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ABSTRACT 

 

 

Influence of Relative Compaction on Passive Resistance of Abutments 

with Mechanically Stabilized Earth (MSE) Wingwalls 

 

 

Alec N. Strassburg 

 

Department of Civil and Environmental Engineering 

 

Master of Science 

 

 

Large scale static lateral load tests were completed on a pile cap with wingwalls under 

several different sand backfill configurations: no backfill, loosely compacted unconfined, loosely 

compacted slip plane wall confined, loosely compacted MSE wingwall confined, and densely 

compacted MSE wingwall confined.  The relative compaction of the backfill was varied during 

each test to observe the change in passive resistance provided by the backfill.  The wall types 

were varied to observe the force placed on the walls and the wall displacement as a result of the 

laterally loaded pile cap and backfill relative compaction.  Passive force-displacement curves 

were generated from each test. 

 

It was found that the densely compacted material provided a much greater passive 

resistance than the loosely compacted material by 43% (251 kips) when confined by MSE walls.  

The outward displacement of the MSE walls decreased noticeably for the dense MSE test 

relative to the loose MSE test.  Backfill cracking and heave severity also increased as the relative 

compaction level of the backfill increased.  As the maximum passive force was reached, the 

reinforcement reached their peak pullout resistance. 

 

Correlations were developed between the passive pressure acting on the pile cap and the 

pressure measured on the MSE wingwalls as a function of distance from the pile cap for both 

loose and dense backfills.  The pressure measured on the wingwalls was approximately 3 to 9% 

of the pressure acting on the pile cap.  As the distance from the pile cap increased, the pressure 

ratio decreased.  This result helps predict the capacity of the wingwalls in abutment design and 

the amount of allowable wall deflection before pullout of the backfill reinforcement occurs.  

Three methods were used to model the measured passive force-displacement curves of each test.  

Overall, the computed curves were in good agreement with the measured curves.  However, the 

triaxial soil friction angle needed to be increased to the plane strain friction angle to accurately 

model both the loose and dense sand MSE and slip plane wall confined tests.  The plane strain 

friction angle was found to be between 9 to 17% greater than the triaxial friction angle. 

 

Keywords: passive force, MSE walls, abutments, pile caps, lateral resistance 
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1 INTRODUCTION 

1.1 Background 

Pile groups are often connected to a pile cap in the foundation design of bridge and 

building structures to provide increased lateral stability and moment resistance for loadings 

resulting from earthquakes or strong wind.  The lateral stability of this type of foundation is 

derived from the interaction of the piles and the soil below the pile cap, and the passive 

resistance generated between the pile cap and the surrounding backfill material.  As a pile cap is 

loaded laterally, a passive soil pressure develops in response to counteract the lateral load placed 

on the pile cap.  Theories, such as Rankine, Coulomb, and log spiral, have been developed to 

assist in predicting the maximum passive pressure that soil adjacent to a pile cap can resist under 

static loadings. 

While the theories mentioned above are useful in estimating the ultimate passive 

resistance of a backfill material, how the soil passive pressure develops as a function of 

foundation deflection is not as well defined.  This information is useful, however, when the pile 

cap or abutment movement necessary to develop the full passive resistance cannot be tolerated, 

or in displacement-based design approaches, such as performance-based design, a more widely 

used method in seismic design. 
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Currently, a limited amount of research has been conducted to determine the passive 

force-foundation displacement relationship.  Rollins and Cole (2006), Rollins and Sparks (2002), 

Mokwa and Duncan (2001), Romstad et al. (1996), and a few others have conducted large scale 

tests to help define the relationship.  These large scale tests have led to the development of 

simple linear elastic and non-linear (ie., hyperbolic) models to predict how the soil passive force 

develops as a function of foundation deflection.   

These tests and models are significant, but previously, only one other study has 

considered the load-deflection relationship in conjunction with the use of mechanically stabilized 

earth (MSE) wingwalls to truncate the backfill behind the pile cap or abutment.  When MSE 

wingwalls are utilized in this way, the effective width of the backfill is reduced, also reducing the 

passive resistance on the pile cap.  However, the reinforcement implemented, tends to increase 

the passive resistance.  As a result, current bridge abutment designs utilizing MSE wingwalls 

may not appropriately consider MSE use in the development of load-displacement relationships, 

which can result in inaccurate predictions of the maximum passive resistance provided by the 

backfill. 

1.2 Research Objectives 

The research presented herein was conducted to accomplish the following objectives: 

1. Develop typical passive force-displacement curves for abutments with MSE 

wingwalls. 

2. Determine the appropriateness of using plane strain strength parameters in 

computing ultimate passive force for abutments with MSE wingwalls. 
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3. Evaluate the effect of backfill compaction on passive force-displacement results 

for abutments with identical MSE wingwall and reinforcement configurations. 

1.3 Scope of Research 

The research conducted was focused on the effects of backfill relative compaction on the 

development of appropriate passive load-deflection curves for a laterally loaded pile cap with a 

sand backfill confined by MSE wingwalls or side isolation paneling.  A series of 10 large scale 

field tests with varying backfill conditions and wall setups were completed to accomplish this 

task.  The field tests consisted of two unconfined (3D) tests where no walls were implemented, 

two slip plane (2D) tests where plywood walls were used to create plane strain-like conditions, 

three MSE tests where various MSE wingwall configurations were utilized, and finally, three no 

backfill tests to develop a baseline force-deflection reading for the pile cap and pile group. 

During each test, equipment was used to monitor and record the conditions of the pile cap 

and piles, walls, and backfill.  Information regarding the pile cap and reinforcing mat loads, soil 

pressure, wall, cap, and backfill displacements, backfill and reinforcing strain, and backfill heave 

and cracking were collected.  The data was analyzed and reduced to develop the material 

presented herein.  Only data from the loose sand unconfined (3D), loose sand slip plane (2D), 

loose sand MSE, and first dense sand MSE tests will be fully presented in this thesis.  Some 

results from the remaining field tests are shown in the results comparison chapter of this thesis 

while a complete set of the results of the additional tests can be found in Bingham (2010). 
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2 LITERATURE REVIEW 

The following information is presented as a discussion of information pertaining to the 

thesis topic of the effects of backfill relative compaction on developing passive force-abutment 

displacement curves for backfills confined by MSE wingwalls.  The first section summarizes the 

different methods for predicting the passive load-displacement relationship for soils surrounding 

abutments or pile caps.  The second and third sections describe information regarding plane 

strain soil conditions and MSE wall design that was utilized in the design and evaluation of the 

field tests conducted in this study. 

2.1 Methods of Predicting Passive Earth Pressure as a Function of Deflection 

Caltrans Seismic Design Approach 

The Caltrans Seismic Design method for predicting the ultimate passive pressure placed 

on a laterally loaded abutment as a function of abutment deflection was developed from research 

conducted by Maroney (1995) and Romstad et al. (1996) on large scale abutments and later 

adopted by Caltrans in the Caltrans Seismic Design Criteria Manual (2004).  The research, 

conducted at the University of California at Davis, CA, was based on a linear elastic assumption 

for the backfill material, which was a densely compacted silty loam.  Two generalized values 

were developed from the testing: an initial stiffness (Ki) value for the embankment fill of 

approximately 20 kip/in./ft (11.5 kN/mm/m) and a maximum passive pressure of 5.0 ksf (239 
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kPa) based on a uniform pressure distribution.  The stiffness and pressure values were not 

intended for use with loosely compacted materials. 

The following equations, Equations 2.1 and 2.2, were developed from the large scale 

testing to calculate the load-deflection relationship: 

 

       
     

 

   
               

     
 

   
               

  (2.1) 

  

      
              

 

   
               

              
 

   
               

  (2.2) 

  

where 

Kabut  =  stiffness of the backfill material, kip/in. (kN/mm) 

w  =  width of the abutment, ft (m) 

h  =  height of the abutment, ft (m) 

Aabut  =  area of the abutment, ft
2
 (m

2
) 

Pmax  =  ultimate passive force, kips (kN). 

 

The h/5.5 (h/1.7) term in Equations 2.1 and 2.2 is an abutment height proportionality term since 

the height of the abutment used in the original testing was 5.5 ft (1.7 m).  One important note 

with these equations is the inability to adjust for the backfill properties; only the abutment 

dimensions are considered.  As a result, the load-deflection relationship appears like that shown 

in Figure 2.1. 
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Figure 2.1:  Passive Force-Deflection Model for Caltrans Seismic Design Method (Adapted from 

Caltrans Seismic Design Criteria Manual 2004) 

 

PYCAP – Duncan and Mokwa 

PYCAP is a simple Excel
®

 spreadsheet based program created by Duncan and Mokwa 

(2001) that computes the passive resistance of a soil backfill with an accompanying failure 

surface.  The ultimate passive force and failure surface are solved for iteratively using the log 

spiral theory corrected for three dimensional (3D) end effects by the Brinch Hansen correction 

factor until a minimum passive force value is found.  The maximum possible value of the 3D 

correction factor in PYCAP is assumed to be limited to 2.0.  A hyperbolic expression is then 

used in conjunction with the calculated ultimate passive force and an estimated soil stiffness 

value to predict the load-deflection relationship of an abutment.  PYCAP is to be used in 

relatively simple situations where the ground is level, the walls are vertical, the surcharge is 

uniform, and the soil is homogeneous (Duncan and Mokwa 2001).  Figure 2.2 shows the 

components of the log failure surface computed in PYCAP. 
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Figure 2.2:  Log Spiral Failure Surface Features (Duncan and Mokwa 2001) 

 

The passive load-deflection curve in PYCAP is calculated using a hyperbolic model.  The 

equation representing this model is shown below as Equation 2.3: 

 

  
 

 
 

    
   

 
    

 
 

(2.3) 

  

where 

P  =  passive resistance, kips 

Pult  =  ultimate passive resistance, kips 

y  =  deflection of abutment, in. 

Kmax  =  initial stiffness, or the initial slope of the load-deflection curve, kip/in. 

Rf  =  failure ratio, or Pult/hyperbolic asymptote. 

 

Figure 2.3 shows Equation 2.3 graphically plotted as force against deflection along with a 

representation of the location of Kmax. 
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Figure 2.3:  PYCAP Hyperbolic Load-Deflection Curve (Duncan and Mokwa 2001) 

 

The Kmax term is calculated using the elastic solution of a horizontal load on a rectangle 

as presented by Douglas and Davis (1964).  In PYCAP, Kmax is represented by two properties: 

initial Young’s Modulus (Ei) and Poisson’s ratio ().  The following table, Table 2.1, was 

adapted from Duncan and Mokwa (2001) and shows typical values of Ei for shallow sands and 

gravels of different relative densities. 

The Rf term is the ratio of the ultimate passive force and the hyperbolic asymptotic value 

of passive resistance.  Duncan and Mokwa (2001) state that Rf can range from 0.75 to 0.95.  A 

value of 0.85 was used in all of their computed solutions.  Rf can also be eliminated from 

Equation 2.3 by solving the equation in terms of Rf when P = Pult and y = ymax and substituting 

this result back into Equation 2.3 for Rf as suggested in Cole and Rollins (2006).  The term ymax 

can then be approximated from the ymax/H (or max/H) ratio using suggested values presented in 

Cole and Rollins.  H is the height of the abutment. 
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Table 2.1:  Typical Initial Tangent Modulus (Ei) Values for Shallow Sands and Gravels (Adapted 

from Duncan and Mokwa 2001) 

 
 

ABUTMENT – Shamsabadi 

ABUTMENT is a computer program used to predict the passive force-deflection curve of 

a laterally loaded abutment developed by Shamsabadi et al. (2007).  The program is based on the 

log spiral theory combined with a modified hyperbolic stress-strain relationship, also called the 

LSH relationship.  The modified hyperbolic stress-strain relationship is a function of the strain 

properties, 50 and Rf, of the backfill material.  The ultimate passive force is calculated by 

dividing up the failure wedge into slices and applying force-based, limit-equilibrium equations to 

each slice as shown in Figure 2.4.  The LSH model was compared to full scale abutment loading 

test results from Rollins and Cole (2006) and was found to produce results in good agreement 

with those reported by Rollins and Cole.  The ABUTMENT results in comparison to the results 

from Rollins and Cole (2006) are shown in Figure 2.5. 

AASHTO LRFD Approach 

The American Association of State Highway and Transportation Officials (AASHTO) 

Load and Resistance Factor Design (LRFD) Bridge Design Specifications, 4
th

 Edition (2007) 

suggests that the log spiral theory be utilized in calculating the ultimate passive resistance acting 

on an abutment.  The manual specifies the use of log spiral charts developed by the U.S. Navy to 

simplify the process (U.S. Navy 1982).  The manual also provides an estimate of how much 

abutment movement is necessary to develop the ultimate passive resistance in the backfill in 
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Table C3.11.1-1 (p. 3-68), also shown in Table 2.2 below (AASHTO 2007).  The table states that 

the abutment movement required to develop the ultimate passive resistance is 4% of the wall 

height for loose sand, 2% for medium dense sand, and only 1% for dense sand.  However, 

Section C3.11.5.4 (p. 3-74) explains that for loose sand, a displacement of 5% of the wall height 

may be needed to fully develop the passive resistance, and that a displacement of 5% of the wall 

height may be used as a conservative estimate for dense sand (AASHTO 2007).  The AASHTO 

Guide Specifications for LRFD Seismic Bridge Design (2009) state that the wall friction angle 

used in the log spiral theory should be 2/3 of the soil friction angle as a conservative estimate for 

concrete-soil interfaces. 

 

 

Figure 2.4:  ABUTMENT Log Spiral Failure Surface Geometry and Forces (Shamsabadi et al. 

2007) 
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a) Clean Sand Results b) Silty Sand Results 

Figure 2.5:  Comparison of Field Test Measured and ABUTMENT Calculated Load-Displacement 

Results for a) Clean Sand and b) Silty Sand Backfill Types (Shamsabadi et al. 2007) 

 

Table 2.2:  Values of Wall Movement Required to Develop Active and Passive Earth Pressure 

Conditions (AASHTO LRFD Bridge Design Specifications 2007) 

 
 

2.2 Comparison of Triaxial and Plane Strain Soil Friction Angles 

Shear Strength of Sands in Triaxial Compression, Plane Strain and Direct Shear (Rowe 

1969) 

 

To quantify the shear strength of different soils, an assortment of tests and variations of 

these tests exist, like the triaxial compression test and the direct shear test.  A common variation 

of the triaxial shear test is plane strain loading conditions, where the confining stress are such 
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that 1 > 2 > 3 and 2 = 0.  Rowe (1969) compared the relationship between these three shear 

tests for cohesionless soils.  The results of his work showed that under plane strain loading 

conditions the strength parameter , or soil friction angle, was greater than that produced by the 

conventional triaxial compression test or the direct shear test.  This suggests that the triaxial 

friction angle (T) must be increased by some factor to be used under plane strain conditions. 

Stress-Deformation and Strength Characteristics (Ladd et al. 1977) 

Ladd et al. (1977) studied various factors influencing the behavior and strength 

characteristics of cohesionless soils with quantified results.  One such factor addressed was the 

intermediate principal stress (’2) and its influence on the soil friction angle.  He concluded from 

the analysis of a number of cohesionless soil samples that as a sample is sheared under plane 

strain conditions, the peak friction angle increased above that measured during a conventional 

triaxial compression test.  Figure 2.6 is a summary plot of the samples that were tested.  It can be 

seen that as the parameter b increased from zero (triaxial compression conditions) to plane strain 

conditions (b ≈ 0.25 to 0.4) the peak friction angle increased.  The increase in the friction angle 

for plane strain conditions was approximately 4° to 9° for dense sands and 2° to 4° for loose 

sands. 

Estimating Soil Properties for Foundation Design (Kulhawy and Mayne 1990) 

Kulhawy and Mayne (1990) also provided a brief discussion on the increase of the soil 

friction angle when a sample is sheared under plane strain conditions as compared to triaxial 

compression.  Based on a summary of test data available in the literature, Kulhawy and Mayne 

stated that the triaxial friction angle (T) of a typical sand increased in the ranges of 7 to 17% 

with a mean of 11% for loose materials and 10 to 18% with a mean of 12% for dense materials 

when tested under plane strain conditions.  Figure 2.7 shows the range of the ratio of a plane 
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strain soil friction angle to a triaxial compressive soil friction angle (PS/T) as a function of the 

intermediate principal stress (’2) as given in the manual. 

 

 

Figure 2.6:  Effects of the Intermediate Principal Stress (’2) on the Friction Angle of Sands (Ladd 

et al. 1977) 
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Figure 2.7:  Influence of the Intermediate Principal Stress (’2) on the Friction Angle of Sands 

(Kulhawy and Mayne 1990) 

 

2.3 Design of MSE Walls with Reinforcement 

MSE Walls and Reinforced Soil Slopes Design and Construction Guidelines (National 

Highway Institute 2001) 

 

In March 2001, the National Highway Institute (NHI) in conjunction with the Federal 

Highway Administration (FHWA) published a report entitled Mechanically Stabilized Earth 

Walls and Reinforced Soil Slopes Design and Construction Guidelines to provide a basic design 

method for MSE walls and reinforced soil slopes.  The design method presented in the report is 

based on Allowable Stress Design (ASD) procedures.  This method was used to design the MSE 

wingwalls used during the testing described herein for internal stability.  The AASHTO 
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simplified method was used to calculate the pullout resistance (Pr) of the reinforcing strips by the 

following equation, Equation 2.4: 

 

          
       (2.4) 

where 

Pr  =  pullout resistance of the reinforcement per unit width of reinforcement, lb/ft 

F*  =  pullout resistance factor 

  =  scale effect correction factor to account for a non-linear stress reduction over the 

embedded length of highly extensible reinforcements (generally  = 1.0 for 

metallic reinforcement) 

 

v’  =  effective vertical stress at the soil-reinforcement interfaces, psf 

Le  =  embedment length in the resistive zone behind the failure surface, ft 

C  =  reinforcement effective unit perimeter (typically C = 2 for strips, grids, and sheets). 

 

(The author recognizes that the NHI has recently published a new version of the 2001 report in 

November 2009 which now implements LRFD procedures in MSE wall and reinforced soil slope 

design.  At the time of the testing, program, and work presented in this thesis, the new manual 

had not yet been published.) 

Predicted Loads in Steel Reinforced Soil Walls Using the AASHTO Simplified Method 

(Bathurst et al. 2009) 

 

Bathurst et al. (2009) completed an in-depth statistical evaluation of a number of 

instrumented steel reinforced soil walls.  The walls were reinforced with three different 

reinforcement types: bar mats, welded wire mesh, and steel strips.  The data collected from each 

wall concerning the reinforcement load was compared to the calculated value from the AASHTO 

simplified method.  As a result, the calculated value for the load carried by the reinforcement in 
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bar mat reinforced walls was found to be slightly conservative.  This finding is consistent with 

the results of the field tests utilizing bar mat reinforcement which is presented subsequently in 

this thesis. 

