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ABSTRACT

PHOSPHORUS FRACTIONATION AND DISTRIBUTION ACROSS

DELTA OF DEER CREEK RESERVOIR

Warren C. Casbeer

Department of Civil and Environmental Engineering

Master of Science

Eutrophication of reservoir systems, which causes deterioration of water qual-

ity through increased algal growth, is detrimental to our sustainable water supply and

additionally impairs other beneficial reservoir uses. Limiting the amount of phospho-

rus (P) entering the system has been the key management tool for this problem, as P

is the main limiting nutrient for plant and algal growth. These efforts have focused on

controlling input of P from point sources, such as effluents from wastewater treatment

plants, dairies, and industrial factories.

Even in systems (such as reservoirs) with significantly reduced external P

loading, however, there has been continued eutrophication and slower than expected

recovery of reservoirs in water quality restoration projects. Other nutrient sources

have been studied to explain this phenomenon. The continual eutrophication has been

potentially attributed to availability of nutrients from deposited sediments. This is

referred to as nutrient recycling, as nutrients previously trapped within sediments

may become available within the water column.



Deer Creek Reservoir (DCR), a significant water supply in Utah, has had

greatly improved water quality after reduction of external P loading. However, there

are still large algal blooms at times as well as other water quality issues without

clearly attributable causes. Part of the explanation might lie within the deposited

sediments, which are present both on the sediment delta and within the reservoir.

This thesis provides data that can help researchers understand what role sediment

has in the continuation of water quality problems at DCR. Sediment samples were

taken across the delta to define both the spatial extent and distribution of P and

chemical form, or ‘pool’, of the P. The pools can be used to estimate the ability of the

sediment-bound P to move into the water column under various conditions. Results

reported here indicate that significant amounts of P are found within these sediments,

though not all of it can easily become available for algal growth.

We characterized P distribution by taking 91 samples on 6 transects across the

exposed delta. Transects were separated by 200 m and samples were taken eery 100

m along the transects. The samples were all analyzed for water soluble P content,

and 19 samples were additionally characterized for KCl-, NaOH-, HCl-, and organic

(by digestion) P fractions. Total P was determined for these as well by summation.

The data showed that water soluble P ranged from 2.28E-03 and 9.81E-03 mg P g−1

dry sediment and showed a decreasing trend along the reservoir. KCl-P ranged from

2.53E-03 and 1.10E-02, NaOH-P from 5.30E-02 to 4.60E-01, HCl-P from 1.28E-01

and 1.34E+00, and organic (residual) P from 8.23E-01 to 3.23E+00 mg·g−1.
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Chapter 1

Introduction

When present in excess, phosphorus (P) may negatively affect reservoir sus-

tainability due to decreased water quality (through eutrophication) (Schindler, 1974).

To reverse this process, many water quality restoration projects require the reduction

of P quantities entering reservoirs, and these usually focus on P reduction from point

sources such as industrial and wastewater treatment plants (Sas, 1989).

However, even after reduced external P loading, many water bodies have shown

longer restoration times than expected. This has been attributed to internal P sources.

Messer et al. (1984) notes that “phosphorus may also enter the euphotic zone from

within the lake itself, as a result of releases from both oxic and anoxic sediments.” If

sediments are not flushed from reservoirs, most P entering the reservoir is trapped,

becoming a potential nutrient source for algal uptake. As Gibson (1997) notes,

a lake with little hydrological flushing is likely to accumulate nutrients
and the regime promotes closed nutrient cycles in which sediment-water
fluxes dominate the annual budget.

In reservoirs, most (and potentially all) hydrological flushing has been cut off;

thus these water bodies are particularly susceptible to nutrient trapping (Gibson,

1997).

A number of studies confirm that P from within a reservoir itself (in de-

posited sediments) is responsible for delays in water quality restoration projects

(Rossi & Premazzi, 1991; Granéli, 1998; Mayer et al., 1999), and this finding has

been verified for local reservoirs in the intermountain west area, Utah and Wyoming

(Messer et al., 1983; Messer & Ihnat, 1983; Messer et al., 1984) .
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In order for these conclusions to be useful in reservoir management, it is neces-

sary to understand the processes of internal P cycling. This can be difficult, as many

factors contribute to the potential resuspension of sediments and release of P trapped

in sediments to the water column. Sediments contain P in a number of different

chemical forms, or ‘pools’, which are released to the water column under different

physical and conditions (Sims & Pierzynski, 2005).

Though previous studies provide information regarding P in sediments of the

local Deer Creek Reservoir (DCR) (Messer & Ihnat, 1983; Messer et al., 1984), no

work has specifically looked at how sediments from the deposited delta affect nutrient

dynamics. This is particularly critical for DCR at present, as the reservoir has recently

been subjected to a drawdown process to be followed by refilling. Such processes affect

phosphorus dynamics in reservoirs (Fabre, 1988). This thesis provides an initial step

into understanding how delta sediments may affect nutrient dynamics within DCR by

quantifying the types and amounts of different P pools across the delta, along with

their spatial distribution. Previous studies did not look at spatial distributions.

Obviously, a number of other pieces of information are necessary for assessing

the impact of these sediments on P dynamics within the reservoir. This work is part

of a larger effort, and a number of other activities are ongoing to support the greater

project. Other activities include collection and analysis of sediment samples from

within the reservoir as well as measurement of water quality parameters important for

understanding P dynamics. The results from this thesis are part of a comprehensive

data set that will enable future researchers to examine potential impacts of nutrients

currently contained in sediments.

Chapter 2 discusses background information including the relationship be-

tween sediment and nutrients, P dynamics in reservoirs (interactions between sedi-

ments and solutions), facts regarding the location of study, and potential methods.

Chapter 3 overviews the plan and methods used in the research, including the cho-

sen methods for P analysis and measurement as well as the locations and timing of

sampling. Chapter 4 presents and discusses results while addressing assumptions.

Finally, chapter 5 offers conclusions and recommendations for future work.
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Chapter 2

Background and Literature Review

This chapter first details the problem of P (and other nutrients) in general,

and discusses the role of sediment in relation to these nutrients. Additionally, it

presents important issues and potential methodological procedures that we considered

in developing the sample plan. Afterwards, information regarding the area of study,

DCR, is provided. I included a record of reservoir water quality to help understand

how past studies have addressed the problem of eutrophication, and also to use this

information as the foundation for this work.

2.1 Nutrients in Soils

2.1.1 Soil-Solution Interactions

Excessive amounts of nutrients (particularly P and nitrogen (N), the primary

limiting nutrients) may increase productivity in ecosytems, leading to problems with

water quality (Schindler, 1974). Eutrophication control efforts in freshwater ecosys-

tems have focused on P since it is the least abundant of these nutrients (Sas, 1989).

Deposited sediments have been identified as a potential internal nutrient source since

reducing external inputs of nutrients has had limited effect on eutrophication in some

areas (Granéli, 1998; Mayer et al., 1999).

A basic understanding of sediment diagenesis processes can help explain how

P (and N) can be deposited and stored in sediment deltas. Sediments contain both

allochthonous (i.e., externally washed in) as well as autochthonous (i.e., produced

within the reservoir) material. Allochthonous material consists of both inorganic and

organic particulates that can contain P. The inorganic material can contain P in

various mineral forms (obtained by passing through geologic formations), while the

3



organic material contains P from the remains of living organisms. Dissolved P can be

precipitated to contribute to the inorganic reservoirs or be used by living organisms

and contribute to the organic P reservoirs when these organisms die.

Autochthonous material is composed mainly of organism remains; P (a nec-

essary nutrient for life) within decaying matter can be deposited in the sediments

of lakes or reservoirs. Material entering the reservoir is detrital in origin, while the

portion produced in the reservoir is authigenic. The P in the authigenic sediments

originally came from dissolved P entering the reservoir with water or P cycling within

the reservoir that becomes part of the sediment.

As external loading occurs, most nutrients within the water column are de-

posited with sediment. Morris & Fan (1998) notes that

phosphorus is removed from aquatic systems rather rapidly and becomes
stored in sediments, where its concentration may be 2 orders of magnitude
greater than the concentration in the overlying water.

Sediments are a determining factor for P levels within the water column of

reservoirs. As described by Morris & Fan (1998),

Manipulation of water levels and sediments will potentially impact phos-
phorus levels and productivity in the reservoir and downstream ecosys-
tems, making it important to have a conceptual understanding of the
phosphorus cycle and its relationship to lake sediments.

Though much P is trapped within sediments (and thus is not available for

algal growth), some portions of it may potentially be released by various mechanical

and geochemical processes. Understanding how P is attached to sediments is critical

in determining whether P pools (the specific form of P) may change into the soluble

orthophosphate form (the ‘reactive’ and ‘bioavailable’ form of P), which is readily

available for uptake. For a detailed discussion of P chemistry in soils (and sediments),

see Golterman (2004), Sims & Pierzynski (2005) and chapter 6 of Pierzynski et al.

(2005). These (or other chapters therein) additionally contain information regarding

N chemistry in soils.

4



Most P pools are not biologically available, though under specific circum-

stances they may become available. Additionally, the particulate fraction (various P

minerals) trapped in sediment generally is not bioavailable and does not contribute

to eutrophication, though it is a potential source since this P may be released (e.g.,

by dissolution or desorption) under a number of conditions.

The particulate fraction also contains inorganic forms of P sorbed onto or-

ganic compounds. This binding of P to soil (sediment) or other materials can make

it biologically unavailable as well. Morris & Fan (1998) note that this fraction ad-

ditionally includes P that is “contained in or absorbed onto seston and/or inorganic

complexes such as clays, carbonates, and ferric hydroxides.” They additionally note

the importance of sediment as a source of P:

While most phosphorus in natural lakes is associated with seston, in reser-
voirs experiencing significant sediment loads much phosphorus may be as-
sociated with sediment, primarily the fine fraction that has a large surface
area in relation to mass.

Fine sediments particularly display high capacity for trapping P, indicating

that particle-size analysis may be important in understanding the role of P bearing

sediment in a reservoir. My research did not analyze this parameter, though later

work will.

P may be attached to and removed from sediments through a number of

different processes. These include oxidation-reduction, adsorption-desorption, and

precipitation-dissolution processes. P may be co-precipitated with various elements

including iron (Fe), aluminum (Al), manganese (Mn), and calcium (Ca). Understand-

ing the chemical and mineral composition of the sediments is critical for understanding

how P may be distributed through sediments, what chemical forms it can take, and

how it might be released to the water column making it bioavailable.

In addition to trapping P, sediments potentially may be a more direct nu-

trient source as they release P back into the water column from the autochthonous

material, never leaving the biological cycle for long. This process is known as nutri-

ent (re)cycling since nutrients move between the water and sediments on relatively

5



short time scales. The next section will describe potential mechanisms for nutrient

movement through the sediment-water boundary.

2.2 Nutrient Recycling Causes

Nutrient (specifically, P) recycling is a complicated process with an extensive

literature base, as it is affected by a variety of factors. For discussion, these will be

divided into three types. First, P that can be released through geochemical processes.

Second, sediment resuspension (potentially caused by a number of mostly mechanical

factors) can affect internal nutrient cycling. Last, a number of other aspects (including

temperature, organisms, etc.) may affect nutrient movement. Though these are not

directly considered in this work, they are important to understand since this work

is intended to provide data that will be used in evaluating these processes at a later

time.

2.2.1 Geochemical and Biochemical Interactions

Chemically driven processes are responsible for a significant amount of P trans-

fer between sediment and the water column. These include oxidation-reduction re-

actions involving Fe-P complexes as well as reactions involving P, Ca, and pH in

calcareous sediments. Different P pools are released by different geochemical envi-

ronments and processes.

Many studies have concluded that oxic sediment conditions retain P better

than anoxic conditions (Einsele, 1936; Mortimer, 1941, 1971). There has also been

significant work relating Fe to the P cycle, based on oxygen levels. Einsele (1936) first

noticed an interesting relationship in which certain Fe compounds are precipitated

when oxygen is prevalent. The Fe compound that precipitates in aerobic conditions

is Fe(III) oxyhydroxide (Tessenow, 1974; Gunnars et al., 2002).

This compound is able to absorb or co-precipitate large amounts of P, however,

when sediment conditions become anoxic, Fe(III) is reduced to Fe(II) which forms

much more soluble compounds and P is released. A minimum molar stoichiometric Fe

to P ratio (Fe
P

) was found to be approximately 2 for precipitation of P (Gunnars et al.,
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2002). If the ratio of ferrous Fe [Fe(II)] to phosphates is greater than 2, P can

precipitate after enough O2 has been added for oxidation and precipitation of all Fe

present. If the ratio is less than 2, P remains in solution (Gunnars et al., 2002).

Ruban & Demare (2006) studied the effect of oxygen presence (or absence) on

P release at the sediment-water interface. Release of P did not occur as long as the

concentration of oxygen stayed above a level of 0.5 mg·L−1. A drop of oxygen concen-

tration accompanied by a change in redox potential (to greater reducing conditions)

was found to result in the simultaneous release of both Fe and P. This is a common

finding, and is in accordance with general chemistry principles when we consider that

much P can be bound by Fe mineral complexes.

Gibson (1997) describes the process by which anoxic conditions may occur in

the hypolimnion, creating the potential for P release. As allochthonous loading of

P increases, autochthonous sources of P for sediment do likewise, reflecting greater

amounts of organism growth. This increases both carbon and P within sediments.

With more organic material (from carbon), oxygen demand increases and creates

reducing conditions. When reducing conditions co-occur with greater P content,

more P can be released from sediment.

The data seem to suggest that lower P release rates and lower P concentra-

tions within the water column naturally occur when oxic conditions in sediments

are maintained. However, evidence has been found that P cycling at the sediment-

water interface is not affected by maintaining oxic conditions in the hypolimnion

(Gächter & Wehrli, 1998) (see also Schindler et al. (1973, 1977) and Levine et al.

