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ABSTRACT 

 

 

 

Hexahedral Mesh Refinement Using 

an Error Sizing Function 

 

 

Gaurab Paudel 

Department of Civil and Environmental Engineering 

Master of Science 

 

The ability to effectively adapt a mesh is a very important feature of high fidelity finite 

element modeling.  In a finite element analysis, a relatively high node density is desired in areas 

of the model where there are high error estimates from an initial analysis. Providing a higher 

node density in such areas improves the accuracy of the model and reduces the computational 

time compared to having a high node density over the entire model. Node densities can be 

determined for any model using the sizing functions based on the geometry of the model or the 

error estimates from the finite element analysis. Robust methods for mesh adaptation using 

sizing functions are available for refining triangular, tetrahedral, and quadrilateral elements.  

However, little work has been published for adaptively refining all hexahedral meshes using 

sizing functions.  This thesis describes a new approach to drive hexahedral refinement based 

upon an error sizing function and a mechanism to compare the sizes of the node after refinement. 
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1 INTRODUCTION 

There are several reasons analysts prefer a hexahedral mesh when analyzing three-

dimensional models. As indicated by Shepherd[1], these reasons include the fact that a) 

tetrahedral meshes can require up to 10 times more elements than hexahedral meshes to obtain 

the same level of accuracy, b) some types of numerical approximations such as high deformation 

structural finite element analyses[2, 3], tetrahedral elements will be mathematically stiffer due to 

a reduced number of degrees of freedom associated with a tetrahedral element[4, 5], a condition 

known as tet-locking, c) there is often a specific requirement imposed by the intended analysis 

code where only hexahedral elements are acceptable and d) there is often sometimes simply a 

built in preference by some analysts to utilize a hexahedral mesh. 

However, even using hexahedral elements, the initial mesh might not accurately represent 

the physics of the problem[6]. It is often beneficial to increase element density (i.e. to refine) in 

the mesh where the error estimates are high or where there are small features in the geometry[7]. 

Providing a refined mesh reduces the error in the solution, models the geometry accurately, and 

also increases the resolution in the areas of high stress gradients[8]. Hence, refinement provides 

more accuracy and efficiency for finite element solutions. 

The desired mesh should be refined enough to allow a high level of accuracy in the 

analysis and coarse enough so that computational time is minimized.  Refining the entire model 

may increase the computational time without sufficiently increasing the accuracy of the results in 
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some parts of the model. Therefore, there is a desire to be able to refine only in the areas of 

model that will result in increased accuracy. 

To define the element density, sizing functions based on error estimates, geometric 

features of the model, and stress and strain gradients are often used[8, 9]. Some effective element 

density distributions can be determined simply, from the analyst‟s experience using manual mesh 

refinement tools[10] or from comprehensive geometric reasoning algorithms that automatically 

compute a sizing function based on features of the model[7]. The resulting sizing function can 

often be used by sophisticated  mesh generation algorithms[10] to compute a well graded 

meshes. However, element densities based on error estimates and high stress/strain gradients are 

normally not known before an initial analysis is run. Hence, the optimum size of the elements in 

a mesh cannot be determined until at least an initial finite element analysis is performed. As a 

part of the analysis, many computational tools will also produce an approximate error associated 

with each element of the mesh. To determine an optimum size an analysis can be performed on a 

coarse mesh and the error approximation results from that analysis used to compute a sizing 

function to help define the target node density for subsequent refinement operations.   

Mesh adaptation based on a sizing function is not a new topic. Procedures that 

incorporate quadrilateral, triangular, and tetrahedral mesh adaptation that rely on error-based 

sizing functions are available in the literature[8, 11]. In addition, it is also noted that there are 

few techniques that generate initial hexahedral mesh using the geometry features of the model to 

develop a sizing function[12]. However, conformal hexahedral mesh refinement, based on an 

error-based sizing function, has not been effectively addressed in the literature.  
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Currently, the use of sizing functions for mesh adaptation is limited to tetrahedral, 

triangle and quadrilateral meshes. Traditional hexahedral meshing methods have not effectively 

used a sizing function because of connectivity restrictions imposed by common generation 

techniques such as mapping and sweeping[13-15]. One way to achieve a graded hex mesh based 

upon a sizing function is to construct an initial constant size mesh generated with traditional hex 

methods and then supply subsequent refinement operations to achieve the desired sizing. The 

method proposed in this work would be effective for such an approach. 

This thesis presents a method for a conformal hexahedral mesh refinement procedure 

based upon a sizing function. This work incorporates the hexahedral mesh refinement techniques 

developed by Parrish[16]  with a sizing function to drive refinement. The sizing function used 

here is developed from computed error estimates. However, other criteria such as feature size or 

user specification could be included in the sizing function. To validate the method, comparisons 

between the refined node size and the target node size are presented. The method provides 

conformal, all hexahedral locally refined meshes based on a developed sizing function. 

The remainder of the thesis is organized as follows: Chapter 2 discusses the background 

work on hexahedral mesh refinement. Chapter 3 introduces a sizing function based on error 

estimates, describes the algorithm, sets the criteria used for selecting the nodes for refinement, 

and gives a comparison of the refined mesh size with the target size. Chapter 4 includes 

examples generated using this new technique. Chapter 5 provides a brief summary of this work 

and suggests areas of future work. 
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2 BACKGROUND 

As computational power has increased, the need for refined high quality meshes, to gain 

more accuracy in the finite element modeling, has also increased. The accuracy of finite element 

solutions can be improved by adapting the mesh that defines the object being modeled. Meshes 

can be smoothed to improve the quality, which is known as r-adaptation. Another mesh 

adaptation method, known as p-adaptation, involves increasing the degree of the elements in the 

mesh. A third type of adaptation, known as h-adaptation, involves increasing or decreasing the 

number of elements. Coarsening[17] can be used to reduce the number of elements. Although 

coarsening, r adaptation, and p adaptation are valid methods, this thesis focuses specifically on h-

adaptation i.e. refining by increasing the number of elements locally, to increase accuracy.  

2.1 Refinement 

This work primarily focuses on splitting the current hexahedron three times along an 

edge, also known as the 3 refinement in the literature. Another refinement technique available in 

the literature is 2-refinement, which splits the current hexahedron two times along an edge. There 

are advantages and disadvantages of the 3 refinement process. If higher mesh density is required 

in concentrated regions, then 3-refinement is usually the best option as it splits one hex into 27 

hexes. However, if the sizing function requires a gradual change in the mesh density over the 

model, then 2-refinement may be a better choice.  Figure 2-1 shows 2-refinement and 3-
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refinement performed on a single hex. This work utilizes 3-refinement technique as basis for 

refinement, as it generally requires fewer refinement iterations to arrive at the target size. The 

same level of refinement can be obtained with 2-refinement but additional iterations may be 

required. It is also noted that a robust 3-refinement procedure based on the work of Parrish[16] 

was available at this writing. A robust 2-refinement procedure based on the work of Edgel[9] 

was not available. It should be noted however that in many cases, 2-refinement will be more 

desirable. The procedures described in this thesis, while specifically developed for 3-refinement, 

can be adapted easily for use using 2-refinement. 

