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ABSTRACT 

 

 

 

AUTOMATED ALL-QUADRILATERAL MESH ADAPTATION 

THROUGH REFINEMENT AND COARSENING 

 

 

Bret Dallas Anderson 

Department of Civil and Environmental Engineering 

Master of Science 

 

This thesis presents a new approach to conformal all-quadrilateral mesh 

adaptation.  In finite element modeling applications, it is often desirable to modify the 

node density of the mesh; increasing the density in some parts of the mesh to provide 

more accurate results, while decreasing the density in other parts to reduce computation 

time.  The desired node density is typically determined by a sizing function based on 

either the geometry of the model or the results of a finite element solution.  Although 

there are numerous mesh adaptation methods currently in use, including initial adaptive 

mesh generation, node redistribution, and adaptive mesh refinement, there are relatively 

few methods that modify the mesh density by adding and removing mesh elements, and 

none of these guarantee a conformal, all-quadrilateral mesh while allowing general 

coarsening.  This work introduces a new method that incorporates both conformal 

refinement and coarsening strategies on an existing mesh of any density or configuration.



 



 

Given a sizing function, this method modifies the mesh by combining existing template 

based quadrilateral refinement methods with recent developments in localized 

quadrilateral coarsening and quality improvement into an automated mesh adaptation 

routine.
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1 Introduction 

The accuracy of the solution to a finite element analysis problem is dependent on 

both the shape and size of the elements in the mesh.  For most two-dimensional finite 

element calculations, quadrilateral elements that are perfect squares provide the best 

accuracy.  Also, properly sized elements must be small enough to minimize error in the 

solution, accurately model the geometry, and/or increase resolution in areas of high 

gradients.  In addition to accuracy, analysis efficiency must be considered.  Since 

computation time is directly related to the number of nodes in the mesh, a lower mesh 

density that maintains acceptable accuracy can significantly decrease the amount of time 

required for an analysis. 

Mesh adaptation is the process of altering the characteristics of the elements in a 

mesh by changing element geometry, topology, and/or degree of interpolation functions.  

The goal of adaptive meshing is primarily to provide a finite element mesh that will 

ensure accurate results in areas of interest.  Additionally, it is desirable to simplify the 

mesh as much as possible in less critical areas to reduce computation time.  One of the 

principal methods used to adapt a finite element mesh is to vary the element density 

across the domain; providing a high enough element density to ensure accurate results in 

areas of interest while providing as few elements as possible in less critical areas to 

minimize computation time.   
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The desired element sizes throughout an adaptive mesh can be determined by use 

of a sizing function which specifies the target size of an element at a particular location 

and can be based on analysis-specific areas of interest, a posteriori error estimates, or 

geometric characteristics of the model.  Some sizing functions may be available before 

the initial mesh is created and an appropriate mesh generation scheme can be used to 

create a mesh with the desired element density.  However, since the areas of interest and 

desired element sizes in a mesh are sometimes unknown before an initial analysis is 

performed, mesh adaptation is often required after an appropriate sizing function is 

determined from the results of an analysis of a relatively coarse mesh.  Additionally, 

some time dependent finite element applications require the mesh density to be updated 

in response to an evolving geometry [1] or shifting areas of interest [2, 3] and the mesh 

must be adapted several times throughout the analysis process. 

The ability to automatically adapt a finite element mesh based on a sizing 

function is an important component of an automatic modeling and simulation process.  

Although it is not a new concept, its principal application has been to triangle and 

tetrahedral-based methods. Quadrilateral meshes are often preferred by analysts for 

improved accuracy over triangle-based methods.  In spite of this, adaptive quadrilateral 

techniques are not as prevalent in the literature. 

A truly general mesh adaptation scheme must have the ability to both enhance 

(refine) and simplify (coarsen) a mesh to provide sufficient accuracy and efficiency in the 

analysis.  While there are numerous methods currently used, relatively few provide for 

both refinement and coarsening.  Additionally, no current algorithm has the ability to 
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adapt an all-quadrilateral mesh with refinement and a coarsening technique not 

constrained to de-refining.   

This thesis presents a unique all-quadrilateral mesh adaptation algorithm that 

modifies a given mesh by adding and removing elements and employs a coarsening 

process that is not limited to undoing previous steps of refinement.  This algorithm 

combines existing quadrilateral refinement techniques [4] with recent developments in 

coarsening [5] and quadrilateral improvement [6] to adapt an existing mesh.  

Additionally, to provide an algorithm that will meet conformity and element type 

requirements of finite element solvers, this method guarantees a fully conformal, all-

quadrilateral mesh. 

The remainder of this thesis is organized as follows.  Chapter 2 provides 

background of current methods in mesh adaptation.  Chapter 3 presents a new adaptation 

method, outlines the algorithm, and describes heuristics used; showing each step 

performed in an example.  Chapter 4 provides several examples of mesh adaptation 

performed by this method, including one example with a sizing function based from error 

estimates determined from an analysis.  Chapter 5 provides a brief summary of this 

research and suggests areas of future research. 
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2 Background 

To meet the ever increasing computational demands of complex finite element 

models, mesh adaptation has become a valuable area of study.  There are three basic 

classes of adaptation, commonly referred to as r-, h-, and p-adaptation [7, 8].  r-

adaptation, sometimes known as smoothing, refers to methods that alter element 

geometry by repositioning the nodes, but do not change the topology of the mesh.  h-

adaptation, refers to methods which change both the geometry of the elements and the 

topology of the mesh by adding and/or removing elements.  p-adaptation, involves 

methods that do not alter the geometry or topology of individual elements; instead, these 

techniques change the degree of the elements in the mesh.  While recognizing the 

importance of both r- and p-adaptive methods, this thesis focuses on the h-adaptive 

technique, concentrating specifically on the conformal refinement and coarsening of all-

quadrilateral meshes. 

2.1 Current Methods 

Initial adaptive mesh generation is perhaps the easiest way to build an adapted 

finite element mesh because it simply employs the given sizing function in the original 

creation of the mesh.  This is a widely used method and is available in many mesh 

generation schemes, including paving [9].  The major drawback of initial adaptive mesh 
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generation is that it requires significant foresight into the probable results of the analysis 

which are used to determine element sizes and an appropriate distribution of element 

density across the mesh.  Because of this required foresight, initial mesh generation 

techniques that incorporate sizing are particularly useful when based on geometric 

characteristics of the model [10], rather than a posteriori error estimates. 

Closely related to initial adaptive mesh generation is adaptive mesh re-generation; 

a mesh adaptation scheme in which the mesh is analyzed, a sizing function is determined, 

and the entire mesh or the region of the mesh requiring modification is removed and 

reconstructed according to the new sizing function.  A significant amount of research has 

been done in this area and numerous algorithms have been presented employing adaptive 

mesh regeneration [11, 12, 13].  Although regenerating the mesh does not have the same 

drawbacks with respect to required foresight as does initial adaptive mesh generation, 

deleting and re-creating the mesh can be inefficient compared with other methods that 

require less modification. 

Node redistribution, commonly referred to as r-adaptation, is an adaptation 

scheme based solely on relocating nodes to alter the mesh density.  Several effective 

algorithms have been developed using this method [14, 15, 16, 17].  Although node 

redistribution is very simple in that it does not alter the topology of the mesh, the 

allowable change in element density can be limited by the shape quality of the elements, 

constraining the ability to both refine and coarsen the mesh.  

Adaptive mesh refinement is an h-adaptation method based solely on refining the 

region of interest.  Since the primary goal of adaptation is to ensure accurate results, this 

is a popular adaptation tool [18, 19, 20, 21] that can be used to provide sufficient 
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resolution in all areas of the mesh that require it and is often used for applications 

requiring adaptation based on a posteriori error estimates.  Because there are no 

provisions for coarsening in adaptive mesh refinement, there must be enough foresight to 

produce a coarse base mesh with enough resolution to provide good error estimates.  At 

the same time, this coarse mesh should not require a significant amount of computation 

time outside the areas of interest, which may not be known before the analysis. 