(1986)). Gächter & Müller (2003) aimed to identify a different model for the re-

tention of P in lake sediments based on redox controls.

Others (Gächter et al., 1988; Gächter & Meyer, 1993; Hupfer et al., 1995) have

looked at the role of benthic bacteria in this process. Gächter & Müller (2003) state

that:

In the presence of O2, some faculative aerobic bacteria deposit P as
polyphosphate in their cells but release it as ortho-P under anoxic con-
ditions. Advanced wastewater treatment technology profits from both
processes to enhance P removal from wastewater.
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Other elements have been examined as well. For example, Anderson (1982)

discusses the effect of nitrate concentration within lake water on the release of P

from sediments. Sulfur forms (e.g., sulfate) have also been found to affect P release

from sediments (Caraco et al., 1993; Kleeberg, 1997; Suplee & Cotner, 2002). The

Fe/P cycle can be disrupted by insoluble complexes of sulfide (FeS) after sulfates

are reduced to sulfide. Ammonia (NH+

4 ) was also found in a relationship to soluble

reactive P at certain times of the year by Kleeberg (1997).

Water conditions were changed in columns by Eckert et al. (1997) to study pH

and Eh (electron movement) along with carbon availability (which possibly affects P

uptake). They found that the stability of Fe(III)-P complexes strongly depends on

pH; additionally, when considering pH it is important to know whether the reservoir

is calcareous.

Fisher & Wood (2004) studied the effect of the water column pH on P release

rates. Their study was designed to differentiate pH increases due to increases in

photosynthesis (resulting in greater concentrations of chlorophyll a) and pH increases

that also resulted in alkalinity increases. Sediments were not able to uptake as much

P at higher (than ambient or normal) pH levels. This was

probably because of the substitution of hydroxide ions for phosphate irons
on iron hydroxides. This substitution is the geo-chemical process that, it
was hypothesized, would cause rapid desorption of phosphorus from the
sediments at high pH, i.e., internal loading.

Diffusion of nutrients from porewater is also possible. Fick’s First Law was

used by Lavery et al. (2001) for purposes of estimating nutrient fluxes. P gradients

between pore water and bottom water samples are used. The utility of this method

is described by Hille et al. (2005): “This method is quick and is preferred to more

time consuming ones (e.g. incubation experiments) because a comparatively large

number of stations could thus be investigated...” This experimental approach allows

more dense spatial coverage of the area.

Obviously, this technique should only be used where other phenomena affecting

transport (e.g., bioturbation, resuspension) are not present. The effects of these
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assumptions were determined by Lavery et al. (2001) by comparing estimated fluxes

(based on Fick’s First Law) to measured fluxes from incubation experiments. They

found that this method better estimated fluxes (predicted almost 100% of actual) from

coarse sediments. It overestimated by about 40% for fine sediments. Additionally, the

method is only recommended under favorable redox conditions. However, they note

the possibility of modifying predicted values by taking into account redox conditions,

biological activity, and hydrodynamics.

2.2.2 Resuspension and Other Factors

Resuspension is a mechanical process that allows deposited sediments to be

suspended within the water column. This process, though not experimentally as-

sessed in this work, is important in the present study with regards to effects on delta

sediments as reservoirs levels decrease and increase (drawdown and refilling processes,

see Fabre (1988)). These controlled reservoir processes can cause down-cutting and

resuspension of sediments in the delta, which can in turn affect nutrient recycling.

Koski-Vähälä & Hartikainen (2001) notes the following:

The P release from the solid phase to the water column is influenced by
many biological and physico-chemical factors, and resuspension is a mech-
anism that may influence the internal P loading by mechanically mediating
the P exchange between suspended material and the water column. In or-
der to understand factors contributing to internal P loading, the effect of
the resuspended sediment on the P fluxes in lakes must also be assessed.

A number of mechanisms causing resuspension have been studied for their

effect on P-release. These include wind (Søndergaard et al., 1992; Kristensen et al.,

1992), wave (seiche) action (Lijklema et al., 1994), ice cover (Niemistö & Horppila,

2007), climate change due to global warming (Niemistö & Horppila, 2007), and cold

currents entering the reservoir. Disturbances by animals such as bottom-feeding fish

(Lamarra, 1975) and chironomid larvae (Gallepp, 1979) may also trigger resuspension.

Some other aspects may affect resuspension as well as the transport of nutrients

in aquatic systems. These will be discussed briefly as they are important to consider
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in relation to results from this work, especially when assessing potential for P to be

released from sediments in an aquatic environment.

First, animal interactions create movement of nutrients, though not all move-

ment is through resuspension. Nitrogen and P can be excreted by animals at com-

parable rates to major nutrient sources. Nutrients can be recycled within a habitat,

or be translocated across habitats or ecosystems by animals. Vanni (2002) reviews

relevant work in this area, describing translocation:

When an animal feeds on benthic prey and excretes nutrients into the wa-
ter, it translocates nutrients from benthic to pelagic habitats and converts
nutrients from particulate to dissolved forms.

Fish are especially important in this process, as fish excretion of P can exceed

watershed inputs, even when reservoirs are found below highly agricultural watersheds

(Schaus et al., 1997; Vanni et al., 2001). Fish also can serve as nutrient sinks until

death, as large amounts of nutrients are maintained within fish bodies.

Additionally, algae and bacteria affect nutrient cycling, both decaying into

waste products of organic matter containing P and participating in P recyling (al-

lowing P to be available again) from these wastes. Luxury uptake by bacteria could

be important as well (Portielje & Lijklema, 1994; Khoshmanesh et al., 2002). Effects

due to bacterial density were studied by Clavero et al. (1999).

Vegetation has also been considered in nutrient recycling. Macrophytes may

act as potential nutrient pumps (Granéli & Solander, 1988). Littoral vegetation is

probably important, as noted by Morris & Fan (1998), but this can be dependent on

size of the reservoir.

Littoral vegetation also plays an important role in both the uptake and
release of phosphorus in natural lakes. It may also be important in smaller
reservoirs with stable water levels, significant vegetated shallows, and den-
dritic geometry that produces an elongated shoreline. However, littoral
vegetation may be insignificant or absent in larger impoundments, in arid
or alpine zones, and where steep slopes or variation in pool elevation pre-
cludes significant vegetative growth.
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Growth of littoral vegetation is probably exposed by annual emptying and

filling of reservoirs. The sediment delta of DCR is vegetated, but the majority of the

shore line is not.

Drawdown of reservoirs creates exposed deltas. With continual filling and

refilling of reservoirs, potential for nutrient movement exists, and this was studied by

Fabre (1988).

Stratification is also important to consider. In the epilimnion (layer at the

surface of a lake/reservoir), water is warm and vertically mixed. This results in a

highly oxygenated area of water near the surface. In the metalimnion (below the

epilimnion), temperature and density change rapidly. The lowest level is cold, dark,

and oxygen-depleted. This is the hypolimnion (or profundal waters), and it is usually

nutrient-enriched. For more productive lakes, Morris & Fan (1998) note that “the

hypolimnic water which is trapped beneath the thermocline will become anaerobic

because of the oxygen demand imposed by decomposers and organic sediments.”

Stratification in temperate zone lakes is caused by heating of surface waters

in summer, while in winter complete mixing of the water column (turnover) occurs

as the reservoir cools and the density gradient is eliminated (Morris & Fan, 1998).

As turnover occurs, deeper waters return accumulated nutrients to the surface. This

process is followed in the spring by temperature increases, longer days, and loss of ice

cover. This cycle drives nutrient cycling and promotes growth of algae.

Water body characteristics also affect nutrient movement. The important

characteristics for nutrient cycling are in large part dependent on whether the water

body is a lake or a reservoir, and aspects that can affect nutrient loading are sum-

marized by Morris & Fan (1998). Comparing productivity of lakes and reservoirs,

Kimmel et al. (1990) concluded that reservoirs are more eutrophic than lakes. This

could be due to the fact that reservoirs are built in locations that are exposed to a

much greater drainage area as compared to lakes (Morris & Fan, 1998).

Age of the lake (or reservoir) may affect nutrient cycling in aquatic systems.

Both lakes and reservoirs are susceptible to sediment accumulation, decreasing water

levels, and nutrient enrichment. Even though reservoirs are much younger than lakes,
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reservoirs are more greatly subjected to high sediment loading rates and thus age much

more quickly than natural lakes (Morris & Fan, 1998).

The shape of the water body may also affect sedimentation. Natural lakes

are usually oval-shaped, with shallow edges and deeper centers. Reservoirs are more

elongated and have shallow upstream ends with depth increasing along the length of

the reservoir. Morris & Fan (1998) state that reservoir geometry “produces strong

longitudinal gradients in the physical, water quality, and biological characteristics

in reservoirs which are largely absent in natural lakes.” Sampling within reservoirs

must take these gradients into account (Thornton et al., 1982). Internal cycling of

nutrients varies longitudinally along the reservoir due to such gradients.

The location within the reservoir may also influence nutrient dynamics. Reser-

voirs are divided longitudinally into three zones. The upstream zone (riverine) is

narrow and shallow, and is “characterized by significant flow velocities and transport

of silts and clays, while the coarse fraction of the inflowing sediment deposits to form

a delta” (Morris & Fan, 1998). When deltas are formed, coarser particles settle out

first due to their weight. In effect, particles are sorted longitudinally through the

reservoir. This is important for nutrient distribution as finer particles tend to contain

greater amounts of nutrients, while coarser particles do not contain many nutrients.

In this upper area of the reservoir, depth is limited, water is turbid, and

stratification is absent. These factors allow the water column to remain aerobic, even

with high amounts of organics. Production could possibly be light-limited in this

zone, as high sediment loading increases turbidity. This can create shallow (possibly

as low as 1 m) euphotic zones. This has an affect on production, as described by

Morris & Fan (1998): “Vertical mixing in this environment can keep algae below the

euphotic zone for prolonged periods, resulting in very low populations of primary

producers and associated zooplankton.” Based on our observations, DCR does not

exhibit high turbidity in this zone.

The most downstream zone (lacustrine) exhibits characteristics of natural

lakes, including lower sediment loads, less turbid water, and stratified water columns.

Algae may be sustained by significant nutrient loading in the source river. In the area
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closest to the dam, autochthonous organic matter is important for the food chain.

At this point, production is nutrient-limited instead of light-limited (Morris & Fan,

1998).

Hydraulic short-circuiting has also been discussed by Morris & Fan (1998), in

which “storage areas off the main channel will receive much less sediment loading

than the main reservoir.” Over time this process can be affected: “However, as

sediment deposition from turbid density currents infill the original river channel, this

horizontal focusing effect will be reduced or eliminated and the density current will

tend to spread out laterally and dissipate.”

The trophic state of the lake can create differences in oxygen distribution,

which in turn affects the chemical interactions described above. The hypolimnion

of oligotrophic lakes is highly oxygenated and so P content varies minimally with

depth. The oxygenated sediments function as a P sink. On the other hand, eutrophic

lakes have profundal waters that are significantly depleted of oxygen and thus have

anaerobic sediments. Because of this, P may be released continually into the water

column from sediments. This causes P concentration to increase greatly with depth,

as noted by Morris & Fan (1998): “Thus, water released from the hypolimnion of

productive reservoirs tends to be nutrient-enriched, and circulation patterns within

reservoirs that draw deeper anaerobic water into the epilimnion can increase nutrient

availability, productivity, and the loading of organic sediments.”

As a final note, sediments within lakes of low productivity and low P loadings

normally contain P in concentrations less than 1 mg·g−1 (dry sediment weight). The

release of P from sediments could be dependent on the sediment concentration. Sas

(1989) surveyed many lakes with reduced P inputs, concluding that P release from

sediments tended not to occur where P concentrations less than 1 mg·g−1 sediment

were present.
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2.3 Methodological Considerations

2.3.1 Sampling, Storage, and Preparation

There is not much published information regarding design of sampling plans

across reservoir sediment deltas, but this process should be somewhat similar to sed-

iment sampling within reservoirs. A number of resources exist describing sediment

sampling (Mudroch & MacKnight, 1994a), and these were used in the present work.

An appropriately sized data set is important for any type of sampling plan, as sedi-

ment flux modeling depends on large data sets that allow for a complete understanding

of all processes involved (DiToro, 2001).

Selection of sample locations should consider the purpose/objectives of the

study, historical data reviewed, bottom dynamics, sampling area size, and available

funds. The objective (what being measured) is important; MacKnight (1994) notes

that:

generally, samples will be collected from the study area to investigate
the distribution of parameters of interest at the project site. In studies of
distribution of contaminants, sediment samples featuring the most suitable
grain size for analyses and scheduled experiments...are preferred (p. 18,
emphasis added).

Surveys and maps (topographic, bathymetric, sediment distrubtion) are also

important, as they can show where fine-grained materials may exist and where more

intense sampling needs to be undertaken. MacKnight (1994) notes that data from

H̊akanson (1981) and H̊akanson (1984) “clearly show that there is considerable vari-

ability in the sediments at the mouth of the river compared to the homogeneous

sediments in the lake.” Additionally, locations need to be chosen where there is the

possibility for rapid and reliable repetition of sampling.

Though not critical for the present study, understanding bottom dynamics of

reservoirs could be insightful for interpreting results from this study. Three areas

of bottom dynamics were identified by H̊akanson (1977). First, erosional areas con-

tain exposed bedrock, gravel, sand, or hard glacial clays and tills. Secondly, areas of

transportation temporarily accumulate fine-grained sediments while process such as
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turbulence (from wind, waves, or ships) or currents allow for further transport. The

accumulation areas typically contain the highest contaminant (and probably nutri-

ent) concentrations, and are located in the deepest parts of lakes where fine-grained

sediments eventually deposit.