Another common approach for adapting hexahedral meshes involves introduction of 

hanging nodes at edge centers as shown in Figure 2-2. This approach is very straightforward to 

implement, and no transitions to surrounding course hexahedra are required. However, accuracy 

of the solution at the hanging node interfaces can often be a problem. For this reason, we limit 

our method to conformal refinement techniques that do not introduce hanging nodes. 

 

Figure 2-1: 2 refinement and 3 refinement 
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Figure 2-2: Refinement with hanging node and conformal refinement 

2.2 Current Methods 

Many hexahedral mesh generation techniques have been developed, however fully 

automatic hexahedral mesh adaptation is the motivation of this research. Adaptation of a 

hexahedral mesh, by both refining and coarsening, is also an area of interest. A mesh can be 

adapted before any analysis is run, which for tetrahedral meshing is normally the simplest way to 

adapt a mesh to a target mesh density. This process requires good knowledge of the physics of 

problem which, in most cases, is not known a priori. Hence, adaptation for an initial mesh 

generation may be desirable based on a priori metrics such as geometric features rather a 

posteriori metrics such as than error estimates or stress strain gradients. As stated previously, 

however, most initial hexahedral meshing cannot effectively utilize a sizing function. 

Consequently, grading of a hex mesh may be limited to subsequent refinement operations based 

upon target element sizes. 

There are several methods that use sizing functions to refine the nodes or to adjust the 

node densities at the time of the initial mesh generation. Quadros, et al.[7], and Zhang and 

Zhao[12]  have introduced mesh refinement using a sizing function based on geometric features 

Hanging nodes 
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of the model. However, they do not discuss hexahedral mesh refinement based on the error 

estimates from a finite element analysis. Anderson et al.[8] developed a refining and coarsening 

technique that uses error estimates as the sizing function, however their method is limited to all 

quadrilateral elements and does not consider the hexahedral mesh. Zhang and Bajaj[18]  

introduce hexahedral mesh refinement using volumetric data, but do not consider converting the 

error estimate from the finite element analysis into a mesh size for refinement. Wada et. al[19] 

discuss adaptation of hexahedral meshes using local refinement and error estimates, however 

their method also does not consider comparing the refined size of the mesh to the target size 

from the error estimates.   

As mentioned by Anderson[8], most of the adaptation techniques are limited to triangular 

and tetrahedral elements.  In 2010 Kamenski[20], presented mesh adaptation using the error 

estimates but his method is limited to triangular elements. De Cougny and Shephard[21], discuss 

the tetrahedral mesh adaptation but they do not consider a hexahedral technique. Kallinders and 

Vijayan[11] also discuss tetrahedral and triangular mesh refinement and coarsening but they do 

not consider  hexahedral elements. Babuska et. al[22] have presented a refinement technique 

based on sizing function derived from the error estimates. Their method is limited to rectangular 

elements with hanging nodes and do not consider the conformal mesh.  

A hexahedral mesh can provide more accurate results and, as mentioned in the 

introduction section, is often the choice of an analyst. However, hexahedral adaptation 

techniques are not common. Hexahedral adaptation is a time consuming process, and requires 

knowledge of physics of the problem so that the generated mesh produces an acceptable error 

estimate from the finite element analysis. This thesis presents unique and simple criteria to refine 
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a hexahedral mesh using a sizing function and compares the refined size of the mesh with the 

target mesh size. 

2.3 Sierra Mechanics Refinement Technique 

In practice, rather than using a sizing function to drive the refinement, the error measures 

themselves are often utilized. For example, Sierra[23], an advanced suite of analysis tools, 

provides three main approaches for driving refinement based upon an error measure.  Although 

these techniques are currently used for tetrahedral and hanging node refinement, they could also 

be applicable for driving conformal hexahedral refinement in an adaptive analysis.  For each of 

the three approaches, an error metric is computed for each element in the mesh, and the elements 

are ordered Mi=1..N from minimum to maximum error. 

 

1. Percent of Elements:  The user provides a threshold, , which represents a percentage of 

the total number of elements N in the mesh that will be refined. Starting from the element 

in M with the highest error and working towards the smallest error,  percent of the 

elements in the list are identified for refinement. 

2. Percent of Max: The user provides a percentage threshold,  that represents the 

percentage of maximum error in the mesh that will be identified for refinement. For 

example, if the maximum error of all elements in Mi=1..N was 50% with =90%, then all 

elements with error > 5% would be identified for refinement. 

3. Percent of Total Error: The user provides a percentage threshold, , which represents a 

percent of the total error in the mesh that will be identified for refinement.  For example 

if we represent the total error of all elements in Mi=1..N  as: 
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N

i
itotal ee

1

||||                                               (2-1) 

 

Starting from the element in M with the highest error and working to the smallest error, 

those elements that contribute to a total error of . ||e||total would be identified for 

refinement. 

For the Sierra Mechanics examples described above, refinement is performed based upon 

one of the approaches, followed by subsequent analysis iteration. Following each iteration, 

elements are once again identified for refinement.  This procedure continues until a convergence 

or error threshold has been achieved.  

For this work, rather than using the error measure directly, first the error measure is 

interpreted as a function of element size using the Equation 3-2 as will be shown in section 3. 

Thus, a sizing function is developed from calculated error estimates. This provides the 

opportunity to utilize the sizing function as a general field to drive meshing or refinement.  It 

also provides a field for which we can validate the resulting refinement operations to determine 

the effectiveness of the refinement algorithms at reaching the desired size. 
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3 HEXAHEDRAL MESH REFINEMENT 

For the work of this thesis, it is desired to have the size of a mesh be as close as possible 

to the sizes provided by the sizing function in order to obtain high computational accuracy in the 

results without significantly increasing the computation time.  This chapter includes information 

on sizing functions, tools and requirements for the algorithm developed in this thesis, the outline 

of the algorithm, a discussion and comparison of refined mesh sizes with the target mesh sizes. 

3.1 Sizing Functions 

Sizing functions are used as the mechanism for refining a mesh. There are several ways 

to generate sizing functions. Error estimates can be used to define a sizing function. Geometric 

characteristics, curvature, and sharp features in the model can also be used to define a sizing 

function[7]. Other bases for sizing functions include: the stress or strain gradients, change in the 

material properties, points of application of loading, and the location of boundary conditions. 