Passive Force-Deflection Curves for Abutments with MSE Confined Approach Fills 

(Heiner et al. 2008) 

 

Prior to the testing reported herein, which was conducted in 2009, similar large scale field 

tests with and without MSE wingwalls were performed by Heiner et al. (2008).  Heiner et al. not 

only conducted similar static tests, but mainly performed dynamic tests which included the use 

of an eccentric mass shaker.  The group of field tests reported in this study was meant to expand 

upon the original tests completed by Heiner et al. 

The results from Heiner et al. (2008) showed that the outward transverse displacement of 

the MSE wingwalls was approximately 40% of the longitudinal pile cap displacement with a 

maximum outward MSE wall displacement of 1.4 in. (35.6 mm).  This large MSE wingwall 

deflection was thought to be a result of using the eccentric mass shaker.  It was also found that, 

despite outward displacement of the MSE walls, the measured passive force per effective width 

of the pile cap was 28 kips/ft (409 kN/m) during the confined test, but only 25 kips/ft (365 

kN/m) for the unconfined backfill. 

  



18 

 

 



19 

 

3 TESTING METHODS 

This section describes the site location, geotechnical conditions, and general testing setup 

and instrumentation of the large scale field tests conducted at the testing site. 

3.1 Site Description 

The test site is located at the Salt Lake City (SLC) International Airport approximately 

1000 ft (300 m) north of the airport control tower.  The land is currently unused by the airport 

and provides adequate conditions for testing because of its openness and flat topography.  

Because the location is unused, no utility lines run above ground or below ground to conflict 

with the completed large scale testing.  The local water table was located at a depth of 5 to 5.5 ft 

(1.52 to 1.68 m) below the ground surface.  An aerial photograph of the test area location in 

relation to the airport control tower is shown in Figure 3.1. 

3.2 Geotechnical Site Characterization 

A number of large scale lateral load tests of drilled shafts and driven pile groups have 

been conducted over the past 15 years at the airport location.  During these previous tests much 

information regarding the subsurface site characteristics was collected through in-situ and 

laboratory testing.  Figure 3.2 below shows the locations where in-situ tests were completed in 

relation to the location of existing drilled shafts and pile groups. 
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Figure 3.1:  Aerial Photograph of Testing Site 

 

From previous testing results, the upper 5 ft (1.5 m) of the soil profile consists of 

imported gravel fill.  The underlying soils consist of alternating lean clay, sandy silt, and silty 

sand layers down to a depth of about 50 ft (15 m).  The upper fill material around the drilled 

shafts and pile groups was eventually removed and replaced with clean sand for testing.  An 

idealized soil profile created from the CPT test conducted near the 9-pile group location, along 

with other measured soil characteristics, is shown in Figure 3.3 and Figure 3.4.  Additional 

subsurface soil information can be found in Christensen (2006), Snyder (2004), and Peterson 

(1996). 
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Figure 3.2:  Locations of In-situ Tests at the Airport Testing Site (Christensen, 2006) 
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Figure 3.3:  Idealized Soil Profile From CPT Test (Christensen, 2006) 
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Figure 3.4:  Idealized Soil Profile From CPT Data (Christensen, 2006) 
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3.3 Testing Setup 

The testing setup consisted of four major components: a reaction foundation, a pile cap, a 

loading apparatus, and a backfill zone.  Each of the components mentioned are explained in 

detail in the following sections.  A drawing of the major components of the testing setup is 

shown in Figure 3.5. 

3.3.1 Reaction Foundation 

Two 4-ft (1.22-m) diameter drilled shafts was the centerpiece of the reaction foundation 

while a sheet pile wall, which spanned the north side of the shafts, and two large reinforced steel 

I-beams, lying horizontally on each side of the shafts, provided further lateral capacity to the 

foundation system.  The shafts and sheet pile wall were installed during previous testing. 

The center-to-center spacing of the shafts was 12 ft (3.66 m).  The west and east shafts 

were drilled to depths of 55.2 ft (16.82 m) and 70.0 ft (21.35 m), respectively.  A 4-ft square by 

2-ft thick cap exists at the top of each shaft.  The first 35 ft (10.67 m) of each shaft was 

reinforced with 18 #11 (#36) vertical bars.  The spiral surrounding these bars was #5 (#16) bar 

with a pitch of 3 in. (75 mm) and a concrete cover of 4.75 in. (120 mm).  From 35-55 ft (10.67-

16.76 m) deep, only half of the previous 18 vertical bars were continued through the shafts and 

the spiral pitch changed to 12 in. (300 mm).  The concrete has a compressive strength of 6000 psi 

(41 MPa). 

The sheet piling placed on the north side of the drilled shafts was AZ-18 sheet piling 

constructed of ASTM A-572, Grade 50 steel.  Sheet pile sections were placed using a vibratory 

hammer to depths ranging from 33.6 to 35.6 ft (10.24 to 10.85 m) below the excavated ground 

surface.  During driving, the sheet piling was kept as near vertical and close to the drilled shafts 

as possible to provide support to the drilled shafts. 
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Figure 3.5:  Aerial and Cross-section Views of the General Testing Layout 
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The two reinforced steel I-beams were 28-ft (8.53-m) long and 64-in. (1626-mm) high by 

16-in. (406-mm) wide.  Many stiffeners were inserted in the web of the beam to prevent the 

beams from buckling.  The beams were placed on each side of the drilled shafts to help distribute 

loading evenly across the reaction foundation and to help the system react as a unit.  The beams 

were tied to the sheet piling and drilled shafts using eight 2.5-in. (64-mm) high strength threaded 

bars post-tensioned to 100 kips (445 kN) each. 

3.3.2 Pile Cap and Piles 

During previous testing, a 9-pile group was installed a short distance to the north of the 

drilled shafts.  These piles were ASTM A252 Grade 3 steel pipe and had an average yield 

strength of 57 ksi (393 MPa) with an outer diameter of 12.75 in. (324 mm) and a wall thickness 

of 0.375 in. (9.5 mm).  The center-to-center spacing between rows of piles was 6 ft (1.83 m), 

with a center-to-center spacing between adjacent piles of 3.5 ft (1.07 m).  All piles were driven 

closed-ended to a depth of about 43 ft (13.1 m) below the ground surface. 

To create the pile cap on top of the 9-pile group, modifications were made to the pile 

group.  First, the middle row of piles was removed to decrease the number of remaining piles to 

six.  The removal of the middle piles increased the center-to-center spacing between the two 

remaining pile rows to 12 ft (3.66 m).  Second, the piles were shorted to provide a minimum of 6 

in. (150 mm) of embedment into the pile cap and filled with 6000-psi concrete.  Rebar cages 18-

ft (5.49 m) long  were made of six #8 (#25) vertical bars and a #4 (#13) spiral at a pitch of 6 in. 

(152 mm) to connect the cap to the piles.  The beginning 4.8 ft (1.47 m) of the 18-ft rebar cage 

was extended up into the pile cap to support the upper horizontal reinforcing mat in the cap while 

the remaining 13.2 ft (4 m) extended down into the pipe piles. 
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The pile cap was also cast using 6000-psi concrete with two horizontal reinforcing mats 

placed therein.  The locations of the mats were the top and the bottom of the pile cap.  The mats 

were made of #5 (#19) bars in both the transverse and longitudinal directions with a center-to-

center spacing of 8 in. (203 mm) between bars.  Resulting pile cap dimensions were 15-ft (4.57-

m) long, 11-ft (3.35-m) wide, and 5.5-ft (1.68-m) tall with the top of the pile cap being 

approximately level with the backfill ground surface.  Inclinometer tubes were cast in the center 

pile of both remaining rows of piles.  Eight additional threaded 2.5-in diameter bars were also 

cast horizontally into the south end pile cap to provide a connection point between the pile cap 

and the loading apparatus. 

3.3.3 Loading Apparatus 

The loading apparatus consisted of two MTS hydraulic actuators shown in Figure 3.6.  

The actuators were seated horizontally between the reaction foundation and the pile cap.  The 

post-tensioned threaded bars, mentioned previously, served as the connection between the 

reaction foundation and each actuator.  The threaded bars embedded in the south end of the pile 

cap along with two 4-ft (1.22-m) long extensions provided the connection point from the 

actuators to the pile cap. 

Each actuator was capable of applying 600 kips of horizontal force on the pile cap in 

compression, pushing the pile cap in the north direction, and 450 kips each in tension.  The 

actuators had swivel-heads on each end, to eliminate the effect of moment on loading.  The 

actuators were connected to the pile cap at a distance of 2.75 ft (0.84 m) above the base of the 

pile cap. 
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Figure 3.6:  Photograph of MTS Hydraulic Actuators 

 

3.3.4 Backfill Zone 

The backfill zone was the area on the north side of the pile cap into which the pile cap 

was pushed.  The area of the backfill zone was approximately 22-ft (6.7-m) wide and 24-ft (7.3-

m) long for the unconfined (3D) tests with no walls, which considered probable 3D end effects 

as the pile cap displaced into the backfill.  For those tests confined by the plywood side isolation 

panels or MSE wingwalls, the width of the backfill zone was limited to the width of the pile cap, 

or 11 ft.  The first 8 ft (2.44 m) of the backfill extended to a depth of 7 ft (2.13 m) below the top 

of the pile cap for the unconfined test.  After which, the depth of backfill decreased at a slope of 

approximately 3H:1V until the ground surface was reached.  These backfill dimensions were 

chosen to minimize the amount of quality backfill needed for testing, but still be able to capture 

the predicted log-spiral failure surface.  For the tests with wingwalls, the first 8 ft of the confined 
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backfill extended to a depth of 7 ft below the ground surface with the remaining 16 ft of backfill 

kept at a constant depth of about 5.5 ft (1.68 m) below the ground surface. 

The backfill zone was filled in with material in lifts approximately 8 to 10 in. (203 to 254 

mm) in height.  The material was wetted as it was placed to aid in compaction.  Jumping jack 

and vibratory drum compactors were used to compact each lift.  Typically, three nuclear density 

tests were completed in random locations of each lift to help ensure proper density of the backfill 

and record soil unit weights and moisture contents. 

3.3.5 General Instrumentation and Measurement 

An independent reference frame was established between the reaction foundation and pile 

cap.  This provided a fixed datum for measuring the pile cap displacement during loading.  Six 

string potentiometers, also known as string pots, were mounted on the reference frame to 

measure the displacements.  The string pots were Ametek model P-20 A units with a range of 20 

inches, a tolerance of +/- 0.10%, and a linearity of 0.03% of full scale.  Two of the string pots 

were connected to the north I-beam of the reaction foundation to measure displacements of the 

reaction frame towards the south.  These two string pots were connected to the I-beam at a 

distance of about 8 ft (2.44 m) from the east and west ends at the same elevation as the 

connection point of the actuators to the pile cap.  This also aligned the string pots with the 

approximate center of the drilled shafts.  The remaining four string pots were attached at 3 and 

51 in. (0.076 and 1.30 m) from the top of the pile cap on both the east and west edges of the 

south side of the pile cap.  The displacements of the pile cap were captured by these four string 

pots and made it possible to detect any rotation that occurred during loading. 

Seven other string pots were fixed to the top of the pile cap near the north face or 

backfilled side using a single angle iron.  The angle iron was fixed at a distance of 10 in. (254 
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mm) from the pile cap face.  The western most string pot was located at a distance of 46 in. (1.17 

m) from the western edge of the pile cap.  The remaining string pots were located at distances of 

51.38, 56.50, 61.75, 72.63, 78.00, 83.25, and 88.50 in. (1.30, 1.44, 1.57, 1.84, 1.98, 2.11, and 

2.25 m) also from the western edge of the pile cap.  The string pots measured the surface 

displacement of the backfill zone.  Steel stakes at locations in the backfill 2, 4, 6, 9, 12, 15, 18, 

and 24 ft (0.61, 1.22, 1.83, 2.74, 3.66, 4.57, 5.49, 7.32 m) away from the north face of the pile 

cap were the attaching points for the string pots.  The string pots attached to stakes at the 2, 4, 6, 

9, and 12 ft marks were Ametek Model P-20A units with a range of 20 in. (508 mm), a tolerance 

of +/- 0.10%, and a linearity of 0.03% of full scale.  The string pots placed to measure the 

displacement at 15, 18, and 24 ft were UniMeasure Model P1010-5-S15 units with a range of 5 

and 10 in. (127 and 254 mm), and a linearity of 0.18% of full scale. 

As previously mentioned, inclinometer tubes were installed in the center pile of each pile 

row of the pile cap.  The slotted tubes extended above the top of the pile cap about 1 ft (0.3 m) 

and to a depth of approximately 43 ft (13.1 m), or to the bottom of the piles.  Each tube had an 

outer diameter of 2.75 in. (70 mm) and an inner diameter of 2.32 in. (60 mm).  Inclinometer 

readings were taken at 2-ft (0.61-m) increments in both tubes before each test started and when 

the pile cap reached maximum displacement during each test.  The inclinometer readings 

provided deflection versus depth profiles for the direction of loading. 

Six pressure plates were installed prior to testing to measure the pressure of the backfill 

zone against the pile cap with depth.  The plates were embedded into the pile cap allowing the 

face of the plates to be flush with the pile cap face as shown in Figure 3.7.  Figure 3.8 shows the 

dimensioning of the pressure plates in relation to the pile cap.  The pressure plates were nominal 

9-in. diameter flat plates centered at depths of approximately 0.46, 1.38, 2.30, 3.22, 4.13, 5.05 ft 
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(5.5, 16.5, 27.5, 38.5, 49.5, and 60.5 in.; 0.14, 0.42, 0.70, 0.98, 1.26, and 1.54 m) below the 

ground surface after placement of the compacted fill.  Reinforced backplates reduced point 

loading effects created by mounting the plates to a concrete or steel surface.  The cells also 

contain a semi-conductor pressure transducer as opposed to a vibrating wire transducer to more 

accurately measure pressure changes during rapid loading.  Steel channels were used to protect 

the pressure cell wiring from damage caused by the backfill material. 

For each test, a 2 ft x 2 ft (0.61 m x 0.61 m) grid was painted on the surface of the 

backfill zone.  Elevations were taken by a surveying level at each of the grid intersection points 

before each test started.  After the pile cap reached maximum deflection, a second set of 

elevations was taken over the grid.  The difference in elevations showed the vertical 

displacement of the backfill zone.  Contour maps of the resulting vertical displacements of each 

test were then created. 

 

 

Figure 3.7:  Photograph of Pressure Plates Embedded in the Pile Cap 
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Figure 3.8:  Drawing of the Imbedded Pressure Plates 

 

During testing, surface cracking was also visually monitored.  After each 0.25-in. (6.35-

mm) displacement increment, the resulting cracks were marked with paint on the backfill and 

mapped on grid paper representing the backfill zone.  Marking cracks on the backfill with paint 

allowed for new cracks to be distinguished more easily after subsequent displacement increments 

were completed.  Each increment was mapped on the grid paper using a different color to 

highlight where new cracks had formed. 

3.4 Backfill Soil Description 

The backfill soil consisted of a well-graded sand (SW) according to the Unified Soil 

Classification System (USCS).  An average particle size distribution curve is shown in Figure 

3.9.  Three sieve analyses were conducted throughout the testing period to produce the 

distribution.  The resulting material was approximately 87% sand, 12% gravel, and 1% fines.  
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Table 3.1 gives a summary of other relevant soil characteristics determined from the particle size 

distribution curve. 

 

 

Figure 3.9:  Particle Size Distribution Curve of the Backfill Soil 

 

Table 3.1:  Backfill Soil Grain Characteristics 

 
 

The modified Proctor maximum dry unit weight for the backfill sand was 124.2 pcf 

(19.51 kN/m
3
) with an optimum moisture content (w) of 11.2%.  The target on-site compaction 

level for the loose backfills was equal to 90% of the modified Proctor maximum dry unit weight, 

or 111.8 pcf (17.56 kN/m
3
).  The target on-site compaction level for the dense MSE backfill was 

equal to or greater than 96% of the modified Proctor maximum dry unit weight, or 119.23 pcf 

(18.73 kN/m
3
).  Figures 3.10, 3.11, 3.12, and 3.13 show the actual in-situ average dry unit 
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weights for the loose sand unconfined (3D), loose sand slip plane (2D), loose sand MSE, and 

dense sand MSE tests states of 107.0 pcf (16.80 kN/m
3
), 109.5 pcf (17.20 kN/m

3
), 109.1 pcf 

(17.14 kN/m
3
), and 117.6 pcf (18.47 kN/m

3
), respectively. 

The backfill strength parameters of friction angle () and cohesion (c) were found by 

conducting direct shear and triaxial shear tests in the BYU soils laboratory.  Tests were 

performed by Joshua Pruett for the loose and dense sands.  The results of all tests are shown in 

Tables 3.2 and 3.3.  The  and c values selected were from drained, partially saturated triaxial 

tests interpreted with no cohesion.  The loose sand was found to have a friction angle of 36.0° 

with no cohesion.  The dense sand was found to have a friction angle of 43.1° with no cohesion. 

Using a correlation developed by Lee and Singh (1971) between relative density and 

relative compaction of granular soils, the relative density was computed for all four load tests.  

The correlation is shown below as Equation 3.1: 

 

           (3.1) 

where 

R  =  relative compaction, % 

Dr  =  relative density, %. 

 

Table 3.4 shows the actual relative compaction (R) achieved for each test using the densities 

provided in the previous section with the calculated relative densities (Dr).  The difference 

between R for the loose tests is only 2 percentage points.  However, a 2 percentage point 

difference in R produces a 10 percentage point difference in Dr and a 1.4 degree difference in 

friction angle (U.S. Navy 1982). 
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Figure 3.10:  Backfill Dry Unit Weight Histogram for Loose Sand Unconfined (3D) Test 

 

 

Figure 3.11:  Backfill Dry Unit Weight Histogram for Loose Sand Slip Plane (2D) Test 
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Figure 3.12:  Backfill Dry Unit Weight Histogram for Loose Sand MSE Test 

 

 

Figure 3.13:  Backfill Dry Unit Weight Histogram for Dense Sand MSE Test 
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Table 3.2:  Loose Sand Backfill Material Strength Parameters 

 
 

Table 3.3:  Dense Sand Backfill Material Strength Parameters 

 
 

Table 3.4:  Relative Compaction and Relative Density Values for All Tests 
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3.5 General Test Procedure 

The general test procedure consisted of four basic steps: 1) wall placement, 2) 

backfilling, 3) displacement of the pile cap, and 4) data collection.  A total of ten tests were 

conducted during the summer of 2009.  Table 3.5 is a summary of all the tests with a short 

description of each.  As mentioned previously, only detailed information regarding the second 

and third no backfill tests, loose sand unconfined (3D) test, loose sand slip plane (2D) test, and 

loose and first dense sand MSE tests is presented in this thesis. 

 

Table 3.5:  2009 Testing Summary 

 
 

The first step to complete each test was to place the walls which would be used for that 

test, if necessary.  The baseline tests and the unconfined (3D) tests did not require walls.  For the 

slip plane (2D) tests, 0.75-in. (19 mm) thick plywood panels covered with two layers of plastic 

sheeting acted as walls.  These walls were designed to create 2D failure geometry with minimal 

friction on the sides of the sliding surface.  This provided a setup most like plane strain loading 

conditions.  The plywood panels were 4-ft (1.22-m) wide by 8-ft (2.44-m) long.  Six panels 
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placed individually with the long dimension vertical were combined using 2 in. x 4 in. walers to 

make one wall 24-ft (7.32-m) long and 8-ft high. 