These three areas are important to consider as a study is designed to try to

maximize the probability of detecting areas with the greatest nutrient concentrations

and minimize the cost of collecting improper (or worse, no) samples. Areas of ac-

cumulation typically provide the best locations for these goals. An interesting note

regarding this is provided by MacKnight (1994):

A survey of sediment deposits and geochemistry in a lake can be a project.
In such a case, sediment mapping will be carried out as a part of the
project, and sampling stations will be selected to provide sufficient infor-
mation for sediment mapping.

Sediment mapping can also display variability in gradients of sediment types,

which is critical. As noted by MacKnight (1994), “the density of sampling stations

required for the characterization of sediments is determined by the variability or

gradients in the processes which control the distribution of the investigated sediment

parameter or property.”

Traditionally, sediment sampling has been done at locations of easiest access.

However, MacKnight (1994) notes that:

drawbacks of this approach include missing areas which should be sampled
(i.e., an inadequate characterization) or requiring a good knowledge of a
project area, information, or expertise which may not always be available.
The result is considerable difficulty in applying a statistical treatment to
the data and often an inability to resample at the same sites.

For this reason, statistical approaches are now frequently used for sampling

distribution. These typically consist of a set of artificial grids (blocks, triangles) over

an area. Sampling sites can be either in the middle of or at intersections of these

blocks. The number of samples depends on the size of the area and the predicted

constituent distribution. According to MacKnight (1994), this type of approach “per-

mits subsequent manipulation of the data to determine trends or locations with high
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concentrations of parameters of interest, or to assist in further sampling within a

particular area.” A method for locating each site is critical.

2.3.2 Fractionation and Selective Dissolution Techniques

Knowing what P pools can be present in a soil is a start, but obtaining actual

P content data is difficult as it is hard to separate these pools. This problem is held

in common for all soil components. Many methods have been developed to extract

different P pools from sediment into a solution for measurement, yet these methods

have problems with overlapping of pools and other issues (Dean, 1938; Williams,

1950; Chang et al., 1983; Shang & Zelazny, 2008). Moore & Coale (2000) states that

“it must be kept in mind that these are rather crude methods, with many extractants

causing the dissolution of more than one type of P solid phase.” For this reason, it

is difficult to determine the actual origins of any P measured in solution as extracted

by these methods.

These fractionation (also known as sequential extraction or selective dissolu-

tion) procedures were first developed by soil scientists trying to examine soil P content

for agricultural purposes (Dean, 1938; Chang & Jackson, 1957), but have later been

extended for other purposes such as in fractionation of sediments (Williams et al.,

1971; van Eck, 1982). We review extraction techniques here in consideration for use

with delta sediments.

The main pools of P in soils/sediments that are extracted in these methods

are: soluble (in interstitial water mostly), loosely bound or exchangeable, metal (Al-,

Fe-, Mn-) bound (or adsorbed or occluded), Ca-bound (apatite), and organic. Various

techniques have been used to extract each portion.

Soluble and loosely bound P can be extracted in one step using a salt (such

as NH4Cl (Chang & Jackson, 1957) or MgCl2 (Ruttenberg, 1992)) or through the

use of resin strips (Hedley et al., 1982). Water soluble P can be extracted prior to

the use of salt or resins by simply mixing sediments in some fashion with DI water

(Moore & Coale, 2000) in order to separate these fractions if desired.
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A variety of methods have been used to extract P in metals (Al, Mn, Fe). Many

of these (such as Williams et al. (1971) and Hieltjes & Lijklema (1980)) use NaOH

(at different pH levels). However, a number (Chang & Jackson, 1957; Williams et al.,

1980; Ruttenberg, 1992) combine (or use instead) another step involving Na-citrate,

Na-bicarbonate, and Na-dithionite (CBD) (sometimes excluding the Na-dithionite)

for Fe-bound P as well. This method essentially reduces all Fe3+ (highly insoluble)

to Fe2+ (a more soluble form of Fe), so that all iron dissolves (and thus trapped P is

released to solution). Shang & Zelazny (2008) note that:

there is a trend of replacing CBD with other extractants, because of the
difficulty encountered in P analysis and multiple phase-extraction by CBD
reagents. However, there are no other methods currently available that
can perform better than CBD in removing Fe oxides.

Sims & Pierzynski (2005) notes that these Fe oxides are important P-trapping

minerals in the environment.

Apatite P, a relatively insoluble form and thus probably all unavailable for algal

growth, is extracted with a strong acid (usually HCl). This removes any carbonates-

associated P as well. Some have tried to differentiate between different forms of

P by prior extraction of weaker bound carbonate P with a weaker acid (such as

acetic acid) (Ruttenberg, 1992) but this method seems problematic (Bickmore, 2009;

Bickmore et al., 2009).

It is worth noting that another competing method for Fe- and Ca-bound P has

been developed by Kouwe & Golterman (1976) (along with subsequent work such as

Golterman (1982) and Golterman & Booman (1988)). These techniques use chelat-

ing agents such as nitrilo triacetic acid (NTA) and ethylene dinitrilo tetraacetic acid

(EDTA). Golterman (1996) claims that the other extraction techniques (such as using

NaOH) produce only operation results and that the pH changes due to the extrac-

tants cause P composition changes (which is probably an accurate description). The

alternative is to use chelating compounds that will react with specific compounds

in sediments (and do so at a pH approximately equal to the sediment pH), and

Golterman (1996) compares these competing methods.
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Finally, organic (or residual) P (orgP) is measured after destruction of organic

matter to release P into solution as orthophosphates. This destruction is accomplished

by wet oxidation or digestion procedures, using perchloric acid, nitric acid-sulfuric

acid, or persulfate (Stieg et al., 2005). These all involve boiling of soil/sediment in

acidic solutions and adjustment of pH afterwards. In digestion techniques a special

hood must be used for safety. The measured P represents the amount of orgP.

Total P (totP) could be determined on a sample that hasn’t been through

any prior fractionation, through the same method. If inorganic P (inorgP) content is

known, than orgP is calculated as follows:

orgP = totP − inorgP (2.1)

Likewise, totP can be determined by the summation of concentrations for all P pools

measured, up to and including orgP.

The soil (or sediment) tested is considered when choosing which procedure to

use for destruction of organic matter. Use of perchloric acid is the most drastic and

time-consuming, and is recommended only for particularly difficult samples such as

sediments. Nitric acid-sulfuric acid is also difficult. Persulfate use is recommended

due to its simplicity, but it is a good idea to verify results with those of one of the

other methods before running a multitude of tests (Stieg et al., 2005).

Another possible way to determine orgP is through the use of loss-on-ignition

(LOI) techniques, such as in (Dean, 1974). These involve destruction of organic

matter by combustion at a certain temperature. After organic matter is destroyed, a

simple washing step could extract P that was originally present in the organic matter

and this could then be measured in solution.

Overall, it is important to remember that there are many different techniques

for fractionation, all of which have varying advantages and disadvantages. It is quite

difficult to actually determine what P fraction is being released into solution at each

step, however this could be verified by mineralogical analysis between steps (Bickmore,

2009). There are many considerations in choosing a fractionation scheme, including
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soil type, expected P pools, and the ultimate purpose of the data. van Eck (1982)

tested a number of different proposed schemes, and reviews them. Shang & Zelazny

(2008) provide a more up-to-date summary of fractionation schemes (including useful

tables).

2.3.3 Measurement of Phosphorus in Solution

P can be found in many forms in the environment, only some of which are

‘readily’ available (accessible) for uptake by algae and plants. I emphasize readily due

to the fact that P can be in constant flux between different types. An unavailable

fraction may be converted (by a number of processes) into an available type, thus

becoming available.

The available fraction of P, or orthophosphates, is the dissolved and suspended

portion of P. This type is ‘reactive’ in that a small fraction of any condensed phosphate

present is usually hydrolyzed. Therefore, not all the original phosphate is measured.

Three common chemical methods for P (orthophosphates) measurement are reviewed

here. In addition to these, other techniques will also be discussed.

Prior to discussion of these methods, it is important to note that collected

sediment samples must be handled correctly prior to measurement. If measurement

cannot be completed immediately, samples should be preserved by freezing (at or

below -10 ◦C). For long periods of storage, it is important to add 40 mg HgCl2 per L

of sample. If there is a low concentration of P it is important not to store in plastic

bottles unless soil is kept in a frozen state, so that phosphates do not absorb onto

walls of the bottle.

A number of chemical measurement methods are available. First, gravimetric

methods usually require that large amounts of P be present, which does not occur

normally under natural conditions. Volumetric methods may be used if the concen-

tration of phosphate is greater than 50 mg·L−1. Formation of a precipitate, filtration,

careful washing of the precipitate, and titration are required in this method. Once

again, the concentrations tested by these methods are reached on very seldom occa-

sions (e.g. in boiler waters, as anaerobic digester supernatant liquids), none of which
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occur naturally (Stieg et al., 2005). For this reason, these methods (both gravimetric

and volumetric) were not considered further for the present research.

Colorimetric techniques are the standard for testing water and wastewater,

but result in a possible sacrifice of accuracy. In these techniques, concentrations are

determined by Beer’s Law, which relates color of a sample (as indicated by light

absorbed by the sample) to the concentration.

A variety of colorimetric methods exist for orthophosphate measurement, and

are discussed by Stieg et al. (2005). One method is based on ammonium molyb-

date. Phosphate ion reacts with ammonium molybdate in acidic conditions to form

a molybdophosphate complex. The reaction is:

PO3−

4 + 12 (NH
4
)
2

MoO4 + 24 H+ →

(NH
4
)
3
PO4 · 12 MoO3 + 21 NH+

4 + 12 H2O (2.2)

With lower concentrations of P, a yellow colloidal sol is formed. This is the

basis for colorimetric measurement of immediate concentrations. If the concentration

of phosphate is less than 30 mg·L−1 (common in water), the yellow color is not

discernible and vanadium is added to form a vanadomolybdophosphoric acid complex.

This provides a much more intense yellow color that allows phosphate detection as

low as 1 mg·L−1 or even lower.

Another colorimetric technique reduces molybdenum to produce a blue-colored

sol. The color is proportional to the amount of phosphate present. Either stannous

chloride or ascorbic acid is used for the reduction. For the first, the reaction is:

(NH
4
)
3
PO4 · 12MoO3 + Sn2+ → molybdenum blue + Sn4+ (2.3)

Other methods exist for measuring P. Ion chromatography may be used to

measure orthophosphates. EPA Method 300 identifies a number of anions (SO2−

4 ,

PO3−

4 , NO−

3 , NO−

2 , inter alia) through this procedure. This method has some advan-

tages. First, it allows for the measurement of several anions at the same time. These
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other anions (nitrates, nitrites, sulfates) can be important to analyze P dynamics in

aquatic systems and better characterize the geochemical environment. Additionally,

this method allows for greater efficiency in measurement, as an auto-sampler may be

used to analyze several samples with limited human interaction.

Another method involves x-ray fluorescence (XRF) spectroscopy, in which in-

dividual elements are analyzed. Thus, any answers from this method would be in

total mass of P instead of phosphates. This method can be useful for solutions that

might have interfering elements, as the solutions must be dried for analysis (Tingey,

2008). This could also cause problems as drying could cause the P to change chemical

form.

2.4 Deer Creek Reservoir

This section provides information regarding the reservoir studied, including

historical water quality data. Some relevant local studies are reviewed as well.

2.4.1 Basic Information

Deer Creek Reservoir (DCR) (pictured in Figure 2.1) is located on the Provo

River, with other significant inflows from Snake Creek, Main Creek and Daniels Creek

(shown in Figure 2.2). The watershed that drains into the reservoir is 171,663 acres.

The area draining into Jordanelle Reservoir, a recently constructed major impound-

ment upstream of DCR, is not included in this number. Culinary water released from

the reservoir for potable uses is diverted into the Salt Lake Aqueduct at the Olmstead

Diversion, located a few miles downstream. The Murdock Diversion, approximately

located at the canyon mouth, provides irrigation water.

It is necessary to understand beneficial uses of reservoirs, as these in effect set

the water quality standards required. The Utah Division of Water Quality (UDWQ)

has named the beneficial uses of this reservoir. It is used for culinary water, providing

approximately 73,500 ac-ft of water annually for many water districts including areas

in Salt Lake City, American Fork, Lehi, Lindon, Pleasant Grove, Orem, and Provo

(serving approximate population of 480,000) (BOR, 2009). It is also used for recre-
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Figure 2.1: Deer Creek Reservoir (BOR, 2009)

Figure 2.2: Deer Creek Tributaries (PSOMAS, 2002; Salah et al., 2005)
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ational activities such as swimming and boating. Additionally, it is used for animal

habitat (specifically cold water game fish and organisms within their food chain).

Finally, it is used for agricultural purposes, providing irrigation water for more than

48,000 acres of farmland.

Annual precipitation in the area of the reservoir varies from 41 to 102 cm (16

to 40 in). The frost-free season of the area ranges from 80 to 100 days of the year

(UDWQ, 2004).

Understanding the components (including nutrients such as P) of the delta

sediments is a critical part of this study, and a number of sources contribute to their

composition. First, geological formations surrounding the reservoir extensively con-

trol sediment constituents, as groundwater and surface water pass through them and

dissolve minerals. Organic material, including trees and bushes, may also contribute

to sediment composition as runoff makes its way to the reservoir. Additionally, any

facilities (including farms) with effluents (point or nonpoint source) that reach the

reservoir need to be noted. Even when these have been controlled, prior loading from

these sources is probably mostly deposited in sediments in the hypolimnion (or within

the delta).

The dam at DCR was constructed on alluvial deposits covering a foundation

of limestone and sandstone. Vegetation of the surrounding watershed includes pine,

spruce-fir, oak-maple, alpine tundra and sagebrush-grass. Additionally, some agricul-

tural crops are located on the border of the reservoir and Heber Valley. Land use is

varied, with much land owned by the United States Forest Service (USFS) and the

Bureau of Land Management (BLM). Some grazing of domestic livestock occurs on

private lands, but most private lands of the valley are either agricultural or urban

(UDWQ, 2004).