Possibly the most effective methods to adapt a mesh use a combination of two or 

more types of adaptation.  Branets and Carey [22] suggest combining adaptive refinement 

with node redistribution, but present no formal algorithm to accomplish the goal.  Zhang 

and Bajaj [23] propose an adaptation method combining initial adaptive mesh generation 

with adaptive mesh refinement, but provide no consideration of coarsening.  Jiao, et al. 

[24] propose combining topological modifications to the mesh with node redistribution, 

specifically for evolving surfaces; however, their presented algorithm is limited to 

meshes with triangle elements only. 

2.2 Concurrent Refinement and Coarsening 

While the methods discussed in the previous section can be effective ways to 

adapt a mesh, they all lack the ability to provide effectively coupled coarsening and 

refinement for quadrilateral meshes.  Utilization of both coarsening and refinement in 

mesh adaptation greatly increases the ability to modify a mesh to provide an appropriate 

element density without the need to know the coarsest state of the model.  While several 

algorithms employing coarsening and refinement have been developed for both surface 

and volume meshes, most do not have provisions for all-quadrilateral adaptation. 
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In some applications, large deformations in the model geometry are realized and 

the mesh must be adapted to provide high quality elements.  Wan, et al. [1] present a 

tetrahedral adaptation method that uses topological operators such edge collapsing and 

edge splitting to provide coarsening and refinement.  In other applications the area of 

interest changes with time and the mesh must be adapted to meet the element density 

requirements of an evolving solution.  Li, et al. [3] present a surface adaptation algorithm 

that applies refinement ahead of a moving boundary and coarsening behind.  Similarly, 

Kallinderis and Vijayan [25] present an algorithm that provides evolutionary adaptation 

by adding and removing elements in volume meshes.  Although these two methods 

provide both coarsening and refinement, they are limited to triangle and tetrahedral 

elements, respectively.  De Cougny and Shephard [26] also present a volume adaptation 

method that provides for coarsening and refinement; however, it too is limited to only 

tetrahedral elements. 

In addition to providing adaptation for evolving geometries or solutions, mesh 

adaptation procedures can be used to increase element quality.  Chalasani, et al. [27] use 

adaptation to improve element quality of extruded volume meshes near concave or 

convex features.  Their algorithm employs both coarsening and refinement through edge 

collapse and face refinement, but does not maintain conformity and allows a hybrid 

mesh. 

Connectivity requirements of quadrilateral elements make the creation of a 

conformal adaptation algorithm of all-quadrilateral meshes using concurrent coarsening 

and refinement a much more difficult problem than adapting a mesh with only triangular 

elements or even a quad-dominant mesh.  Hierarchical adaptation methods [28] have 
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been developed that are able to adapt all-quadrilateral meshes while maintaining 

conformity by using quadtree refinement with transition templates.  Coarsening in 

hierarchical adaptation is accomplished by simply removing quadtrees from parent 

elements; however, a major limitation of this procedure is that there is no way for the 

mesh to be coarsened further than the initial base mesh.  By taking advantage of new 

coarsening techniques the algorithm presented in this thesis provides adaptation that 

includes coarsening not limited to undoing previous refinement. 
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3 Automated Mesh Adaptation 

3.1 Sizing Functions 

The first step in creating an adaptive mesh is to provide an appropriate sizing 

function across the mesh domain.  Sizing functions are typically based on error estimates 

derived from the solution of a finite element analysis, geometric characteristics of the 

model, or other user defined constraints.   A solution based sizing function might specify 

an increased element density in regions of high stress or strain gradients, such as the edge 

of a hole, the location of an applied load, or at a change in material.  Geometry based 

sizing functions, such as a skeleton sizing function [10, 29], consider feature size as well 

as surface or boundary curvature and specify an appropriate element density throughout 

the mesh.   

In addition to specifying the desired size of elements throughout the mesh, sizing 

functions must also take into account mesh gradation, the rate at which the element sizes 

change across the mesh [30, 31].  Gradation control is an important part of ensuring high 

shape quality of elements in a conformal mesh by not allowing a large change in size 

between adjacent elements.  Although it is an important area of study, the development of 

sizing functions is not part of this research and it is assumed that an appropriate sizing 

function is provided as input to each adaptive meshing problem. 
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3.2 Tools and Requirements 

The adaptation technique presented in this thesis employs a combination of 

quadrilateral refinement, coarsening, and quality improvement operations to modify a 

given mesh.  Only adaptation operations that preserve a conformal all-quadrilateral mesh 

are used.  Additionally, these operations can be applied locally to allow for concurrent 

coarsening and refinement. 

Since the primary goal of adaptation is to ensure accurate results, refinement is 

usually required.  This adaptation algorithm employs a refinement method that subdivides 

faces in the refinement region using a four element quadtree (referred to as 2-refinement) 

with templates inserted into the transition zone to maintain a conformal all-quadrilateral 

mesh [32].  While nine element quadtrees (3-refinement) are sometimes used to refine 

quadrilateral faces, 2-refinement was chosen because it offers more control over the 

number of elements added to the mesh.  Further discussion of refinement techniques can 

be found in Appendix A.   

This adaptation algorithm uses the Automated Quadrilateral Coarsening by Ring 

Collapse (AQCRC) algorithm recently developed by Dewey [5].  This coarsening method 

provides completely localized coarsening by selecting and removing rings of adjacent 

quadrilaterals from within a specified coarsening region.  One consequence of the 

removal of these coarsening rings is the creation of poor quality faces and quadrilateral 

improvement (clean-up) is a necessary step in this process.  Although the AQCRC 

algorithm is a very effective local coarsening technique, it assumes that the coarsening 

rings are closed rings and does not have any provisions for coarsening of the mesh 

boundaries.  Because of this limitation, the removal of dual chords [33] is also employed 
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in the adaptation procedure to coarsen the boundaries.  While almost any chord can be 

removed from a quadrilateral mesh, it is not guaranteed to be a local operation and will 

usually coarsen outside of the coarsening region.  Despite the non-local nature of chord 

removal, it is necessary tool used for boundary coarsening in this algorithm.  Further 

discussion of these and other coarsening techniques can be found in Appendix B. 

In addition to the need for clean-up within the AQCRC algorithm, poor quality 

faces may form as a result of the refinement of irregular regions, making quadrilateral 

improvement a necessary step in this adaptation procedure.  The clean-up procedure used 

in this algorithm works to improve nodal valence, providing a higher quality mesh [6].  

Further discussion of this quadrilateral improvement method is found in Appendix C. 

3.3 Algorithm 

The goal of this automated mesh adaptation algorithm is to modify an existing 

mesh so that all of the faces are as close to the size specified by a sizing function but no 

larger.  This ensures that solution accuracy and resolution are not sacrificed for decreased 

computation time.  The algorithm flowchart is shown in Figure 3-1 and described by the 

following steps: 

1. A quadrilateral mesh to be adapted and an accompanying sizing function are 

provided as input. 

2. Each curve defining the boundary of the mesh is checked to see if coarsening is 

required.  If a bounding curve must be coarsened, chords intersecting the 

boundary are removed until an appropriate size is reached. 
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3. If coarsening is needed anywhere in the mesh, those regions are coarsened.  The 

clean-up algorithm is included as a step within the coarsening algorithm.  If at any 

point it is determined that coarsening is not needed, this step is skipped in all 

future iterations. 

4. If refinement is needed anywhere in the mesh, those regions are refined. 

5. Following the refinement of elements in the mesh, the entire mesh surface is 

cleaned-up. 