The MSE tests used a total of four MSE panels for wingwalls.  A MSE panel was 

approximately 12-ft (3.66-m) wide by 5-ft (1.52-m) tall.  Each wingwall was then 24-ft (7.32-m) 

long.  Figure 3.14 and Figure 3.15 show typical drawings of the MSE panels used during testing.  

The panels were placed on three standard 4 in. x 4 in. (102 mm x 102 mm) pieces of lumber 

inserted into the web of a steel I-beam to provide a stable and level base for the MSE wingwalls. 

Once the walls were in place, backfilling was completed.  The backfill was placed in 8 to 

10 in. (200 to 254 mm) lifts.  Each lift was compacted to the target unit weight.  Material was 

placed both inside and outside of the plywood walls to prevent them from breaking.  For the 

MSE tests, fill was only placed inside the wall panels, but the panels were braced to prevent 

them from displacing during construction.  Reinforcing mats were also installed during the 

backfilling of the MSE wall tests.  The mats were located at distances of 1.22 ft (0.37 m) and 

3.72 ft (1.13 m) from the base of the panels. 

Next, the tests were started with the pile cap deflecting into the backfill zone.  The 

actuators were displaced in target intervals of 0.25 in. (6.35 mm) until the maximum passive 

force was developed or until the actuator load was close to the actuator capacity of 600 kips.  

After each 0.25-in. interval was reached, the actuators were held in place as the backfill zone 

surface was visually inspected for cracks.  Each new crack was recorded on a grid.  Typically, 

this process was repeated up to a maximum displacement of 3.25 in. (82.55 mm). 

Grid elevations were taken at the beginning and end of each test to record the backfill 

zone overall vertical displacement.  Inclinometer readings were also recorded at the beginning 

and end of each test to monitor the pile cap deflection with depth profiles. 
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Figure 3.14:  Standard MSE Panel Drawing (1) 
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Figure 3.15:  Standard MSE Panel Drawing (2) 
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4 ABUTMENT LOAD TESTING – LOOSE SAND UNCONFINED (3D) TEST 

The loose sand unconfined (3D) test occurred on 8 June 2009.  The test represented an 

abutment without a confined backfill, meaning no wingwalls were placed to truncate the backfill.  

The backfill in this case was considered loosely compacted because the median dry unit weight 

of the soil was approximately 86% of the modified Proctor.  The purpose of this test was to 

capture the resulting log-spiral failure surface with the associated 3D geometry effects for 

comparison to the tests confined with walls.  The test layout, instrumentation, procedure, and 

results are described in this chapter. 

4.1 Test Layout, Instrumentation, and Procedure 

The loose sand unconfined (3D) test did not require walls; therefore, the backfill zone 

was an area 22-ft wide by 24-ft long.  The resulting effective pile cap width was 18 ft (5.49 

m).The entire area was painted with the 2 ft x 2 ft grid to help assist in monitoring the movement 

of the backfill.  No additional instrumentation was implemented during this test beyond that 

generally used for all tests.  The general testing procedure also applied for this test.  The pile cap 

was loaded in 0.25-in. displacement increments until a maximum cap deflection of 3.25 in. was 

reached.  The backfill zone was visually inspected for cracks after each 0.25-in. increment.  

Figure 4.1 shows a photograph of the backfill zone setup for the test looking towards the backfill 

from the pile cap. 
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Figure 4.1:  Photograph of the Loose Sand Unconfined (3D) Backfill Zone 

 

4.2 Test Results 

The following sections provide the results of the loose sand unconfined (3D) test.  The 

results consist of passive force-displacement measured from the actuators, passive pressure 

versus depth curves, passive force-displacement measured from the pressure plates, inclinometer 

displacement versus depth curves, and backfill displacement data. 

4.2.1 Load-Displacement Results – Actuators 

Figure 4.2 plots the measured total peak actuator load versus pile cap displacement.  The 

displacement values were calculated by taking the median displacement of the four string pots 
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attached to the pile cap at the end of each displacement increment.  The maximum load recorded 

was 681 kips (3050 kN) at a displacement of 3.27 in. (83 mm). 

The passive resistance of the backfill material was calculated from the total load-

displacement curve and the baseline test results.  The baseline response of the abutment was 

determined by conducting a lateral load test without backfill.  Lateral pile resistance and base 

shear forces provided resistance to the pile cap movement during the baseline test and produced 

a baseline resistance of the pile cap system.  The baseline resistance was then subtracted from the 

total actuator load to develop the passive resistance of the backfill.  The total resistance, passive 

earth resistance, and baseline resistance are shown as a function of the pile cap displacement in 

Figure 4.2.  The passive force-deflection curve shown does not have a distinct peak as would a 

dense material.  The passive force gradually increased with displacement, consistent with a 

punching shear failure mechanism typical for loose materials. 

 

 

Figure 4.2:  Force-Displacement Curves for the Loose Sand Unconfined (3D) Test 
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4.2.2 Load-Displacement Results – Pressure Cells 

To help verify the load-displacement results from the actuators described in the previous 

section, measurements from the pressure cells embedded in the face of the pile cap were 

analyzed.  During the test, pressure readings from the pressure cells were taken continuously.  

Figure 4.3 shows a plot of the backfill passive pressure as a function of the depth of the pile cap 

at the end of each displacement increment.  The plot generally follows a trend of increasing 

pressure with increasing depth, but there are a few inconsistencies.  For the upper three feet of 

the pile cap, the pressure did not change dramatically.  As the depth increased greater than three 

feet, the pressure increased notably.  Also, at a depth of 1.38 ft (0.42 m), the passive pressures 

recorded at this cell reached a peak value by the 1.33 in. (34 mm) increment and then proceeded 

to decrease significantly afterwards until the end of the test was reached. 

To develop passive force-displacement curves from the passive pressure cell data, the 

readings were converted to force by multiplying the passive pressure by the tributary area of 

each pressure cell.  The tributary area was computed as the vertical distance between the pressure 

cells, or approximately 11 in. (0.28 m), multiplied by the total width of the pile cap, or 11 ft 

(3.35 m).  This calculation assumed a uniform pressure across the width of the pile cap.  Figure 

4.4 shows a plot of the pressure cell passive force versus the pile cap displacement compared to 

the backfill passive resistance calculated from the actuators. 

Typically, the pressure cell passive force-displacement curves were lower than the 

actuator passive force-displacement curves by approximately 30 to 40%.  This discrepancy can 

likely be attributed to assuming a uniform pressure across the width of the pile cap.  Soil-

structure analyses frequently show increased stress concentrations near the edges of a concrete 

mat or pile cap.  Because the pressure cells were located near the center of the pile cap, an 
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increased pressure near the edges of the pile cap was not captured and an underestimation of the 

actual pressure across each horizontal segment of the pile cap occurred.  The “pressure cells with 

multiplier” curve, in Figure 4.4, accounts for this concern by showing what the passive force-

displacement curve appears like when multiplied by a factor of 1.67.  This curve is slightly above 

the measured passive earth resistance curve calculated from the actuators, but maintains the same 

general shape.  The maximum passive forces of both the “passive earth resistance” and the 

“pressure cells with multiplier” curves are nearly identical. 

 

 

Figure 4.3:  Backfill Passive Pressure Versus Depth at Each Displacement Increment for the Loose 

Sand Unconfined (3D) Test 
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Figure 4.4:  Pressure Cell Passive Force Resistance Compared to the Measured Passive Earth 

Resistance for the Loose Sand Unconfined (3D) Test 

 

4.2.3 Inclinometer Data 

Before and after each test was conducted, inclinometer readings were taken in both the 

north and south inclinometer tubes embedded in the pile cap.  The readings measured the pile 

cap and pile deflection over the depth of the piles parallel to the direction of loading.  Figure 4.5 

shows the north and south deflection results when the pile cap reached maximum deflection 

during the loose sand unconfined (3D) test.  The curves shown were generated by subtracting the 

initial readings at the start of the test from the final readings at the end of the test.  Positive 

deflection values correlate with the northerly direction of loading.  A depth of zero corresponds 

to the top of the pile cap.  The zero displacement of the piles occurred at a depth of 

approximately 20 ft (6.10 m), which depth is about 19 pile diameters.  The maximum 

displacement values recorded by the four string pots attached to the pile cap were also plotted.  
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The string pot values confirm the inclinometer results.  From the inclinometer plot, it can be seen 

that the pile cap experienced very little rotation during loading, typical of a fixed head boundary 

condition. 

 

 

Figure 4.5:  Inclinometer Readings of the Loose Sand Unconfined (3D) Test 

 

4.2.4 Backfill Displacement Data 

During testing, the backfill displacement was monitored with string pots located in the 

configuration described previously in Section 3.3.5.  Figure 4.6 shows the absolute displacement 

of the backfill plotted against the distance from the pile cap recorded from these string pots.  To 

simplify the plot, backfill displacements from selected pile cap displacements increments are 

shown.  The results of the loose unconfined test show that more backfill displacement occurred 

close to the pile cap while at distances greater than about 10 ft (3.05 m), the material was less 
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affected by the cap movement and little displacement occurred.  The minimum horizontal 

displacement recorded at a distance of 24 ft (7.32 m) from the pile cap face was approximately 

0.17 in. (4.3 mm). This observation can be understood by recognizing that loose sands tend to 

exhibit a local shear failure as compared to a general shear failure condition typical of dense 

sands.  General shear failure would lead to movement throughout the failure zone while local 

shear failure would primarily lead to movement close to the pile cap. 

 

 

Figure 4.6:  Absolute Backfill Displacement Versus Distance from the Pile Cap for the Loose Sand 

Unconfined (3D) Test 

 

From the displacement data in Figure 4.6, the compressive strain (in./in.) was calculated 

for each distance between string pot stakes (i.e., 0-2 ft, 2-4 ft, 4-6 ft, 6-9 ft, etc.) with the 

following equation, Equation 4.1: 
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       (4.1) 

where 

ε  =  compressive strain 

ΔL  =  change in string pot length per displacement interval, in. 

L  =  north-south distance between adjacent stakes, in. 

 

Figure 4.7 shows the compressive strain calculation results for selected displacement intervals.  

Not all intervals are shown to simplify the plot.  The overall trend can still be seen with the 

intervals plotted.  The highest compressive strain rates occur in the first two feet of backfill.  The 

strain rates are approximately equal in the 6 to 12 ft (1.83 to 3.66 m) interval.  However, the 

compressive strain levels decrease as the distance from the pile cap increases beyond 12 ft. 

 

 

Figure 4.7:  Backfill Compressive Strain for the Loose Sand Unconfined (3D) Test 
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The vertical displacement of the backfill was also determined for the test.  To determine 

vertical displacement, the elevation of the backfill grid was recorded before and after the test.  

The difference between the elevations showed how much the backfill displaced from the loading 

of the pile cap.  Figure 4.8 shows a contouring of the backfill zone for the loose sand unconfined 

(3D) test measured in inches.  Positive values reflect heave, or upward movement, of the backfill 

while negative values indicate settlement of the material.  The contours appear generally in a 

circular pattern in front of the pile cap face.  This circular pattern is representative of the 3D end 

shearing effects of the pile cap.  The maximum vertical displacement occurred was 

approximately 2.0 in. (51 mm) at a distance of 4 ft (1.22 m) from the pile cap.  Along the 12-ft 

and 18-ft gridlines, three instances of settlement occurred where the backfill settled 

approximately 0.25 in. (6.35 mm).  Practically no heave occurred after the 22-ft gridline.  It was 

also interesting to note the region 18 ft (5.50 m) from the cap face where there was an increase in 

vertical displacement up to approximately 1.25 in. (32 mm).  This increase may be an indication 

of the log-spiral failure surface exit location in the material. 

Figure 4.9 shows the crack pattern that developed in the backfill during testing.  The 

backfill was visually inspected for cracks after each displacement increment.  The most 

significant cracking during testing occurred approximately 2 ft to 4 ft (0.61 m to 1.22 m) from 

the pile cap face around the pile cap corners.  The corner cracking provides support to believe 

that end effects from pile caps do produce a 3D log-spiral failure surface that is wider that the 

pile cap or abutment.  The shear zones extent 4 to 5 ft (1.22 to 1.52 m) beyond the edge of the 

pile cap to create an effective pile cap width of approximately 18 ft (5.49 m).  No visual cracking 

appeared beyond the 16-ft grid line.  The cracks tend to follow a similar pattern as the heave 

contours shown in Figure 4.8. 
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Figure 4.8:  Backfill Vertical Displacement Contour of the Loose Sand Unconfined (3D) Test 
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Figure 4.9:  Observed Backfill Cracking During the Loose Sand Unconfined (3D) Test 
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5 ABUTMENT LOAD TESTING – LOOSE SAND SLIP PLANE (2D) TEST 

The loose sand slip plane (2D) test occurred on 12 June 2009.  The test represented an 

abutment with a confined backfill, where walls were placed to truncate the backfill to the width 

of the pile cap.  In this test, the backfill was considered loosely compacted because the median 

dry unit weight of the soil was approximately 88% of the modified Proctor.  The purpose of this 

test was to remove the 3D end effects experienced during the unconfined (3D) test by producing 

a 2D situation most like plane strain conditions and capture the resulting log-spiral failure 

surface.  The test layout, instrumentation, procedure, and results are described in this chapter. 

5.1 Test Layout 

Plan and profile views of the loose sand slip plane (2D) test layout are shown in Figure 

5.1.  The plywood panels utilized were 4-ft (1.22-m) wide, 8-ft (2.44-m) tall, and 0.625-in. (16-

mm) thick.  Six panels were placed on each side of the pile cap to create two 24-ft (7.32-m) long 

wingwalls.  The panels were connected together using standard 2 in. x 4 in. pieces of lumber to 

prevent any separation between panels.  Two layers of plastic sheeting (Visqueen) lined the 

inside of the plywood walls.  The purpose of using the plastic sheeting was to provide a low-

friction surface between the walls and the backfill material, thus creating 2D failure geometry.  

Backfill material was placed and compacted on both sides of the walls to prevent the walls from 

flexing excessively by balancing the normal stress placed on the walls. 
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Figure 5.1:  Layout of Loose Sand Slip Plane (2D) Test 
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5.2 Test Instrumentation and Equipment 

In addition to the general instrumentation previously described in Section 3.3.5, string 

pots were attached to the west plywood wall just above the ground surface.  A total of three 

string pots were attached along the first 12 ft (3.66 m) of the west wall, located at distances of 

approximately 2, 6, and 12 ft (0.61, 1.83, and 3.66 m) from the pile cap face.  The string pots 

used were UniMeasure Model P1010-5-S15, with a range of 5 and 10 in., and a linearity of 

0.18% of full scale.  The ends of the string pots were connected to steel stakes placed beyond the 

backfilled area for the test to avoid any movement of the stake.  The string pots monitored the 

outward movement of the walls during testing.  Figure 5.2 shows the placement of the string pots 

along the wall. 

 

 

Figure 5.2:  Location of String Pots During Loose Sand Slip Plane (2D) Test 
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5.3 Test Procedures 

The testing procedure followed for the loose sand slip plane (2D) test was exactly as 

stated previously in Section 3.5.  The pile cap was loaded incrementally by the hydraulic 

actuators to a maximum pile cap deflection of 3.25 in.  Each displacement increment increased 

the pile cap deflection by a target value of 0.25 in.  After the maximum deflection was reached 

and necessary data collected, the actuators were used to pull the pile cap back into its initial 

unloaded condition. 

5.4 Test Results 

The following sections provide the results of the loose sand slip plane (2D) test.  The 

results consist of passive force-displacement measured from the actuators, passive pressure 

versus depth curves, passive force-displacement measured from the pressure plates, inclinometer 

displacement versus depth curves, and backfill displacement data. 

5.4.1 Load-Displacement Results – Actuators 

Figure 5.3 plots the measured total peak actuator load versus pile cap displacement as the 

“total resistance.”  The displacement values were calculated by taking the median displacement 

of the four string pots attached to the pile cap at the end of each displacement increment.  The 

maximum load recorded was 719 kips (3197 kN) at a displacement of 3.24 in. (82 mm). 

The contribution of the backfill passive resistance to the total resistance was also 

calculated from the force-displacement data.  As previously stated, the baseline resistance was 

subtracted from the total measured actuator load to develop the passive resistance provided by 

the backfill only.  The baseline resistance used in the calculation for this test was that which was 
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also used for the unconfined (3D) test and from the baseline test conducted on 4 June 2009.  

Figure 5.3 plots of the backfill passive resistance and baseline resistance with the total resistance. 

The passive force did not exhibit a distinct peak, but continued to gradually increase with 

displacement throughout the test. 

 

 

Figure 5.3:  Load-Displacement Comparison For Loose Sand Slip Plane (2D) Test 

 

5.4.2 Load-Displacement Results – Pressure Cells 

To help verify the load-displacement results from the actuators described in the previous 

section, measurements from the pressure cells embedded in the north face of the pile cap were 

analyzed.  During the test, pressure readings from the cells were taken continuously.  Figure 5.4 

shows a plot of the backfill passive pressure as a function of the depth of the pile cap at each 

displacement increment.  The plot generally follows a trend of increasing pressure with 

increasing depth, but there are a few inconsistencies.  For the upper three feet of the pile cap, the 
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pressure did not change dramatically.  As the depth increased greater than three feet, the pressure 

increased notably.  Also, at a depth of 5.05 ft (1.54 m), in Figure 5.4, the pressures recorded at 

this cell reached a peak value by the 1.50 in. (38 mm) increment and then proceeded to decrease 

until the end of the test was reached. 

As explained in Section 4.2.2, the passive pressure was converted to force by multiplying 

the pressures by the tributary area of each pressure cell.  Figure 5.5 shows a plot of the passive 

force from the pressure cells versus the pile cap displacement compared to the backfill passive 

resistance calculated from the actuators.  Typically, the pressure cell passive force-displacement 

curves were lower than the measured passive force-displacement curves by approximately 30 to 

40% due to the assumption of uniform pressure acting across the width of the pile cap.  The 

“pressure cells with multiplier” curve, in Figure 5.5, accounts for this concern by showing what 

the pressure cell passive force-displacement curve looks like when multiplied by a factor of 1.33.  

This multiplier was lower than for the other tests.  The “pressure cells with multiplier” curve is 

slightly above the measured passive earth resistance curve, but maintains the same general shape. 

5.4.3 Inclinometer Data 

Before and after each test was conducted, inclinometer readings were taken in both the 

north and south inclinometer tubes embedded in the pile cap.  The readings measured the pile 

cap and pile deflection over the depth of the piles parallel to the direction of loading.  Figure 5.6 

shows the north and south deflection results when the pile cap reached maximum deflection 

during the loose slip plane (2D) test.  Positive deflection values correlate with the northerly 

direction of loading.  The zero displacement of the piles occurred at a depth of approximately 20 

ft (6.10 m), which depth is about 19 pile diameters.  The maximum displacement values recorded 

by the four string pots attached to the pile cap were also plotted.  The string pot values confirm 
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the inclinometer results.  From the inclinometer plot, it can also be seen that the pile cap 

experienced very little rotation during loading, typical of a fixed head boundary condition. 