2.4.2 Water Quality

Overall, Deer Creek’s water quality is good, with relatively few parameters

(P, dissolved oxygen, total colifroms) exceeding state quality standards based on the
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assigned beneficial uses of the reservoir. The water in Deer Creek has relatively high

hardness values (∼180 mg·L−1 as CaCO3).

P is a main concern here, and dissolved oxygen (DO)should also be considered

since it has been shown to affect movement of P between sediments and the water

column. Stratification at DCR causes anoxic conditions to develop, allowing trapped

P in sediments to be released to the water column. For this reason, P concentrations

throughout the water column at times greatly exceed the state pollution indicator for

P, which is 25 µg·L−1 (UDWQ, 2004).

Anaerobic environments seem to allow P to be released from sediments at Deer

Creek, in agreement with other studies (including Mortimer (1941) and Mortimer

(1971)). UDWQ (2004) also noted that in the latter portion of the summer the DO

concentration lowers on a consistent annual basis. A dramatic example came on July

14, 1992, when DO levels in the hypolimnion reached to 0.5 mg·L−1. Any study of

resuspension potential should thus take into account temporal variation in parameters

measured. DO also shows a common diurnal variation.

When DCR was first built, impoundments were not created for purposes of

potable water supply. However, the reservoir is now a major source of drinking water,

as water demands in the Intermountain West have increased. Since reservoirs were

not designed for potable water supply, Funk & Gaufin (1965) notes that “few studies

have been made in this area to determine objectionable characterisitics of algae or the

feasibility of their control in water supplies.” Their study researched the application

of copper sulfate at varying levels of alkalinity, for purposes of controlling algae that

affect taste and odor of drinking water. Additionally, Gaufin & McDonald (1965)

studied factors that control production of algae in Deer Creek Reservoir.

Deer Creek was found to be eutrophic in the 1970s (EPA, 1972), with anaerobic

conditions found in the hypolimnion from July until September. Oxygen often was

low under ice cover between January and April as well. P was the limiting factor

for algal growth throughout the reservoir, though in some areas nitrogen limitations

existed in August.
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The reservoir was highly eutrophic from the late 1970s to the early 1980s. Since

this time, management activities have reduced this problem by controlling point and

nonpoint external sources. Figure 2.3 shows this reduction in the reservoir’s trophic

state index (TSI), as correlated with Secchi depth measurements by Carlson (1977).

Figure 2.3: Variation of Trophic State Index of DCR from 1981-1999 (PSOMAS,
2002)

Even when water quality has improved within the reservoir, some problems

remain. First, low DO concentrations during stratification are a concern. The reser-

voir was named an impaired water body by UDWQ (2000) due to low DO in the

hypolimnion and high temperatures at the surface.

As TSI levels decreased, the dominant algae community has shifted from blue-

green to green. However, UDWQ (2004), using information on plankton populations

based on the Important Species Index (ISI) (method for assessing critical species in

aquatic environments), notes that one strain of blue-green algae (Aphanizomenon

flos-aquae) seems to have rebounded since (and this resurgence should be tracked):

Bluegreen algae together comprised approximately 17.2% of the flora when
measured by summing ISI’s. This total represents a significant increase
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over the past few years. For example, bluegreen algae comprised only
1.5% of the flora for the 1990 year.

Macrophytes, a set of plants that may affect nutrient dynamics by uptaking

P, are not common and don’t cause problems generally UDWQ (2004).

UDWQ (2004) also notes that “all the periods of record indicate that the

reservoir is characterized as a nitrogen limited system.” This needs to be considered,

and indicates that nitrogen should be tested along with P. However, the study done

by EPA (1972) indicated that P was the limiting nutrient (except for during blooms

in August, when N became important).

2.4.3 Local Sediment Studies

Though many studies show that internal P loading is an important origin of

P within reservoirs, Messer & Ihnat (1983) states that

virtually no information is available on the extent to which internal phos-
phorus loading is important in reservoirs in the Intermountain West, or on
the factors controlling phosphorus uptake or release in these sediments.

For this reason, a series of preliminary sediment studies (Messer et al., 1983;

Messer & Ihnat, 1983; Messer et al., 1984) was conducted on reservoirs throughout

the Intermountain West in the 1980s.

The studies aimed at increasing the understanding of sediment-water interac-

tions in connection with the P cycle within these reservoirs. First, deposited sediments

were tested for P chemistry. This included the types of P present (determined by frac-

tionation methods) as well as their relative proportions. Secondly, simulations of P

release from sediments to the above water column were carried out. Intact sediment

cores gathered from the reservoir were used for this purpose. These tests assessed

potential impacts of internal P loading in local reservoirs.

Messer et al. (1984) investigated DCR, and the study noted that the sediment

surface becomes anaerobic at the upper portion of the reservoir during the late part

of the summer. At this time and in this area of the reservoir, blue-green algal blooms

seem to occur. The anaerobic conditions seem to provide an opportunity for P in the
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sediments to become available for uptake within the reservoir water column. Large

algal blooms can create an anaerobic environment at the sediment-water interface,

as decaying algae produces high oxygen demand, reinforcing this cycle until colder

weather causes turnover.

The sediment profiles within the reservoir indicated that apatite-P (mostly

unreactive due to high unsolubility) comprised the majority of P entering the lake.

Due to this finding, the researchers suggested that efforts to reduce external P loading

into the reservoir should consider the availability of P entering the reservoir.

Messer et al. (1984) gathered sediment samples to analyze as a potential source

of P for the water column. They found a possibility for moderate release of P under

anaerobic conditions, while release was insignificant under aerobic conditions. Addi-

tionally, it seems that P release from sediments is partially dependent on the redox

cycle of Fe. These findings seem to be in general accordance with work from other

areas. Messer & Ihnat (1983) commented:

Although it is not possible to categorize the trophic state of a lake or
reservoir based on the sediment P concentration alone, NaOH-P has been
shown to be highly correlated with anaerobic P release rates from sediment
cores taken from upper Flaming Gorge and incubated in the laboratory
(Messer et al. 1983). Therefore, the NaOH-P concentration may provide a
useful indicator of the potential for P release into an anoxic hypolimnion.

Their use of the term NaOH-P is P loosely bound to Fe, which can easily be-

come available as orthophosphate (‘reactive’ P). Based on these results, Messer & Ihnat

(1983) conclude that sediments of intermountain west reservoirs are expected to re-

lease P in significant amounts under anaerobic conditions in the hypolimnia.

Messer & Ihnat (1983) also discuss other parameters that could be important.

These authors also studied Flaming Gorge Reservoir, located in Wyoming. The study

was conducted in late summer in order to determine if internal P loading could be

a contributor to algal blooms at this time of year. A number of potential follow-up

studies are offered by Messer et al. (1983). These ideas aim to understand the process

of internal P cycling to a greater extent for purposes of modeling.
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Chapter 3

Plan and Methodology

This chapter outlines the objectives of the thesis, which involved sediment

sampling on the delta of Deer Creek Reservoir for purposes of determining the spatial

and chemical distribution of P and potential for P release from sediments. It provides

the sediment sampling program, storage and measurement procedures, and analysis

techniques.

3.1 Objectives and Preparation

There are many potential mistakes in sediment collection, including improper

choice of sampling locations, inadequate numbers of samples collected, and incorrect

techniques for sampling, handling, or analysis of sediments. In order to avoid these,

Mudroch & MacKnight (1994b) suggest that “detailed information is necessary about

the outline of the whole project prior to selecting sediment sampling techniques and

proper methods for handling and analyses of the collected samples” For this reason,

a sediment sampling program is provided here; details regarding developing these

programs are found in MacKnight (1994) and Mudroch & MacKnight (1994b).

The ultimate purpose of the present work is to determine the potential for

impact of sediment nutrient (specifically P) content on algal growth (and eutrophi-

cation) in DCR. Even with management of external nutrient loading, these problems

may still exist due to trapped nutrients. The short term goal of this research is to

characterize the spatial and geochemical distribution of P in the delta sediments. This

will include determining the distribution of different geochemical P fractions across

the delta both horizontally and vertically. Though not completed, I have begun to

perform a geostatistical analysis of results to estimate P concentrations in areas not
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sampled. This will also enable us to estimate total mass of P (including individual

fractions) available in the reservoir delta. This follow-up work will be reported on in

a different venue. The preliminary geostatistical analyis is presented.

In preparation for this study, a number of preliminary steps have been com-

pleted. We studied and evaluated many techniques. Participants in the thesis work

have practiced the chosen methods, and written protocols (available in Appendix B)

were developed for each method. We prepared an inventory of equipment available

for the thesis as well. This preliminary work should increase the reliability of our

results, ensuring better quality control.

The outline of work is as follows:

1. Develop a sampling plan

2. Obtain sediment samples with a hand auger

3. Prepare samples for measurement

• Water soluble P only

• Complete P fractionation (including water soluble and digestion)

4. Measure prepared samples for P

5. Determine water content of all sediment samples

6. Calculate P concentration in terms of dry sediment

7. Perform geostatistics calculations using data (to be done later)

3.2 Sampling

The sampling distribution plan across the DCR delta is shown in Figure 3.1;

sample coordinates are given in Appendix A. Small black dots indicate where samples

were taken in preliminary work. Points along transects are separated by 100 m, and

transects are found at 200 m spacings.
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Figure 3.1: Sample Distribution across Reservoir Delta

A surface sample was taken at each numbered point, with a few exceptions

(points 1-6 and 60 were not sampled due to accessibility or other issues). Other points

were moved slightly, as they were directly in the river. Red circles indicate that two

additional samples were taken at depths of 6 inches and 1 ft to determine a vertical

distribution. Additionally, samples from a 2 ft depth were taken at vertically sampled

locations along one transect (points 12, 20, 30, and 42).

Sediment samples were taken using hand augers, and immediately placed into

Ziploc bags for storage. The bags were labeled with information regarding location,

sampling date, and depth. Figure 3.2 shows how samples were taken. Bags remained

in coolers until arrival to the lab, when samples were stored in the freezer to await

further preparation and measurements. A total of 91 samples were taken for analysis.
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The sampling was done over a four week period, so that all samples collected could

be prepared and analyzed within one week.

Figure 3.2: Sampling Delta Sediments Using a Hand Auger

3.3 Fractionation of Samples

Sediment samples were prepared for measurement of phosphates in solution,

by a fractionation procedure generally following the scheme of Moore & Coale (2000)

(from modification of van Eck (1982) by Moore & Reddy (1994)). Most steps involved

mixing a certain extractant with sediment, shaking, centrifugation and filtration of

the solution for measurement. Shaking was done with a Cole Parmer 51704 series

shaker (see Figure 3.3).

For centrifugation, a Sorvall Superspeed RC2-B ultracentrifuge was used. Vac-

uum filtration was accomplished with 0.45 µm Geotech geofilters using a Nalgene

reusable filter holder (see Figure 3.4). The filter size (0.45 µm) commonly defines

the demarcation between dissolved and suspended particles. Notes and procedures

on use of all equipment are available in Appendix B.3.

The fractionation scheme allowed for measurement P content in five different

pools, with steps sequentially performed:

• Fr.W: water soluble P
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Figure 3.3: Shaker Table and Tubes Used in Fractionation

Figure 3.4: Apparatus Used in Vacuum Filtration of Prepared Solutions
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• Fr.KCl: loosely sorbed P

• Fr.NaOH: Al- and Fe-bound P

• Fr.HCl: Ca-bound (apatite) P

• Fr.PFD: residual P, probably mostly organic

Table 3.1 presents information regarding fractionation steps, briefly comparing

the steps I used with steps used in the previous DCR studies (Messer & Ihnat, 1983;

Messer et al., 1984). The main differences are that the first two steps I used were

done in one step previously, and that the previous studies included an additional

step to reduce iron (using Na-citrate, Na-dithionite, and Na-bicarbonate). The Fr.W

step did not include shaking, and the Fr.PFD (post-fractionation digestion) step was

accomplished by digestion of remaining sediment with persulfate and sulfuric acid

(based on standard methods, Stieg et al. (2005)). I calculated total P content by the

summation of the P content of each fraction. However, total P for the previous DCR

studies was determined with a separate aliquot of sediment (which had not previously

been subjected to fractionation).

Table 3.1: Comparing Fractionation Schemes: Thesis v. Previous

Current tshake (hr) Previous P Fraction
Water - - interstitial water

1 M KCl 2/2 1 N NH4Cl anion-exchange sites, loosely sorbed
.1 M NaOH 17/18 .1 N NaOH Al- or Fe-bound, adsorbed

- - CBD Fe-bound, Fe-occluded by oxides
.5 M HCl 24/18 .5 M HCl Ca-bound (apatite)
Persulfate - Persulfate residual (organic), or total

We determined water soluble P for every sample taken, while the complete

fractionation scheme was performed on a subset of the samples (19 total). We pre-

pared a total of 167 solutions for measurement.
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3.4 Measurements

For each prepared solution, phosphate content was measured using spectropho-

tometric means. Specifically, Hach method 8178 (amino acid method) was used with

a Hach DR5000 spectrophotometer for measurement. This method is adapted from a

standard colorimetric method (Stieg et al., 2005), and it is able to measure phosphate

content from .23 to 30.00 mg·L−1. Figures 3.5 and 3.6 demonstrate this method. The

method procedures are provided in Appendix B.4.

Figure 3.5: Preparing Solutions for Phosphate Measurement Using the Amino Acid
Method

As part of this measurement step, we determined water content for each sedi-

ment sample. This was used to calculate P concentration of dry sediments.