6. Steps 3 through 5 are repeated until sufficient refinement has occurred. 

 

 

Figure 3-1:  Algorithm flowchart. 
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3.4 Algorithm Example 

To completely explain the steps of this algorithm, an example of adapting a mesh 

to a circular line load on a planar surface, as shown in Figure 3-2, is provided.  In this 

case, the area of interest is at the location of the load.  For simplicity, the algorithm can 

be divided into three distinct parts; input, boundary coarsening, and iterative 

coarsening/refinement.   

 

 

Figure 3-2:  Circular load on plane surface. 

 

3.4.1 Input 

This algorithm requires an already meshed surface and an appropriate sizing 

function to be provided as input.  In this example, the surface is a flat 10 x 10 plate, 

meshed with a perfectly structured 10 x 10 quadrilateral mesh shown in the left panel of 

Figure 3-3 and a contour plot of the sizing function is shown in the right panel.  The dark 

colors represent the need for high element density while the light colors recommend a 

low element density.   
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Figure 3-3:  Input for circular load on plane surface.  Initial base mesh (left) and contour plot of 

sizing function (right). 

 

As defined by Equation 3-1, the size of each quadrilateral face is the average 

length of its four edges; therefore, for this example the size of each face in the initial 

mesh is 1.0.  The sizing function provided in this example specifies a high element 

density at the location of the applied load with an element size of 0.1.  This specified 

element density gets progressively lower, varying linearly, as we move further away from 

the load, eventually reaching a recommended element size of nearly 5 at the center of the 

plate. 

 

4

14

1

i

ia lh  (3-1) 

where ha   = actual face size 

 li   = length of i
th

 edge of quadrilateral face 
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3.4.2  Boundary Coarsening 

Since the AQCRC algorithm developed by Dewey does not allow boundary 

coarsening, it is achieved with simple chord removals in areas of the boundary that 

require larger element sizes.  The edge length ratio is defined in Equation 3-2 as the ratio 

of actual edge size to desired edge size and is calculated for each edge along boundary 

curves.  The algorithm uses these edge length ratios to select chords for removal.   

 

d

a
l

l

l
f  (3-2) 

where fl  = edge length ratio 

la   = actual edge length 

ld   = desired edge length as specified by the sizing function 

 

In this example, boundary coarsening is necessary near the corners of the mesh.  

Four chords, shown in the left panel of Figure 3-4 are chosen for removal.  The right 

panel of Figure 3-4 shows the mesh following the removal of the four chords.  Each 

bounding curve that was coarsened is then smoothed to maintain a more isotropic mesh 

structure. 

3.4.3 Iterative Coarsening, Refining, and Quality Improvement 

The remainder of the algorithm modifies the interior of the mesh by iteratively 

coarsening and refining elements until the goal has been reached.  To provide a balanced 

approach to the adaptation problem, each iteration of this algorithm alternates between
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Figure 3-4:  Chords selected for removal and removed. 

 

coarsening and refinement.  Since coarsening tends to make the mesh less structured and 

refinement tends to make the mesh more structured, the algorithm always begins with 

coarsening which is followed by refinement.  Refining after coarsening also helps to 

achieve the goal of ensuring that the elements in the mesh are smaller than specified by 

the sizing function. 

Each iteration begins by calculating the size ratio of each face as defined in 

Equation 3-3.  A size ratio greater than 1.0 indicates that the face is too large and should 

be refined; a size ratio less than 1.0 indicates that the face is too small and can be 

coarsened. 

 

d

a
s

h

h
f  (3-3) 

where fs  = face size ratio 

ha   = actual face size as defined in Equation 3-1 

hd   = desired face size as specified by the sizing function 
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To provide more control over the amount of coarsening that takes place and to 

ensure that the coarsening operation does not overshadow refinement requirements, a 

dynamic threshold, given in Equation 3-4, is used to govern which faces should be 

coarsened and which should not be. 

 

cc nt 2.00.1  (3-4) 

where tc   = coarsening threshold 

 nc   = coarsening iteration number; 0,1,2… 

 

Any face with a size ratio less than the coarsening threshold is considered too 

small and should be coarsened.  For example, in the first iteration, any face with a size 

ratio less than 1.0 is considered for coarsening.  In later iterations, the coarsening 

threshold is gradually relaxed until the sixth iteration when it becomes zero and 

disappears.  Also, if at any point in the adaptation process, fewer than 10% of the faces in 

the mesh require coarsening, the coarsening is considered complete and is skipped in all 

future iterations.  This requirement helps to ensure that the same mesh regions are not 

being repeatedly coarsened and refined.  Figure 3-5(a) shows the faces selected for 

coarsening in the example.  This shaded region is coarsened and the resulting mesh 

topology can be seen in Figure 3-5(b).   

Since the coarsening algorithm requires a contiguous region of quadrilateral faces 

to create coarsening rings, a lone face requiring coarsening surrounded by faces that do 

not require coarsening will automatically be neglected by the AQCRC algorithm, making 

sure that coarsening does not extend outside of the desired region.   
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Figure 3-5:  Coarsening, refinement, and quality improvement steps.  (a) Iteration 1, coarsening 

region.  (b) Iteration 2, refinement regions.  (c) Iteration 2, before quality improvement. (d) Iteration 

3, refinement regions.  (e) Iteration 4, refinement regions.  (f) Iteration 5, refinement regions. 
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After the first iteration of coarsening, the size ratio is re-calculated for all of the 

faces in the mesh in preparation for refinement.  Any face with a size ratio greater than 

1.0 is considered too large and requires refinement.  This limit of 1.0 is not relaxed at any 

time throughout the algorithm; however, a dynamic refinement threshold, defined in 

Equation 3-5, is used to separate the elements requiring refinement into two categories.   

 

rr nt 05.025.1  (3-5) 

where tr   = refinement threshold 

 nr   = iteration number; 0,1,2… 

 

Any face with a size ratio greater than 1.0 and the refinement threshold is 

considered a high-refine face, while any face with a size ratio greater than 1.0 but less 

than the refinement threshold is considered a low-refine face.  In the refinement step, 

only the high-refine faces are refined, unless there are none, in which case all of the low-

refine faces are refined.  The purpose of the separation between faces is that the low-

refine faces are often located very close to the high-refine faces and fall within their 

transition zones.  Since the transition zone experiences some refinement through the 

insertion of templates, low-refine faces in the transition region are also refined.  Similar 

to the coarsening threshold, the refinement threshold gradually shrinks the allowable 

range of low-refine face until the refinement threshold equals 1.0 and disappears.  At this 

point, all faces with a size ratio greater than 1.0 are high-refine elements. 

If at any time, less than 3% of the faces are considered low-refine faces and less 

than 0.5% of the faces are considered high-refine faces, refinement is deemed sufficient.  
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If these criteria are met, however, future iterations of refinement are not precluded as they 

are in the coarsening iterations. 

In Figure 3-5(b) the high-refine faces are shaded dark gray and the low-refine 

faces are shaded light gray.  As expected, the low-refine faces are in close proximity to 

the high-refine faces and, in fact, fall in the transition zone.  The mesh topology resulting 

from the refinement of the high-refine faces is shown in Figure 3-5(c).  Note the creation 

of four 9-valence nodes as a result of the refinement of the irregular high-refine region.  

Because of the formation of topologies like this, the quadrilateral improvement algorithm 

is applied after each instance of refinement.  In the clean-up procedure, nodes with a 

valence greater than 6 are considered unacceptable and the mesh topology is changed to 

remove the high valence.  The new mesh topology following the clean-up algorithm is 

shown in Figure 3-5(d) where the unacceptable 9-valence nodes have been reduced to 

acceptable 5-valence nodes.  The remainder of the algorithm iteratively coarsens and 

refines the mesh until sufficient coarsening and refinement have both taken place.   