 

 

Figure 5.4:  Backfill Passive Pressure Versus Depth at Each Displacement Increment for the Loose 

Sand Slip Plane (2D) Test 

 

 

Figure 5.5:  Pressure Cell Passive Resistance Compared to the Measured Passive Earth Resistance 

of the Loose Sand Slip Plane (2D) Test 
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Figure 5.6:  Inclinometer Readings of the Loose Sand Slip Plane (2D) Test 

 

5.4.4 Backfill Displacement Data 

During testing, the backfill displacement was monitored with string pots located in the 

configuration described in Section 3.3.5.  Figure 5.7 shows the absolute displacement of the 

backfill plotted against the distance from the pile cap recorded from these string pots.  To 

simplify the plot, backfill displacements from selected pile cap displacements increments are 

shown.  The results of the loose slip plane test were similar to the previous loose test and show 

that more backfill displacement occurred close to the pile cap while at distances greater than 

about 10 ft (3.05 m), the material was less affected by the cap movement and little displacement 

occurred.  The minimum horizontal displacement recorded at a distance of 24 ft (7.32 m) from 

the pile cap face was approximately 0.28 in. (7.1 mm). These observations can be understood by 

recognizing that loose sands tend to exhibit a local shear failure as compared to a general shear 

failure condition typical of dense sands.  General shear failure would lead to movement 
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throughout the failure zone while local shear failure would primarily lead to movement close to 

the pile cap. 

 

 

Figure 5.7:  Absolute Backfill Displacement Versus Distance from the Pile Cap for the Loose Sand 

Slip Plane (2D) Test 

 

From the displacement data in Figure 5.7, the longitudinal compressive strain (in./in.) 

was calculated for each distance between string pot stakes (i.e., 0-2 ft, 2-4 ft, 4-6 ft, 6-9 ft, etc.) 

with Equation 4.1, shown previously.  Figure 5.8 shows the compressive strain calculation 

results for selected displacement intervals.  Not all intervals are shown to simplify the plot.  The 

overall trend can still be seen with the intervals plotted.  The highest compressive strain rates of 

approximately 0.024 occur in the first two feet of backfill.  The strain rates in the 9 to 18 ft (2.74 

to 5.49 m) interval are similar.  As the distance from the pile cap face increased, the compressive 

strain levels decreased. 
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Figure 5.8:  Backfill Compressive Strain for the Loose Sand Slip Plane (2D) Test 

 

The vertical displacement of the backfill was also determined for the test.  To determine 

vertical displacement, the elevation of the backfill grid was recorded before and after the test.  

The difference between the elevations showed how much the backfill displaced from the loading 

of the pile cap.  Figure 5.9 shows a contouring of the backfill zone for the loose sand slip plane 

(2D) test.  The maximum vertical displacement was approximately 1.75 in. (51 mm) and 

occurred in two locations: 4 ft (1.22 m) and 6 ft (1.83 m) from the pile cap face. 

Figure 5.10 shows the crack pattern that developed in the backfill during testing.  The 

backfill was visually inspected for cracks after each displacement increment.  The most 

significant cracking occurred approximately 2 ft (0.61 m) from the pile cap face in between the 

panels after the release of the actuators.  Only a small amount of cracking appeared in the first 4 

ft of the backfill during loading.  No cracking occurred beyond the 18-ft (5.49-m) grid line.  Two 
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longitudinal cracks developed about 2 ft back from each wall face.  This may be the boundary 

between the active and passive zones behind the slip plane walls. 

 

 

Figure 5.9:  Backfill Vertical Displacement Contour of the Loose Sand Slip Plane (2D) Test 
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Figure 5.10:  Observed Backfill Cracking During the Loose Sand Slip Plane (2D) Test 
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5.4.5 Transverse Wall Displacement Results 

To measure the transverse deflection of the wall panels during loading of the pile cap and 

backfill, three string pots were attached to the outside of the west wall at locations of 2, 6, and 12 

ft (0.61, 1.83, and 3.66 m) from the face of the pile cap.  The string pots were located 

approximately 1 to 2 in. (25 to 51 mm) above the backfill surface (see Figure 5.2).  Figure 5.11 

shows the deflection of the wall during loading at several pile cap displacement increments.  The 

plot viewpoint places the viewer looking west at the west wall with the pile cap on the left.  The 

wall deflections are shown for every 0.5-in. increment, starting at the first increment until the 

last.  The most deflection occurred at the string pot located approximately 6 ft from the pile cap 

face with a maximum displacement of approximately 0.16 in. (4 mm) during the final pile cap 

displacement increment.  The wall displacements are small in relation to the scale of the test and 

the longitudinal backfill displacement, which allows this test to be considered similar to plane 

strain loading conditions.  The increased lateral displacements at 6 ft appear to correlate with the 

longitudinal cracks which occurred at a similar distance from the pile cap face. 

Figure 5.12 shows the passive force plotted against the panel displacement for each of the 

three string pots attached to the wall.  As would be expected, the string pot the furthest from the 

pile cap face (12 ft) deflected the least with the increase in load.  It also appears that the majority 

of the deflection occurred during the 0 to 275 kip (0 to 1220 kN) range.  After this point, the 

slope of the passive force-displacement curves increased. 
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Figure 5.11:  Slip Plane (2D) Panel Displacement Plot at Select Pile Cap Displacement Increments 

 

 

Figure 5.12:  Passive Force-Panel Displacement Plot for Loose Sand Slip Plane (2D) Test 
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6 ABUTMENT LOAD TESTING – LOOSE SAND WITH MSE WINGWALLS 

The first load test which utilized the MSE panels was conducted on 18 June 2009.  This 

test was originally designed with an average static factor of safety against pullout of the 

reinforcing mats of at least 1.65.  The backfill in this case was considered loosely compacted 

because the median dry unit weight of the soil was approximately 88% of the modified Proctor.  

The test layout, instrumentation, procedure, and results are described in this chapter. 

6.1 Test Layout 

Plan and profile views of the loose sand MSE test layout are shown in Figure 6.1.  The 

MSE panels utilized were 12-ft (3.66-m) wide, 5-ft (1.52-m) tall, and 0.5-ft (0.152-m) thick.  

Two panels were placed on each side of the pile cap to create two 24-ft (7.32-m) long wingwalls.  

The panels were placed on three standard 4 in. x 4 in. (102 mm x 102 mm) pieces of lumber 

inserted into the web of a steel I-beam to provide a stable and level base for the walls.  

Extensions were added to the top of the MSE panels to increase the panel height to be 

approximately level with the top of the pile cap for a total panel height of about 5.5 ft (1.68 m).  

The extensions consisted of 8-ft (2.44-m) long 2 in. x 8 in. (51 mm x 203 mm) pieces of lumber. 

Each MSE panel was reinforced into the backfill by four steel reinforcing mats.  The two 

lower mats were connected to the panel at 1.22 ft (0.37 m) from the base of the panel.  The two 

upper mats connected to the panel at a distance of 3.72 ft (1.13 m) from the base of the panel and  



7
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Figure 6.1:  Plan and Profile Views of the Layout of Loose Sand MSE Test 
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2.5 ft (0.76 m) above the location of the lower mats.  All eight of the lower mats were composed 

of five W11 longitudinal bars and W8 cross bars spaced 1 ft (0.305 m) on center.  The upper 

mats consisted of six W20 longitudinal bars with W11 cross bars also spaced 1 ft (0.305 m) on 

center.  The longitudinal bar spacing and total length of all the mats was 0.67 ft (0.203 m) on 

center and 5.5 ft (1.68 m), respectively.  Figure 6.2 is a schematic of the upper and lower mats. 

 

 

a) Upper Reinforcing Mat 

 

b) Lower Reinforcing Mat 

Figure 6.2:  Schematic of a) Upper and b) Lower Bar Mats 
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6.2 Test Instrumentation and Equipment 

In addition to the backfill and pile cap string pots, four string pots were attached to the 

southeast MSE panel as shown in Figure 6.3.  The string pots were UniMeasure Model P1010-5-

S15 units with a range of 5 and 10 in. (127 and 254 mm) and a linearity of 0.18% of full scale.  

The ends of the string pots were attached to T-posts placed in the excavation and reinforced 

against movement with cables.  Two of the string pots were located at a distance of 44 in. (1.12 

m) above the bottom of the panel, approximately level with the upper bar mats.  The other two 

string pots were located at a distance of 14 in. (0.36 m) above the bottom of the panel, 

approximately level with the lower bar mats.  The four string pots measured MSE wall 

displacement and rotation throughout the test at distances of 21 in. (0.53 m) and 103 in. (2.62 m) 

from the pile cap face to where the center of the mats was located. 

 

 

Figure 6.3:  String Pot Configuration on MSE Panel for Loose Sand MSE Test 
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To monitor the development of load in the reinforcing mats during the test, the four bar 

mats connected to the southeast MSE panel were instrumented with FLA-2-11 strain gauges.  

The tolerance of the gauges was +/-0.85 μm/m/°C, with a gauge factor of 2.11+/-1.0%, and a 

coefficient of 11.8x10^-6/°C.  For the bottom two mats, the strain gauges were placed on the 

center longitudinal bar.  The top two mats had six longitudinal bars and the gauges were placed 

on the northern-most longitudinal bar of the two center bars.  A total of sixteen gauges were 

affixed to each mat, located at distances of 2, 5, 9, 19.5, 28, 37, 47, and 56 in. (51, 127, 229, 495, 

711, 940, 1194, and 1422 mm) from the panel face.  Two gauges were placed at each location, 

one on the top and bottom of the bar, to reduce effects from bending. 

To adhere the strain gauges to the steel bar, the following procedure was used.  First, the 

steel bar was sanded with successively finer grit sand paper at the specified gauge locations until 

the protective zinc coating was removed and the surface was smoothed.  Next, acetone was used 

to clean the bar of dust or other debris.  Scotch tape was then placed next to the gauge location to 

prevent the exposed wires of the stain gauges from touching the steel surface once the gauges 

were attached.  The gauges were glued to the sanded areas.  After the glue had set, a non-

conductive epoxy was placed on the gauges and their surrounding area to keep them in place and 

protect the gauges from being damaged.  Lastly, the bars to which the gauges were affixed, 

gauges, and gauge wires were wrapped with electrical tape to keep out moisture and provide an 

added layer of protection to the setup. 

6.3 Testing Procedure 

The testing procedure followed for the loose sand MSE test was exactly as stated in 

Section 3.5.  The pile cap was loaded incrementally by the hydraulic actuators to a maximum 
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pile cap deflection of about 3.25 in.  Each displacement increment increased the pile cap 

deflection by a target value of 0.25 in.  After the maximum deflection was reached and necessary 

data collected, the actuators were used to pull the pile cap back to its initial unloaded condition. 

6.4 Test Results 

The following sections provide the results of the loose sand MSE test.  The results consist 

of passive force-displacement measured from the actuators, passive pressure versus depth curves, 

passive force-displacement measured from the pressure plates, inclinometer displacement versus 

depth curves, and backfill displacement data. 

6.4.1 Load-Displacement Results – Actuators 

Figure 6.4 plots the measured total peak actuator load versus pile cap displacement as the 

“total resistance.”  The displacement values were calculated by taking the median displacement 

of the four string pots attached to the pile cap at the end of each displacement increment.  The 

maximum load recorded was 708 kips (3151 kN) at a displacement of 3.16 in. (80 mm). 

The contribution of the backfill passive resistance to the total resistance was calculated 

from the load-displacement data collected.  As previously stated, the baseline resistance was 

subtracted from the total measured actuator load to develop the passive resistance provided by 

the backfill only.  Figure 6.4 plots of the backfill passive resistance and baseline resistance in 

comparison with the total resistance.  As seen in previous tests, the passive force did not exhibit 

a distinct peak, but continued to gradually increase with displacement throughout the test. 
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Figure 6.4:  Force-Displacement Comparison For Loose Sand MSE Test 

 

6.4.2 Load-Displacement Results – Pressure Cells 

To help verify the load-displacement results from the actuators described in the previous 

section, measurements from the pressure cells embedded in the north face of the pile cap were 

analyzed.  During the test, pressure readings from the cells were taken continuously.  Figure 6.5 

shows a plot of the backfill passive pressure as a function of the depth of the pile cap at each 

displacement increment.  The plot generally follows a trend of increasing pressure with 

increasing depth, but there are a few inconsistencies.  Notable increases and decreases in 

pressure occurred across the full range of depth.  Also, at a depth of 1.38 ft (0.42 m), in Figure 

6.5, the pressures recorded at this cell reached a peak value by the 1.44 in. (37 mm) increment 

and then proceeded to decrease until the end of the test was reached. 

As explained in Section 4.2.2, the passive pressure readings were converted to force by 

multiplying the pressures by the tributary area of each pressure cell.  Figure 6.6 shows a plot of 
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the pressure cell passive force versus the pile cap displacement compared to the backfill passive 

resistance calculated from the actuators.  Typically, the pressure cell passive force-displacement 

curves were lower than the actuator load-displacement curves by approximately 30 to 40% due 

to the assumption of uniform pressure acting across the width of the pile cap.  The “pressure cells 

with multiplier” curve, in Figure 6.6, accounts for this concern by showing what the load-

displacement curve looks like when multiplied by a factor of 1.67.  The “pressure cells with 

multiplier” curve shows an increased initial stiffness during the first portion of the curve.  

However, the maximum measured passive force measured from the actuators is approximately 

50 kips (226 kN) greater than the maximum pressure cell passive force. 

 

 

Figure 6.5:  Backfill Passive Pressure Versus Depth at Each Displacement Increment for the Loose 

Sand MSE Test 
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Figure 6.6:  Pressure Cell Passive Resistance Compared to the Measured Passive Earth Resistance 

of the Loose Sand MSE Test 

 

6.4.3 Inclinometer Data Results 

Before and after each test was conducted, inclinometer readings were taken in both the 

north and south inclinometer tubes embedded in the pile cap.  The readings measured the pile 

cap and pile deflection over the depth of the piles parallel to the direction of loading.  Figure 6.7 

shows the north and south deflection results when the pile cap reached maximum deflection 

during the loose sand MSE test.  Positive deflection values correlate with the northerly direction 

of loading.  The zero displacement of the piles occurred at a depth of approximately 20 ft (6.10 

m), which depth is about 19 pile diameters.  The maximum displacement values recorded by the 

four string pots attached to the pile cap are also plotted.  The string pot values confirm the 

inclinometer results.  From the inclinometer plot, it can also be seen that the pile cap experienced 

very little rotation during loading, typical of a fixed head boundary condition. 
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Figure 6.7:  Inclinometer Readings of the Loose Sand MSE Test 

 

6.4.4 Backfill Displacement Results 

During testing, the backfill displacement was monitored with string pots located in the 

configuration described previously in Section 3.3.5.  Figure 6.8 shows the absolute displacement 

of the backfill plotted against the distance from the pile cap recorded from these string pots.  To 

simplify the plot, backfill displacements from selected pile cap displacements increments are 

shown.  The results of the loose MSE test were similar to the two previous loose tests and show 

that more backfill displacement occurred close to the pile cap while at distances greater than 

about 10 ft (3.05 m), the material was less affected by the cap movement and little displacement 

occurred.  The minimum horizontal displacement recorded at a distance of 24 ft (7.32 m) from 

the pile cap face was approximately 0.28 in. (7.1 mm). These observations can be understood by 

recognizing that loose sands tend to exhibit a local shear failure as compared to a general shear 
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failure condition typical of dense sands.  General shear failure would lead to movement 

throughout the failure zone while local shear failure would primarily lead to movement close to 

the pile cap. 

 

 

Figure 6.8:  Absolute Backfill Displacement Versus Distance from the Pile Cap for the Loose Sand 

MSE Test 

 

From the displacement data in Figure 6.8, the longitudinal compressive strain (in./in.) 

was calculated for each distance between string pot stakes (i.e., 0-2 ft, 2-4 ft, 4-6 ft, 6-9 ft, etc.) 

with Equation 4.1, shown previously.  Figure 6.9 shows the compressive strain calculation 

results for selected displacement intervals.  Not all intervals are shown to simplify the plot.  The 

overall trend can still be seen with the intervals plotted.  The highest compressive strain rates 

occur in the first two feet of backfill.  The strain rates in the 2 to 6 ft (0.61 to 1.83 m) range are 

similar.  As the distance from the pile cap face increases, the compressive strain levels decrease. 
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Figure 6.9:  Backfill Compressive Strain for the Loose Sand MSE Test 

 

The vertical displacement of the backfill was also determined for the test.  To determine 

vertical displacement, the elevation of the backfill grid was recorded before and after the test.  

The difference between the elevations showed how much the backfill displaced from the loading 

of the pile cap.  Figure 6.10 shows a contouring of the backfill zone for the loose sand MSE test.  

The maximum vertical displacement was approximately 1.0 in. (25.4 mm) occurring along the 

MSE walls between 2 to 6 ft (0.61 to 1.83 m) from the pile cap face.  Minute amounts of heave 

were seen beyond the 16-ft grid line. 

Figure 6.11 shows the crack pattern that developed in the backfill during testing.  The 

backfill was visually inspected for cracks after each displacement increment.  The most 

significant cracking occurred approximately 2 ft (0.61 m) from the pile cap face in between the 

panels after the actuators were released.  Only a small amount of cracking appeared in the first 4 

ft (1.22 m) of the backfill during loading.  The majority of cracking during loading occurred 
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approximately 4 to 8 ft (1.22 to 2.44 m) from the pile cap face.  No cracking occurred beyond the 

16-ft grid line. 

 

 

Figure 6.10:  Backfill Vertical Displacement Contour of the Loose Sand MSE Test 
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Figure 6.11:  Observed Backfill Cracking During the Loose Sand MSE Test 



83 

 

6.4.5 Transverse Wingwall Displacement Results 

As mentioned in Section 6.2, to monitor the MSE wingwall movement during the tests, 

four string pots were attached to the southeast MSE panel.  Figure 6.12 a) and b) are plots of the 

transverse MSE wingwall movement recorded during testing from both sets of string pots located 

21 in., or 1.75 ft (0.53 m), and 103 in., or 8.58 ft (2.62 m), from the pile cap face.  The data were 

extrapolated linearly to show the total movement of the wingwall from top to bottom.  The 

markers on each line represent the location of the string pots.  Each line shows the movement of 

the wingwall for each 0.25-in. displacement increment.  As seen from the plots, the panels 

appear to have rotated during the test.  Some rotation was expected because the shallow upper 

bar mats carried less load than the deep lower bar mats.  Since the lower mats were placed 

deeper in the backfill, a greater soil weight was transferred to the mats preventing the wingwall 

from rotating as depth increased. 