3.5 Normalized Results

Prior to geostatistical analysis, all P content data must be available on the

same basis. For the present research, we performed back calculations so that reported

P content was based on the mass of dry sediment (i.e. mg·g−1 dry sediment). The
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Figure 3.6: Placement of Solution into Spectrophotometer for Measurement

following base equation was used for these calculations, though it varied slightly

depending on the fraction of P being calculated.

CP.in.sed =
CP.in.wat ×

L
1000mL

× Vliq × D

mdry.sed

(3.1)

where:

• CP.in.sed = concentration of P in dry sediment (mg·g−1)

• CP.in.wat = concentration of P in the solution (mg·L−1)

• Vliq = total volume of solution measured (mL)

• D = dilution factor

• mdry.sed = mass of dry sediment from which P extracted (g)

3.6 Geostatistical Analysis

I performed brief geostatistical analysis using GSLIB (Deutsch & Journel,

1992), which is freely available from Stanford University, and with the Groundwater
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Modeling System (GMS, 2008). This analysis, though not completed, will allow us to

estimate P concentrations in areas not sampled (and thus estimate total mass of P in

delta) and additionally it will provide an idea of where more in-depth sampling should

occur. This analysis will also help us determine spatial trends and correlations. With

these data, we will estimate total amounts of P (from different fractions) available

across the reservoir delta and provide an estimate of their spatial distribution. This

work will be done as a follow-up to this thesis and will be reported on elsewhere.
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Chapter 4

Results

Samples were collected in 4 sampling trips, over a period of 4 weeks in the

summer (July-August) of 2008. We performed all analysis and measurement (except

water content) of collected samples within one week of collection, so that analysis

for each set of collected samples was completed prior to the next sampling trip. We

carried out water soluble P tests for each (91 total) collected sample, while complete

fractionations were completed for 19 selected samples. We later calculated P contents

based on dry sediment weights; all values are reported on this basis. A complete set

of the results is available in Appendix C.

4.1 Results

4.1.1 Water Soluble Results

Average water soluble P (WSP) content is displayed for a number of collected

groups (by depth) in Table 4.1, while Table 4.2 and Table 4.3 examine average WSP

values for surface samples along the length and width of the delta, respectively. The

length is divided up into transects, with the first (transect 1) being most upstream.

The width is divided up by columns, starting from the right side of the delta (as

looking upstream). The number of samples (n) reflects how many actual samples

were included in the averages for the specific groups. Some may be less than the

actual number of samples taken due to error in analysis.

Overall, there is a trend toward lower WSP concentrations with depth. How-

ever, this should be investigated further since n decreases with depth. Change in

concentration through depth might be attributable to decreasing water content with

depth or greater quantities of organic matter with depth.
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Longitudinal variation is generally apparent (Table 4.2), as WSP concentra-

tions in the surface sediments decrease going from upstream to downstream. There

is a notable exception at Transect 2 which needs to be considered though. This

trend might be due to the fact that sediments further away from the reservoir (most

upstream on the delta) have been uncovered for longer periods.

Considering lateral variation (see Table 4.3), two separate groups seem to be

distinguishable. WSP concentrations in columns 1-4 generally are higher than those of

columns 5-11. These data might be influenced by relatively sparse data (small number

of samples n), but it appears that there is a general trend in lowering concentrations

over the width of the delta. This could be due to the fact that as the column number

increases, the distance from the river entrance to the delta decreases as well. The

samples taken in the last columns were quite some distance from the river, and might

have been uncovered for larger amounts of time.

Brief geostatistical analysis using tools in GMS support this idea of lateral

variation, with higher water soluble P concentrations evident along the right side

(looking upstream) of the delta (see Figure 4.1). Similar graphs for other P pools are

provided in Appendix D, though these display different variation. We emphasize that

these graphs are preliminary in nature, and further work with geostatistical analysis

should confirm and expand on some of these initial findings (hypotheses).

4.1.2 Complete Fractionation

Table 4.4 provides data regarding average P concentrations for different frac-

tions tested. Some results are based on only 18 (instead of 19) samples due to per-

sonnel error.

The sediments on average contained much less P in the water soluble and

KCl-extractable pools than in the other pools, while there was significantly more

(by 2+ orders of magnitude) of the NaOH-extractable, the HCl-extractable, and the

residual P pools. Apatite P (extracted with HCl) was present in significant amounts,

as expected from results of previous work (Messer & Ihnat, 1983; Messer et al., 1984)

and due to the fact that these sediments are largely calcareous, as the location of the
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Table 4.1: Variation of Average Water Soluble P with Depth

Depth n CP.avg (mg·g−1)
Surface 55 5.64E-03

6 in 15 4.43E-03
12 in 13 4.06E-03
2 ft 4 3.99E-03
All 87 5.12E-03

Table 4.2: Longitudinal Variation of Average Water Soluble P

Transect n CP.avg (mg·g−1)
1 10 7.29E-03
2 10 4.81E-03
3 11 6.31E-03
4 8 5.59E-03
5 5 3.82E-03
6 7 4.03E-03

Table 4.3: Lateral Variation of Average Water Soluble P

Column n CP.avg (mg·g−1)
1 3 1.53E-02
2 4 5.88E-03
3 4 9.68E-03
4 5 7.62E-03
5 5 4.10E-03
6 5 3.47E-03
7 6 4.54E-03
8 6 4.73E-03
9 6 4.04E-03
10 6 3.10E-03
11 2 3.23E-03

Table 4.4: Average Sediment P Concentrations for Various Fractions

Pool n CP.avg (mg·g−1)
Fr.W 19 4.66E-03

Fr.KCl 18 4.53E-03
Fr.NaOH 19 1.74E-01
Fr.HCl 18 9.26E-01
Fr.PFD 19 1.46E+00
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Figure 4.1: Preliminary Water Soluble P Concentration Contours across Delta

dam is on a limestone foundation (PSOMAS, 2002). The largest fraction of P present

was residual, which is probably mostly organic P (plus whatever was not extracted

in previous steps).

Table 4.5 compares average sediment P concentrations for similar fractions of

the current work and the previous (Messer et al., 1984) DCR study. The fractionation

schemes were slightly different, not only in extractants but also in other aspects such

as shaking time and quantity of sediment extracted. Additionally, sediments collected

in the previous study were taken from the bottom of the reservoir while those used in

this study were taken from the delta. The number of collected samples was different

as well.
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The water soluble and loosely bound P (Fr.W and Fr.KCl) were determined

through one step (Fr.NH4Cl) in the previous work. Much less P was obtained in the

current work, though this might be reasonable when considering location of sampled

sediments (exposed v. in solution). Levels of Fr.NaOH P were very comparable, with

slightly higher amounts in the current work. This is most likely due to the distinct

environments (P may resorb to or co-precipitate with Fe minerals upon drying of

sediments). Apatite P content was much higher in the sediments from the current

work; this could be due to other P pools (perhaps from CBD, which wasn’t performed

in this work) dissolving into solution with the strong acid. Authigenically formed

apatite might be part of the explanation as well; these Ca-P complexes are more

likely to dissolve in solution then detrital forms of apatite.

There were significant amounts of residual P present. This is another point of

departure between the two studies. For the current work, total P was calculated from

the summation of individual pools while in the previous work total P was determined

by digestion of a separate aliquot of sediment (with no previous fractionation per-

formed on it). To calculate residual (or organic) P for the previous study, we could

subtract inorganic P from the total P obtained but this was not done. Non-apatite

inorganic P (NAIP) refers to the summation of P contained in Fr.NaOH and Fr.CBD

(i.e., all the inorganic P that is not apatite).

Table 4.5: Comparing Fractionation Results: Thesis v. Previous

Current CP.avg (mg·kg−1) Previous
Current Messer

Fr.W 4.66 - -
Fr.KCl 4.53 - -

Fr.W+Fr.KCl 9.19 54.3 Fr.NH4Cl
Fr.NaOH 174.07 155.2 Fr.NaOH

- - 355.8 Fr.NaOH + Fr.CBD (NAIP)
Fr.HCl 926.31 542.0 Fr.HCl
Fr.PFD 1460 - Total - (NAIP+Fr.HCl)

Total (by sum) 2569.6 1107.3 Total (by sum)
Total (by digestion) - 825.6 Total (by digestion)
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4.2 Discussion of Results

Results presented above will be further addressed. Specifically, discussion

involves trying to determine whether results are reasonable. First, P content of sed-

iments will be compared to the P content of background (BG) (in area surrounding

the delta) soils. Assumptions are also addressed to see the effect they could have had

on results. Finally, methods for verification of results are given. This includes a brief

discussion of some preliminary results from some of the methods.

4.2.1 Comparison with Surrounding Soil Samples

Fractionations were completed on 5 other soil samples (taken from nearby

locations surrounding the delta (but outside the deposition zone of the reservoir),

though this was difficult to verify) in order to provide an idea of how P content varied

from BG soils to deposited sediments. Table 4.6 compares fractionation results from

these BG samples with the average concentrations from fractionation of sediments.

Table 4.6: P Content (mg P·g−1 sediment) of Background Soil Samples

BG1 BG2 BG3 BG4 BG5 Mean Sediment
Fr.W 4.49E-3 6.12E-3 3.42E-3 7.28E-3 - 4.66E-3

Fr.KCl 2.90E-3 2.72E-3 2.26E-3 9.66E-3 1.20E-2 4.53E-3
Fr.NaOH 1.52E-1 1.62E-1 1.20E-1 1.14E-1 6.52E-2 1.74E-1
Fr.HCl 1.68E-1 2.17E-1 1.91E-1 1.12E+0 1.56E+0 9.26E-1
Fr.PFD 1.54E+0 1.94E+0 1.38E+0 6.05E+0 4.21E+0 1.46E+0

There is not much difference in P content between the sediments and BG sam-

ples, with some BG samples even having greater P content than sediments. However,

the land where soil samples were taken from cannot be considered too ‘normal’ for

determining BG P concentrations, as it was obvious that it had been used for agri-

cultural/farming pursuits. Much of the P content of sediments was originally created

due to runoff from agriculture (prior to regulations leading to reductions in external

P loading), so this might not be too surprising. It is still important to verify whether

BG soil is different in terms of P content. This might only be possible by further

searching for an area where no other activities have taken place (i.e., an area that can
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be considered in a natural state). Such locations only seem to be available on sur-

rounding hillsides, with steep slopes. However, these areas are probably particularly

susceptible to erosional processes.

4.2.2 Repeat Fractionations

After completion of work, it was recommended that we perform the CBD

fractionation step as well. For this purpose, we ran fractionations again for six of our

sediment samples. This additionally allowed us to fill in some missing information

and to compare how results varied with a repeated fractionation. Table 4.7 shows

how P concentrations compared (by ratio Csecond

Cfirst
·100%) between the two fractionation

procedures for Fr.W, Fr.KCl, and Fr.HCl.

Concentrations shown in square brackets indicate measurements that were

problematic and might not be as reliable as others. Information for the other pools is

not yet available for the second set of fractionations. Additionally, we note that there

were two additional steps added in these fractionations (and both were performed

prior to Fr.HCl).

We note that in almost all cases (and in fact all of Fr.W and Fr.KCl), measured

P on the second fractionation was lower. This could be due to the length of time

between the fractionations (∼4 months) as chemical changes might have occurred.

The situation is much more complicated for Fr.HCl,with two samples (24.S,

32.1 ft) being measured at almost the same concentration (though one was lower and

one was higher than 100% of the original) and two other samples (22.S, 35.S) being

significantly higher in concentrations on the second fractionation.

Table 4.7: Concentration Variability among Repeat Fractionations

Sample W KCl HCl
12.2ft 48.6 54.8 -
22.S 72.6 33.7 225.8
24.S 36.5 [19.9] 92.2
32.S [53.1] 62.4 42.8
32.1ft [72.5] 52.7 108.8
35.S [42.2] 61.9 165.5
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The fact that Fr.HCL samples came out higher in concentrations is somewhat

surprising considering the fact that two additional steps (Fr.CBD, Fr.Na-Ac) were

carried out prior to the Fr.HCl stage. It might be possible that those two additional

steps released P but that entrained solutions (discussed in more detail later) increased

the P concentrations by this later step. A more likely scenario could involve the fact

that the earlier P pools (Fr.W and Fr.KCl) had lower concentrations on these repeat

fractionations, perhaps indicating that some of this P had been lost to other pools.

We did not perform many repeat fractionations to verify results, but these

few provide evidence of interesting differences. In any case, we believe that this in-

formation demonstrates a need to be careful with fractionation timing as well as in

evaluation of results obtained from these procedures. The complete fractionation

scheme should be performed soon after collection of samples, and methods should be

established to verify results. Even if there is some variety between repeat fractiona-

tions, some methods (to be described later) should allow for greater credibility in the

results.

4.2.3 Assumptions and Limiting Factors

A number of assumptions and limiting factors probably affected results. These

are addressed in order to provide ideas for improvement of future studies, in addition

to relating shortcomings of the current study. These basically fall into the following

categories: personnel error, fractionation methodology, and measurement methodol-

ogy.

Personnel error is a problem with any study. In the present study, we en-

deavored to minimize this through practicing all techniques prior to using them in

the actual work performed for the study. However, differences between operators

probably were not completely eliminated. For example, in the spectrophotometric

work samples had to be inverted a few times but the word ‘few’ probably was not

interpreted the same by all operators (and maybe even wasn’t the same for each time

a certain operator performed the measurement). Such things should be checked in

greater detail and minimized. A number of other errors could occur. These include

46



mixing up samples, incorrect (or forgetting to do so) recording of results (both in the

laboratory as well as in the office), problems in measurements of solutions or solids

used in analysis, inadvertent disposal of prepared samples, and errors in calculations.

We attempted to minimize some of these by specific labeling of containers and by

frequently checking to ensure correct recording.

A number of issues could complicate the fractionations performed in this study.

First, the ratio of sediment to extracting solution used in fractionation could poten-

tially affect the release of P from sediment to solution, resulting in discrepancies

for different ratios. Though we kept our ratios equivalent (for the most part, with

minor discrepancies), comparisons with other studies using different ratios might be

problematic.