For this thesis, only developing a sizing function based on the error estimate of an initial 

calculation will be considered. The error estimate should be robust enough to ensure the increase 

in accuracy of the results, and also steer the adaptation in the desired area of the model. The 

generation of the error estimate is an important area of study. For this work, error estimates are 

obtained from the existing finite element code. Physical phenomenon in engineering and 

sciences can be modeled using partial differential equations. However, complex mathematical 
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models using the partial differential equations might not have an analytical solution. Fortunately, 

finite element analysis can provide an approximate solution to these complex models[24]. As 

these solutions are an approximation to the analytical solution, there are several sources of error. 

One of the major contributors to the error is the discretization of the model. This error can be 

minimized using the higher order elements, also known as p adaptation, or increasing the number 

of elements in the area where the error is high known as h-adaptation. This thesis will be using 

the h-adaptation technique to reduce the error in the discretization of the model. 

In this thesis error estimates are computed using existing methods. As cited by Grastch 

and Bathe[24], the computation of error estimates and using it as criteria for refining the region 

where error estimates are high should be computationally cheaper than refining the entire model. 

The error estimates should be accurate enough to closely represent the unknown actual error. The 

goal of the error estimates is to steer the mesh adaptation. For this work, the built in error 

estimates produced by the simulation code, ADINA[25] are used. 

3.2 Tools and Requirements 

This thesis incorporates a sizing function developed from computed error estimates and 

incorporates existing hexahedral refinement techniques to adapt a given hexahedral mesh. The 

technique developed here produces a conformal, locally refined all hexahedral mesh.  

The error estimates from the finite element analysis approximate the expected error 

produced from the numerical model. This error can be reduced using a higher element density in 

that region. As discussed in the background section, the technique used here uses 3-refinement, 

which subdivides 1 hex into 27 hexes and applies appropriate templates in the transition zone to 

ensure that there are no hanging nodes. This 3-refinement was chosen over 2-refinement, (which 
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subdivides 1 hex into 8 hexes), because it is simple to implement, it takes fewer iterations to 

obtain the same level refinement with 3-refinement than with 2-refinement, and currently 2-

refinement is not as robust as 3-refinement.  

The refinement process implemented in this thesis is driven by a sizing function 

generated from error estimates. The error estimates from the finite element solvers are converted 

into an Exodus II[26] file, a random access, machine independent, binary file, that is used as a 

sizing function by the mesh generating toolkit, CUBIT[10].  The Exodus file format stores all the 

information about the initial mesh. It can be used for input and output of results and can also be 

used for post-processing of results. The Application Programming Interface (API) to create the 

exodus file is available in the public domain and a manual to create such file is also available. An 

example to create an exodus file to drive the refinement process can be found in Appendix B.  

3.3 Algorithm 

The proposed algorithm refines a hexahedral mesh locally based on a sizing function. The 

sizing function used here is based on the error estimates generated from a finite element analysis 

and is applied in order to reduce the error in the model using an adapted mesh and also to 

decrease the computational time without loss of the accuracy in the solution of finite element 

analysis. The main goal of this algorithm is to complete the refinement process without the need 

for a user to determine which area in the mesh to refine. The error estimate, used to define the 

sizing function, determines whether a node should be considered for refinement or not. Usually, 

after the mesh has been refined, the quality of the elements degrades. The degradation is usually 

a result of insertion of templates in the transition zones between the refined and non-refined 

regions.   Hence, smoothing is performed on the elements within and near the refinement region 
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to improve the element quality. A flowchart of the algorithm is shown in Figure 3-1. The steps 

are enumerated below and explained in detailed in the next section using an example quarter 

piston model: 

1.  The Hexahedral Mesh to be refined is given along with a sizing function generated from 

error estimates in a binary file format, and desired minimum error threshold are provided 

as input.   

2. Each node is assigned with an error estimate using the scalar values read from the binary 

file. 

3. Nodes with error estimates greater than minimum error threshold,  are identified for 

refinement for the first level of refinement, similarly the nodes requiring second and third 

level of refinement are identified. 

4. Target sizes, computed as a function of the nodal error estimates, and the average of the 

length of edges attached to the nodes, are computed for each node  

5. Step 3 and 4 are repeated, if more refining is required 

6. If the mesh is refined to the desired size then the mesh is smoothed.  

3.4 Algorithm Example 

This section outlines the input, refinement criteria, and comparison of target and current 

sizes, of the algorithm. An example is used to explain the steps outlined in the algorithm. For 

simplicity, the algorithm example section is further divided into three sub-sections: input, 

refinement criteria and comparison of current size and target size. 
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Figure 3-1:  Algorithm flowchart 
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3.4.1 Input 

For this example, a quarter piston modeled with a load on its base plate is used. Initially, 

a coarse mesh, as shown in Figure 3-2, is generated using an all hexahedral meshing technique 

[10]. Next, the appropriate boundary conditions and loading, are applied. The initial mesh and 

boundary conditions are then exported to ADINA[25] to perform the finite element analysis. 

Error estimates are generated as a part of the ADINA analysis[25] and the band plot of the error 

estimate is shown in Figure 3-3. The error estimate from the finite element analysis is then 

written in Exodus II, a binary file format, and is used to compute the sizing function to drive the 

refinement process.  

 

 

Figure 3-2: Initial coarse mesh of quarter piston 
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Figure 3-3: Band plot of error estimate to define the sizing function for quarter piston 

3.4.2 Refinement Criteria 

After each node is assigned a scalar error estimate, it is compared with the minimum 

threshold allowable error,, provided by the user, for the particular problem. Normally the value 

for  and the error estimates in the binary file are scalar values between 0 and 100, representing a 

percent error. Nodes with error estimates greater than the allowable user defined error are 

identified for further refinement. Nodes with error estimates lower than  are not refined but may 

be subsequently smoothed to improve the mesh quality. In this section the specific criteria will 

be presented, based on the sizing function computed from error estimate, to identify the nodes 

needed for refinement. The terms basic to this technique are defined below. 
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The “size” of a node, ha, is computed using Equation 3-1. ha is the average of the lengths 

of edges attached to the node. 

 





n

i

ia l
n

h
1

1
                       (3-1) 

           where ha = size of a node 

                    li = length of i
th

 edge attached to the node 

                    n = number of edges attached to the node 

 

The relationship between error and mesh size can be approximated, for elasticity and heat 

problems, from the Poisson heat equation[27] as: 

 

2Che                                                                                                          (3-2) 

where e = error estimate at the node 

         C = a constant 

         h = the element edge length 

 

If the error and the element edge length for a node in the mesh are known, then Cn for 

that node can be computed as: 

           

2

a

n

n
h

e
C                                                                                    (3-3) 

 where Cn = a constant for the node 
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  en  = error estimate at the node 

  ha  = size of a node as defined in Equation (3-1) 

 

The user provides a threshold error measure for the entire mesh,  at which below  

is acceptable. For this work, target size is computed from the error measure but it can also be 

computed from the geometric feature or size provided by the user. Then, a target size from the 

above equation at the node is computed as: 

 

n

s
C

t


                                                                                                             (3-4) 

 where ts = target node size  

            = minimum allowable error provided by user 

            Cn = a constant computed from Equation 3-3 

  

The size ratio, Sr, is defined in Equation 3-5 as the ratio of the target size of the node, ts, 

determined using the error estimates, to the actual size of the node, ha.  