In Figure 6.12 a), the values of the string pot located at a depth of 52 in. were modified 

due to some irregularities in the string pot measurements.  After the 1-in. displacement 

increment, the string pot measurement values increased dramatically until the 3-in. increment 

was reach.  At this point the measurement decreased to a value which followed the original trend 

produced by the string pot.  Therefore, the displacement measurements from the 1.25-in. to the 

2.75-in. increments were interpolated based on the displacement trend from the previous and 

subsequent displacement increments.  Figure 6.12 a) reflects the interpolated values for the string 

pot at a depth of 52 in.  The other string pot located at the same distance from the pile cap face 

experienced no issues during the test. 
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a) Distance of 21 in. From the Pile Cap Face (Modified) 

 

b) Distance of 103 in. From the Pile Cap Face 

Figure 6.12:  Outward MSE Wingwall Displacement per Pile Cap Displacement Increment for 

Loose Sand MSE Test 
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The graph in Figure 6.13 shows the MSE wingwall rotation plotted against the passive 

force at the location of both sets of string pots.  The overall trend shows that as the passive force 

increased, the rotation of the wingwall also increased.  For the data representing the string pots 

located 103 in. from the pile cap face, there appeared to be some small initial movement of the 

wingwalls after the first displacement increment.  This may be an initial deformation response of 

the MSE panels. 

Figure 6.14 presents the transverse movement of the MSE wingwalls from an aerial 

prospective.  Data were collected at each 0.25-in. displacement increment.  However, to simplify 

the plot, data are only shown for every 0.50 in. of pile cap displacement.  The markers in the plot 

represent the location of the top string pots.  From the plot, it can be seen that as the distance 

from the pile cap face increased, the amount of outward movement increased. 

 

 

Figure 6.13:  MSE Wingwall Rotation-Passive Force Plot for Loose Sand MSE Test 
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Figure 6.14:  Transverse MSE Wingwall Displacement of the Top String Pots for Loose Sand MSE 

Test 

 

Figure 6.15 and Figure 6.16 also provide a look at how the wingwalls displaced in 

regards to passive force and the pile cap displacement.  The graphs show the wingwall response 

at both the 21 in. and 103 in. distances from the pile cap face.  The displacements plotted 

represent the movement of the very top of the MSE wingwalls, which was extrapolated from the 

string pot measurements.  The trends show from the concave shapes of the plots that as the 

passive force increased, the wingwall displacement increased.  If this trend continued, eventually 

a peak passive force would be reached and “failure,” or severe displacements of the wingwalls, 

would occur.  For MSE wingwalls, failure occurs when the reinforcing mats start pulling out of 

the backfill at large displacement levels per displacement increment. 
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Figure 6.15:  Outward MSE Wingwall Displacement-Passive Force Plot for Loose Sand MSE Test 

 

 

Figure 6.16:  MSE Wingwall Displacement-Pile Cap Displacement Plot for Loose Sand MSE Test 
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6.4.6 Reinforcing Mat Load Results 

As stated in Section 6.2, strain gauges were attached to the reinforcing mats used in 

conjunction with the MSE panels to monitor the development of load in the mats.  The mat loads 

calculated were then compared to the displacement of the MSE wingwalls to develop load-

deflection curves for the bar mats.  These load-deflection curves provided a reasonable means of 

detecting the capacity of the walls before failure occurred. 

To calculate the force in a reinforcing mat, the strain data collected from each set of 

strain gauges (meaning, the top and bottom strain gauges at a given distance from the MSE panel 

face) was used in the following equation, Equation 6.1: 

 

           (6.1) 

where 

F  =  total force in the reinforcing mat, kips 

    =  average strain of a set of strain gauges, in./in. 

E  =  modulus of elasticity of steel, 29000 ksi 

A  =  cross-sectional area of one longitudinal bar, in.
2
 

B  =  n – 1 

n  =  number of longitudinal bars of a mat. 

 

The outermost longitudinal bars of a mat only provided half of the tributary area that an inner bar 

provided, thus B in the equation above subtracts one from the total number of longitudinal bars 

of a mat.  The average strain,   , in the above equation, considered the strain recorded during 

construction of the backfill and during the load test.  As the test setup was completed, an initial 
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strain was placed on the mats from the backfill material.  This was accounted for when 

computing the total load, F, in each reinforcing mat by including the measured initial strain with 

that measured during the load test. 

Figure 6.17 and Figure 6.18 are plots of the total force calculated in the bar mats along 

the entire length of each mat compared to the ultimate pullout forces calculated at specific 

displacement increments.  Each marker in the plots represents the location of a set of strain 

gauges.  Due to the sensitivity and reliability of the strain gauges, not all data collected from the 

strain gauges were useful.  If data from a specific set of gauges were deemed inaccurate, the 

marker representing that set was removed from the plot and the curve was continued between the 

accepted values.  The graphs which plot data from the upper reinforcing mats placed at a depth 

of 1.83 ft (0.56 m) below the top of the pile cap are referred to as “top.”  Graphs which plot data 

from the lower reinforcing mats placed at a depth of 4.33 ft (1.32 m) below the top of the pile 

cap are referred to as “bottom.”  The center longitudinal bar of the mats described as “near cap” 

were located at a distance of approximately 3 ft (0.91 m) from the pile cap face while the center 

longitudinal bar of the mats described as “away from cap” were located at a distance of 

approximately 9 ft (2.74 m) from the pile cap face. 

The strain gauges located in the 2 to 9 in. (51 to 229 mm) range were the most 

inconsistent in providing reasonable measurements.  Because these gauges were located at a 

short distance from the MSE panel face, bending effects (evident in the rotation of the wall 

panels) or damage during construction may have affected the accuracy of the gauges.  The 

gauges located at 2 in. (51 mm) from the panel face were especially susceptible to construction 

damage from the pins used to secure the reinforcing mats to the MSE panels. 
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a) 0.5-in. Pile Cap Displacement Increment 

 

b) 1.0-in. Pile Cap Displacement Increment 

Figure 6.17:  Calculated Total Force in Top Reinforcing Mats for Loose Sand MSE Test at Selected 

Pile Cap Displacement Increments 
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c) 2.0-in. Pile Cap Displacement Increment 

 

d) 3.0-in. Pile Cap Displacement Increment 

Figure 6.17 (continued):  Calculated Total Force in Top Reinforcing Mats for Loose Sand MSE 

Test at Selected Pile Cap Displacement Increments 
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a) 0.5-in. Pile Cap Displacement Increment 

 

b) 1.0-in. Pile Cap Displacement Increment 

Figure 6.18:  Calculated Total Force in Bottom Reinforcing Mats for Loose Sand MSE Test at 

Selected Pile Cap Displacement Increments 
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c) 2.0 in. Pile Cap Displacement 

 

d) 3.0 in. Pile Cap Displacement 

Figure 6.18 (continued):  Calculated Total Force in Bottom Reinforcing Mats for Loose Sand MSE 

Test at Selected Pile Cap Displacement Increments 
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The dashed line in the plots above represents the ultimate pullout force of the mat.  The 

line was calculated according to NHI guidelines.  The flat portion of the line is equal to the 

ultimate force of the mat and extends to a distance of 0.3H above the mid-height of the wall.  

Below mid-height, the distance is interpolated between zero and at the base of the wall and 0.3H 

at the mid-height of the wall.  The force value then tapered to zero until the total length of the 

reinforcing mat was reached. 

The graphs show that the total calculated bar mat forces follow the trend established by 

the ultimate pullout force line.  The force in each mat tapered toward zero at the end of the mat 

and generated the greatest force close to the MSE panel.  It can also be seen that the development 

of force in the mats is also likely a function of how close the mat is to the source of load, the pile 

cap.  In most of the plots, the “near cap” mats recorded greater values of force than the “away 

from cap” mats.  The bottom, or deeper, mats also consistently recorded a greater force than the 

upper mats.  Although the force in the upper bar mats was very close to the expected force, the 

force in one of the bottom bar mats was greater than the expected force.  This is likely a result of 

the conservative nature of the ultimate pullout force equation. 

Figure 6.19 shows the reinforcing mat forces plotted against the transverse MSE 

wingwall displacements for the “bottom” and “top” mats.  The ultimate pullout force is plotted 

for comparison.  The plot of the top reinforcing mats reveals that the peak force in the mats was 

1 to 2 kips (4.45 to 8.90 kN) greater than the ultimate value.  The lower bar mat plot shows that 

the mat forces increased to about the same level as the ultimate force for the reinforcing mat 

further away from the cap face and were much greater than the ultimate force in the bottom mat 

near the cap.  This difference is thought to be, in part, the result of inaccurate MSE wall 

deflection measurements taken at this location as expressed previously in Section 6.4.5.  
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Typically, the maximum force in the reinforcing mats is developed with a small wall 

displacement of 0.2 to 0.3 in. (5 to 8 mm). 

 

 

a) Top Reinforcing Mats 

 

b) Bottom Reinforcing Mats 

Figure 6.19:  Calculated Bar Mat Force-MSE Panel Displacement Plot for Loose Sand MSE Test 
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Figure 6.20 shows a plot of the ratio of the pressure on the MSE wingwalls to the 

pressure on the pile cap face as a function of the distance of the strain gauges on each reinforcing 

mat from the pile cap face.  The pressure on the MSE panels was calculated as the load measured 

in a reinforcing mat divided by the tributary area of the MSE panel of that mat.  The load in the 

bar mat does not include the forces generated from the load test setup before testing started.  The 

pressure on the face of the pile cap was determined by first, assuming the passive pressure 

distribution was in a triangular shape, meaning that the pressure was zero at the top of the pile 

cap and increased linearly to the bottom of the pile cap.  Next, the resultant passive earth force 

was assumed to act at a height of one-third of the pile cap height measured from the bottom of 

the pile cap, thus allowing the maximum pressure at the base of the pile cap to be calculated.  

Last, the pressures on the pile cap at the same depths of the reinforcing mats were linearly 

interpolated from the maximum pressure.  The MSE wall pressure was divided by the pile cap 

pressure at each pile cap displacement increment.  The median values of all the displacement 

increments for each bar mat were plotted against the distance of the strain gauges on each bar 

mat from the pile cap face, and a linear trendline was fitted to the data points. 

The maximum pressure ratio value calculated was approximately 0.09 for the loose sand 

MSE test with a minimum value of zero suggested by the trendline at a distance of 

approximately 192 in., or 16 ft (4.88 m), from the pile cap face.  This distance correlates with a 

zero heave measurement on the backfill contour map shown previously in Figure 6.10, 

suggesting that no pressure may be present on the MSE walls at this distance.  The statistical R
2
 

value, or the coefficient of determination, for the trendline was approximately 0.433, which 

shows some amount of correlation in the pressure ratio-distance from the pile cap relationship. 
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Figure 6.21 is similar to Figure 6.20, except the pressure data were reduced to remove 

any opportunity for pullout of the bar mats to affect the pressure ratio relationship.  This was 

accomplished by determining at which lateral wall displacement the mats appear to begin pulling 

out by plotting the total MSE wall force against the average lateral wall displacement as shown 

in Figure 6.22.  From the plot, a value of 0.2 in. (5 mm) was selected to represent the maximum 

amount of allowable lateral wall displacement.  Only the pile cap displacement increments up to 

the wall displacement value of 0.2 in. were then used to find the median wall pressure.  This 

reduced the deviation between the pressure ratios and improved the correlation in the pressure 

ratio-distance relationship for the loose sand MSE test.  The subsequent maximum pressure ratio 

was approximately 0.115 while a zero pressure ratio was  located at a distance of about 170 in., 

or 14.17 ft (4.32 m).  This distance correlates with a 0 to 0.25 in. heave measurement on the 

backfill contour map shown previously in Figure 6.10.  The R
2
 value increased to 0.780. 

 

 

Figure 6.20:  Pressure Ratio-Distance Relationship for Loose Sand MSE Test 
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Figure 6.21:  Reduced Pressure Ratio-Distance Relationship for Loose Sand MSE Test 

 

 

Figure 6.22:  Total MSE Wingwall Force-Average MSE Wingwall Displacement Plot for the Loose 

and Dense MSE Tests 
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7 ABUTMENT LOAD TESTING – DENSE SAND WITH MSE WINGWALLS 

The second load test which utilized the MSE panels was conducted on 22 June 2009.  

This test was originally designed with an average static factor of safety against pullout of the 

reinforcing mats of at least1.65.  The backfill in this case was considered densely compacted 

because the median dry unit weight of the soil was approximately 95% of the modified Proctor.  

The test layout, instrumentation, procedure, and results are described in this chapter. 

7.1 Test Layout 

The test layout for the dense sand MSE test was identical to that described previously for 

the loose sand MSE test.  The significant difference between the two tests was the compaction 

level of the backfill.  The same MSE panels were utilized again.  Also, the reinforcing mat layout 

was identical with the slightly larger mats occupying the upper mat location and the smaller mats 

occupying the lower mat location of the panels.  Figure 6.1 and Figure 6.2, shown previously, 

represent the layout of the dense sand MSE test. 

7.2 Test Instrumentation and Equipment 

The additional instrumentation used during this test was in the same configuration as 

used during the loose sand MSE test.  The string pots attached to the southeast MSE panel were 

utilized and were placed at the same locations.  The reinforcing mats placed in the backfill were 
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also instrumented with strain gauges in an identical manner as described previously in Section 

6.2.  Figure 7.1 shows a photograph of the dense sand test layout before testing started. 

 

 

Figure 7.1:  Backfill String Pot Layout During Dense Sand MSE Test 

 

7.3 Testing Procedure 

The testing procedure followed for the dense sand MSE test was identical to that 

described previously in Section 3.5.  The pile cap was loaded incrementally by the hydraulic 
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actuators to a maximum pile cap deflection of 3.25 in. (83 mm).  Each displacement increment 

increased the pile cap deflection by a target value of 0.25 in. (6.35 mm).  After the maximum 

deflection was reached and necessary data collected, the actuators were used to pull the pile cap 

back to its initial unloaded condition. 

7.4 Test Results 

The following sections provide the results of the dense sand MSE test.  The results 

consist of passive force-displacement measured from the actuators, passive pressure versus depth 

curves, passive force-displacement measured from the pressure plates, inclinometer displacement 

versus depth curves, and backfill displacement data. 

7.4.1 Load-Displacement Results – Actuators 

Figure 7.2 plots the measured total peak actuator load versus pile cap displacement as the 

“total resistance.”  The displacement values were calculated by taking the median displacement 

of the four string pots attached to the pile cap at the end of each displacement increment.  The 

maximum load recorded was 959 kips (4266 kN) at a displacement of 3.17 in. (80 mm). 

The contribution of the backfill passive resistance to the total resistance was calculated 

from the load-displacement data collected.  As previously stated, the baseline resistance was 

subtracted from the total measured actuator load to develop the passive resistance provided by 

the backfill only.  Figure 7.2 plots of the backfill passive resistance and baseline resistance in 

comparison with the total resistance.  As seen in previous tests, the passive force did not exhibit 

a distinct peak, but continued to gradually increase with displacement throughout the test. 
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Figure 7.2:  Force-Displacement Comparison For Dense Sand MSE Test 

 

7.4.2 Load-Displacement Results – Pressure Cells 

To help verify the load-displacement results from the actuators described in the previous 

section, measurements from the pressure cells embedded in the north face of the pile cap were 

analyzed.  During the test, pressure readings from the cells were taken continuously.  Figure 7.3 

shows a plot of the backfill passive pressure as a function of the depth of the pile cap at each 

displacement increment.  The plot generally follows a trend of increasing pressure with 

increasing depth, but there are a few inconsistencies.  Notable increases and decreases in 

pressure occurred across the full range of depth.  Also, at depths of 1.38 ft (0.42 m) and 4.13 ft 

(1.26 m), in Figure 7.3, the pressures recorded at these cells reached a peak value by the 1.52 in. 

(39 mm) and 2.44 in. (62 mm) increments, respectively, and then proceeded to decrease until the 

load test was completed. 
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As explained in Section 4.2.2, the passive pressure readings were converted to force by 

multiplying the pressures by the tributary area of each pressure cell.  Figure 7.3 shows a plot of 

the pressure cell passive force versus the pile cap displacement compared to the backfill passive 

resistance calculated from the actuators.  Typically, the pressure cell passive force-displacement 

curves were lower than the actuator passive force-displacement curves by approximately 30 to 

40% due to the assumption of uniform pressure acting across the width of the pile cap.  The 

“pressure cells with multiplier” curve, in Figure 7.4, accounts for this concern by showing what 

the load-displacement curve looks like when multiplied by a factor of 1.33.  The “pressure cells 

with multiplier” curve is slightly above the measured passive earth resistance curve, but 

maintains the same general shape.  The maximum passive force of the “pressure cells with 

multiplier” curve is less than the same value for the measured maximum passive force. 

 

 

Figure 7.3:  Backfill Passive Pressure-Depth Plot at Each Displacement Increment for the Dense 

Sand MSE Test 
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Figure 7.4:  Pressure Cell Passive Force Resistance Compared to the Measured Passive Earth 

Resistance of the Dense Sand MSE Test 

 

7.4.3 Inclinometer Data Results 

Before and after each test was conducted, inclinometer readings were taken in both the 

north and south inclinometer tubes embedded in the pile cap.  The readings measured the pile 

cap and pile deflection over the depth of the piles parallel to the direction of loading.  Figure 7.5 

shows the north and south deflection results when the pile cap reached maximum deflection 

during the dense sand MSE test.  Positive deflection values correlate with the northerly direction 

of loading.  The zero displacement of the piles occurred at a depth of approximately 20 ft (6.10 

m), which depth is about 19 pile diameters.  The maximum displacement values recorded by the 

four string pots attached to the pile cap are also plotted.  The string pot values confirm the 

inclinometer results.  From the inclinometer plot, it can also be seen that the pile cap experienced 

very little rotation during loading, typical of a fixed head boundary condition. 
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Figure 7.5:  Inclinometer Displacement Readings of the Dense Sand MSE Test 

 

7.4.4 Backfill Displacement Results 

During testing, the backfill displacement was monitored with string pots located in the 

configuration described in Section 3.3.5.  Figure 7.6 shows the absolute displacement of the 

backfill plotted against the distance from the pile cap recorded from these string pots.  To 

simplify the plot, backfill displacements from selected pile cap displacements increments are 

shown.  The results of the dense MSE test were different from the three previous loose tests and 

show that a steady and consistent decrease in displacement level occurred throughout the load 

test.  The minimum horizontal displacement recorded at a distance of 24 ft (7.32 m) from the pile 

cap face was approximately 0.78 in. (19.8 mm), which was 0.5 in. (12.7 mm) more than the 

minimum value of any of the loose tests.  These observations can be understood by recognizing 

that dense sands tend to exhibit a general shear failure as compared to a local shear failure 



106 

 

condition typical of loose sands.  General shear failure would lead to movement throughout the 

failure zone while local shear failure would primarily lead to movement close to the pile cap. 

 

 

Figure 7.6:  Absolute Backfill Displacement Versus Distance from the Pile Cap for the Dense Sand 

MSE Test 

 

From the displacement data above, the compressive strain (in./in.) was calculated for 

each distance between string pot stakes (i.e., 0-2 ft, 2-4 ft, 4-6 ft, 6-9 ft, etc.) with Equation 4.1.  

Figure 7.7 shows the compressive strain calculation results for selected displacement intervals.  

While not all intervals are shown, the overall trend can still be seen with the intervals plotted.  