One of the main problems with fractionation involves the entrainment of so-

lutions in the sediments between fractionation steps. The supernatant is decanted

from centrifuge tubes for measurement of P in solution after each step. However,

some of the solution almost always remained in the tube (this portion is the en-

trained solution). Obviously, this remaining solution probably contained the same

P concentration as the decanted solution. For the next step of fractionation, this

solution could have either diluted or increased the concentration of P obtained from

a particular step.

One possible indication of this problem involves a few Fe content tests per-

formed on samples from Fr.NaOH and Fr.HCl. Results indicated that significant

amounts of Fe (2.25 ppm in one case) was present in solutions obtained from the

Fr.HCl step, even when that step wasn’t designed to obtain Fe-bound P. This could

be due to entrained solutions from the previous step, which was designed to release

Fe-bound P (and as expected, Fr.NaOH samples also contained Fe). There are pos-

sibly other reasons for this (such as reduction of iron through the Fr.HCl step), but

these have not been verified.

To determine exactly how entrained solutions were affecting final results, all

sample concentrations (for Fr.KCl, Fr.NaOH, Fr.HCl) were additionally calculated

taking the amount of P from entrained solution into account. This was done with a
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slight modification of the equation above. The difference took into account the fact

that the prior solution contained P already. The equation was modified to be:

CP.in.sed =
Cactual.P.wat ×

L
1000mL

× Vliq × D

mdry.sed

(4.1)

We adjusted the concentration of P in the solution (Cactual.P.wat) by subtracting

the concentrations present in the entrained solution:

Cactual.P.wat = Cmeasured − Cprior,entrained (4.2)

Adjusting the concentrations for the Fr.PFD step is somewhat different. There

are some issues with this that need to be addressed. First, we used leftover sediment

(from the fractionation process through Fr.HCl) in the digestion. If we want to

calculate the actual amount of P per mass of dry sediment, the water content of this

leftover sediment must be known (unless we had dried the leftover prior to digestion,

which wasn’t done). Since we did not measure the water content, we are left with

two possible options: 1) assume that sediment has same water content as initial

sediment or 2) determine water content with the assumption that entrained solution

mixed uniformly throughout leftover sediment. Due to how we sampled sediment for

the digestion, the second option is not very applicable. We used the first option for

comparison with our original results.

Table 4.8 compares average concentrations (mg·g−1) obtained for the four P

pools (all but Fr.W), using both the original and the entrained solution adjusting

equations.

Table 4.8: Effect of Entrained Solution on Results (mg·g−1)

Fraction n Cavg.P -Original Cavg.P -Adjusted % of Original
Fr.KCl 18 4.93E-03 4.54E-03 92.1

Fr.NaOH 19 1.82E-01 1.71E-01 94.3
Fr.HCl 18 9.39E-01 9.39E-01 99.9
Fr.PFD 19 1.46E+00 2.30E+00 157.2
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Obviously, there is some slight discrepancy but it is not extreme (except maybe

in the case of Fr.PFD, as expected). Perhaps in the future it will be alright to only

minimize problems with the entrained solution. However, we will address some ways

that this problem might be further mitigated.

To address this problem of entrained solutions, there are a few possibilities.

First, changing the centrifuge tube might prove helpful. A smaller centrifuge tube

with a complete opening (not lipped openings as were used in this study) would

allow for solution to be removed to a greater extent. Doing so would create a need

to change the shaking process, the centrifuge and speed of centrifugation as well.

However, even with slower speeds, a fractionation performed with smaller tubes (15

and 50 mL conical base) should result in better separation of the supernatant and the

leftover sediment pellet. One other advantage of this is that better contact between

solutions and sediments would be possible.

Another possible fix for this would be to add some washing steps in between

each fractionation step, as was done by Ruttenberg (1992). This would be able to clear

up any leftover phosphates in solution to some degree, but would result in greater

time spent in the fractionation process as many additional steps would be added.

However, there still might be problems with entrained solutions and this might not

completely remove all phosphates that have been released from sediments. This could

additionally cause other problems.

It is also possible that the high sediment to solution ratio (∼10 g sediment to

20 mL solution) used in this study intensified the entrained solution problem. Having

a smaller ratio would ensure that solutions did not become oversaturated with P,

which could potentially inhibit P from leaving sediments. Additionally, a smaller

ratio would provide for better contact with solution and would result in less sediment

lost while decanting the supernatant. This should be considered in future work.

The Fr.PFD step also could have been problematic. Boiling for this digestion

step was supposed to be gentle, but there was a variety in how gentle our solutions

boiled. Additionally, the pH of these samples was supposed to be adjusted at the end
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but the process was difficult. The solutions were probably measured at a variety of

pH levels after preparation, which would have affected final measurements.

The final limiting factor deals with measurement of P in solution, which was

problematic for some of the fractionation steps, as solutions were highly colored or

had different pH values. Fractionation steps Fr.NaOH, Fr.HCl, Fr.PFD (as well as

Fr.CBD and Fr.Na-Ac, performed in repeat fractionations) created problematic so-

lutions. These problems were taken care of in this work by dilution of the sample

to remove color (in Fr.NaOH and Fr.HCl steps) but this probably had an affect on

actual measured P concentrations, even after adjustment for dilution. We determined

discrepancies in P content of sediments (in mg P g−1 of dry sediment) when testing

different dilutions. For example, one sample contained 8.11E-2 mg·g−1 with a smaller

dilution (31) while with a larger dilution (126) it contained 1.07E-1 mg·g−1. An-

other contained 1.6E-1 mg·g−1 with a dilution of 126, while with a dilution of 251 it

contained 2.7E-1 mg·g−1. Though these are relatively close, they do demonstrate pos-

sible effects by dilution. Future studies might be able to address this by using other

techniques, such as ion chromatography (IC) or total element analysis (discussed to

a greater extent later).

The spectrophotometric technique we used (Hach amino acid method with

Hach DR5000 spectrophotometer) should measure quantities of orthophosphates in

solution, but might be problematic. We assumed that this measured all forms of

orthophosphates (PO3−

4 , HPO2−

4 , and H2PO−

4 ) though upon checking in further detail

the technique supposedly only measures orthophosphates in PO3−

4 form (but perhaps

this is generic for all orthophosphate forms), which is only present in significant

quantities after reaching highly basic levels (ph > 10, for disassociation of phosphoric

acid [H3PO4], pK3 = 12.4). The pH of the solution (pK1 = 2.1 and pK2 = 7.2) would

affect how much of each of these orthophosphate species was present, and we did not

adjust pH levels for solutions unless it was specified (which was only the case in the

digested Fr.PFD samples). The amino acid methodology needs to be verified with

the manufacturer to determine what orthophosphate species it actually measures.
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To check the accuracy of our phosphate measurements, a few sample solutions

(with known phosphate content, not from this study) were measured for phosphate us-

ing spectrophotometry and ion chromatography (IC). IC was performed using Dionex

equipment, specifically an AS40 Automated Sampler connected to a ICS-90 Ion Chro-

matography System with a IonPac AS14 column.

The solutions tested were prepared from water taken from Utah Lake, and were

spiked with sodium phosphate to contain known PO3−

4 concentrations for isotherm

studies. Utah Lake water was assumed to contain 0.1 mg·L−1 but contained slightly

more when measured. Table 4.9 compares expected concentrations with measured

concentrations for these solutions.

Results from IC matched well with expected P (in form of phosphate) concen-

trations, while those from spectrophotometry were significantly higher. Part of this

discrepancy could be due to evaporation of the solution prior to spectrophotometric

measurement, but this doesn’t seem reasonable as solutions were covered and under

refrigeration. Additionally, evaporation could not have occured at such great levels

as to explain the great change in concentration.

This discrepancy might also be due to the form of orthophosphate that is being

measured, but this seems doubtful. The eluent (carrier liquid for solution) used in

the IC method buffers the pH to about 8.3, creating a situation where most (if not

all) of the phosphate is in the same species (HPO2−

4 , recall that pK2 = 7.2) (Tingey,

2009; Bickmore, 2009). Although it is useful to have a standard pH for all solutions

(provided by IC, but uncertain in spectrophotometry unless adjust all solutions to

desired pH), this probably isn’t the cause for the difference in concentrations between

Table 4.9: Comparing P Measurement Techniques

Expected Concentration IC Spectrophotometry
Utah Lake (assumed 0.1) 0.26 0.49 (after strong dilution)

1.5 1.59 -
3.0 2.86 12.93
4.5 4.80 20.89
6.0 6.24 -
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these two methods either. However, varying pH levels probably effected measured P

concentrations from spectrophotometery, a fact which needs to be checked since we

are unsure about the actual form measured by the Hach amino acid method.

Overall, we are not sure why there is such a discrepancy. This should be

determined if we are to have correct P (phosphate) concentrations. For comparing

internal results (i.e. only results from this study), it should not be a problem though,

since we can compare relative concentrations since all were based on the same method.

IC should be a better method for measurement for a number of reasons, in-

cluding the possibility for automation which allows for more efficient use of time.

However, the problematic solutions prepared from fractionation of sediment samples

also cause problems for IC methods, and probably are damaging to the IC column

(Tingey, 2008). One way around this is to perform a total element analysis for P

(instead of phosphate) only. This was done using x-ray fluorescence spectroscopy

for another study performed (in which similar problematic solutions had to be mea-

sured for P) (Bickmore et al., 2009). Solution matrices do not cause problems in this

technique since they are dried on a clear film on which dissolved solids remain after

evaporation (Tingey, 2008).

4.2.4 Verification of Results

In order to verify whether present results seem reasonable, we can compare

other results obtained (from other work) using a nearby sediment sample. We briefly

report these results here to demonstrate how they might be of use in verifying frac-

tionation results, though all findings are preliminary and these methods need to be

further developed for the specific purpose of verification.

During the period of this study, some other work was being completed to

determine procedures for obtaining sediment samples from within the reservoir. One

of these samples, taken in July of 2008 using an Ekman grab sampler, was used for

a number of different tests that could potentially help to provide credibility to the

results from this as well as future studies. This sample was taken from a location

near the upper portion of DCR, not too far from the delta. However, obviously, this
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sample probably differed somewhat in content from delta sediments due to contact

with water.

First, a mineralogical analysis was completed using x-ray diffraction (XRD) by

the method of Środoń et al. (2001) (using a Scintag XDS 2000 X-Ray Diffractome-

ter), and with pattern analysis performed with RockJock software (Eberl, 2003).

The analysis was performed twice, once with sediment containing soil organic mat-

ter (SOM) and once with sediment in which SOM had been destroyed by treatment

with NaOCl (bleach) (method described by Soukup et al. (2008)). Table 4.10 reports

mineralogical content of the sediment sample by weight percent of select components

(some lumped together in groups). Of the most interest here are the carbonates, iron

minerals, and apatite. Clays should also be of interest for some purposes.

Table 4.10: Mineralogical Content (by wt. %) of Sediment

Non-Clays w/ SOM (% by wt.) w/o SOM (% by wt.)
Carbonates 5.88 10.88

Gypsum 0.57 0.52
Quartz 29.22 24.70

Iron Minerals 1.86 4.19
Alkali Feldspars 24.32 16.88

Plagioclase Feldspars 14.56 13.78
Apatite 1.59 2.50

Total Non-Clays ∼77.9 ∼73.7

Clays
Kaolinites 1.81 5.44

Smectites and Illites 10.15 8.49
Other Clays 10.12 12.33
Total Clays 22.1 26.3

Total Fe (TI) analysis was also performed separately using a modification

of Holmgren (1967) developed by Loeppert & Inskeep (1996). Sodium-citrate and

sodium-dithionite were used to ensure all Fe is reduced to ferrous (Fe2+) and then

released to solution. This method is very similar to the CBD fractionation performed

by Messer et al. (1984), so theoretically we could have determined P content of this
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solution as well. This would have provided an idea of how much P was co-precipitated

with or sorbed to Fe in the sediment.

Atomic Adsorption Spectroscopy (AAS) (using a Perkin Elmer Atomic Ad-

sorption Spectrophotometer) was used for measurement of Fe in solution. TI analysis

showed that iron was found at a concentration of 5.02 g Fe kg−1 sediment, or approx-

imately 0.5% by weight. Note that this cannot be directly compared with the weight

percentage reported for Fe minerals above, as these minerals (including goethite and

hematite) contain more than just Fe. However, this number does seem reasonable as

it is a fraction of the weight percentage of iron minerals reported.

To verify Fe results further, we might test solutions obtained from the Fr.NaOH

step for iron. This would indicate how much iron was released into solution during

the step, and thus could provide (by combining with P results) an idea of how much

P attaches to Fe in the sediment. Fe content was determined for five samples (one

Fr.W, two Fr.NaOH, two Fr.HCl) using LaMotte wet chemistry kits. As expected, no

Fe was found in the water soluble step. Iron was found in the Fr.NaOH samples, and

also within the Fr.HCl samples. This could indicate either or both of the following:

1) that entrained liquid from the Fr.NaOH step was present in the Fr.HCl samples; 2)

that the Fr.HCl step also somehow reduces Fe3+ and thus sediments release both Fe

and P by this step into solution. The brief results seem to indicate that HCl is pulling

out more Fe (one diluted Fr.HCl sample contained too much Fe to be measured), so

mechanism 2 should be important. Further calculations and work with this should

allow us to determine which of these (if not both) is primarily responsible.

Organic content and carbonate content were also determined using loss on

ignition (LOI) techniques, according to Dean (1974). Organic content was found to

be 43.2 g C kg−1 sediment, while inorganic carbon was present at a concentration equal

to 69.1 g C kg−1 sediment. Soil pH (equal to 8.16) was determined for the sediment,

using the method of Thomas (1996). This parameter could have a great effect on P

constituents present. Cation exchange capacity (CEC) was also determined (equal

to 49.9 mmol cation charge kg−1 sediment) using the method of Amrhein & Suarez

54



(1990), summarized by Sumner & Miller (1996). Surface area was determined to be

1.41E-02 km2·kg−1 sediment, using the method of Blum & Eberl (2004).