At this point in the example, after the first refinement step, it was determined that 

fewer than 10% of the faces had a size ratio that warranted coarsening; therefore, 

coarsening is now considered complete for all future iterations. Following this 

completion of coarsening, only refinement steps occur. Figures 3-5(d-f) show the 

successive refinement iterations for the remainder of this example.  The final adapted 

mesh is shown in Figure 3-6. 

Table 3-1 provides the distribution of size ratios of the faces in the final mesh.  

Note that nearly all of the faces have a size ratio less than 1.0 and are therefore smaller 

than desired.  Since the goal of this adaptation is to provide elements close to the desired 
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size, but not larger, this is a good result.  It is not surprising, however, that some of the 

elements are too large since this method uses an isotropic smoothing scheme which 

ignores the desired size specified by the sizing function. 

 

 

Figure 3-6:  Adapted mesh of circular load on plane surface. 

 

Table 3-1:  Adaptation results of circular load on plane surface. 

  

< 0.5 1485 61.0% 1.0 - 1.1 36 1.5%

0.5 - 0.8 708 29.1% 1.1 - 1.2 14 0.6%

0.8 - 0.9 114 4.7% 1.2 - 1.5 0 0.0%

0.9 - 1.0 77 3.2% > 1.5 1 0.0%

2384 97.9% 51 2.1%

Percent of 

Total

Number of 

Faces

Size Ratio, 

f s

Number of 

Faces

Size Ratio, 

f s

Percent of 

Total
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4 Examples 

The examples in this chapter are provided to show the results of this new 

quadrilateral adaptation scheme on a range of finite element models.  Each of the four 

examples shows the initial mesh and a contour plot of the sizing function, as well as the 

mesh after adaptation and a table with data showing the results of the adaptation.  The 

fourth example, a plate with a hole, also provides results from a finite element analysis of 

the plate under a tensile load.  In each example the original mesh was created with the 

paving algorithm in the mesh generation software package, CUBIT [34]. 

In these examples, the size ratio data resulting from the adaptation technique are 

very similar.  In each case, 2% or fewer of the faces are larger than their desired size and 

nearly all of the larger faces are within 10% of the target.  This is a promising result 

considering the goal is to make sure most, if not all, of the elements are smaller than the 

desired size.  The primary reason that there are some faces that are too large is that the 

smoothing algorithm used as part of the clean-up operations does not take into account 

the sizing function and may work against the desired size. 

Even though there are a few faces with a size ratio greater than 1.0, more than 

80% of the elements have a size ratio of less than 0.8, suggesting that this adaptation 

method over-refined the meshes by adding more elements than were necessary.  This 

over-refinement, however, is to be expected since the quadtree refinement scheme 
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divides all faces in the refinement region into four, resulting in a reduction of interval size 

by half.  Additionally, the transition zone around the region is refined by adding 

templates to ensure a conformal mesh. 

4.1 Plate with Multiple Holes 

The model of a plate with multiple holes is shown in the left panel of Figure 4-1 

and a contour plot of the sizing function used to adapt this mesh is shown in the right 

panel.  This sizing function specifies an increased element density immediately around 

the holes with an even higher density at each end of the oblong hole.  The sizing function 

also specifies a lower element density in the corners of the mesh away from the holes and 

the top center between the holes.   

The adapted mesh is shown in Figure 4-2 and it can easily be seen that the sizing 

function was successful in providing increased element density near the holes and 

decreasing element density in the specified regions.  Table 4-1 shows the distribution of 

size ratios through the mesh.  As mentioned previously, the vast majority of faces are too 

small, and most of those are between 50% and 80% of the desired size.  

 

Table 4-1:  Adaptation results of plate with holes example. 

  

< 0.5 627 32.5% 1.0 - 1.1 19 1.0%

0.5 - 0.8 1060 55.0% 1.1 - 1.2 1 0.1%

0.8 - 0.9 160 8.3% 1.2 - 1.5 0 0.0%

0.9 - 1.0 60 3.1% > 1.5 0 0.0%

1907 99.0% 20 1.0%

Size Ratio, 

f s

Number of 

Faces

Size Ratio, 

f s

Number of 

Faces

Percent of 

Total

Percent of 

Total
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Figure 4-1:  Original mesh of plate with holes (left) and contour plot of sizing function (right). 

 

 

Figure 4-2:  Adapted mesh of plate with holes. 
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4.2 Nosecone 

The nosecone in this example is a non-planar surface with a paved quadrilateral 

mesh.  Figure 4-3 shows an isotropic view the original mesh and a side view of the sizing 

function.  The original element size in this example was 1.0 and the desired size ranged 

from 0.1 to 3.  The sizing function used for this adaptation specified a high element 

density at the tip of the nosecone where the curvature is high and low element density 

away from the tip at the base.  This example also illustrates how a sizing function might 

be used to adapt a mesh based on geometric characteristics of the model.  In addition to 

the refinement near the tip of the object, note the difference in element size along the 

curve at the base of the nosecone. 

Table 4-2 shows the distribution of size ratios through the mesh.  In this example, 

fewer than 3% of the faces are too large and fewer than 7% of the faces are less than half 

of the desired size.  This example also provides very good results with respect to not 

over-refining the mesh.  

 

Table 4-2:  Adaptation results of nosecone example. 

  

 

< 0.5 132 6.5% 1.0 - 1.1 50 2.4%

0.5 - 0.8 1494 73.0% 1.1 - 1.2 1 0.0%

0.8 - 0.9 233 11.4% 1.2 - 1.5 0 0.0%

0.9 - 1.0 136 6.6% > 1.5 0 0.0%

1995 97.5% 51 2.5%

Size Ratio, 

f s

Number of 

Faces

Percent of 

Total

Size Ratio, 

f s

Number of 

Faces

Percent of 

Total
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Figure 4-3:  Original mesh of nosecone (left) and contour plot of sizing function (right). 

 

 

Figure 4-4:  Adapted mesh of nosecone. 
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4.3 Gear 

The gear in this example is a planar surface with a base mesh shown in the left 

panel of Figure 4-5.  In a finite element model of a gear, it is likely that there will be 

stress concentrations between the teeth, where they connect with the main body of the 

gear.  The sizing function is shown in the right panel of Figure 4-5 and specifies a 

reduction in mesh density near the center of the gear and a high mesh density where the 

teeth connect to the body of the gear. 

The adapted mesh can be seen in Figure 4-6.  Note the reduction in intervals along 

the inside radius of the gear as a result of chord removals.  Table 4-3 shows the 

distribution of size ratios through the mesh.  In this example, only 2% of the faces are too 

large.  This example also provided very good results with respect to not over-refining the 

mesh and only about 10% of the quadrilateral faces had a size ratio less than 0.5 while 

more than 70% of the faces had a size ratio between 0.5 and 0.8. 

  

Table 4-3:  Adaptation results of gear example. 

 

 

 

< 0.5 274 10.9% 1.0 - 1.1 43 1.7%

0.5 - 0.8 1788 71.1% 1.1 - 1.2 5 0.2%

0.8 - 0.9 281 11.2% 1.2 - 1.5 3 0.1%

0.9 - 1.0 120 4.8% > 1.5 0 0.0%

2463 98.0% 51 2.0%

Size Ratio, 

f s

Number of 

Faces

Percent of 

Total

Size Ratio, 

f s

Number of 

Faces

Percent of 

Total
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Figure 4-5:  Original mesh of gear (left) and contour plot of sizing function (right). 

 

 

Figure 4-6:  Adapted mesh of gear. 
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4.4 Plate with Hole in Tension 

This example models a plate with a hole under a tensile loading, as shown in 

Figure 4-7.  Due to symmetry of both the geometry and loads, this problem can be 

reduced to an analysis of a quarter of the plate, denoted by the shaded region.  The three 

locations, A, B, and C, have been marked on the diagram where displacement results 

have been recorded after an analysis using the finite element program, ADINA [35]. 