The highest compressive strain rates occur in the first two feet of backfill.  Generally, as the 

distance from the pile cap face increased, the compressive strain levels decreased.  During the 

dense sand MSE test, the strain rate decreased dramatically after the first 2 ft (0.61 m), increased 

in the 12 to 15 ft (3.66 to 4.57 m) range, and then decreased again after that. 
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Figure 7.7:  Backfill Compressive Strain for the Dense Sand MSE Test 

 

The vertical displacement of the backfill was also determined for the test.  To determine 

vertical displacement, the elevation of the backfill grid was surveyed before and after the test.  

The difference between the elevations showed how much the backfill displaced from the loading 

of the pile cap.  Figure 7.8 shows a contouring of the backfill zone for the dense sand MSE test.  

The maximum vertical displacement was approximately 1.75 in. (44.5 mm) occurring along the 

6-ft grid line with at least 0.5 in. (12.7 mm) of heave also occurred along much of the 24-ft grid 

line. 

Figure 7.9 shows the crack pattern that developed in the backfill during testing.  The 

backfill was visually inspected for cracks after each displacement increment.  The most 

significant cracking occurred perpendicular to the pile cap face coinciding with the ends of the 

reinforcing mats around the 4 and 6 ft north-south gridlines.  This cracking appeared as two 

parallel trend lines extending from 4 ft (1.22 m) to nearly 20 ft (6.10 m) from the pile cap face at 
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distances of 1 ft (0.30 m) from either side of the backfill centerline.  No significant cracking 

occurred beyond the 20 ft (5.49 m) gridline.  It is interesting to note that because the backfill was 

more densely compacted during this test, more cracking was visible than during the loose sand 

MSE test. 

 

 

Figure 7.8:  Backfill Vertical Displacement Contour of the Dense Sand MSE Test 
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Figure 7.9:  Observed Backfill Cracking During the Dense Sand MSE Test 
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7.4.5 Transverse Wingwall Displacement Results 

As mentioned in Section 6.2, to monitor the MSE wingwall movement during the tests, 

four string pots were attached to the southeast MSE panel.  Figure 7.10 is a plot of the transverse 

MSE wingwall movement recorded during testing from the pair of string pots located 103 in., or 

8.58 ft (2.62 m), from the pile cap face.  The data from the pair of string pots located 21 in., or 

1.75 ft (0.53 m) from the pile cap face are not shown because one of the string pots was erratic 

during testing. The data in the graph were extrapolated linearly to show the total movement of 

the wall from top to bottom.  The markers on each line represent the location of the string pots.  

Each line shows the movement of the wall for each 0.25-in. displacement increment.  As seen 

from the plot, the panels appear to have rotated during the test.  The rotation was expected 

because the shallow upper bar mats carried less load than the deep lower bar mats.  Since the 

lower mats were placed deeper in the backfill, a greater soil weight was transferred to the mats 

preventing the wall from rotating as depth increased. 

Figure 7.11 shows the MSE wingwall rotation plotted against the passive force at the 103 

in. location of string pots.  Very little rotation occurred during the first three displacement 

increments, but the overall trend of the plot shows that as the load increased, the rotation of the 

wall also increased.  A maximum rotation of approximately 0.27 degrees was measured. 

Figure 7.12 presents the transverse movement of the MSE wingwalls from an aerial 

prospective.  Data were collected at each 0.25-in. displacement increment.  However, to simplify 

the plot, data are only shown for every 0.50 in. of pile cap displacement.  The markers in the 

graph represent the location of the string pots.  From the plot, it can be seen that as the distance 

from the pile cap face increased, the amount of outward movement increased. 
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Figure 7.10:  MSE Wingwall Displacement at 103 in. From the Pile Cap for Dense Sand MSE Test 

 

 

Figure 7.11:  MSE Wingwall Rotation-Measured Passive Force Plot for Dense Sand MSE Test 
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Figure 7.12:  Transverse MSE Wingwall Displacement for Dense Sand MSE Test 

 

Figure 7.13 and Figure 7.14 also provide a look at how the wingwalls displaced in 

regards to passive force and the pile cap displacement.  The plots show the wingwall response at 

the 103 in. string pot location.  The displacements plotted represent the movement of the very top 

of the MSE wingwalls, which was extrapolated from the string pot measurements.  The trends 

show from the concave shapes of the plots that as the passive force increased, the wingwall 

displacement increased.  If this trend continued, eventually a peak load would be reached and 

“failure,” or severe displacements of the wingwalls, would occur.  For MSE wingwalls, failure 

occurs when the reinforcing mats start pulling out of the backfill at large displacement levels per 

displacement increment. 
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Figure 7.13:  Outward MSE Wingwall Displacement-Measured Passive Force Plot for Dense Sand 

MSE Test 

 

 

Figure 7.14:  MSE Wingwall Displacement-Pile Cap Displacement Plot for Dense Sand MSE Test 
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7.4.6 Reinforcing Mats Load Results 

As stated in Section 7.2, strain gauges were implemented on the reinforcing mats used in 

conjunction with the MSE wingwalls to monitor the development of load in the mats.  The mat 

loads calculated were then compared to the displacement of the MSE wingwalls to develop load-

deflection curves for the bar mats.  These load-deflection curves provided a reasonable means of 

detecting the capacity of the walls before failure occurred. 

To calculate the force in a reinforcing mat, the strain data collected from each set of 

strain gauges was used in Equation 6.1.  The average strain,   , in the equation considered the 

strain recorded during construction of the test and during the test.  As the test setup was 

completed, an initial strain was placed on the mats from the backfill material.  This was 

accounted for when computing the total load, F, in each reinforcing mat by including the 

measured initial strain with that measured during the load test. 

Figure 7.15 and Figure 7.16 are plots of the total force calculated in the bar mats 

compared to the ultimate pullout forces calculated at specific displacement increments.  Each 

marker in the plots represents the location of a set of strain gauges.  Due to the sensitivity and 

reliability of the strain gauges, not all data collected from the strain gauges were useful.  If data 

from a specific set of gauges were deemed inaccurate, the point representing that set was 

removed from the plot and the curve was continued between the existing points.  The graphs 

plotting data from the upper reinforcing mats placed at a depth of 1.83 ft (0.56 m) below the top 

of the pile cap are referred to as “top.”  Graphs which plot data from the lower reinforcing mats 

placed at a depth of 4.33 ft (1.32 m) below the top of the pile cap are referred to as “bottom.”  

The center of the mats described as “near cap” and “away from cap” were located at distances of 

3 ft (0.91 m) and 9 ft (2.74 m) from the pile cap face, respectively. 
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a) 0.5-in. Pile Cap Displacement Increment 

 

b) 1.0-in. Pile Cap Displacement Increment 

Figure 7.15:  Calculated Total Force in Top Reinforcing Mats for Dense Sand MSE Test at Selected 

Pile Cap Displacement Increments 
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c) 2.0-in. Pile Cap Displacement Increment 

 

d) 3.0-in. Pile Cap Displacement Increment 

Figure 7.15 (continued):  Calculated Total Force in Top Reinforcing Mats for Dense Sand MSE 

Test at Selected Pile Cap Displacement Increments 
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a) 0.5-in. Pile Cap Displacement Increment 

 

b) 1.0-in. Pile Cap Displacement Increment 

Figure 7.16:  Calculated Total Force in Bottom Reinforcing Mats for Dense Sand MSE Test at 

Selected Pile Cap Displacement Increments 
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c) 2.0 in. Pile Cap Displacement 

 

d) 3.0 in. Pile Cap Displacement 

Figure 7.16 (continued):  Calculated Total Force in Bottom Reinforcing Mats for Dense Sand MSE 

Test at Selected Pile Cap Displacement Increments 
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The strain gauges located in the 2 to 9 in. (51 to 229 mm) range were the most 

inconsistent in providing reasonable measurements.  Because these gauges were located at a 

short distance from the MSE panel face, bending effects or damage during construction may 

have affected the accuracy of the gauges.  The gauges located at 2 in. (51 mm) from the panel 

face were especially susceptible to construction damage from the pins used to secure the 

reinforcing mats to the MSE panels. 

The dashed line in the plots represents the ultimate pullout force of the mats.  The line 

was calculated according to NHI guidelines.  The flat portion of the line is equal to the ultimate 

pullout force of the mat and extends to a distance of 0.3H above the mid-height of the wall.  

Below the mid-height, the distance is interpolated between zero at the base of the wall and 0.3H 

at the mid-height of the wall.  The force value was then tapered to zero until the total length of 

the reinforcing mat was reached. 

The plots show that the calculated bar mat forces follow the trend established by the 

ultimate pullout force line.  The force in each mat tapered toward zero at the end of the mat and 

generated the greatest forces closer to the MSE panel.  The forces calculated increased with each 

successive pile cap displacement increment.  It can also be seen that the development of force in 

the mats is also likely a function of how close the mat is to the source of load.  In most of the 

graphs, the mats that were considered “near cap” recorded greater values of force than those mats 

considered “away from cap.”  The bottom, or deeper, mats also consistently recorded the greater 

amounts of force than the upper reinforcing mats.  Shown in most of the graphs, the amount of 

force in the mat was greater than the design pullout force.  This is most likely a result of the 

conservative nature of the ultimate pullout force equations.  At approximately the 1.0-in. pile cap 
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increment was where the mat force typically began to exceed the ultimate pullout force in both 

the top and bottom mats. 

Figure 7.17 shows the reinforcing bar mat forces plotted against the transverse MSE wall 

displacements for the “top” and “bottom” mats.  The ultimate pullout forces are also plotted for 

comparison.  The plots reveal that the mat forces increased to levels significantly greater than the 

ultimate pullout forces.  Eventually, the load values began to peak after a wall displacement of 

0.4 in. (10.2 mm) for the “away from cap” mats and 0.14 in. (3.56 mm) for the “near cap” mats.  

The only exception to this finding is the bottom mat near the pile cap face plotted in Figure 7.17 

b).  The MSE wall displacements measured at this location were inaccurate as concerns over the 

string pot placed there were expressed earlier in Section 7.4.5.  Typically, the maximum force in 

the mats is developed with a relatively small wall displacement of 0.2 to 0.3 in. (5 to 8 mm). 

 

 

a) Top Reinforcing Mats 

Figure 7.17:  Reinforcing Mat Force-MSE Panel Displacement Plot for Dense Sand MSE Test 
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b) Bottom Reinforcing Mats 

Figure 7.17 (continued):  Reinforcing Mat Force-MSE Panel Displacement Plot for Dense Sand 

MSE Test 

 

Figure 7.18 shows a plot of the ratio of the pressure on the MSE wingwalls to the 

pressure on the pile cap face as a function of the distance of the strain gauges on each reinforcing 

mat from the pile cap face.  The pressure on the MSE panels was calculated as the load measured 

in a reinforcing mat divided by the associated tributary area of the MSE panel of that mat.  The 

load in the bar mat does not include the forces generated from the load test setup before testing 

started.  The pressure on the face of the pile cap was determined by first, assuming the pressure 

distribution was in a triangular shape, meaning that the pressure was zero at the top of the pile 

cap and increased linearly to the bottom of the pile cap.  Next, the resultant passive earth force 

was assumed to act at a height of one-third of the pile cap height measured from the bottom of 

the pile cap, thus allowing the maximum pressure at the base of the pile cap to be calculated.  

Last, the pressures on the pile cap at the same depths of the reinforcing mats were linearly 
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interpolated from the maximum cap pressure.  The MSE wingwall pressure was divided by the 

pile cap pressure at each pile cap displacement increment.  The median values of all the 

displacement increments for each reinforcing mat were plotted against the distance of the strain 

gauges on each reinforcing mat from the pile cap face, and a linear trendline was fitted to the 

data points. 

The maximum pressure ratio value calculated was approximately 0.08 for the dense sand 

MSE test.  A zero pressure ratio is not reached with the trendline for the dense MSE test.  This 

suggests that some pressure acts along the entire length of the wall.  The statistical R
2
 value for 

the trendline was approximately 0.175, which shows a small amount of correlation in the 

pressure ratio-distance from the pile cap relationship. 

Figure 7.19 is similar to Figure 7.18, except the pressure data were reduced to remove 

any opportunity for pullout of the reinforcing mats to affect the pressure ratio relationship.  This 

was accomplished by determining at which lateral wall displacement the mats appear to begin 

pulling out by plotting the total MSE wall force against the average lateral wall displacement as 

shown in Figure 6.22.  From the plot, a value of 0.2 in. was selected to represent the maximum 

amount of allowable lateral wall displacement.  All of the pile cap displacement increments up to 

the wall displacement value of 0.2 in. were then used to find the median wall pressure.  This 

reduced the deviation between the pressure ratios and improved the correlation in the 

relationship between the pressure ratio and distance from the pile cap for the dense sand MSE 

test.  An improved R
2
 value of 0.260 was generated.  The subsequent maximum pressure ratio 

was approximately 0.06 with a minimum of about 0.03. 
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Figure 7.18:  Pressure Ratio-Distance Relationship for Dense Sand MSE Test 

 

 

Figure 7.19:  Reduced Pressure Ratio-Distance Relationship for Dense Sand MSE Test 
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8 COMPARISON OF TEST RESULTS 

After the completion of field testing, the data collected from all tests were compared and 

contrasted in several areas, namely: passive force-displacement measured from the actuators, 

backfill displacement, transverse wingwall displacement, and reinforcing mat forces.  This 

chapter is a summary of that comparison for the following tests: loose sand unconfined (3D), 

loose sand slip plane (2D), loose sand MSE, dense sand MSE, dense sand unconfined (3D), and 

dense sand slip plane (2D).  As stated previously in Section 1.3, the dense sand unconfined and 

dense sand slip plane test data were not detailed in this thesis as the two tests were more 

specifically presented in Bingham (2010).  The comparison of the data was focused on the 

differences between tests with loose and dense backfills. 

8.1 Load-Displacement Comparison – Actuators 

The passive force-displacement curves for the six tests mentioned in the chapter 

introduction are plotted in Figure 8.1.  The three dense tests show maximum passive force values 

all greater than 585 kips (2602 kN) with the unconfined (3D) test recording the greatest peak 

passive force value of approximately 780 kips (3470 kN).  The three loose tests are all within a 

range for the maximum passive force of approximately 290 to 335 kips (1290 to 1490 kN) with 

the unconfined test providing the lowest maximum passive force. 
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Figure 8.1:  Comparison of Passive Force-Displacement Curves for all Loose and Dense Tests 

 

For the unconfined tests, no wingwalls were used to limit the 3D end effects from the pile 

cap, thus increasing the effective width of the pile cap to approximately 18 ft (5.49 m) for the 

loose test and 22 ft (6.71 m) for the dense test.  The increased effective width influenced the 

increase in the peak passive force for the dense unconfined test, but for the loose unconfined test, 

no increase in the peak force was noticeable.  The peak passive force of the loose unconfined test 

was the lowest of the three loose tests.  This suggests that the 3D end effects from the pile cap 

play a larger role in developing the maximum passive force with denser soils than with looser 

soils.  In dense sands, a general shear failure would be expected whereas local shear failure 

would be expected in loose sands.  Therefore, greater benefits in lateral resistance resulting from 

3D end effects would be expected from general shear failure in dense sands than local shear 

failure in loose sands. 
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From Figure 8.1, it can also be seen that the slip plane (2D) and MSE tests for both loose 

and dense backfills produced similar force-displacement curves.  The loose slip plane and MSE 

tests recorded a peak passive force value within three kips (13 kN) of each other.  The maximum 

passive force developed during the dense MSE test was about 90% of the maximum passive 

force developed during the dense slip plane test.  This helped to validate the use of the plane 

strain friction angle for predicting the passive force-deflection curves of all of the slip plane and 

MSE tests. 

Table 8.1 shows a comparison between the passive forces per effective pile cap width for 

all six tests.  To compute the passive force per effective width, the maximum passive force 

recorded from each passive force-displacement curve was divided by its effective pile cap width.  

The effective pile cap width was found by multiplying the Brinch Hansen 3D correction factor 

by the actual pile cap width of 11 ft (3.35 m).  Only for the two unconfined tests was the 

effective pile cap width larger than the actual pile cap width. 

The largest passive force per effective width value of 59.1 kip/ft (863 kN/m) developed 

during the dense sand slip plane test.  A slightly lower value was found for the dense sand MSE 

test.  The loose and dense unconfined tests recorded the lowest values.  With a wider effective 

width, the passive resistance generated by the backfill was spread out over a larger width, thus 

lowering the passive force per effective width value.  The greater passive force per width values 

for the slip plane and MSE cases, relative to the unconfined cases, points out the increased 

passive resistance provided by the plane strain-like failure geometry.  Although the soil is 

essentially the same in both cases, the plane strain-like failure geometry leads to greater 

resistance per width.  It is also important to note that the passive force per effective width values 

for the loose tests were lower than the dense tests by approximately 40 to 50%. 
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Table 8.1:  Comparison of Passive Force per Effective Width of Pile Cap 

 
 

Table 8.1 also shows the ratio between the maximum pile cap deflection and the pile cap 

height (max/H) for each test.  The max/H values for all of the tests are in the 0.04 to 0.05 range.  

These results follow the high end of the range suggested by AASHTO guidelines stated 

previously in Section 2.1, however, there was a small upward slope on some of the passive force-

displacement curves at the peak displacement reached during the tests. 

8.2 Backfill Displacement 

The comparison graphs shown in Figure 8.2 plot the absolute longitudinal displacement 

of the backfill during testing.  To simplify the plots, backfill displacements from selected pile 

cap displacements increments are shown.  The results of the loose tests show, in relation to the 

dense tests, that more backfill displacement occurred close to the pile cap while at distances 

greater than about 10 ft (3.05 m), the material was less affected by the cap movement and little 

displacement occurred.  The dense material showed a steady and consistent decrease in 

displacement level throughout the load tests.  These observations can be understood by 

recognizing that loose sands tend to exhibit a local shear failure while dense sands develop a 

general shear failure condition.  General shear failure would lead to movement throughout the 

failure zone while local shear failure would primarily lead to movement close to the pile cap. 
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a) 0.75-in Pile Cap Displacement Increment 

 

b) Last Pile Cap Displacement Increment 

Figure 8.2:  Absolute Backfill Displacement Versus Distance from the Pile Cap for Six Field Tests 

at Two Selected Displacement Increments 
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The compressive strain rates within the backfill were also calculated and plotted for each 

field tests based on data from Figure 8.2.  The comparison graphs in Figure 8.3, below, show a 

plot of the backfill strain at the 0.75-in. and last displacement increments of the pile cap.  The 

strain is shown as a function of distance from the pile cap.  Each of the plots show an overall 

trend of having a high strain rate across the first 2 ft (0.61 m) of backfill, followed by a 

considerable decreased in the 2 to 6 ft (0.61 to 1.83 m) range.  An increase again occurred 

typically after 6 ft (1.83 m) from the pile cap face, which then tended to decrease until the final 

stake is reached at a distance of 24 ft (7.32 m) from the pile cap.  The overall trend also shows 

that the loose tests experience more strain as compared to the dense tests in the 2 ft to 12 ft 

range.  This suggests that the loose material was generally compressing in this range while the 

dense sand was compressing less and translating more as would be expected for a general shear 

failure. 