Through knowledge of the forms of minerals, as well as other characteristics

such as organic content and soil pH, we should be able to calculate a rough estimate

for potential P content of different pools. This could be compared to values obtained

through fractionation methodology, and provide some creedence to results. Develop-

ment of these ideas is recommended for future studies. We have briefly discussed it

here, but it needs to be extended specifically for verification purposes. One possi-

ble idea would be to test the mineralogy of the sediment after each fractionation step

(Bickmore, 2009); this would allow us to determine what minerals/elements went into

solution during each step.
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Chapter 5

Conclusions and Recommendations for Future Work

As noted, this work is part of a larger project trying to understand and model

water quality issues at DCR. One specific purpose of this was to identify how deposited

delta sediments might provide a recycled nutrient (specifically P) source to the water

column, in case of reservoir flooding (refilling after drawdown) over the exposed delta.

This study provides information that can be used in further work. Here we offer some

insights that will be of use in future work and additionally provide ideas for such work.

5.1 Conclusions

A number of important inferences may be concluded from the work contained

herein. These deal with both the most effective methodologies to use as well as the

actual results from this study.

First, though we thought that entrained solutions would have a large effect

on measured P concentrations, this does not seem to be the case based on our three

sets of calculations. Future fractionation studies should still seek to minimize the

problem though, since this should be relatively easy to do and would result in more

repesentative P concentrations.

Second, it is critical to determine how to best measure P in solution. Extremely

complex matrix solutions are prone to measurement problems that are difficult to

overcome. For this reason, we believe that P can be more accurately measured by

methodologies that incorporate total element analysis.

Third, P (at least WSP) concentrations display at least slight anisotropy across

the delta and through depth. Though there were only sparse data for other fractions

of P, it is assumed that concentrations of these also vary across the delta. The
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preliminary findings provided in the previous chapter are a start at understanding

this phenomenon, but should be verified and extended with further geostatistical

analysis. If such findings can be confirmed, they would have important implications

as to how refilling of the reservoir would affect nutrient concentrations in the water

column. For example, we could avoid refilling the reservoir over an area especially

prone to loss of nutrients in sediment solutions.

Finally, this work confirms past studies that found apatite-P in large quantities

of DCR sediments while extending this finding to exposed delta sediments. However,

these initial results suggest that there is more apatite-P in the exposed delta sediments

than in sediments that had been deposited in the reservoir (comparing our results with

those of Messer et al. (1984)). This could have repercussions on refilling the reservoir,

as some of the apatite-P found in delta sediments might be of authigenic (precipitated

in area previously covered by water) instead of detrital origin. This could especially

be true due to the extended droughts of recent years. This P might more easily

become available as the reservoir is refilled.

This increased apatite fraction also indicates that the external P loading re-

ductions starting in 1981 (as described by PSOMAS (2002)) have been successful.

Apatite-P is the least bioavailable pool due to high insolubility (highly immobile)

and would thus not be targeted for reduction. An increased overall percentage of

this pool thus provides evidence of reduction in the other pools (which were tar-

geted). When considering this in combination with the fact that P concentrations

in discharged water from the dam have been significantly reduced, we believe that

the loading reduction plan has been successful in targeting the actual bioavailable P

pools within the reservoir. This has been accompanied by an improvement in water

quality, as a near elimination of blue-green algal blooms (from cyanophyta) has been

achieved.

5.2 Future Work

A number of recommendations for future work are listed below, followed by

brief discussions of each.
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1. complete geostatistical analysis of P distribution

2. extend sampling plan along length of reservoir

3. perform fractionation studies for varying particle sizes

4. establish protocols to verify fractionation results

5. explore interactions between delta sediments and inflowing water

• incorporate results in a model for prediction

• use geochemical software to determine release potential

• complete experiments using sediments and river water

5.2.1 Geostatistical Analysis of Phosphorus Distribution

Geostatistical analysis using GSLIB has not been completed extensively enough

to be reported on here. However, it has been started and it should be completed soon;

a preliminary step has been taken using GMS which contains geostatistical tools. This

analysis consists of creating variograms to understand any anisotropy (or learn about

the lack thereof) in P concentration distribution across the delta. Though results in-

dicate slight anisotropy in P concentrations (longitudinally and laterally across delta),

complete geostatistical analysis should provide a more extensive analysis. Addition-

ally, kriging techniques will provide the ability to predict P content (for all fractions)

at unsampled locations across the delta. This complete analysis should allow for de-

termination of potential P release to the reservoir when it is refilled (when exposed

delta is covered again by reservoir).

5.2.2 Sampling Plan Extension

To understand the fate of P throughout the reservoir, it will be important to

establish a sampling plan along the complete length of the reservoir. Any new plan

need not necessarily be so extensively sampled across the width of the reservoir as

was done in this study of delta sediments. Fractionation studies for longitudinally
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sampled sediments should provide an idea of how P is distributed through the entire

reservoir.

Particle size distribution (PSD) also can dramatically affect the P content of

sediments, as smaller particles tend to sorb contaminants (including nutrients) to a

much greater extent than larger particles. Future work should provide an analysis

of PSD, and additionally studies could include fractionations on individual particle

sizes (ranges of sizes) of sediment samples to determine how P is distributed through

sediment size.

Future studies should also consider extending the fractionation scheme em-

ployed here. The CBD step used by Messer et al. (1984) should be important in

determining how different fractions of Fe-bound P become available in solution. We

used this method briefly when we processed (through complete fractionation scheme)

a few of the same samples a second time. This was suggested due to the potential

importance of information obtained from the CBD step.

Another possible extension to the fractionation scheme involves a search for

methods to differentiate between different fractions of apatite-P. Ruttenberg (1992)

was the first to try to distinguish authigenic from detrital apatite-P, and others have

continued this work. This was also implemented for samples that we processed a

second time. The best method for the differentiation would probably involve the

use of microprobes, which allow us to visualize the grain structure and determine

individual elements present (Bickmore, 2009). Differentiation of these pools should

allow researchers to determine what fraction (if any at all) of apatite-P could become

available.

5.2.3 Protocols for Verification of Fractionation Results

Fractionation (or extraction or selective dissolution) techniques can be highly

variable and might not be very accurate. In order to verify whether results are rea-

sonable, a number of other tests could be performed. These should be designed to

determine content of sediments (or soils) by various methods. A number of initial

suggestions were offered in the previous chapter, and the microprobes mentioned
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above should be another important component of confirming findings of fractiona-

tion. These have been used in other work, but they show promise in verification of

fractionation results. Additionally, it might be possible to use results from these tests

to reasonably predict results of fractionation.

5.2.4 Sediment-Water Interactions

The overall purpose of the larger study is to determine how deposited sedi-

ments might be a source of nutrients to the water column. However, this has not

been specifically treated in this work. The results from this study, along with results

from future work suggested above, provide the data to be used to explore potential

interactions between sediments and water.

With an idea of the P distribution in the sediments (both from this and future

studies), we can begin to look at how trapped nutrients may become available to the

water column under varying conditions. Potential work could include an exploration

of these interactions in two ways. First, data can be incorporated into computational

models designed to predict what may happen to trapped P with changes in the

system behavior (e.g. drawdown and refilling of the reservoir). We could use both

geochemical software (such as MINTEQ or PHREEQ-C) as well as modeling software

such as CE-QUAL-W2 in this effort. Second, experiments may be designed to use

natural sediments and river water to directly determine what effect these changes

have have on trapped P release. This will be important as reservoirs are emptied

and then refilled, as exposed delta sediments are again allowed to interact with the

water column. Any future work in this could consider studies by Fabre (1988) and

Moore & Reddy (1994).

Another important consideration involves nitrogen. Though not considered

here, this critical nutrient has been identified as a limiting nutrient (at least at times;

seem to coincide with large algal blooms) at DCR (PSOMAS, 2002; UDWQ, 2004).

Understanding the nitrogen content of the sediments would probably involve another

fractionation scheme, and this could be an important step in the overall study (deter-

mining how algal growth is affected by release of trapped nutrients from sediments).
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Tables 5.1 and 5.2 respectively summarize sediment and water quality pa-

rameters that have been found to affect P binding in sediments. These should be

important to consider in studies of sediment-water interactions. Many of these have

been measured as part of the larger project.

As a final consideration, PSOMAS (2002) discusses the production of Geosmin

by algae. This substance was identified as the likely cause for taste and odor problems

that occurred in January 2001, after a large algal bloom in November 2000. Prior

turnover probably provided the nutrients contributing to rapid algal growth.
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Table 5.1: Parameters to be Measured in Sediment Samples

Parameter Purpose Reference(s)
orthophosphates ‘readily’ available P

Sas (1989), all studies
total P sediments tend to retain P when under

certain concentrations Sas (1989)

nitrates affects P-binding
Anderson (1982)

sulfates/sulfides may bind iron, inhibiting P binding
Caraco et al. (1993); Kleeberg (1997);
Suplee & Cotner (2002)

iron can bind P
Einsele (1936); Mortimer (1971);
Tessenow (1974); Gunnars et al.
(2002)

manganese potential binding site for P
Messer & Ihnat (1983); Christensen
(1997)
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Table 5.2: Water Quality Parameters to be Measured at Sample Locations

Parameter Purpose Reference(s)
pH higher levels affect sediment

P-retention Eckert et al. (1997);
Fisher & Wood (2004)

temperature useful for modeling, affects
density and stratification

suspended solids affect water density, and
thus movement Morris & Fan (1998)

turbidity mapped with suspended
solids, limits light and thus
productivity

Morris & Fan (1998)

dissolved oxygen oxic conditions possibly re-
tain P better Mortimer (1941, 1971);

Ruban & Demare
(2006)

total N ratio of tot-N to tot-P pos-
sibly indicative of P release

total P same as for total N
redox potential similar to purpose for oxy-

gen Eckert et al. (1997);
Gibson (1997);
Gächter & Müller
(2003)
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Appendix A

Sample Coordinate Locations

Table A.1: Coordinates for Sampled Locations

Sample Longitude Latitude Sample Longitude Latitude
1 -111.469757 40.4786989 31 -111.478968 40.4733033
2 -111.470901 40.4769083 32 -111.478956 40.4715174
3 -111.470913 40.4786942 33 -111.478943 40.4697315
4 -111.472070 40.4786895 34 -111.480099 40.4697267
5 -111.472057 40.4769036 35 -111.480112 40.4715126
6 -111.472044 40.4751177 36 -111.480124 40.4732985
7 -111.473201 40.4751130 37 -111.480137 40.4750844
8 -111.473213 40.4768989 38 -111.480150 40.4768702
9 -111.473226 40.4786848 39 -111.480163 40.4786561
10 -111.474382 40.4786800 40 -111.481319 40.4786513
11 -111.474370 40.4768941 41 -111.481306 40.4768654
12 -111.474357 40.4751082 42 -111.481293 40.4750796
13 -111.474344 40.4733223 43 -111.481280 40.4732937
14 -111.475500 40.4733176 44 -111.481268 40.4715078
15 -111.475513 40.4751035 45 -111.481255 40.4697219
16 -111.475525 40.4768894 46 -111.482411 40.4697170
17 -111.475538 40.4786753 47 -111.482424 40.4715029
18 -111.476694 40.4786705 48 -111.482437 40.4732888
19 -111.476682 40.4768846 49 -111.482449 40.4750747
20 -111.476669 40.4750987 50 -111.482462 40.4768606
21 -111.476656 40.4733128 51 -111.482475 40.4786465
22 -111.476644 40.4715269 52 -111.483631 40.4786417
23 -111.477800 40.4715222 53 -111.483618 40.4768558
24 -111.477812 40.4733080 54 -111.483606 40.4750699
25 -111.477825 40.4750939 55 -111.483593 40.4732840
26 -111.477838 40.4768798 56 -111.483580 40.4714981
27 -111.477850 40.4786657 57 -111.483567 40.4697122
28 -111.479006 40.4786609 58 -111.484723 40.4697074
29 -111.478994 40.4768750 59 -111.484762 40.4750651
30 -111.478981 40.4750892 60 -111.484787 40.4786368
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Appendix B

Protocols - SOPs

B.1 Water Content

1. weigh ceramic bowl, record weight (mbowl)

2. add sediment sample

3. reweigh bowl with wet sediment, record weight (mwet.bowl)

4. heat in oven at 105 ◦C for 24 h

5. reweigh bowl, record weight (mdry.bowl)

6. determine water content

B.2 Fractionation

This fractionation scheme is based on Moore & Coale (2000), roughly equivalent to

van Eck (1982) as modified by Moore & Reddy (1994).

Weigh centrifuge tube (wt) prior to placement of sediment sample in tube. The weight

of each successive fraction is needed to calculate the entrained liquid (containing

soluble P) from the prior extraction.