 

 

Figure 4-7:  Model of plate with hole in tension. 

 

The initial mesh of this example is shown in Figure 4-8 with an average element 

size of about 0.6.  The sizing function used to adapt this mesh was based off of a 

posteriori stress error estimates [36] provided by the analysis of the original mesh in 

ADINA as shown in Figure 4-9.  In this figure, the red indicates high error and the blue 

indicates little error.  The sizing function determined from this analysis specified an 

element size of 0.04 in the areas of highest error ranging to an element size of 1.5 in areas 

with little error.  The mesh resulting from the adaptation procedure is shown in Figure 

4-10 and size ratio results of the adaptation are provided in Table 4-4.   
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Figure 4-8: Original mesh of plate with hole in tension. 

 

 

Figure 4-9:  Band plot of stress error used to define sizing function for plate with hole in tension. 

 

 

Figure 4-10:  Adapted mesh of plate with hole in tension. 
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Table 4-4:  Adaptation results of plate with hole in tension. 

 

 

In addition to the initial coarse mesh and the adapted mesh, the quarter-plate was 

meshed with two other grids, each much more fine than the coarse base mesh.  These 

meshes were used to show convergence to a solution as well as to compare error between 

analyses of each of the meshes.  Band plots of the effective stress error found from a 

finite element analysis are shown in Figure 4-11.  Note the significant reduction in error 

that occurs within the adapted mesh.  

In addition to these band plots, numerical data comparing the meshes can be 

found in Table 4-5, which provides a comparison of mesh statistics of the four different 

meshes and numerical results at selected locations in each mesh.  It also shows the 

maximum estimated error for each mesh.  It is obvious by the similarity in stress and 

displacement results between the medium and fine meshes that the solutions are 

converging to values close to those recorded by the fine mesh.  At each analysis location, 

the displacement results from the adapted mesh are within 1% of the solutions taken from 

the fine mesh.  In fact, it appears that the adapted mesh provided a more accurate result 

for the maximum effective stress in the model.   

< 0.5 93 7.9% 1.0 - 1.1 7 0.6%

0.5 - 0.8 924 79.0% 1.1 - 1.2 0 0.0%

0.8 - 0.9 120 10.3% 1.2 - 1.5 0 0.0%

0.9 - 1.0 26 2.2% > 1.5 0 0.0%

1163 99.4% 7 0.6%

Percent of 

Total

Size Ratio, 

f s

Number of 

Faces

Size Ratio, 

f s

Number of 

Faces

Percent of 

Total
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Figure 4-11:  Band plots of effective stress error for plate with hole in tension ranging from 0.0 (blue) 

to 32.0 (red).  (a) Coarse mesh,  (b) Medium mesh,  (c) Fine mesh,  (d) Adapted mesh. 
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Table 4-5:  Finite element analysis results of plate with hole in tension. 

 

 

The maximum estimated stress error is significantly reduced by the adapted mesh.  

These results are significant when considering that the adapted mesh has only 70% of the 

nodes in the medium mesh and fewer than 20% of the nodes in the fine mesh.  Not only 

does the adapted mesh provide virtually equal displacement values and superior stress 

values, it does so with fewer elements while reducing the estimated error.  Although this 

is a small problem and the time savings were negligible, the savings of computational 

effort on a large problem can be significant. 

The results of this analysis not only show the effectiveness of this adaptation 

algorithm in providing an efficient solution to a computational mechanics problem, but 

also the importance of mesh adaptation generally in finite element problems.  

 

 

 

 

Nodes Faces Max Value Max Error Δx1 at A Δx2 at B Δx2 at C

Coarse 121 97 94.3 32.08 0.00143 0.00279 0.00467

Medium 1770 1677 106.5 19.23 0.00154 0.00287 0.00474

Fine 6973 6788 107.9 12.33 0.00155 0.00288 0.00475

Adapted 1232 1170 108.3 7.53 0.00154 0.00287 0.00474

Effective Stress DisplacementsMesh Info
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5 Conclusion 

The ability to adapt a finite element mesh is critical to providing an efficient 

analysis to many finite element problems.  Although there are currently effective 

quadrilateral adaptation techniques available, none of them are truly general in that they 

can modify the element density to match a sizing function by adding and removing 

elements without having to re-mesh all or part of the domain. 

Recent developments in localized, automated quadrilateral coarsening have made 

it possible to combine quadrilateral refinement, coarsening, and quality improvement 

techniques into a conformal, all-quadrilateral adaptation method.  Given a sizing 

function, this new adaptation technique iteratively coarsens and refines the mesh domain 

to provide a mesh with an element that matches the sizing function.  As shown in 

examples, this method is an effective way to streamline the computational analysis of a 

finite element mesh by providing high element density in areas of the mesh that require 

high accuracy or geometric resolution while removing elements in less important areas of 

the mesh to decrease element density and save computation time. 

5.1 Further Research 

The adaptation technique described in this thesis effectively adds and removes 

elements resulting in an adapted mesh that improves accuracy or resolution where needed 
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while improving the efficiency of the analysis by removing elements away from the area 

of interest.  Although the results shown in this thesis are promising, there are still 

improvements that can be made and more research that can be done. 

One way to improve this algorithm is to provide adaptive smoothing with 

refinement and coarsening.  The smoothing technique currently employed in this 

algorithm attempts to improve the quality of the mesh by re-distributing the nodes, but 

does not take into account the desired element size specified by the sizing function.  In 

fact, the smoothing algorithm may work against the size function by attempting to create 

a uniformly sized mesh while the sizing function has specified a mesh with varying 

element density.  Coupling the current h-adaptation method with an r-adaptation 

technique that considers the element size specified by the sizing function [37] would be a 

major improvement to this algorithm.  

In some finite element applications, particularly computational fluid dynamics 

problems, anisotropic elements with a high aspect ratio are desired at mesh boundaries.  

This adaptation technique does not take isotropy into account and adds or removes 

elements based solely on their size.  By more selectively choosing where to add elements, 

or even applying chord dicing capabilities, this adaptation method could be modified to 

allow for anisotropy in the mesh. 

One purpose of this research was to provide a springboard into the development 

of an automated all-hexahedral mesh adaptation algorithm.  Recent developments have 

been made in conformal hexahedral refinement [4, 38] that provide localized refinement 

and are robust on both structured and unstructured hexahedral meshes.  Additional 

developments have been made in automated hexahedral coarsening as well.  Woodbury 
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[39] recently introduced a new method that provides localized conformal coarsening to an 

all-hexahedral mesh.  Woodbury’s method isolates the coarsening region through 

pillowing and then uses chord-collapse operations to redirect hexahedral sheets so they 

are located entirely within the desired coarsening region.  Additionally, this method does 

account for boundary and surface coarsening and therefore does not have the same 

limitations as the AQCRC algorithm used for quadrilateral adaptation in this thesis.  One 

potential difficulty in the development of an automated hexahedral adaptation scheme, 

however, is providing quality improvement operations to ensure a high quality mesh.  

The improvement operators used in quadrilateral mesh improvement do not extend 

directly into 3-dimensions and topological restrictions in hexahedra make local topology 

changes very difficult. 
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Appendix A. Quadrilateral Refinement 

A straightforward way to refine a quadrilateral mesh is to subdivide the elements 

in the refinement region using a quadtree approach [40].  This method of quadrilateral 

refinement is illustrated in Figure A-1(b).  Although this simple quadtree refinement is 

limited in that it introduces non-conforming elements into the mesh, it is a method of 

hierarchical refinement [28] that is easy to de-refine by removing quadtrees from the 

parent element. 

