PaO2RA and PaCO2RA. The best performing
linear equation was LM2. Fig. 2 shows the fitting error for
each individual patient using these 2 equations and illus-
trates the tighter fit obtained by the nonlinear model. Fig. 3
illustrates in a Bland Altman plot the closer agreement
between the HCT and predicted PaO2N2 derived from the
nonlinear model compared to the older linear model. Whilst
the mean difference between actual and predicted PaO2N2

is similar for both equations the standard deviation for the
difference is much smaller for the non-linear equation. The
sensitivity and specificity of NLM equations 1, 2, 4 and 6 is
high. The NLM equations using SaO2N2 as an outcome
measure (NLM 3 and 5) performed poorly; sensitivity being
20% for both equations, as did NLM7 which uses SaO2RA as
the single input measure. The sensitivity of LM1 is high but
specificity is low whilst LM2 has a similar sensitivity to the
NLM equations but has a lower specificity.

The equations are applicable to a wide patient popula-
tion, although the poorest fit is for cystic fibrosis and
interstitial lung disease (Table 5b). There is no difference
between males and females but age does seem to be a
factor.

Discussion

This is the first study evaluating the use of non linear
equations for the prediction of in-flight hypoxia. The study
included a reasonably sized cohort of historical data to
derive the equations and prospectively tested the models
on patients with various respiratory diseases. The novel
torical data on 138 subjects.

n
nce
rence

Sensitivity Specificity

4 87 40
4 69 71
9 52 74



Table 3 Derivation of non-linear predictive equations (NLMs). The best performing equation is NLM2 (bold).

Variables tested (significant terms
are underlined)

NLM equation

NLM 1 PaO2RA PaO2N2 Z (0.869166 � [PaO2RA]) � (0.003237 �
[PaO2RA]

2) þ 7.044304
NLM 2 PaO2RA, PaCO2RA PaO2N2 [ (0.559496 3 [PaO2RA]) L (0.001319 3

[PaO2RA]
2) L (0.000189 3 [PaCO2RA]

3 D

0.799106 3 [PaCO2RA])

NLM 3 SaO2RA% SaO2N2% Z (0.933164 � [SaO2RA%])
NLM 4 Age, diagnosis, gender, PaO2RA,

FEV1, %predicted FEV1

PaO2N2 Z (1.113355 � [PaO2RA]) � (0.00616 �
[PaO2RA]

2) þ (0.000628 � [PaO2RA]
2 � [FEV1])

NLM 5 Age, diagnosis,
gender, SaO2RA, FEV1, and %predicted FEV1

SaO2N2 Z (0.911819 � [SaO2RA]) þ (0.000196 �
[SaO2RA]

2 � [FEV1]) � (0.092136 � [diagnosis] �
[gender]2

NLM 6 Age, diagnosis, gender, SaO2RA,
PaO2RA, PaCO2RA, FEV1, %predicted FEV1,
height and weight

PaO2N2 Z (2.747347 � 10�6 � [SaO2RA]
3) þ

(1.462488 � 10�3 � [PaO2RA] � [PaCO2RA] �
[FEV1]) � (3.506418 � 10�5 � [diagnosis] �
[weight]2) þ (0.266522 � [PaO2RA]) þ (26.0947)

NLM 7 SaO2RA PaO2N2 Z (6.1351 � 10�5 � [SaO2RA]
3)
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NLMs are able to predict in-flight hypoxia more reliably
than the previously derived linear equations with high
sensitivity and specificity.

The NLMs performed well in a variety of respiratory
conditions, although did so least well in patients with cystic
fibrosis and interstitial lung disease. In addition, age
seemed to affect fit but this may be because the youngest
age group had the greatest preponderance of cystic
fibrosis.