 

s

a

r
t

h
S                                                                                                              (3-5) 

where Sr = node size ratio 

          ha = actual node size as defined in Equation 3-1 

          ts = desired node size determined from the error measure described later in 

                  equation 3-3 
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The terms defined in Equation 3-1 through 3-5 are used to identify the nodes that require 

refinement. It is assumed that the nodes with a size ratio of one or equal to one are acceptable 

and need no refinement. Similarly, if the size ratio at the node approaches 3, then it indicates that 

at least one refinement operation should be performed.  The value of 3 is assigned because 3-

refinement is used as the mechanism for refinement. It is assumed that when the refinement is 

performed the size of a node will decrease by a factor of three and hence a size ratio of one is 

obtained after the refinement is performed. Since each split operation will reduce the local 

element size by a factor of 3, as the size ratio approaches 9, the node will be marked for two split 

operations. Likewise, a size ratio that approaches 27 will be marked for three splits. Because of 

the discrete nature of the refinement operations, size ratio thresholds at which additional 

refinement operations will be performed. For this work, using an average of powers of three for 

the thresholds seemed to provide acceptable results. Table 3-1 summarizes the approach. 

Table 3-1 Size ratio range and number split operation 

Size Ratio 

Range 

Number of refinement split 

operation 

0 – 2 0 

2 – 6 1 

6 -18 2 

>18 3 

 

If the size ratio is below the allowable threshold, , then no refinement is performed on 

the node. It is assumed that it is perfect size or it is over refined. The nodes with the size ratio 

between 2.0 and 6 are identified for the first level of refinement. These nodes are identified for 
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the first level of refinement because they have size ratio near 3 and less than 9. Hence, after the 

refinement their size ratio should come close to 1. Similarly, the nodes with size ratio between 6 

and 18 are identified for the second level of refinement based on the fact that these nodes have 

size ratio near 9 and less than 27. Hence, when they are refined the new size ratio should be close 

to 1. The nodes with error estimates greater than 18 are identified for three levels of 

refinementThis criteria for refinement is continued until less than 10% of total nodes meet the 

size ratio criteria. This 10% is chosen to ensure that computation time is not wasted performing a 

refinement that will not gain a significant level of accuracy in the finite element solution. This 

criteria serves as the exit criteria for the refinement process. Figure 3-4 shows the refined mesh 

of the quarter piston with load on its base. 

 

Figure 3-4: Refined mesh of quarter piston 

3.4.3 Comparison of Current and Target Size 

One of the measures to determine if the algorithm is performing adequately to achieve the 

desired accuracy in the results is to compare the refined size of node to the target size of the 
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node. The node size ratio, Sr, is used as the criteria to compare the efficiency of the algorithm. It 

is assumed that the algorithm should perform such that the size ratio of all the nodes should be 

less than or equal to 1.0. If a coarsening algorithm were to be implemented, size ratios less than 

1 would be minimized and all the size ratios would be close to 1.0. It is recognized that an exact 

match everywhere where Sr=1 is impossible, however the approach presented here can be 

validated by statistically examining how close final mesh matches the intended sizing function. 

Based on the Equation 3-5, a size ratio for the node before the refinement and after the 

refinement is computed.  The Tables 3-2 and 3-3 provide the percentage of volume falling in the 

particular size ratio before and after refinement respectively. Figure 3-4 represents the Tables 3-

1 and 3-2 in the bar graph. Theoretically, there should not be any change in the volume for size 

ratio below 1.0 and the volume with size ratio greater 3 should be reduced significantly after the 

refinement. Also, there should be less than 10% of the volume that fall in the size ratio greater 

than 2.0. The plot in Figure 3-5, shows that there is not much change in the volume for size ratio 

below 1.0 and there are not that many volumes with size ratio greater than 3.  Although there 

are few volume greater than 2.0, this condition prevails because the refinement is deemed 

complete if there are less than 10% of nodes that require refinement. In Figure 3-6, change in 

the percentage of volume falling in the particular size ratio before and after refinement is 

shown. It is noticed that most of the change is around size ratio 1.0 and there is negative change 

in volume for size ratio greater than 2.0. This shows that most of the nodes have size ratio 1.0 

after the refinement and refinement is taking place in the node with size ratio greater than 2.0. 
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Table 3-2: Size ratio of quarter piston before refinement 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.493 0.9-1.0 2.62 1.9-2.0 1.420 2.9-3.0 1.632 

0.1-0.2 5.874 1.0-1.1 1.39 2.0-2.1 1.539 3.0-3.1 0.573 

0.2-0.3 4.654 1.1-1.2 1.740 2.1-2.2 1.173 3.1-3.2 0.395 

0.3-0.4 10.876 1.2-1.3 0.79 2.2-2.3 1.902 3.2-3.3 0.214 

0.4-0.5 10.837 1.3-1.4 0.467 2.3-2.4 1.248 3.3-3.4 0.385 

0.5-0.6 16.694 1.4-1.5 1.124 2.4-2.5 1.921 3.4-3.5 0.361 

0.6-0.7 14.019 1.5-1.6 1.004 2.5-2.6 1.083 3.5-3.6 0.442 

0.7-0.8 2.518 1.6-1.7 1.162 2.7-2.8 1.063 3.6-3.7 0.274 

0.8-0.9 2.299 1.8-1.9 1.325 2.8-2.9 1.075 >3.7 2.384 

 

 

Table 3-3: Size ratio of quarter piston after the refinement 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.490 0.9-1.0 6.864 1.9-2.0 1.438 2.9-3.0 0.000 

0.1-0.2 5.720 1.0-1.1 5.109 2.0-2.1 1.545 3.0-3.1 0.000 

0.2-0.3 4.659 1.1-1.2 2.206 2.1-2.2 0.192 3.1-3.2 0.000 

0.3-0.4 10.775 1.2-1.3 2.775 2.2-2.3 0.000 3.2-3.3 0.000 

0.4-0.5 10.845 1.3-1.4 1.563 2.3-2.4 0.000 3.3-3.4 0.000 

0.5-0.6 16.931 1.4-1.5 1.236 2.4-2.5 0.000 3.4-3.5 0.000 

0.6-0.7 14.435 1.5-1.6 1.945 2.5-2.6 0.000 3.5-3.6 0.000 

0.7-0.8 2.842 1.6-1.7 1.779 2.7-2.8 0.000 3.6-3.7 0.000 

0.8-0.9 3.758 1.8-1.9 1.887 2.8-2.9 0.000 >3.7 0.000 
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Figure 3-5: Plot of size ratio and percentage of total volume before and after refinement 

 

Figure 3-6: Plot of size ratio and change in volume in percentage 
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4 EXAMPLES 

This chapter includes examples of all hexahedral sizing based refinement. Three 

examples are presented. Each example shows the initial coarse mesh, the band plot of the stress 

error provided by the finite element analysis, the refined mesh, and a table showing the results of 

refinement. All initial meshes were generated with CUBIT[10] using the existing meshing 

techniques. The finite element analysis was performed using the commercial software 

ADINA[25]. 