To monitor the vertical backfill displacement, the elevation of the backfill was surveyed 

before and after each test was completed.  Elevations were taken on the grid which was painted 

on the backfill.  The graphs in Figure 8.4 show the change in elevation measured in inches for 

each test in a side-by-side comparison.  Positive contour values show upward movement. 

In Figure 8.4 a) and b), the loose and dense unconfined (3D) tests, heave was seen to 

occur out 11 ft (3.35 m) from the center of the pile cap in both west and east directions in 

circular patterns.  The largest heave measurements occurred approximately 4 ft (1.22 m) from the 

pile cap face during the loose test and 8 ft (2.44 m) from the pile cap face during the dense test.  

The dense test produced increased heave values overall in comparison with the loose test and an 

increased maximum heave value of approximately 2.50 in. (64 mm).  The maximum heave value 

recorded from the loose test was approximately 2.0 in. (51 mm). 
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a) 0.75-in. Pile Cap Displacement Increment 

 

b) Last Pile Cap Displacement Increment 

Figure 8.3:  Comparison of Backfill Compressive Strain Versus Distance from the Pile Cap for Six 

Field Tests 
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a) Loose Sand Unconfined (3D) 

Figure 8.4:  Backfill Elevation Change Maps for Six Field Tests 
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b) Dense Sand Unconfined (3D) 

Figure 8.4 (continued):  Backfill Elevation Change Maps for Six Field Tests 
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c) Loose Sand Slip Plane (2D) d) Dense Sand Slip Plane (2D) 

Figure 8.4 (continued):  Backfill Elevation Change Maps for Six Field Tests 
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e) Loose Sand MSE f) Dense Sand MSE 

Figure 8.4 (continued):  Backfill Elevation Change Maps for Six Field Tests 
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The heave contouring for the loose and dense slip plane (2D) tests was very similar.  

Again, the overall pattern of the contouring was a semi-circular shape truncated by the side 

isolation panels.  A maximum value of heave measured 1.75 in. (44 mm) during both slip plane 

tests at about the same location of 4 to 6 ft (1.22 to 1.83 m) from the pile cap face. 

When comparing the heave contours of the loose and dense MSE tests in Figure 8.4 e) 

and f), one will notice the same semi-circular pattern to the contouring as mentioned for the slip 

plane tests.  The difference in the maximum heave values between the loose and dense MSE tests 

was also noticeable during the MSE tests like the unconfined tests.  The loose MSE test showed 

a maximum heave value of approximately 1.0 in. (25.4 mm) while the dense MSE test showed a 

maximum heave value of approximately 1.75 in. (44 mm).  The zone of heaving for the dense 

MSE test also extended to a greater distance in comparison with the loose MSE test.  The zero 

heave contour developed at distance of about 15 ft (4.57 m) from the pile cap face during the 

loose MSE test while the same contour is not visible in the gridded backfill zone for the dense 

MSE test. 

Visual inspections of the backfill surface during each test were completed to record the 

cracking history of the backfill after each displacement increment.  The plots below in Figure 8.5 

show a side-by-side comparison of the cracking history for each test.  The cracking pattern of the 

unconfined tests showed strong evidence of the 3D edge effects of the pile cap with limited 

cracking occurring in the middle of the backfill.  The cracks extend to a greater width for the 

dense test than for the loose test.  The slip plane tests produced cracking patterns that were 

mostly longitudinal in direction concentrated in between the side isolation panels most likely 

resulting from the plane strain-like backfill conditions provided by the side panels.  Cracking 

was relatively minimal in both cases when compared to the unconfined tests. 
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a) Loose Sand Unconfined (3D) 

Figure 8.5:  Comparison of Observed Backfill Cracking During Six Field Tests 
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b) Dense Sand Unconfined (3D) 

Figure 8.5 (continued):  Comparison of Observed Backfill Cracking During Six Field Tests 
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c) Loose Sand Slip Plane (2D) 

Figure 8.5 (continued):  Comparison of Observed Backfill Cracking During Six Field Tests 
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d) Dense Sand Slip Plane (2D) 

Figure 8.5 (continued):  Comparison of Observed Backfill Cracking During Six Field Tests 
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e) Loose Sand MSE 

Figure 8.5 (continued):  Comparison of Observed Backfill Cracking During Six Field Tests 
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f) Dense Sand MSE 

Figure 8.5 (continued):  Comparison of Observed Backfill Cracking During Six Field Tests 
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The cracking patterns produced during the MSE tests also show a majority of the cracks 

developing the in longitudinal direction, parallel to the wingwalls.  The dense MSE test showed 

an increased number of cracks relative to the loose test.  The majority of the cracks ran 

perpendicular to the end of the reinforcing mats.  The increased backfill density along with the 

pullout effects of the reinforcing mats placed in the backfill were the cause of the increased crack 

density near the center of the backfill grid for the dense MSE test. 

8.3 Transverse Wingwall Displacement 

A comparison of the various wingwall displacement results for the two slip plane (2D) 

tests and the two MSE tests are shown below.  The panels used in the loose slip plane test were 

instrumented with three string pots on the outside of the panels located just above the backfill 

surface at distances of 2, 6, and 12 ft (0.61, 1.83, 3.66 m) from the pile cap face.  The panels 

used in the dense slip plane test were instrumented with four string pots on the outside of the 

panels located at distances of 2, 6, 12, and 18 ft (0.61, 1.83, 3.66, and 5.50 m) from the pile cap 

face.  The MSE walls, for both the loose and dense cases, were instrumented with four string 

pots located approximately over the center of the four reinforcing mats connected to the wall. 

Figure 8.6 shows the outward movement of the plywood panels recorded at each string 

pot as a function of distance from the pile cap for both slip plane tests.  The plots are in plan 

view with the pile cap on the left being loaded to the right.  The maximum wall displacement of 

the loose test was approximately 0.16 in. (4 mm) at a distance of 6 ft (1.83 m) from the pile cap 

face.  The maximum wall displacement of the dense test was approximately 0.22 in. (5.6 mm) at 

the same distance from the pile cap face despite recording a greater maximum passive load of 
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650 kips (2891 kN) during the dense test relative to a maximum passive load of 332 kips (1477 

kN) during the loose test. 

 

 

Figure 8.6:  Comparison of Loose Slip Plane (2D) and Dense Slip Plane (2D) Outward Panel 

Displacement Plotted Against Distance From the Pile Cap Face 

 

Figure 8.7 shows the passive force as a function of the outward panel displacement 

recorded by each string pot for the loose and dense plane strain tests.  The plot clearly 

demonstrates that the plywood panels experienced less deflection as the distance from the pile 

cap increased.  The three string pots located at distances of 2, 6, and 12 ft during the dense slip 

plane test all exhibit similar non-linear, or hyperbolic, shaped passive load-displacement curves, 

while the string pot located at 18 ft exhibits a much more dramatic non-linear shaped curve with 

much less displacement.  The plot also shows that more deflection will occur as more force is 

placed on the pile cap.  This reflects the effect the increase in backfill unit weight had on the load 

and displacement levels that are shown when comparing the dense to loose tests. 
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Figure 8.7:  Comparison of Loose and Dense Slip Plane (2D) Passive Force Plotted Against 

Individual String Pot Displacements 

 

Figure 8.8 shows the outward displacement of the loose and dense MSE tests as a 

function of backfill depth for each displacement increment.  The plots appear as if looking at a 

cross-sectional view of the backfill and walls.  Two plots are shown for the loose MSE test 

representing two pairs of string pots at 21 and 103 in. (0.53 and 2.62 m) from the pile cap face.  

Only one plot is shown for the dense MSE test for the string pot pair at 103 in. from the pile cap 

face.  One of the string pots from the other pair did not record properly during the entire dense 

MSE test; therefore, no plot is shown for the pair at 21 in. from the pile cap face.  A depth of 

zero inches represents the backfill surface.  A depth of 68 in. (1.73 m) represents the bottom of 

the MSE walls. 

The string pot located at 22 in. (0.56 m) below the ground surface in Figure 8.8 a) 

recorded a maximum displacement of 0.53 in. (13.5 mm).  The string pot located at the same 
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location during the dense MSE test recorded a maximum displacement of 0.31 in. (7.9 mm).  (A 

plot of this string pot is not shown because the string pot below did not work properly during the 

dense MSE test.)  The MSE wingwalls during the loose test displaced more than the wingwalls 

did during the dense test.  This observation is confirmed by comparing Figure 8.8 b) and c), 

which represent the MSE wingwall displacement as recorded by the pair of string pots located at 

a distance of 103 in. from the pile cap face.  The maximum displacements of the loose MSE test 

at 22 in. and 52 in. (1.32 m) below the ground surface are 0.81 in. and 0.60 in. (20.6 mm and 

15.2 mm), respectively.  The maximum displacements of the dense MSE test at 22 in. and 52 in. 

below the ground surface are 0.68 in. and 0.55 in. (17.3 and 14.0 mm, respectively.  The denser 

backfill provided more resistance to pullout, thus reducing the MSE wingwall displacement. 

 

 

a) Loose MSE Test at 21 in. From Pile Cap Face 

Figure 8.8:  Comparison of Loose and Dense MSE Test Outward MSE Wall Displacement Plotted 

Against Depth Below the Top of the Pile Cap 
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b) Loose MSE Test at 103 in. From Pile Cap Face 

 

c) Dense MSE Test at 103 in. From Pile Cap Face 

Figure 8.8 (continued):  Comparison of Loose and Dense MSE Test Outward MSE Wall 

Displacement Plotted Against Depth Below the Top of the Pile Cap 
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In addition to the displacement information provided in Figure 8.8, Figure 8.9 is a 

comparison of the rotation angle of the MSE wingwalls during testing for both the loose and 

dense MSE tests.  The plot supports the observation above in that the MSE walls displaced and 

rotated less during the dense test than during the loose test.  The maximum rotation angle for the 

loose MSE test was approximately 0.6 degrees.  The maximum rotation angle for the dense MSE 

test was approximately half of the angle for the loose test at 0.3 degrees.  The more rotation and 

displacement observed from the MSE walls, the greater the possibility that pullout or failure 

might occur.  The denser backfill material was a means for increased capacity from the MSE 

reinforcement. 

 

 

Figure 8.9:  Comparison of MSE Wingwall Rotation Angle for Loose and Dense MSE Tests Plotted 

Against Passive Force 

 

Figure 8.10 provides a view of the transverse wingwall displacement for the two slip 

plane and two MSE tests plotted as a function of the longitudinal pile cap displacement.  The 
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transverse wall displacements shown were taken at locations along the MSE wingwalls and 

plywood panels that were level with the ground surface.  For the slip plane cases, the wall 

containing the dense backfill deflected somewhat more than the wall containing the loose 

backfill.  However, considering that the load applied by the actuator was about twice as large for 

the pile cap with dense backfill as for that with loose backfill, the dense wall is still considerably 

stiffer.  In addition, it can be seen that the dense MSE wingwalls deflected less per pile cap 

displacement increment than did the loose MSE wingwalls.  The MSE wingwalls deflected more 

than the slip plane walls indicating that the bar mat reinforcements did not provide the same 

confinement as having soil on the outside of the wall. 

 

 

a) Transverse Wall Displacement at 21 in. and 24 in. From the Pile Cap Face 

Figure 8.10:  Comparison of the Transverse Wall Displacement as a Function of Longitudinal Cap 

Displacement at Two Distances From the Pile Cap Face 
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b) Transverse Wall Displacement at 103 in. and 108 in. From the Pile Cap Face 

Figure 8.10 (continued):  Comparison of the Transverse Wall Displacement as a Function of 

Longitudinal Cap Displacement at Two Distances From the Pile Cap Face 

 

8.4 Reinforcing Mat Force Results 

The reinforcing mats used during the loose and dense MSE tests were instrumented with 

strain gauges to record the strain from which the forces placed on the mats while the pile cap was 

laterally loaded were calculated.  This section compares the total load computed for the 

reinforcing mats, including the construction loads, and the ratio of the lateral pressure placed on 

the MSE wingwalls to the lateral pressure placed on the pile cap of the two MSE tests conducted.  

Earlier discussions of the strain results and how the force in the mats was calculated for the MSE 

tests can be found in Sections 6.4.6 and 7.4.6. 

Figure 8.11 and Figure 8.12 are plots of the force calculated on the top reinforcing mats 

compared to the ultimate pullout forces at the 0.5-in. and 3.0-in. displacement increments for the 
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loose and dense MSE test.  Figure 8.13 and Figure 8.14 are plots of the force calculated on the 

bottom reinforcing mats compared to the ultimate pullout forces at the 0.5-in. and 3.0-in. 

displacement increments for the loose and dense MSE test.  Each marker in the plots represents 

the location of a set of strain gauges.  The graphs which plot data from the upper bar mats placed 

at a depth of 1.83 ft (0.56 m) below the top of the pile cap are referred to as “top.”  Graphs which 

plot data from the lower bar mats placed at a depth of 4.33 ft (1.32 m) below the top of the pile 

cap are referred to as “bottom.”  The center of the mats described as “near cap” were located at a 

distance of 3 ft (0.91 m) from the pile cap face while the center of the mats described as “away 

from cap” were located at a distance of 9 ft (2.74 m) from the pile cap face.  The scale of each set 

of graphs was kept consistent for easy comparison. 

The dashed line in the plots represents the ultimate pullout force of the mat.  The line was 

calculated according to NHI guidelines with the appropriate backfill parameters for both tests.  

The force value was greatest at the beginning of the mats and then tapered to zero until the total 

length of the bar mat was reached.  The ultimate pullout force of the top mats for the loose and 

dense cases was 3.28 kips and 3.54 kips (14.6 and 15.7 kN), respectively, with an average factor 

of safety (FS) of 1.38.  The ultimate pullout force of the bottom mats for the loose and dense 

cases was 6.07 kips and 6.55 kips (27.0 and 29.1 kN), respectively, with an average FS of 1.90. 

The graphs show that the calculated force in the mats increased above the ultimate 

pullout force as the displacement increment increased from 0.5 in. to 3.0 in., except in the top 

mats of the loose MSE test.  The increase in force appears to approximately double the ultimate 

pullout force for the dense tests.  This shows that NHI guidelines may be conservative in 

computing the force in bar mats for dense sands, especially at large displacement increments. 
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a) Loose MSE Test 0.5-in. Pile Cap Displacement Increment 

 

b) Dense MSE Test 0.5-in. Pile Cap Displacement Increment 

Figure 8.11:  Comparison of the Calculated Force in the Top Reinforcing Mats During the 0.5-in. 

Displacement Increment for the Loose and Dense Sand MSE Test 
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a) Loose MSE Test 3.0-in. Pile Cap Displacement Increment 

 

b) Dense MSE Test 3.0-in. Pile Cap Displacement Increment 

Figure 8.12:  Comparison of the Calculated Force in the Top Reinforcing Mats During the 3.0-in. 

Displacement Increment for the Loose and Dense Sand MSE Test 
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a) Loose MSE Test 0.5-in. Pile Cap Displacement Increment 

 

b) Dense MSE Test 0.5-in. Pile Cap Displacement Increment 

Figure 8.13:  Comparison of the Calculated Force in the Bottom Reinforcing Mats During the0.5-in. 

Displacement Increment for the Loose and Dense Sand MSE Test 
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a) Loose MSE Test 3.0-in. Pile Cap Displacement Increment 

 

b) Dense MSE Test 3.0-in. Pile Cap Displacement Increment 

Figure 8.14:  Comparison of Calculated Force in the Bottom Reinforcing Mats During the 3.0-in. 

Displacement Increment for the Loose and Dense Sand MSE Test 
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The total MSE wall force calculated from the bar mat forces was also plotted as a 

function of the MSE wall displacement in Figure 8.15 and Figure 8.16.  These graphs compare 

the force generated by the top and bottom bar mats for both the loose and dense tests.  The 

ultimate pullout force is also plotted for comparison. 

Generally, the trends in the bar mat force show that force in the mats of the dense MSE 

test was about double the amount of force in the loose MSE test.  The force in the mats of the 

dense test was also greater than the computed pullout force while the force in the mats of the 

loose test compared relatively well to the ultimate pullout force. 

As explained previously in Sections 6.4.6 and 7.4.6, the ratio between the additional 

pressure exerted on the MSE wingwalls during testing and the pressure exerted on the pile cap 

was computed and plotted against the distance from the pile cap face to the locations of the strain 

gauges on the mats.  The plots of the reduced pressure ratio against distance from the pile cap are 

shown in Figure 8.17 with a linear trendline.  These plots reduce the pressure data to a maximum 

average MSE wall displacement of 0.2 in. to remove any effect of pullout of the bar mats from 

influencing the pressure ratio. 

A comparison of the plots for the loose and dense cases indicates that the loose sand has 

higher pressure ratios than the dense sand and that the ratios decrease more rapidly with distance 

from the cap.  The induced pressure ratio ranged from 0.03 to 0.09 for the loose MSE test data 

points and 0.04 to 0.06 for the dense MSE test.  The loose case plot shows a stronger coefficient 

of determination (R
2
), or correlation, between the pressure ratio and distance away from the pile 

cap of 0.780 as opposed to 0.260 for the dense plot.  For the loose test, a zero pressure ratio can 

be determined from the trendline at a distance of 170 in., or 14.17 ft (4.32 m).  This location is 

between the 0 to 0.25 in. heave lines of the backfill elevation contour map shown in Figure 6.10. 
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a) Loose MSE Test Top Reinforcing Mats 

 

b) Dense MSE Test Top Reinforcing Mats 

Figure 8.15:  Comparison of the Top Bar Mar Force Plotted Against MSE Wall Displacement for 

the Loose and Dense MSE Tests 
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a) Loose MSE Test Bottom Reinforcing Mats 

 

b) Dense MSE Test Bottom Reinforcing Mats 

Figure 8.16:  Comparison of the Bottom Bar Mar Force Plotted Against MSE Wall Displacement 

for the Loose and Dense MSE Tests 
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a) Loose Sand MSE Test 

 

b) Dense Sand MSE Test 

Figure 8.17:  Comparison of the Reduced Pressure Ratio-Distance Relationship for the Loose and 

Dense MSE Tests 
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The pressure ratio-distance correlation trendline equation can be used to determine the 

pressure placed on the MSE wingwalls at a certain distance from the pile cap face with the 

known current pressure on the pile cap.  This, in turn, aids in the design of MSE wingwalls to 

predict when pullout of the reinforcement may occur and reduce wingwall deflection depending 

on how much pressure is being exerted on the pile cap. 

To allow for a greater amount of conservatism in the correlation equation, the plots in 

Figure 8.18 have been determined for the loose and dense MSE tests, which show the trendline 

of each plot as the mean of the correlation plus one standard deviation with the reduced data set.  