The BTS guidelines suggest that patients with SpO2 < 95%
plus additional evidence of significant respiratory disease
should undergo HCT assessment.11 However, a recent study
found that 23% of patients tested with HCT and baseline
SpO2 � 96% had a positive HCT with partial pressure of
oxygen falling to <6.6 kPa.15 Our results showed 14.5% of
patients with SaO2 � 96% have a positive HCT. This em-
phasises that baseline SpO2 is a poor predictor of those who
Figure 1 Contribution of variables predictive equation. The
size of the font of each variable denotes the relative contri-
bution made by that variable. The suffix eRA denotes where a
measurement has been taken whilst the patient was breathing
room air at sea level. The suffix eN2 denotes where a mea-
surement has been taken whilst the patient was breathing a
nitrogen mix during the hypoxic challenge test.
may be at risk of in-flight hypoxia and that this should not
be used to identify those who would benefit from more
formal assessment. From our results, SpO2 of 85% does not
correlate sufficiently with a PaO2 of 50 mmHg to allow its
substitution as an end point for the HCT.

No patient who had a negative HCT was predicted to
need oxygen using the NLMs. However, for the most sensi-
tive models, 3 of the 11 patients considered to require
oxygen based on HCT would not have been prescribed ox-
ygen using the NLM predictive equations alone. Diagnoses
for these patients included interstitial lung disease, chest
wall disease and obstructive lung disease. The best linear
model would also have failed to prescribe oxygen to 3 pa-
tients but would have prescribed oxygen to 5 patients who
Table 4 Demographic data of cohort of 44 patients tested
prospectively.

N Z 44 Mean � SD

Age (years) 60.7 � 15.6
Male:female (%) 58:52
Height (m) 1.67 � 0.10
FEV1 (L) 1.48 � 0.69
FEV1 %pred 56.6 � 24.4
PaO2RA (mmHg) 75.2 � 9.7
PCO2RA (mmHg) 36.3 � 5.5
SaO2RA (%) 96.0 � 1.7
PaO2N2 (mmHg) 55.7 � 8.1
PCO2N2 (mmHg) 34.5 � 5.7
SaO2N2 (%) 90.3 � 4.0

Diagnostic groups (n)
1. Cystic fibrosis 6
2. Obstructive lung disease 22
3. Pulmonary arterial hypertension 3
4. Neuromuscular disease 0
5. Interstitial lung disease 5
6. Chest wall disease 7
7. Miscellaneous 1



Table 5 Comparison of predicted with actual HCT results using old and new predictive equations e prospective data on 44
subjects. a) Mean square error, Bland and Altman mean difference and sensitivity and specificity of predictive equations using
data from all 44 subjects. b) Mean square error for individual subsets.

Predictive
equation

MSE BA mean difference � SD
of difference

Sensitivity Specificity

(mmHg2) (mmHg)
LM1 79.01 5.33 � 6.04 100 33
LM 2 67.41 �0.39 � 8.29 72 83
LM 3 105.07 �2.74 � 9.89 55 89

(mmHg2) (mmHg)
NLM1 35.56 �1.59 � 5.81 72 100
NLM2 34.27 �0.50 � 4.21 64 100
NLM4 39.38 �0.54 � 4.28 72 100
NLM6 37.09 �1.85 � 5.86 72 100
NLM7 44.94 0.036 � 5.17 27 100

SaO2%
2 SaO2%

NLM3 9.37 �0.33 � 2.76 20 98
NLM5 8.80 �0.33 � 2.56 20 98

LM1 1 LM2 LM3 NLM1 NLM2 NLM4 NLM6 NLM7

All patients 79.01 67.41 105.07 35.56 34.27 39.38 37.09 44.94
Dx group

1 143.56 115.78 63.13 57.77 63.40 94.57 65.75 76.80
2 63.85 59.44 99.32 33.58 31.12 32.46 32.28 40.68
3 35.68 112.01 433.53 1.87 0.96 10.47 4.95 2.11
5 116.81 106.86 102.41 64.52 64.49 78.82 80.48 55.56
6 64.67 21.30 45.39 20.65 16.40 7.13 14.45 44.63
7 111.34 6.32 0.20 25.28 26.80 21.95 40.89 33.88