If desired, the problem of non-conformity in quadtree refinement can be resolved 

by adding triangular elements to the mesh as shown in Figure A-1(c).  This, however, 

violates the constraint that the resulting mesh be all-quadrilateral.  To resolve the issue of 

having a quad-dominant mesh, elements can be further sub-divided to produce an all-

quadrilateral mesh.  This is shown in Figure A-1(d) where each triangle is divided into 

three quadrilaterals and the new edges are extended throughout the mesh to maintain 

conformity.  Figure A-1(e) shows the results of subdividing all of the elements in the 

mesh to create a more uniform conforming mesh.  Although these methods of further 

subdivision are valid solutions, they may provide more refinement than desired. 

Another way to avoid the introduction of non-conforming or non-quadrilateral 

elements is by using a template based approach [4, 32, 38].  Although template based 

methods tend to introduce elements with a lower shape quality into the area around the
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Figure A-1:  Quadrilateral refinement. (a) Original mesh and shaded refinement region.  (b) Refined 

non-conformal all-quadrilateral mesh.  (c) Refined conformal quad-dominant mesh.  (d) Quad-

dominant mesh subdivided to create all-quadrilateral mesh.  (e) Quad-dominant mesh subdivided 

further to create uniform all-quadrilateral mesh. 

 

refinement region, they are still an effective way to refine a mesh and are often preferred 

over methods that create hanging nodes. 

There are two main template based refinement methods; one uses a four element 

quadtree (referred to as 2-refinement) and the other uses a nine element quadtree (3-

refinement).  Refinement using these transition templates is shown in Figure A-2.  

Transition template refinement begins by dividing the elements in the region of interest 

using a 2- or 3-refinement quadtree.  After the refinement region has been divided into 

the appropriate number of elements, the elements surrounding the refined region are 

marked as a transition zone and templates are inserted to maintain a conformal, all-

quadrilateral mesh.  Figure A-3 shows templates that are commonly used in both 2- and  
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Figure A-2:  Quadrilateral refinement with transition templates. (a) Original mesh and shaded 

refinement region.  (b) Mesh refined with 2-refinement.  (c) Mesh refined with 3-refinement. 

 

 

Figure A-3:  Common refinement templates. 

 

3-refinement.  The two templates on the first row are used for 2-refinement and the five 

templates on the second row are used for 3-refinement. 

Although the process is identical for 2- and 3-refinement, the number of elements 

generated and the size of the transition zone are different between the two methods 

because of the different templates.  Since 2-refinement divides each interval in half, much 

less refinement takes place than with 3-refinement which divides each interval into thirds.  

2-refinement also allows for a more gradual gradation from fine to coarse and makes it 

more likely that the resulting size is close to the desired size.  However, since there are 

more templates available in 3- than in 2-refinement, 3-refinement offers more options for 

how much of the transition zone is affected by the refinement.   
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The differences in magnitude of refinement and size of the affected transition 

zone are illustrated in Figure A-4 where a single quadrilateral element is refined with 2- 

and 3-refinement.  To show that several options exist when choosing templates for 3-

refinement, the element in was refined by 3-refinement in two different ways.  Note that 

in the 2-refinement example, Figure A-4(b), 15 elements are added and the transition 

zone affects six of the original quadrilaterals.  In the first example of 3-refinement, Figure 

A-4(c), 20 elements are added and the transition zone only affects four of the original 

quadrilaterals.  In the second example of 3-refinement, Figure A-4(d), 40 elements are 

added and the transition zone affects eight of the original quadrilaterals. 

 

 

Figure A-4:  Quadrilateral refinement of a single element. (a) Original mesh and shaded refinement 

region. (b) 2-refinement with templates. (c) One option of 3-refinement with templates. (d) Another 

option of 3-refinement with templates. 

 

If more control over the magnitude of refinement is desired, 2-refinement is 

advantageous.  However, if more control over the amount of area affected by the 

refinement is desired, 3-refinement is the best option.  Since the adaptation technique 

developed in this thesis iteratively refines the mesh, there is no need to provide a high 

amount of refinement in a single iteration.  2-refinement can be used over multiple 

iterations to provide a sufficient amount of refinement. 
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Appendix B. Quadrilateral Coarsening 

Quadrilateral coarsening (often referred to as simplification in literature related to 

computer graphics) is an area of meshing that has received relatively little attention.  

However, there have been recent developments made in improving and automating the 

coarsening process [5, 33, 41].  As shown in Figure B-1, basic coarsening techniques are 

accomplished by simply combining elements in the coarsening region.  This simplistic 

coarsening method obviously has the same drawbacks as refining without templates.  

Additionally, by adding triangular elements, as shown in Figure B-1(c), we are actually 

back-tracking and refining elements that have just been coarsened. 

 

 

Figure B-1:  Simple quadrilateral coarsening. (a) Original mesh and coarsening region.  (b) 

Coarsened non-conformal all-quadrilateral mesh.  (c) Coarsened conformal quad-dominant mesh. 

 

Since the goal of coarsening is to reduce the number of elements in the coarsening 

region, Figure B-2 demonstrates that coarsening can be achieved by using local topology 
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operators such as the face close operation that remove elements while maintaining 

conformity in the mesh.  Although this method is completely localized, it can result in 

high-valence nodes which are often indicative of poor element quality.   

An extension of a single face close referred to as partial chord collapse is 

accomplished by performing several face close operations on a string of adjacent 

quadrilaterals as shown in Figure B-3.  This method provides more coarsening than a 

single face close and can still be entirely localized to the coarsening region, but still often 

results in poor quality elements. 

 

 

Figure B-2:  Face close. 

 

 

Figure B-3:  Partial chord collapse. 
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In quadrilateral meshes, it is sometimes helpful to use the dual representation of 

the mesh.  In the dual representation, a chord in a conformal, all-quadrilateral mesh is 

defined by connecting the midpoints of opposite edges of a quadrilateral element and 

continuing that chord in both directions, connecting opposite edges of faces until it either 

reaches the boundary of the mesh or circles back to an edge already marked by the chord.  

Almost any chord in a quadrilateral mesh can be removed, and will leave behind a mesh 

that is still conformal and all-quadrilateral.  The removal of a quadrilateral chord is 

illustrated in Figure B-4.  Since the removal of a chord reduces the number of 

quadrilateral elements in the mesh by the number of elements in the extracted chord and 

the resulting mesh meets conformity and element type requirements, it is an effective way 

to coarsen a quadrilateral mesh.   

 

 

Figure B-4:  Quadrilateral chord removal. 

 

The main drawback with quadrilateral coarsening by chord removal is that this 

method does not guarantee coarsening local to the desired coarsening region.  Completely 

localized coarsening by chord removal will only occur if the entire chord is contained 

within the coarsening region.  In Figure B-5, the shaded coarsening region is coarsened
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Figure B-5:  Chord removal in two directions. 

 

by the removal of the two chords marked with dashed lines.  Note that the coarsened area 

of the mesh extends well beyond the desired coarsening region. 

Staten, et al. [33] showed that by using specific topological operators (doublet 

insertion, face close, and edge swap), a chord can be re-directed to be contained entirely 

within the coarsening region, also illustrated in Figure B-6.  In the first panel of the 

figure, the coarsening region is shaded and the chords bounding the region are shown as 

dashed lines.  In the second panel, the chords in the upper left of the coarsening region 

are altered with the insertion of a doublet (a node with two edges connected to opposite 

nodes in the quadrilateral), the chords in the upper right of the coarsening region are 

altered with an edge swap, and the chords on the lower corners of the coarsening region 

are altered with face close operations.  The third part of the figure shows the mesh after 

the redirected chord has been removed. 

As an alternative method to redirecting and removing chords, Dewey [5] recently 

developed an algorithm called Automated Quadrilateral Coarsening by Ring Collapse 

(AQCRC) that provides coarsening without removing chords from the mesh.  Instead, the 

algorithm creates a set of closed, concentric rings of adjacent quadrilaterals within the
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Figure B-6:  Chord re-direction and removal. 