The goal of this algorithm is to obtain size ratios less than 1.0, which achieves the 

allowable error estimate. It is not possible to obtain all the nodes with size ratio 1.0 but however 

the goal of this thesis is to get most of the nodes to have size ratio close to 1.0 and 2.0. When a 

node is refined and three nodes are created, it is difficult to get size ratio exactly 1.0. Also, 

addition of templates in the transition zones often over refines the mesh.  

The results shown in this chapter are promising; most of the nodes have a size ratio less 

than 1.0. As expected, there are very few nodes that have size ratio greater than 1.0.  

4.1 Quarter Piston with Load in the Cylindrical Cavity 

This problem is similar to the example presented in the previous chapter. In this case, the 

loading conditions are different. The cylindrical cavity is pressurized. The initial mesh is shown 

on the left side of Figure 4-1 and on the right a band plot of the stress error, with red indicating a 
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high error. The maximum error in this mesh was 22%. Observe that the error is high around the 

regions where loads are applied. For this example a minimum threshold error was chosen to be 

6%. This minimum was chosen so that refinement actually increases the accuracy in the results. 

This example, again illustrates how the sizing function based on the error estimate can be used to 

refine the model. 

In Figure 4-4 the refined mesh is shown. It can be observed that the refined mesh 

provides the high density nodes around the area where the error estimates from the finite element 

analysis are high. The refined mesh and appropriate boundary conditions are again exported to 

ADINA to perform the finite element analysis on the refined mesh. The Figure 4-5 shows the 

bland plot of the error estimate after the refinement and it can be observed that the error has been 

significantly reduced. The maximum error estimate with the refined mesh dropped to 4.7% from 

22% with the coarse mesh. 

 In Table 4-1 the size ratio and the volume of hexes that have fallen in that size ratio 

before the refinement are presented and in Table 4-2 the size ratio and the volume of hexes that 

have fallen in that size ratio range after the refinement are presented. It can be seen that most of 

the volumes are below size ratio 2.0. It can be noted that there is low percentage of the volume 

that are above 2.0 size ratio.   Again, the goal of this algorithm is to maximize the percentage of 

the volume below size ratio 2.0. In Figure 4-2, the values from Table 4-1 and Table 4-2 are 

presented in the bar graph. In Figure 4-3, the change in the percentage of volume falling in the 

particular size ratio before and after refinement is shown. It is noticed that most of the change is 

around size ratio 1.0 and there is negative change in volume for size ratio greater than 2.0. This 

shows that most of the nodes have a size ratio of 1.0 after the refinement and refinement is 

taking place in the nodes with size ratios greater than 2.0 
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Figure 4-1: Initial Coarse mesh (left) and the band plot of error estimates (right) 

 

 

 

Table 4-1: Size ratio for quarter piston before refinement 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.623 0.9-1.0 2.154 1.9-2.0 0.861 2.9-3.0 0.851 

0.1-0.2 4.189 1.0-1.1 1.562 2.0-2.1 1.286 3.0-3.1 0.424 

0.2-0.3 8.112 1.1-1.2 1.624 2.1-2.2 0.249 3.1-3.2 0.367 

0.3-0.4 11.152 1.2-1.3 0.856 2.2-2.3 1.254 3.2-3.3 0.214 

0.4-0.5 12.865 1.3-1.4 0.957 2.3-2.4 0.784 3.3-3.4 0.524 

0.5-0.6 15.264 1.4-1.5 1.029 2.4-2.5 0.896 3.4-3.5 0.865 

0.6-0.7 15.119 1.5-1.6 0.995 2.5-2.6 0.981 3.5-3.6 0.962 

0.7-0.8 2.689 1.6-1.7 1.037 2.7-2.8 0.784 3.6-3.7 0.663 

0.8-0.9 2.321 1.8-1.9 1.121 2.8-2.9 0.953 >3.7 2.399 
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Table 4-2: Size ratio for quarter piston after refinement 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.623 0.9-1.0 7.126 1.9-2.0 1.051 2.9-3.0 0.000 

0.1-0.2 4.213 1.0-1.1 6.129 2.0-2.1 0.324 3.0-3.1 0.000 

0.2-0.3 8.154 1.1-1.2 1.936 2.1-2.2 0.024 3.1-3.2 0.000 

0.3-0.4 11.377 1.2-1.3 1.862 2.2-2.3 0.000 3.2-3.3 0.000 

0.4-0.5 12.924 1.3-1.4 1.327 2.3-2.4 0.000 3.3-3.4 0.000 

0.5-0.6 15.251 1.4-1.5 1.181 2.4-2.5 0.000 3.4-3.5 0.000 

0.6-0.7 15.113 1.5-1.6 1.089 2.5-2.6 0.000 3.5-3.6 0.000 

0.7-0.8 2.982 1.6-1.7 1.827 2.7-2.8 0.000 3.6-3.7 0.000 

0.8-0.9 2.854 1.8-1.9 1.628 2.8-2.9 0.000 >3.7 0.000 

 

 

 

 

Figure 4-2: Plot of percentage of total volume and size ratio before and after refinement for 

quarter piston 
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Figure 4-3: Plot of size ratio and change in volume in percentage 

 

 

 

Figure 4-4: Refined mesh of the quarter piston with load in the cylindrical cavity 
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Figure 4-5: The band plot of error estimate with the refined mesh 

           

4.2 Gear 

In this example, a gear in rotating about its axis is modeled. Three gear teeth are 

constrained and a couple is applied at the center of the gear. The Figure 4-6 shows the initial 

mesh of the gear generated using CUBIT and Figure 4-7 shows the band plot of error estimates. 

For this example the minimum threshold error used is 8%. Any nodes below this threshold value 

have not been refined.  