Male 87.03 77.18 73.31 35.37 33.87 32.81 34.00 46.94
Female 71.33 58.04 135.51 35.74 34.65 45.69 40.04 43.02
<25 Z 25 73.44 23.30 44.35 53.91 109.90 227.28 96.50 108.75
26e65 82.90 69.68 84.15 25.90 24.18 25.19 27.09 31.88
>65 75.37 67.05 128.63 44.42 41.07 45.41 44.50 55.23

Diagnostic groups: 1 Cystic fibrosis; 2 Obstructive lung disease; 3 Pulmonary arterial hypertension; 5 Interstitial lung disease; 6 Chest wall
disease; 7 Miscellaneous.
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did not have a positive HCT. Whilst this may be due to in-
adequacy within the predictive equations, consideration
should also be given to the variability inherent within HCT
derived PaO2N2.
Figure 2 Mean square errors between individual patient
predictive values derived from equations NLM2 and LM2 and
HCT result for the 44 prospective patients.
Hypoxia challenge testing is considered the gold stan-
dard test for predicting in-flight hypoxia, however, little
work has been done to assess its reproducibility. Robson
et al. reported on 2 patients who underwent a repeat HCT
after an interval of several months both of whose results
placed them in the same category of fit/not fit to fly.7

PaO2N2 values were not given so it is not possible to say
what variation was found. Variation in response to exposure
to high altitude however has been noted in staff manning an
astronomical observatory 4200 m above sea level16 and
differences of up to 9 mmHg for an individual’s PaO2 were
found.

Furthermore, even under rigorous conditions there can
be variability in PaO2 measurement. A previous study
examining the repeatability of blood gas quality control
solutions showed that for an arterial blood gas PaO2 mea-
surement of 50 mmHg, 95% of measurements are between
45.9 and 54.1 mmHg17 Kapelmacher et al. also found a
standard deviation of 1.46 mmHg variability between
different blood gas analysers.18 Therefore, a range of
�2SD (5.84 mmHg) would encompass the normal variation
between analysers and would influence whether patients
were deemed in need of in-flight oxygen or not. As well as



Figure 3 BlandeAltman plots of the difference between the predicted PaO2 and the HCT SaO2 plotted against the mean of the 2
from the 2 methods. The solid line is the mean difference between the 2 methods and the dotted lines are �2SD the difference
between the methods.
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analyser variation, sampling variation may further affect
the repeatability of HCT. Ladegaard-Pedersen19 reported
on 30 patients in whom blood samples were taken
from both radial arteries and analysed for blood gases. The
95% confidence level for PaO2 measurements was
�8.8 mmHg.

Given this variability in the measurement of PaO2, the
fitting errors found from the predictive equations are within
the normal variation of PaO2 measurements suggesting
that the NLM equations we have developed could be used
to provide a reasonable prediction of in-flight oxygen re-
quirements that in practice has comparable usefulness to
the current gold standard.

The HCT provides an opportunity to determine the flow
rate of supplemental oxygen needed during flight to correct
substantial hypoxia. The NLMs do not provide this infor-
mation and are limited to determining whether or not a
patient should receive supplemental oxygen during flight.

This study has its limitations as, although the NARMAX
predictive equations have been derived from data from a
large number of HCTs, all the tests were performed in a
single laboratory. The NARMAX method works most effec-
tively with more than 400 data sets. Therefore, a larger
study would enable the development of even stronger
predictive equations.

In conclusion, this is the largest study of the use of pre-
dictive equations for the assessment of the need for in-flight
oxygen in patientswith a broad range of respiratory diseases.
The NLMs represent a further option for the prediction of
significant in-flight hypoxia and perform better than the use
of SpO2 in identifying those patients who require more
established methods of assessment such as HCT.
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