 

coarsening region, selects rings from the set to be removed based on projected quality 

and magnitude of coarsening, and then removes the selected rings.  Removal of 

coarsening rings, instead of quadrilateral chords, often results in poor quality elements in 

the mesh.  However, the mesh quality can be significantly improved using clean-up 

operations [6]. 

A major assumption that Dewey makes in the AQCRC algorithm is that a 

coarsening ring is always closed ring.  This assumption is made in order to maintain the 

current element size outside of the coarsening region.  A drawback to this assumption 

appears when the boundary of the mesh that is not attached to any other meshed 

geometry is included at the edge of the coarsening region.  In this case, the algorithm 

assumes that the quadrilaterals along the boundary cannot be modified in order to 

preserve the interval counts on the curve at the boundary of the mesh.  It assumes that this 

boundary is already meshed at the correct size and does not require coarsening or there is 

another surface outside of the coarsening region that shares the curve in question that 

should not be altered.  This case of the AQCRC algorithm is illustrated in Figure B-7.  
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Note that the shaded coarsening region includes the boundary of the mesh and the 

coarsening ring, shown as a dashed line, does not continue through the boundary but 

turns back to form a closed ring.  Figure B-8 shows how the ring could still be formed 

and collapsed if the assumption of maintaining boundary intervals were relaxed. 

Despite the drawback of the closed ring assumption, the AQCRC algorithm is still 

a very effective method to provide completely localized coarsening in an all-quadrilateral 

mesh and is used in this new adaptation scheme.  

 

 

Figure B-7:  AQCRC coarsening. 

 

 

Figure B-8:  Ring collapse with boundary coarsening. 
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Appendix C. Quadrilateral Mesh Improvement 

As mentioned in the previous Appendix, quality improvement, (i.e. clean-up) 

through topological changes to the mesh is a necessary step in coarsening with the 

AQCRC algorithm.  A quadrilateral improvement algorithm that improves the quality of 

the mesh through local topology modification was developed in conjunction with the 

AQCRC algorithm and has been implemented in its coarsening process [6].  This same 

quadrilateral improvement algorithm has also been employed in this new adaptation 

method to provide quality improvement in other parts of the adaptation process. 

In addition to the formation of poor quality elements as a result of coarsening, 

high valence nodes may form as a result of the refinement of irregular regions.  Figure 

C-1 shows a case where a concave refinement region forms a node with a valence of 

seven.  This high-valence node can be removed with a face open procedure.  This face 

open operation added one element to the mesh and reduced the valence of the node in 

question from seven to five.  The removal of high valence nodes from a mesh is one of 

many capabilities of this quality improvement method.   

The quadrilateral mesh improvement algorithm described in this appendix builds 

on the mesh improvement methods intended for parallel execution with the paving 

method [42] and introduces topological changes in an existing quadrilateral-only mesh to 

improve element shape and nodal valence.  This discussion is intended to demonstrate the  
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Figure C-1:  Quality improvement required by refinement. (a) Shaded refinement region. (b) Seven-

valence node formed from 2-refinement. (c) Mesh after quality improvement operation (face open on 

high-valence node). (d) Improved mesh. 

 

effectiveness of utilizing mesh cleanup operations as a post-processing step to other mesh 

generation algorithms. 

C.1 Quality Standards 

Quadrilateral mesh improvement consists of altering the shape and/or topology of 

a mesh to obtain better characteristics.  For most purposes, an ideal quadrilateral mesh 

exists when all quadrilaterals in the mesh are square in shape and each interior node 

within the mesh is connected to four quadrilaterals.  The number of quadrilateral 

elements attached to each node is referred to as the node’s valence.  A structured 

quadrilateral mesh exists when every interior node of a quadrilateral mesh has a nodal 
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valence of 4, while an unstructured quadrilateral mesh accepts nodal valence other than 

four.  Nodes with a valence of 6 or more are considered high valence nodes.  With high 

valence nodes, the shape quality begins to deteriorate.  Since the average angle between 

two adjacent edges with 6-valence nodes is less than or equal to 60°, these should be 

removed to provide a higher quality [42].   

An unstructured quadrilateral mesh is improved topologically by reducing the 

number of unstructured nodal valences within the mesh.  A quadrilateral mesh is 

improved geometrically by minimizing the deviation of each quadrilateral from square 

and equilateral.  Geometric improvement is typically accomplished using nodal 

movement operations including mesh relaxation, mesh smoothing and mesh optimization 

techniques. 

Nodal valence is used as an indicator of likely problem areas in the mesh.  Since 

all of the interior nodes in a perfectly structured mesh have 4 emanating edges separated 

by 90°, anything other than that signifies an unstructured mesh.   Nodes that have a 

valence of 3 or 5 are acceptable, but lower quality by varying the quadrilateral angles.  

Nodes with a valence of 2 indicate the presence of one or more degenerate elements, 

nodes with valence 6 are avoided, and nodes with a valence of 7 or more are not 

acceptable. 

Many mesh quality metrics [43] exist to measure the quality of a quadrilateral 

mesh, however, we opt to use the scaled Jacobian [44].  This is a commonly used metric, 

utilized by computation simulation methods to describe the mapping of a given 

quadrilateral to an ideal quadrilateral element when determining the simulation shape 

functions.  The scaled Jacobian metric quantifies the deviance of an element from a 
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perfect square.  The acceptable range of this metric is assumed to be between 0.2 and 1.0 

[29], where 1.0 corresponds to a perfect square. 

C.2 Geometry Preservation 

When performing local topological changes to a surface mesh, care must be taken 

not to alter the geometry of the model.  Geometric features are identified a priori and 

template replacement that results in the removal of geometric features is disallowed.  

Additionally, steps are taken to preserve geometric characteristics that are not explicitly 

defined by curves or vertices.  To locate implicit geometric characteristics, the normal of 

each pair of adjacent quadrilaterals is calculated and compared to adjacent quadrilateral 

elements.  Large differences in the angles of the normal vectors of adjacent quadrilaterals 

indicate the presence of a geometric feature.  If this is the case, the edge and nodes 

common to the quadrilaterals are treated as if they were on a geometric curve to preserve 

the feature. 

C.3 Elementary Operators 

Each of the quality improvement operations used in this algorithm is 

accomplished by applying one or more of the following elementary operators on 

specified topologies found within the mesh.  These four operators are called quadrilateral 

edge swap, face close, face open, and doublet insertion and are shown in Figure C-2 

through Figure C-5.  Although there are some areas of the mesh where one or more of 

these operators cannot be used due to the presence of geometric curves, their benefit is 

that they guarantee to maintain a conformal, all-quadrilateral mesh after they are applied. 



 59 

 

Figure C-2:  Edge swap. 

 

 

Figure C-3:  Face close. 

 

 

Figure C-4:  Face open. 

 

 

Figure C-5:  Doublet insertion.
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The edge swap operator shown in Figure C-2 alters the connectivity of the edge 

that is common to two adjacent quadrilaterals.  The face close in Figure C-3 merges 

opposite nodes and two pairs of edges of a single face, removing the face completely.  

The face open in Figure C-4 reverses the process of a face close by separating a node and 

separating two non-adjacent edges attached to the node. 

Figure C-5 shows a doublet insertion.  The doublet insertion is actually a face 

open operation in which two adjacent edges are chosen resulting in the formation of a 

doublet; a situation in which two adjacent quadrilateral elements share two consecutive 

edges.  Since the presence of a doublet actually signifies one or two degenerate elements, 

the doublet insertion is only an intermediate step in this clean-up process. 