The recommended pressure ratio-distance equations are shown on the plots and as Equations 8.1 

and 8.2: 

 

                                       (8.1) 

                                      (8.2) 

where 

Δpr  =  pressure ratio between the pressure on the wall and the pressure on the pile cap 

x  =  distance from the pile cap face, in. 
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a) Loose Sand MSE Test 

 

b) Dense Sand MSE Test 

Figure 8.18:  Conservative Reduced Pressure Ratio-Distance Plots for the Loose and Dense MSE 

Tests with a Trendline Representing the Mean Plus One Standard Deviation 
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9 COMPARISON TO CODE- AND COMPUTER-BASED METHODS RESULTS 

After the completion of the field tests, the passive load-deflection results compiled from 

the field tests were compared to the ultimate force and passive load-deflection results generated 

by the prediction capabilities of three code- and computer-based methods.  The code-based 

method used was that created by Caltrans for seismic design while the computer-based methods 

included the PYCAP and ABUTMENT programs, which utilize log-spiral and LSH methods of 

predicting ultimate passive force and load-deflection capacities for abutments.  The following 

sections describe the results of the three methods in comparison to the field data. 

9.1 Results Comparison with the Caltrans Seismic Design Method 

The Caltrans Seismic Design method was developed from research conducted by 

Maroney (1995) and Romstad et al. (1996) on large scale abutments and later adopted by 

Caltrans in the Caltrans Seismic Design Criteria Manual.  The approach is based on a linear 

elastic assumption for the backfill material and two generalized values developed from the 

testing: an initial stiffness (Ki) value of the embankment fill and a maximum passive pressure 

value found as the ultimate static force developed during testing.  The Ki value used in these 

calculations was 20 kip/in./ft (11.5 kN/mm/m) and the maximum uniform passive pressure value 

was 5.0 ksf (239 kPa).  As noted previously, these values are based on dense compacted backfill 

material with concrete wingwalls at the sides of the cap. 
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The ultimate passive force was computed by multiplying the area of the abutment (11 ft x 

5.5 ft) by the maximum passive pressure and an abutment height proportionality value of 1.0.  

This produced an ultimate passive force value of 302.5 kips (1361 kN).  The Ki was multiplied 

by the actual width of the pile cap (11 ft) and the abutment height proportionality value to 

compute the stiffness of the backfill material and the slope of the design load-displacement 

curve.  This produced an abutment stiffness value of 220 kip/in. (38.5 kN/mm).  These values 

were computed using the actual pile cap width and apply to the three tests with walls.  For the 

loose unconfined (3D) test, the effective pile cap width was used in the calculations to compute 

higher abutment stiffness and ultimate passive force values.  An effective width of about 18 ft 

(5.49 m) was found by multiplying the actual pile cap width by the 3D correction factor of 1.63. 

Figure 9.1 shows the outcome of the Caltrans Seismic Design method in comparison with 

the measured passive load-displacement curves for the four completed field tests.  The loose 

unconfined (3D) test maximum passive force was over predicted by about 40% (204 kips) using 

the effective abutment width.  However, it should be noted that if the actual abutment width (11 

ft) was used in the calculation, the measured passive force would be only 5% (13 kips) lower 

than the computed value.  Unexpectedly, the results also show that the Caltrans method was 

slightly conservative by about 10% (30 kips) in computing the maximum passive force for the 

loose slip plane and MSE tests.  For the dense sand MSE test, the calculated maximum force 

value was conservative, underestimating the measured value by about 48% (282 kips). 

The calculated backfill stiffness values were also inconsistent with the measured values.  

The stiffness became considerably flatter than predicted after a deflection of about 0.5 to 0.75 in. 

(13 to 19 mm) for the loose slip plane and MSE tests.  For the dense sand case, the measured 

stiffness was always greater than predicted. 
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a) Loose Sand Unconfined (3D) Test Caltrans Seismic Design Results 

 

b) Loose Sand Slip Plane (2D) Test Caltrans Seismic Design Results 

Figure 9.1:  Caltrans Seismic Design Method Passive Force-Displacement Comparisons 
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c) Loose Sand MSE Test Caltrans Seismic Design Results 

 

d) Dense Sand MSE Test Caltrans Seismic Design Results 

Figure 9.1 (continued):  Caltrans Seismic Design Method Passive Force-Displacement Comparison 



167 

 

9.2 Results Comparison with PYCAP 

Each of the field tests completed was modeled in PYCAP to see if a similar force-

displacement curve could be computed by the program.  The results of this attempt are 

summarized in this section for the loose sand unconfined, loose sand slip plane, loose sand MSE, 

and dense sand MSE tests.  Table 9.1 reports the input parameters used in PYCAP for the four 

tests.  The graphs in Figure 9.2 show the best fit computed PYCAP passive force-displacement 

curves plotted with the measured curves.  For the loose sand unconfined (3D) case, the Brinch 

Hansen 3D correction factor was applied in the PYCAP computed force-displacement curve 

because no walls were present during the test.  However, the Brinch Hansen 3D correction factor 

was set equal to 1.0 for the other tests because the shear zone did not extend beyond the edge of 

the pile cap. 

The triaxial friction angle and cohesion values are based on the result of the laboratory 

testing described in Section 3.4.  The unit weights are the moist unit weights based on the 

average dry unit weight and moisture content measured by the nuclear density tests during 

construction of the backfills. 

PYCAP requires a wall friction angle as an input parameter.  The wall friction angle to 

soil friction angle ratio / of 0.75 was used to calculate the appropriate wall friction angle for 

each test.  This value is typically accepted as a good approximation of the / ratio for a sand-

concrete interface (Duncan and Mokwa 2001, Potyondy 1961). 

As shown in Table 2.1, Duncan and Mokwa (2001) provided ranges for the initial soil 

modulus (Ei).  Of the four tests modeled, only the Ei value used in the loose sand unconfined 

(3D) model fell outside of the suggested Ei ranges and was much less than the Ei value of the 

loose sand slip plane and MSE tests.  The Ei value used for the loose unconfined case was 210 
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ksf (10060 kPa).  The suggested range for loose (Dr = 40%) compacted material was 400 to 800 

ksf (19160 to 38320 kPa).  One reason why the Ei value used fell outside of the suggested range 

is because the Dr of the loose unconfined backfill was 31%, which is lower than the Dr value 

used to describe loose materials by Duncan and Mokwa.  The loose unconfined test was modeled 

with an Ei value of 400 ksf as a comparison to the best fit value.  The result of which showed a 

much steeper initial slope of the computed passive force-displacement curve. 

 

Table 9.1:  PYCAP Input Parameter Summary Table 

 
 

For the loose sand slip plane and MSE tests, the Ei was selected as 400 ksf (19160 kPa), 

which is the low end of the suggested range.  The Dr values for these two tests was 

approximately 40%, which is equal with the Dr value given by Duncan and Mokwa for loose 

materials. 

The dense sand MSE test used an Ei value of 680 ksf (32570 kPa).  This value falls in the 

low end of the suggested range of 600 to 1200 ksf (28740 to 57480 kPa) for dense materials.  It 



169 

 

was expected that the stiffness of the dense material would be greater than that of the loose 

material. 

The computed PYCAP curves were able to model the measured force-displacement 

curves very well for all four tests.  The significant aspect of this information is to notice the need 

to increase the soil friction angle for the tests that confined the backfill by walls.  This condition 

created a situation most like plane strain conditions since 3D pile cap end effects were negated 

by the walls.  Because of the conditions were similar to that of a plane strain situation, the 

triaxial friction angle (T) established from laboratory tests needed to be increased to model 

accurately the load tests in PYCAP.  This same conclusion was reached in the analysis of the 

additional dense sand tests reported in Bingham (2010). 

In Table 9.1, the plane strain to triaxial friction angle ratio (PS/T) is given for each test.  

For the tests with confined backfills, the triaxial friction angle had to be increased 9 to 17% to 

produce agreement with the measured force-displacement curves.  This increase is consistent 

with the increase necessary to obtain the plane strain friction angle (PS) relative to the triaxial 

friction angle (T) as discussed in Section 2.2.  The triaxial friction angle (T) of a typical sand 

increased in the ranges of 7 to 17% with a mean of 11% for loose materials and 10 to 18% with a 

mean of 12% for dense materials when tested under plane strain conditions.  Figure 9.3 shows 

the computed PYCAP passive force-displacement curves utilizing T values in comparison with 

the passive force-displacement curves using PS and the measured force-displacement curves.  

The load-deflection curves utilizing T produced maximum passive force values approximately 

35 to 40% less than those utilizing PS, thus underestimating the measured curves. 

 



170 

 

 

a) Loose Sand Unconfined (3D) Test PYCAP Results 

 

b) Loose Sand Slip Plane (2D) Test PYCAP Results 

Figure 9.2:  Comparison of PYCAP Best Fit and Measured Load-Displacement Results 
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a) Loose Sand MSE Test PYCAP Results 

 

b) Dense Sand MSE Test PYCAP Results 

Figure 9.2 (continued):  Comparison of PYCAP Best Fit and Measured Load-Displacement Results 
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a) Loose Sand Slip Plane (2D) Test 

 

b) Loose Sand MSE Test 

Figure 9.3:  PYCAP Curve Comparison with Plane Strain and Triaxial Friction Angles 
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c) Dense Sand MSE Test 

Figure 9.3 (continued):  PYCAP Curve Comparison with Plane Strain and Triaxial Friction Angles 

 

Also, it should be noted that a small amount of cohesion (60 psf) was used in PYCAP to 

model the measured passive force-displacement curves despite reporting strength parameters 

previously with no cohesion.  When modeling the loose sand unconfined (3D) test results 

without the small amount of cohesion, the maximum computed passive force was approximately 

13% less than the measured maximum passive force.  Thus, when including the cohesion, the 

friction angle (36.0°) accounted for about 87% of the maximum passive force while the cohesion 

accounted for about 13% of the maximum passive force.  The inclusion of some cohesion was a 

reasonable way to model the measured passive force-displacement curves.  This same cohesion 

was then used throughout all tests to remain consistent. 

Another issue of concern was the difference between the friction angle ratio of the plane 

strain and triaxial friction angles (PS/T) of the loose and dense tests.  The loose confined tests 
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appeared to have required a 17% increase in T while the dense MSE test required only a 9% 

increase in T to accurately model the measured passive force-displacement curves.  The high 

friction angle ratio (PS/T) of the loose tests may be slightly exaggerated because of the 

difference in relative density between the loose unconfined test and the loose slip plane and MSE 

tests.  The relative density of the loose unconfined test (31%) was approximately 10 percentage 

points lower than the relative density of the other two loose tests.  According to a correlation 

developed by the U.S. Navy (1982) between relative density and friction angle, an increase in 

relative density of 10 percentage points for a well-graded sand (SW) would increase the friction 

angle by approximately 1.5 degrees, from 36.0° to 37.5°.  The resulting friction angle ratio 

(PS/T) between 37.5° and the PS of 42.0° used in the loose slip plane and MSE tests would be 

1.12, which is only a 12% increase in T.  The 12% percent increase better fits the range of 

values offered by Kulhawy and Mayne (1990) of the difference between triaxial and plane strain 

friction angles for loose sands previously presented in Section 2.2. 

9.3 Results Comparison with ABUTMENT 

The third method used to model the load-deflection curve of each of the field tests was 

the LSH method incorporated into the ABUTMENT program created by Shamsabadi et al. 

(2007).  The LSH method utilizes the log spiral theory in combination with a modified 

hyperbolic backfill stress-strain curve to model the load-deflection relationship.  In contrast with 

the PYCAP approach the ultimate passive force is obtained using force equilibrium equations 

rather than moment equilibrium equations.  The results from ABUTMENT are summarized in 

the following tables and plots for the loose sand unconfined (3D), loose sand slip plane (2D), 

loose sand MSE, and dense sand MSE tests. 
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Table 9.2 lists the ABUTMENT input parameters of the best fit curves for the four field 

tests.  The graphs in Figure 9.4 show the best fit passive force-displacement curves generated by 

ABUTMENT plotted with the measured curves for comparison.  Similar to that done in PYCAP, 

the loose sand unconfined test was modeled using the 3D option in ABUTMENT while the other 

tests were modeled using the 2D option in ABUTMENT.  Also, in an effort to remain as 

consistent as possible with the common input parameters used in PYCAP and ABUTMENT, 

only the cohesion values of the backfill differ between the two programs.  The cohesion values 

used in PYCAP were relatively small while those used in ABUTMENT were less than the values 

used in PYCAP.  The stress-strain parameters shown were unique to the ABUTMENT solutions.  

For every test, the final strain value was kept at a constant value of 0.1. 

 

Table 9.2:  ABUTMENT Input Parameter Summary Table 
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a) Loose Sand Unconfined (3D) Test ABUTMENT Results 

 

b) Loose Sand Slip Plane (2D) Test ABUTMENT Results 

Figure 9.4:  Comparison of ABUTMENT Best Fit and Measured Load-Displacement Results 
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c) Loose Sand MSE Test ABUTMENT Results 

 

d) Dense Sand MSE Test ABUTMENT Results 

Figure 9.4 (continued):  Comparison of ABUTMENT Best Fit and Measured Load-Displacement 

Results 
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As can be seen in the plots, the ABUTMENT curves model the measured and PYCAP 

curves successfully for all four tests.  Once again these results confirm the idea that it is 

necessary to use the plane strain friction angles to model the behavior of abutments with MSE 

wingwalls.  The best fit curves, however, had values for 50 which were larger than the 

recommended values presented by Shamsabadi et al. (2007) for dense sands.  The 50 value of 

0.006 for the loose sand unconfined test fell just outside the range suggested of 0.002 to 0.005 

for clean sands and gravels with a recommended value of 0.0035.  The other tests required 50 

values that were about 50% greater than the loose sand unconfined test.  These results suggest 

that for sand compacted to about 86% to 88% of the modified Proctor value, the 50 may be in 

the range of 0.006 to 0.100.  The graphs in Figure 9.5 show how the ABUTMENT calculated 

curves would appear using the recommended value of 0.0035 for 50 for all four tests.  With the 

lower 50, the initial slope of the load-deflection curve increased in all four instances.  This 

increase leads to computed load-displacement curves which are stiffer than those measured 

during testing.  The three loose sand measured curves give the appearance of being a stiff 

material within the first two or three pile cap displacements (0.5 to 0.7 in. of displacement) 

before the curves flatten out and the slopes decrease. 
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a) Loose Sand Unconfined (3D) Test 

 

b) Loose Sand Slip Plane (2D) Test 

Figure 9.5:  ABUTMENT Load-Displacement Curve Comparison with Best Fit and Recommended 

50 Values 
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c) Loose Sand MSE Test 

 

d) Dense Sand MSE Test 

Figure 9.5 (continued):  ABUTMENT Load-Displacement Curve Comparison with Best Fit and 

Recommended 50 Values 
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10 CONCLUSION 

This thesis presented results from laterally loaded, large scale pile cap tests with four 

different backfill conditions: loosely compacted sand with no confinement (3D), loosely 

compacted sand with side isolation, or slip plane, confinement (2D), loosely compacted sand 

with MSE wingwall confinement, and densely compacted sand with MSE wingwall 

confinement.  The reinforcement layout of the two MSE wingwall tests was identical.  The 

loosely compacted sand had a relative compaction of 86%, 88%, and 88% of modified Proctor 

(Dr = 31%, 41%, and 39%) for the loose unconfined, slip plane, and MSE tests, respectively.  

The densely compacted sand had a relative compaction of 95% of modified Proctor (Dr = 73%) 

for the dense MSE test.  An interpretation and comparison of the results of the loosely 

compacted tests to the densely compacted tests was also presented.  Finally, comparisons were 

made between measured load-displacement curves and those predicted by available analysis 

techniques.  The following conclusions and recommendations represent a summary of the 

findings of this work. 

1. The passive earth pressure of the backfill material acting on the pile cap increased the 

lateral load capacity of the pile cap as the relative compaction of the backfill 

increased.  For all tests combined, the maximum passive earth pressure increased by 

an average of approximately 52% (350 kips) as the relative compaction of the backfill 

was increased from an average of 87% to 96% of modified Proctor. 
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2. The maximum passive force of the dense sand MSE test (586 kips) was 

approximately 43% greater than the maximum passive force of the loose sand MSE 

test (335 kips) as the relative density (Dr) increased from 39% for the loose test to 

73% for the dense test. 

3. The maximum transverse MSE wingwall displacement and rotation decreased by 

approximately 0.2 in. (5 mm) and 0.3 degrees as the backfill compaction level 

increased between the loose and dense MSE tests. 

4. Passive force-displacement curves computed using the Caltrans Seismic Design 

approach unexpectedly calculated the maximum passive force of the loose sand slip 

plane and MSE tests relatively well.  However, the maximum passive force of the 

dense sand MSE test was about 48% (282 kips) greater than that computed.  Also, the 

actual backfill stiffness became considerably flatter than predicted after a deflection 

of about 0.5 to 0.75 in. (13 to 19 mm) for the tests involving loosely compacted sand.  

For the dense sand case, the measured stiffness was always greater than predicted. 

5. Passive force-displacement curves computed using the log spiral method for 

determining passive earth pressure coefficients including 3D adjustment factors and 

the triaxial soil friction angle (T) showed good agreement with the measured passive 

force-displacement curves for the loose sand unconfined test. 

6. Passive force-displacement curves computed using the log spiral method for 

determining passive earth pressure coefficients without 3D loading adjustment factors 

and the triaxial soil friction angle (T) underestimated the measured passive force-

displacement curves by 30 to 40% for the loose and dense sand slip plane and MSE 

tests.  However, reasonable agreement was readily obtained using plane strain friction 
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angles (PS) with the same analysis approach.  Analysis of the test results indicates 

that the plane strain friction angle (PS) should be used to calculate passive force on 

abutments with MSE wingwalls.  Based on these tests, the plane strain friction angle 

can be estimated by increasing the triaxial friction angle by 7 to 17% or an average of 

11% for loose sands and 10 to 18% or an average of 12% for dense sands as 

suggested by Kulhawy and Mayne (1990). 

7. Passive force-displacement curves computed using the PYCAP provided reasonable 

agreement with measured curves; however, it was necessary to use minimum initial 

soil modulus (Ei) values of the ranges suggested by Duncan and Mokwa (2001) for 

loose and dense sand backfills. 

8. Passive force-displacement curves computed using the LSH model provided 

reasonable agreement with measured curves; however, it was necessary to use ε50 

values in the 0.006 to 0.010 range for the loose and dense cases.  This range fell 

above the suggested range for dense sands provided by Shamsabadi et al. (2007). 

9. The NHI guidelines for estimating the force in steel reinforcing mats for MSE walls 

was slightly conservative (by 1 to 2 kips or 30 to 40%) for loosely compacted sand 

backfills.  However, this approach became increasingly conservative (by 6 to 8 kips 

or 2 to 2.5 times) for densely compacted sand backfills. 

10. The maximum induced pressure ratio, or the ratio of pressure acting on the MSE 

walls to the pressure acting on the pile cap, ranged from 0.06 to 0.09 for both the 

loose and dense MSE tests.  This ratio decreased as the distance from the pile cap 

increased. 
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11. Induced pressure ratio as a function of distance equations can be used to predict the 

force exerted on MSE wingwalls knowing the passive earth pressure acting on the 

pile cap.  The MSE wingwall force allows MSE wingwalls to be designed for the 

appropriate capacity before pullout occurs. 

12. Large scale lateral load tests utilizing MSE wingwalls with additional instrumentation 

along the full length of the wingwalls are recommended with both loose and dense 

backfills to improve the current correlation level determined for the pressure ratio-

displacement relationship from these tests. 
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