Figure 4-10 shows the refined mesh of the gear. It is refined around the teeth, where there 

is a high error estimate. Table 4-3 presents the size ratio before refinement and Table 4-4 shows 

the size ratio after refinement. Figure 4-8 is a plot of the size ratio and volume before and after 

the refinement. Notice that most of the volume is below a size ratio of 2.0. Also the there is not 

that much of a change in volume for size ratios less than 1.0. In Figure 4-9, the change in the 
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percentage of volume falling in the particular size ratio before and after refinement is shown.  

Notice that most of the change is around a size ratio of 1.0 and there is negative change in 

volume for size ratio greater than 2.0. This shows that most of the nodes have a size ratio of 1.0 

after the refinement and that refinement is taking place in the node with size ratio greater than 

2.0. Also, it should be noted that when the coarsening algorithm is implemented the volumes 

should come close to the size ratio 1.0, the ideal element size ratio. 

 

 

Figure 4-6: Initial mesh of gear 
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Figure 4-7: Error band plot of the gear 

 

 

Table 4-3: Size ratio for gear example before refinement 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.175 0.9-1.0 1.128 1.9-2.0 0.612 2.9-3.0 0.752 

0.1-0.2 3.254 1.0-1.1 1.624 2.0-2.1 0.824 3.0-3.1 0.624 

0.2-0.3 10.168 1.1-1.2 0.995 2.1-2.2 0.291 3.1-3.2 0.779 

0.3-0.4 12.356 1.2-1.3 0.648 2.2-2.3 0.384 3.2-3.3 0.718 

0.4-0.5 12.654 1.3-1.4 0.619 2.3-2.4 0.268 3.3-3.4 0.729 

0.5-0.6 17.214 1.4-1.5 0.821 2.4-2.5 0.358 3.4-3.5 0.817 

0.6-0.7 19.327 1.5-1.6 0.358 2.5-2.6 0.502 3.5-3.6 0.819 

0.7-0.8 1.678 1.6-1.7 0.714 2.7-2.8 0.427 3.6-3.7 0.991 

0.8-0.9 1.257 1.8-1.9 0.784 2.8-2.9 0.529 >3.7 2.792 
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Table 4-4: Size ratio for gear example after refinement 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.179 0.9-1.0 6.147 1.9-2.0 0.692 2.9-3.0 0.000 

0.1-0.2 3.317 1.0-1.1 5.894 2.0-2.1 0.517 3.0-3.1 0.000 

0.2-0.3 10.172 1.1-1.2 2.218 2.1-2.2 0.016 3.1-3.2 0.000 

0.3-0.4 12.348 1.2-1.3 1.247 2.2-2.3 0.000 3.2-3.3 0.000 

0.4-0.5 12.661 1.3-1.4 0.962 2.3-2.4 0.000 3.3-3.4 0.000 

0.5-0.6 17.198 1.4-1.5 0.912 2.4-2.5 0.000 3.4-3.5 0.000 

0.6-0.7 19.319 1.5-1.6 0.561 2.5-2.6 0.000 3.5-3.6 0.000 

0.7-0.8 1.652 1.6-1.7 0.819 2.7-2.8 0.000 3.6-3.7 0.000 

0.8-0.9 1.241 1.8-1.9 0.924 2.8-2.9 0.000 >3.7 0.000 

 

 

 

 

Figure 4-8: Plot of percentage of total volume and size ratio before and after refinement for gear 

model 
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Figure 4-9: Plot of size ratio and change in volume in percentage 

 

 

 

 

Figure 4-10: Refined mesh of gear 
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Figure 4-11: Band plot error on the refined gear mesh 

 

4.3 Hook 

A coarse mesh of a loaded hook model is shown in Figure 4-12 and also the band plot of 

error estimate on the coarse mesh is shown next to the coarse mesh. The maximum error with 

this mesh was 15% which is depicted by the red color in the plot. For this example a minimum 

threshold error was chosen to be 7%.  

In Figure 4-13 the refined mesh of the gear and the error band plot on the refined mesh 

are shown. The hook is refined around the area where there is high error estimate. Table 4-5 

presents the size ratio before the refinement and Table 4-6 shows the size ratio after refinement. 

Figure 4-14 shows the plot of size ratio and volume before and after the refinement of the model. 

Notice that most of the volume is below a size ratio of 2.0. Also, there is not much change in 

volume for size ratios less than 1.0. In Figure 4-15, change in the percentage of volume falling in 

the particular size ratio before and after refinement is shown. Notice that most of the change is 



 36 

around a size ratio of 1.0 and there is negative change in volume for size ratios greater than 2.0. 

This shows that most of the nodes have size ratio 1.0 after the refinement and refinement is 

taking place in the node with size ratio greater than 2.0. 

 The error has been reduced significantly on the adapted mesh from 15% to 4.1% which 

is less than the minimum threshold error.  

 

 

 

Figure 4-12: The coarse mesh of hook (right) and the band plot of error (left) 
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Figure 4-13: Refined mesh and error band plot on the refined hook mesh 

 

 

Table 4-5: Size ratio before the refinement for hook 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.147 0.9-1.0 1.289 1.9-2.0 1.217 2.9-3.0 0.675 

0.1-0.2 2.814 1.0-1.1 1.584 2.0-2.1 1.143 3.0-3.1 0.624 

0.2-0.3 7.125 1.1-1.2 1.389 2.1-2.2 0.851 3.1-3.2 0.549 

0.3-0.4 10.389 1.2-1.3 0.769 2.2-2.3 0.824 3.2-3.3 0.554 

0.4-0.5 13.125 1.3-1.4 0.825 2.3-2.4 0.846 3.3-3.4 0.567 

0.5-0.6 16.274 1.4-1.5 0.937 2.4-2.5 0.859 3.4-3.5 0.512 

0.6-0.7 16.185 1.5-1.6 0.857 2.5-2.6 0.871 3.5-3.6 0.429 

0.7-0.8 2.886 1.6-1.7 1.146 2.7-2.8 0.451 3.6-3.7 0.152 

0.8-0.9 2.547 1.8-1.9 1.271 2.8-2.9 0.487 >3.7 5.827 
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Table 4-6: Size ratio after the refinement of hook 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

Size 

Ratio, 

Sr 

% of 

Volume 

0-0.1 1.151 0.9-1.0 7.284 1.9-2.0 1.523 2.9-3.0 0.000 

0.1-0.2 2.816 1.0-1.1 7.669 2.0-2.1 0.685 3.0-3.1 0.000 

0.2-0.3 7.124 1.1-1.2 1.827 2.1-2.2 0.024 3.1-3.2 0.000 

0.3-0.4 10.387 1.2-1.3 1.269 2.2-2.3 0.000 3.2-3.3 0.000 

0.4-0.5 13.215 1.3-1.4 1.157 2.3-2.4 0.000 3.3-3.4 0.000 

0.5-0.6 16.282 1.4-1.5 1.139 2.4-2.5 0.000 3.4-3.5 0.000 

0.6-0.7 16.179 1.5-1.6 1.124 2.5-2.6 0.000 3.5-3.6 0.000 

0.7-0.8 3.015 1.6-1.7 1.338 2.7-2.8 0.000 3.6-3.7 0.000 

0.8-0.9 3.215 1.8-1.9 1.527 2.8-2.9 0.000 >3.7 0.000 

 

 

 

Figure 4-14: Plot of percentage of total volume and size ratio before and after refinement for 

hook 
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Figure 4-15: Plot of size ratio and change in volume in percentage 
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5 CONCLUSIONS 

This thesis presents a sizing function algorithm that selects the nodes in all hexahedral 

meshes for refinement and then generates a refined all conformal hexahedral mesh for 

subsequent finite element analysis. As a result, the locally refined mesh will be able to capture 

the physics of the problem more accurately, with a minimum increase in the computation time, 

and provide high efficiency in the finite element solutions.  