C.4 Diamond Collapse 

Figure C-6 shows the definition and resolution to a set of quadrilateral elements 

with a unique topology called diamond quadrilaterals.  The term diamond is used in 

reference to the shape typically observed in quadrilaterals with two 3-valence node 

opposite each other, illustrated in Figure C-6(a).  Diamond quads do not usually cause 

unacceptably low quality; however, they are easy to identify their resolution results in a 

more structured mesh.  Diamond quads are fixed with a simple face close operation in 

which the two 3-valence nodes opposite each other are merged as shown in Figure 

C-6(b).  When the two nodes are combined, a 4-valence node is created as shown in 

Figure C-6(c).  Additionally, the valence of each of the two other nodes in the diamond 

quadrilateral is reduced by one. 
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Figure C-6:  Diamond quadrilateral collapse. (a) Shaded diamond quadrilateral.  (b) Face close 

operation.  (c) Resulting mesh. 

 

C.5 Quadrilateral Edge Swap 

The topology requiring a quadrilateral edge swap in this section is similar to the 

diamond topology already described in that it usually does not cause low quality 

elements; however, it is easy to identify and the result is always a more structured mesh.  

This case occurs when a quadrilateral element has a 5-valence node opposite of a 3-

valence node and one of the edges on the 5-valence node is shared with another 

quadrilateral with a 5-valence node opposite of a 3-valence node, as illustrated in Figure 

C-7(a). By executing a quadrilateral edge swap, the 3- and 5-valence nodes used to define 

this case have all become 4-valence nodes.  Note that in Figure C-7(a), five out of the six 

nodes in the region have valences other than four and after the operation only one of the 

six nodes has an unstructured valence, as shown in Figure C-7(b).  To have high quality 

elements the mesh usually requires smoothing as well, as seen in Figure C-7(c). 
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Figure C-7:  Quadrilateral Edge Swap.  (a) Edge to be swapped. (b) Resulting mesh before 

smoothing.  (c) Resulting mesh after smoothing. 

 

C.6 Doublet Removal 

In quadrilateral meshes, a doublet occurs when two adjacent quadrilateral faces 

share two consecutive edges.  Alternatively, a doublet exists at any interior node with a 

valence of 2.  Because the two adjacent quadrilaterals share two edges, one or both of the 

elements will be degenerate. In coarsening applications, doublets occur regularly as 

elements are removed from the mesh.  Doublets may also occur as a result of other 

topology modifications in this quadrilateral improvement algorithm.  Doublets occurring 

on the interior of the mesh and can be resolved with a simple face close operation, 

illustrated in Figure C-8.  Under these situations at least one of the quadrilaterals adjacent 

to the doublet node cannot have constrained edges.   

This clean-up algorithm supports the preservation of annotated curves, defined by 

a set of marked edges that are not modifiable to maintain important geometric features (as 

shown by bold double lines in the figures).  Sometimes, both of the quadrilaterals 

adjacent to the doublet node have one constrained edge, as shown in Figure C-9.  Under
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Figure C-8:  Unconstrained doublet removal.  (a) Doublet node shown in dashed circle.  (b) Face 

close operation. (c) Resulting mesh. 

 

such situations, a face-close operation will result in the formation of a very poor quality 

quadrilateral with two edges along the same geometric curve.  Instead of using a face 

close, a second doublet is inserted within a neighboring quadrilateral, and an edge swap is 

executed to remove the two doublets.   

 

 

Figure C-9:  Constrained doublet removal.  (a) Doublet node, constrained by proximity to geometric 

curve, shown by dashed circle.  (b) Doublet is inserted as shown by dashed line and then the marked 

edge is swapped.  (c) Resulting mesh before smoothing.  (d) Resulting mesh after smoothing. 
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Another special case configuration occurs along the feature edges, when both of 

the two quadrilaterals neighboring the doublet quadrilaterals have two constrained feature 

edges, illustrated in Figure C-10.  Because of the close proximity of the doublet node to 

the geometric curve and the limitations caused by the constrained quadrilaterals on both 

sides of the doublet quadrilaterals, this case is considered highly constrained.  The two 

previous methods are unable to resolve the doublet, requiring a third method,

 

 

Figure C-10:  Highly constrained doublet removal. (a) Doublet node shown by dashed circle.  The 

doublet is constrained by the geometric curve and highly constrained by the triangular shaped 

quadrilaterals on either side.  (b) Face open operation.  (c) Resulting mesh. 
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implementing a face open.  In this case, the node associated with both of the doublet 

quadrilaterals that is not the doublet node or the node on the geometric curve is used as 

the location for the face open.  One of the doublet edges is also chosen to take part in the 

face open operation.   

C.7 Constrained Quadrilateral Cleanup 

Quadrilaterals that are constrained by geometric features, with 2 or 3 edges 

belonging to the same feature curve, are some of the most difficult to improve.  When the 

geometric curve has little curvature with respect to the size of the quadrilateral element, 

the scaled Jacobian of the element approaches 0.0.  Although constrained quadrilaterals 

usually have very poor shape quality, there are cases in which a constrained quadrilateral 

may have good quality, such as in a region of high curvature of the feature edges.  For 

example, if a small circular feature curve is defined with a coarse mesh, the elements near 

the curve may have high quality and will not require any reconfigurations.  To 

accommodate these cases, we ignore constrained quadrilaterals with reasonable shape 

quality. 

There are two classes of constrained quadrilaterals, termed the triangle 

quadrilateral and the flattened quadrilateral. A triangle quadrilateral refers to the 

distinctive triangular shape typically observed in quadrilaterals that have two consecutive 

edges on the same geometric curve, illustrated in Figure C-11(a).  Triangle quadrilaterals 

are resolved by inserting a doublet into the element as shown in Figure C-11(b).  The 

resulting mesh, shown in Figure C-11(c), is a constrained doublet which can then be 

resolved by the method illustrated previously, in Figure C-9. 
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Figure C-11:  Triangle quadrilaterals. (a) Shaded triangle quadrilateral. (b) Doublet insertion shown 

by dashed line.  (c) Resulting mesh contains a constrained doublet. 

 

The second constrained quadrilateral configuration, termed a flattened 

quadrilateral, occurs when the element has 3 edges on the same curve, shown in Figure 

C-12(a). An edge swap is used to improve the element quality as shown in Figure 

C-12(b).  This generates a triangle quad, shown in Figure C-12(c) that can be improved 

using the method illustrated in Figure C-11. 

C.8 High Valence Nodes 

Nodes with a valence of 6 or more are considered high valence nodes.  When the 

valence of a node reaches 6, the shape quality begins to deteriorate.  Since the average 

angle between two adjacent edges at a high valence is less than or equal to 60°, these 

need to be removed to provide a higher quality. 

There are two basic methods to reduce the valence of one of these nodes and can 

be performed depending on location of geometric curves, if any.  The first method is 
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unconstrained and can easily be used on the interior of the mesh.  This method employs a 

face open operation and is illustrated in Figure C-13.  This method is generally preferred 

because, depending on which edges are chosen to participate in the operation, the valence 

can be reduced to one more than half of the original valence.   

 

 

Figure C-12:  Flattened quadrilaterals. (a) Shaded flattened quadrilateral.  (b) Edge swap.  (c) 

Resulting mesh contains a Triangle quadrilateral. 

 

 

Figure C-13:  Unconstrained high valence node removal. (a) 6-valence node shown with dashed 

circle. (b) Face open operation.  (c) Resulting mesh. 
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If the high valence node is contained on a feature curve, a face open is impossible 

and a face close can be used as shown in Figure C-14.  This case is less desirable because 

it only decreases the valence of the node in question by one and often creates a new high 

valence node.  The creation of a new high valence node, however, is acceptable because 

it will not be on a feature curve and can be resolved by a face open operation in future 

iterations. 

 

 

Figure C-14:  Constrained high valence node removal. (a) 6-valence node constrained by curve 

shown with dashed circle.  (b) Face close operation.  (c) Resulting mesh. 