Combining a sizing function that is obtained from the error estimates with currently 

available hexahedral meshing techniques, this method refines the regions in the hexahedral mesh 

where there are high error estimates. Thus, the need for totally re-meshing or manually refining 

the regions was removed. Hence, it saves the computation time, and also increases the accuracy 

in the solution of finite element analysis. 

5.1 Future Work 

This method effectively uses a sizing function to drive the refinement process. The results 

from the examples shown in this thesis are promising but improvements can be done on this 

technique to work more efficiently. 

This work provides a platform for the total adaptation of hexahedral elements. Only 

refinement was considered here, but coarsening could be included. There has been recent 

research on coarsening of hexahedral mesh[17]. Including coarsening would provide a method to  
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fully adaptive hexahedral meshes. This work showed that there are often nodes with size ratio 

less than 2.0 when considering only refinement. However, when combined with coarsening, most 

of the size ratios should fall between 1.0 and 2.0. 

Currently, this method uses 3-refinement which sometimes over refines the mesh and 

does not provide good gradation between refined and coarsened region. When this technique is 

used with the 2-refinement technique developed by Edgel et al. [8] it should provide more 

gradation in the refinement.  

In this work, sizing function is developed using computed error estimates. However, 

other criteria such as feature size or user specified field function could be included in the sizing 

function. 

Another area for improvement is that this technique uses Exodus II as an input for the 

sizing function. Most of the solvers write the error measure as a text file, the user has to create an 

exodus file from the text file. It would eliminate a step to create Exodus II file if a text file is 

used.  
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Appendix A. MESH REFINEMENT 

There are several refinement techniques are prevalent in the literature. It is one of areas of 

research for meshing community. As it is desired to have high density nodes in the areas of 

interest while performing the finite element analysis, which can be achieved by refining the 

mesh. This appendix will discuss about the few hexahedral mesh refinement techniques available 

and will discuss in detail about the octree, element by element technique, and sheet refinement 

technique developed by Harris[28]. These schemes are selected because of their use in the 

refinement process in this thesis.  

Octrees 

This technique refines one hex into eight hexes[29]. This is done by spitting each edge at 

its midpoint. This method is performed until the desired size of the hex is obtained. This method 

provides local refinement of the hexes and control over the element size. One of the major 

limitations of this method is that it produces the non-conformal hexahedral mesh. Many finite 

element solvers cannot handle the non-conformal meshes. Figure A-1 shows the refinement 

performed on a cube using the octrees. 
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Figure A-1: Refinement using octrees 

Element by Element Refinement 

This is technique refines all three directions of hexahedron in one step[16]. This method 

inserts templates in the transition region to avoid the hanging nodes. Schneiders introduced an 

element by element refinement using the octree-based mesh generator. This method is efficient 

but cannot handle if the multiply connected transition hexes are present. As defined by Parrish, 

the multiply connected transition hexes are those hexes that are not selected for refinement but 

they share more than one faces with the hex that is selected for refinement. The templates to 

resolve this issue has not been developed yet. Figure A-2 shows the element by element 

refinement process by refining a single hex and adding the appropriate templates. 
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Figure A-2: Element by element refinement process 

Sheet Refinement 

This method is also developed by Schneiders[30], where it refines a mesh by inserting 

pillow in each direction of hex. Harris used the templates to refine the hex instead of inserting 

pillows. The technique developed by Harris is further generalized the refinement technique to 

include nodes, edges, and faces for hexahedral refinement. This method produces a conformal 

mesh, refines the hexes locally, and provides excellent user control of the refinement region[16]. 

This method has some limitations as well this method does not work well when there are self 

intersecting hexahedral sheets present and computation time is also another issue. Figure A-3 

shows the steps of the sheet refinement technique.  
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Figure A-3: Sheet refinement process 

Selective Approach Algorithm 

This method for refinement developed by Parrish is used in the refinement technique 

discussed in this thesis. As suggested by the name, this method is the implementation of the 

combination of element by element refinement and sheet refinement technique. As it uses the 

combinations of two methods it allows removing the limitation of both element by element and 

sheet refinement. 
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Appendix B. CREATING EXODUS II BASED SIZING FUNCTION 

The manuals to create Exodus II[26] files are available on the internet. This appendix 

shows a simple example to create the Exodus II based sizing function which is used to drive the 

refinement process. As mentioned earlier Exodus II in the algorithm section Exodus II is a binary 

format, machine independent and random access. It is used for both the input and output of the 

finite element solution. The initial mesh and geometry is saved in „qtr.e‟ file. Following is the 

piece of code that is used to create an Exdous File, to write the nodal variable (the error 

estimates), for the quarter piston problem shown in the example for this thesis. 

void create_adapt_exodus_example_test() 

{ 

    int i, j;  

    int CPU_word_size,IO_word_size, exoid; 

    int num_dim, num_nodes, num_elem, num_elem_blk, num_node_sets,         num_side_sets, 

error; 

    int id, num_nod_per_el, num_attr, num_el_in_blk, *connect; 

    double *attrib; 

    int *idelbs; 

    char title[100]; 

    float version; 

    double *x, *y, *z; 

 

 

//Initialization of variables 

    CPU_word_size = sizeof(double); /* float or double */ 

    IO_word_size = 8; /* use what is stored in file */ 

 

/****************************************************************************/ 

/***           Open exodus file                                                                             ***/ 

/***                           ***/ 

/****************************************************************************/ 
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    exoid = ex_open ("qtr.e", /* filename path */ 

    EX_WRITE, /* access mode = WRITE */ 

    &CPU_word_size, /* CPU word size */ 

    &IO_word_size, /* IO word size */ 

    &version); /* ExodusII library version */ 

 

 

 

//Get initial paramerters 

    error = ex_get_init (exoid, title, &num_dim, &num_nodes, &num_elem, &num_elem_blk, 

    &num_node_sets, &num_side_sets); 

 

 

 

/****************************************************************************/ 

/***                       Get nodal coordinates                                                     ***/ 

/***                           ***/ 

/****************************************************************************/ 

 

    x = (double *) calloc(num_nodes, sizeof(double)); 

    y = (double *) calloc(num_nodes, sizeof(double)); 

    if (num_dim >= 3) 

        z = (double *) calloc(num_nodes, sizeof(double)); 

    else 

        z = 0; 

 

    error = ex_get_coord (exoid, x, y, z); 

 

 

 

 

/****************************************************************************/ 

/***                  Read block info                                                                     ***/ 

/***                                                        ***/ 

/****************************************************************************/ 

 

    idelbs = (int *) calloc(num_elem_blk, sizeof(int)); 

    error = ex_get_elem_blk_ids (exoid, idelbs); 

    char elem_type[MAX_STR_LENGTH+1]; 

/* read element block parameters */ 

    id = 1; 

    error = ex_get_elem_block (exoid, id, elem_type, 

    &num_el_in_blk, &num_nod_per_el, &num_attr); 

 

/* read element connectivity */ 

    connect = (int *) calloc(num_nod_per_el*num_el_in_blk, sizeof(int)); 
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    error = ex_get_elem_conn (exoid, id, connect); 

 

/* read element block attributes */ 

    attrib = (double *) calloc (num_attr * num_el_in_blk, sizeof(double)); 

    error = ex_get_elem_attr (exoid, id, attrib) 

 

/****************************************************************************/ 

/***        Write Variables                                                    ***/ 

/***                                            ***/ 

/****************************************************************************/ 

 

 int num_nod_vars; 

 int num_ele_vars; 

    char *var_names[2]; 

/* write results variables parameters and names */ 

    num_nod_vars = 1; 

 num_ele_vars=1; 

    var_names[0] = "NSIZE"; 

 var_names[1]="ESIZE"; 

 char **var_ptr=var_names; 

 error = ex_put_var_param (exoid, "n", num_nod_vars); 

    error = ex_put_var_names (exoid, "n", num_nod_vars, var_ptr); 

  

 error = ex_put_var_param (exoid, "e", num_ele_vars); 

 error = ex_put_var_names (exoid, "e", num_ele_vars, ++var_ptr); 

  

 

int *num_elem_in_block=new int[num_elem_blk], n,m,a; 

num_elem_in_block[0] = num_elem; 

double *n_variable=new double[num_nodes]; 

//load 1 

n_variable [ 0 ] = 3.48729 ; 

n_variable [ 1 ] = 5.85084 ; 

n_variable [ 2 ] = 2.86935 ; 

n_variable [ 3 ] = 2.28279 ; 

n_variable [ 4 ] = 3.74355 ; 

n_variable [ 5 ] = 6.00442 ; 

n_variable [ 6 ] = 2.77831 ; 

n_variable [ 7 ] = 2.59911 ; 

n_variable [ 8 ] = 1.85277 ; 

n_variable [ 9 ] = 1.70953 ; 

n_variable [ 10 ] = 2.8881             ; 

n_variable [ 11 ] = 2.90265 ; 

n_variable [ 12 ] = 3.9024             ; 

n_variable [ 13 ] = 4.02522 ; 

n_variable [ 14 ] = 4.29425 ; 
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n_variable [ 15 ] = 6.2681             ; 

n_variable [ 16 ] = 3.46447 ; 

n_variable [ 17 ] = 3.62444 ; 

n_variable [ 18 ] = 3.94795 ; 

n_variable [ 19 ] = 5.74165 ; 

n_variable [ 20 ] = 3.9247             ; 

n_variable [ 21 ] = 4.69704 ; 

n_variable [ 22 ] = 3.43726 ; 

n_variable [ 23 ] = 4.42158 ; 

n_variable [ 24 ] = 6.19268 ; 

n_variable [ 25 ] = 17.19273 ; 

. 

. 

. 

n_variable [ 1647 ] = 20.65976054 ; 

n_variable [ 1648 ] = 11.27693909 ; 

n_variable [ 1649 ] = 14.79968766 ; 

n_variable [ 1650 ] = 3.95937012 ; 

n_variable [ 1651 ] = 6.284903696 ; 

n_variable [ 1652 ] = 0.0023             ; 

 

printf("Number of blocks: %d\n", num_elem_blk); 

 

 

error = ex_put_nodal_var (exoid, 1, 1, num_nodes, n_variable); 

 

printf("%d\n",error);  

 

 

/*********************************************************************/ 

/***                       Close file                                                           ***/ 

/***                       ***/ 

/*********************************************************************/ 

 

   error = ex_close (exoid); 

}//END of function 
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Appendix C. CUBIT COMMANDS 

The following illustrate the general procedure for refining hexahedral mesh using the 

exodus sizing function in CUBIT. Each line indicates commands that are entered into the CUBIT 

application, either by typing at command line, or using a text-based journal file. <italics> 

indicate required arguments to the commands 

import mesh geom <exodus II filename> 

import sizing function "<exodus II filename>" block <block_ids> variable 

"<variable_name>" time <time> 

volume <volume_ids> sizing function type exodus  

surface <surface_ids> sizing function type exodus 

curve <curve_ids> scheme stride 

adapt mesh vol <volume_ids> min_error <minimum_error> sizing_function 

As an example, the following commands are used to refine the gear model in the 

Example Section of this Thesis: 

import mesh geom 'gear.e' 

import sizing function "gear.e" block 1 variable "NSIZE" time 0 

volume all sizing function type exodus  

surface all sizing function type exodus 

curve all scheme stride 

adapt mesh vol 1 min_error 8 sizing_function 



 56 

 


	Brigham Young University
	BYU ScholarsArchive
	2011-06-01

	Hexahedral Mesh Refinement Using an Error Sizing Function
	Gaurab Paudel
	BYU ScholarsArchive Citation


	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Refinement
	2.2 Current Methods
	2.3 Sierra Mechanics Refinement Technique

	3  HEXAHEDRAL MESH REFINEMENT
	3.1 Sizing Functions
	3.2 Tools and Requirements
	3.3 Algorithm
	3.4 Algorithm Example
	3.4.1 Input
	3.4.2 Refinement Criteria
	3.4.3 Comparison of Current and Target Size


	4 EXAMPLES
	4.1 Quarter Piston with Load in the Cylindrical Cavity
	4.2 Gear
	4.3 Hook

	5 CONCLUSIONS
	5.1 Future Work

	REFERENCES
	Appendix A. MESH REFINEMENT
	Octrees
	Element by Element Refinement
	Sheet Refinement
	Selective Approach Algorithm

	Appendix B. CREATING EXODUS II BASED SIZING FUNCTION
	Appendix C. CUBIT COMMANDS