B.2.1 Water Soluble P

1. place ∼10 g sediment sample into tube

2. reweigh tube with sediment (wt+s), determine wet weight of sediment

3. add 20 mL of DI water to tube
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4. centrifuge for 20 minutes at 7500 rpm

5. filter through 0.45 micron membrane filter (use vacuum filter)

6. save sample for analysis/measurement, refrigerate ASAP to avoid evaporation

B.2.2 Loosely Sorbed P

1. reweigh tube to determine how much water removed (wwat.sol)

2. homogenize pellet left in tube with a spatula

3. add 20 mL of deaerated 1 M KCl to tube

4. shake for 2 h on reciprocating shaker

5. centrifuge for 20 minutes at 7500 rpm

6. filter immediately through 0.45 micron membrane filter

7. save sample for analysis/measurement, refrigerate ASAP to avoid evaporation

8. reweigh tube to determine weight after loosely sorbed P released (wloose)

B.2.3 Aluminum and Iron-bound P

1. add 20 mL 0.1 M NaOH to tube

2. shake for 17 h on reciprocating shaker

3. centrifuge at 7500 rpm for 20 minutes

4. filter with 0.45 micron filter

5. save sample for analysis/measurement, refrigerate ASAP to avoid evaporation

6. reweigh tube to determine new weight (wFe+Al)
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B.2.4 Calcium-bound (apatite) P

1. reweigh tube prior to Ca-bound P extraction

2. add 20 mL of 0.5 M HCl

3. shake for 24 h on reciprocating shaker

4. centrifuge at 7500 rpm for 20 minutes

5. filter through 0.45 micron filter

6. save sample for analysis/measurement, refrigerate ASAP to avoid evaporation

B.2.5 Residual (mostly organic) P

We used the persulfate digestion method with remaining sediment after step #4

(apatite-P). This can also be used with a new sediment aliquot for determination of

total P.

Materials:

• hot plate

• glass scoop (to hold persulfate crystals)

• sulfuric acid solution

• potassium persulfate (K2S2O8) solid

• 1 N (1 M) NaOH

Procedure:

1. obtain 50 mL (or suitable portion) of thoroughly mixed sample

• for sediments, mix ∼60 mg sediment sample (record weight) to 50 mL H2O

2. add 1 mL sulfuric acid solution
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3. add 0.5 g solid potassium persulfate

4. boil gently on preheated hot plate for 30-40 min (or until 10 mL left)

5. cool and dilute to 30 mL (with DI water)

6. neutralize solution with NaOH

7. dilute to 100 mL with distilled water

B.3 Equipment

B.3.1 Reciprocating Shaker

This shaker can be found in 395 CB.

1. place bottles together on board of shaker

2. wrap them together using tape

3. ensure that it is on ‘reciprocating’ mode (if necessary move knob to that side)

4. set speed to highest setting (10)

5. turn on shaker

6. leave on until shaking time ends

NB: There is a top for the shaker (which holds individual tubes/bottles), but we didn’t

find it until after the fractionation work had commenced. In order to ensure that all

samples were shaken in the same manner, we followed the above protocol (wrapping

tubes together) for all the work. The purpose of shaking is to ensure enough contact

between sediment and solution so that sediment components can be released to the

solution, and for this reason we decided to ensure that contact would be similar for

all samples.
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B.3.2 Ultracentrifuge

This can be found in the hydrogeology lab (in the ESC). Additional directions for use

are found above the ultracentrifuge in the lab.

1. turn on centrifuge by pressing button, wait until inside cold (10-15 min)

2. add tubes (250 mL PP bottles) to centrifuge

• ensure caps tightended on tubes

• ensure that bottles are balanced (2, 4, or 6 tubes placed across from one

another

3. screw caps onto top of centrifuge, ensure that it is tightened (note directional

arrows)

4. ensure that inside is cold (arrow should be below blue indicator)

5. completely close the door on top of centrifuge (should snap in place)

6. set speed to 1000 rpm for starting up

7. ensure that auto brake is off, hit start button

8. once to speed (wait a couple minutes), increase speed sequentially (waiting

between increases) to desired speed

9. set timer to desired time (or just hit stop button if counting time by yourself)

10. once time is up (if you didn’t set time, hit stop button), turn on the auto brake

if desired

11. wait until spinning ceases, obtain samples from centrifuge

NB: There is also a small centrifuge available that could be used for 50 mL conical

base centrifuge tubes. It has a maximum speed of 3500 rpm. The concept of use is

similar, but there is no need to ensure that the centrifuge is cool (no refrigeration

necessary).
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B.3.3 Vacuum Filtration

We used the filter holder available in the hydrogeology lab, though we could do

something similar in 395 CB.

1. put together vacuum ensemble

• put circular piece on top of bottom piece and put filter on top

• screw in top piece

• add black stopper to one side of bottom piece

• connect tubing to other side of bottom piece

2. turn on vacuum by flipping the switch

3. pour liquid to be filtered through the filter

4. turn off vacuum when all liquid is filtered

5. pull off the stopper and pull out the tubing

6. pour solution in bottom piece through one of the side tubes on bottom piece

into labeled container

NB: The entire ensemble should be thoroughly cleaned (rinsed with DI water) and

dried prior to the next use, in order to avoid contamination from previously filtered

solutions.

B.4 Measurement of P in Solution

All results reported here were determined using the Hach amino acid method for phos-

phate measurement. We give the procedure for this method here, and additionally

provide the procedure we used for measurement of phosphate using ion chromatog-

raphy.

82



B.4.1 Hach Amino Acid Method

We needed to dilute our solutions prior to measurement with this method. In all

cases, it was because we didn’t have enough solution to use this method. In some

of the cases, we had to do greater dilution due to darker solutions that we thought

would interfere with measurement. It is important to keep track of the dilution that

you use. After dilution, the method proceeds as follows:

1. ensure that 1 inch square cell holder is facing user

2. choose the amino acid program (#485) from stored programs on DR5000

3. obtain 12.5 mL of sample

4. add 0.5 mL of first reagent (molybdate)

5. add 0.5 mL of second reagent (amino acid)

6. invert solution a few times to mix (turns blue if phosphates present)

7. tap the timer button on DR5000 screen (in amino acid program) and hit ‘OK’

8. place inverted solution in a 10 (or 25) mL 1 in cuvette

9. place blank sample (solution without any reagents) into another cuvette (same

size)

10. use wipes to ensure cuvettes are clear of smudges

11. once time is up, place blank sample cuvette into centrifuge and press ‘Zero’

12. remove this cuvette and place other (prepared) sample into holder

13. record reading from the screen (in mg·L−1 PO3−

4 )

NB: The method reports some possible interferences, including colored samples. In-

stead of dilution (as we did), the method says to add 1 mL of a sulfuric acid standard

solution (10 N) to the blank sample. This was not used in this work.
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B.4.2 Ion Chromatography

The ion chromatography system we practiced with is in the hydrogeology lab (ESC).

There is a system being prepared in 395 CB as well.

Materials:

• tubes and stoppers 5 (now 6) for standards plus one for each water sample to

be run

• stopper plunger

• auto-sampler trays (enough to hold all tubes, 6 tubes per tray)

• five standard solutions and DI water

• previoulsy prepared solutions for measurement

For each of the standards and water samples (first do DI water, then standards #1-5,

and then the water samples in desired order), perform the following:

1. pour liquid into IC tube to ∼1 cm below top of tube

2. put on stopper, push down with plunger until top-most part of the stopper is

aligned with top of the tube

3. dry out as well as possible any liquid remaining on top of the stopper

4. place stopper in the auto-sampler tray

• first tube in each tray will be placed on side with the black dot

• place DI water and then five standards in first tray

• make sure to record order that samples are placed in trays

After all water samples are loaded, place trays into the auto-sampler. First tray will

be the most forward tray in the left rack, and the second will be next (and so on).
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The black dots align with the right side of that rack. After this is completed, the run

can be prepared and started.

Running the samples:

1. choose File Save as (name what you want)

2. rename, delete, create samples according to how many water samples that will

be running and desired distinction by name

3. set dilutions factor if desired and necessary

4. select batch - start

5. tap hold/run button on the auto-sampler

6. check back later for results

NB: You should check with lab assistant (or Dave Tingey) to ensure that there is

enough eluent available for the run.
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Appendix C

Results

Table C.1: Background Soil P Concentrations (mg·g−1)

BG WS KCl NaOH HCl PFD Total P
1 4.49E-03 2.95E-03 1.60E-01 1.84E-01 1.54E+00 1.89E+00
2 6.12E-03 2.84E-03 1.71E-01 2.32E-01 1.94E+00 2.35E+00
3 3.42E-03 2.34E-03 1.30E-01 2.07E-01 1.38E+00 1.72E+00
4 7.28E-03 1.06E-02 1.37E-01 1.38E+00 6.05E+00 7.59E+00
5 - 1.32E-02 7.80E-02 1.91E+00 4.21E+00 -

Table C.2: Summary of Adjusted Sediment P Concentrations (mg·g−1)

Location Depth (ft) KCl NaOH HCl
near9 0 4.85E-03 5.30E-02 1.28E-01

12 0 4.97E-03 1.21E-01 1.20E+00
12 2 3.44E-03 8.98E-02 -
20 0 4.73E-03 9.89E-02 7.25E-01
20 2 3.40E-03 1.61E-01 1.10E+00
22 0 1.07E-02 4.33E-01 6.77E-01
22 1 6.52E-03 2.62E-01 5.01E-01
23 0 2.82E-03 1.74E-01 9.57E-01
24 0 - 9.28E-02 1.34E+00
29 0 2.33E-03 1.86E-01 9.46E-01
29 1 2.96E-03 1.69E-01 1.14E+00
30 0 3.33E-03 1.35E-01 1.25E+00
30 2 4.65E-03 2.25E-01 8.54E-01
31 0 3.23E-03 1.69E-01 1.08E+00
31 1 6.00E-03 2.11E-01 1.03E+00
32 0 3.53E-03 1.31E-01 1.01E+00
32 1 3.99E-03 1.72E-01 9.61E-01
33 0 5.80E-03 2.00E-01 1.09E+00
35 0 4.48E-03 1.69E-01 8.98E-01
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Table C.3: Summary of Sediment P Concentrations (mg·g−1) for Points 7-29

Location Depth (ft) WS KCl NaOH HCl PFD Total P
7 0 2.80E-02 - - - - -
8 0 9.46E-03 - - - - -
9 0 8.45E-03 - - - - -

near9 0 9.71E-03 4.92E-03 5.30E-02 1.28E-01 1.39E+00 1.59E+00
10 0 5.93E-03 - - - - -
10 0.5 3.97E-03 - - - - -
10 1 4.00E-03 - - - - -
11 0 4.96E-03 - - - - -
11 0.5 6.95E-03 - - - - -

11muck 0 5.97E-03 - - - - -
12 0 6.14E-03 6.19E-03 1.27E-01 1.20E+00 1.38E+00 2.72E+00
12 0.5 3.39E-03 - - - - -
12 1 3.70E-03 - - - - -
12 2 3.89E-03 3.58E-03 8.98E-02 - 8.23E-01 -
13 0 6.48E-03 - - - - -

near13 0 5.38E-03 - - - - -
14 0 7.14E-03 - - - - -
15 0 4.75E-03 - - - - -
16 0 4.70E-03 - - - - -
17 0 2.21E-02 - - - - -
18 0 9.81E-03 - - - - -
18 0.5 3.19E-03 - - - - -
18 1 4.06E-03 - - - - -
19 0 5.52E-03 - - - - -
19 0.5 4.52E-03 - - - - -
19 1 5.48E-03 - - - - -
20 0 4.06E-03 5.74E-03 1.34E-01 7.27E-01 1.16E+00 2.04E+00
20 0.5 4.93E-03 - - - - -
20 1 4.94E-03 - - - - -
20 2 4.49E-03 3.67E-03 1.73E-01 1.10E+00 1.48E+00 2.76E+00
21 0 1.27E-02 - - - - -
21 0.5 9.52E-03 - - - - -
21 1 4.49E-03 - - - - -
22 0 6.02E-03 1.10E-02 4.60E-01 6.78E-01 1.81E+00 2.97E+00
22 0.5 7.93E-03 - - - - -
22 1 4.66E-03 6.58E-03 2.70E-01 5.01E-01 8.31E-01 1.61E+00
23 0 2.80E-03 3.22E-03 1.86E-01 9.58E-01 9.32E-01 2.08E+00
24 0 5.81E-03 - 1.07E-01 1.34E+00 9.11E-01 -
25 0 3.53E-03 - - - - -
26 0 4.50E-03 - - - - -
27 0 3.88E-03 - - - - -
28 0 2.52E-03 - - - - -
29 0 2.70E-03 2.53E-03 1.86E-01 9.46E-01 1.44E+00 2.58E+00
29 0.5 2.80E-03 - - - - -
29 1 2.87E-03 3.02E-03 1.71E-01 1.14E+00 2.68E+00 4.00E+00

88



Table C.4: Summary of Sediment P Concentrations (mg·g−1) for Points 30-59

Location Depth (ft) WS KCl NaOH HCl PFD Total P
30 0 2.28E-03 3.72E-03 1.35E-01 1.25E+00 2.64E+00 4.04E+00
30 0.5 2.55E-03 - - - - -
30 1 2.37E-03 - - - - -
30 2 4.42E-03 5.00E-03 2.38E-01 8.54E-01 3.23E+00 4.33E+00
31 0 4.48E-03 3.94E-03 1.88E-01 1.08E+00 1.00E+00 2.28E+00
31 0.5 3.69E-03 - - - - -
31 1 5.60E-03 6.56E-03 2.24E-01 1.03E+00 1.03E+00 2.30E+00
32 0 - 4.00E-03 1.51E-01 1.01E+00 1.06E+00 -
32 0.5 3.01E-03 - - - - -
32 1 - 3.99E-03 1.72E-01 9.61E-01 1.12E+00 -
33 0 5.34E-03 5.93E-03 2.01E-01 1.09E+00 1.53E+00 2.83E+00
34a 0 3.47E-03 - - - - -
34b 0 5.40E-03 - - - - -
35 0 - 5.18E-03 1.83E-01 8.98E-01 1.34E+00 -
36 0 2.91E-03 - - - - -
37 0 2.80E-03 - - - - -
38 0 4.80E-03 - - - - -
39 0 7.86E-03 - - - - -
40 0 3.23E-03 - - - - -
41 0 5.01E-03 - - - - -
42 0 5.76E-03 - - - - -
42 0.5 3.37E-03 - - - - -
42 1 3.99E-03 - - - - -
42 2 3.15E-03 - - - - -
43 0 6.01E-03 - - - - -
43 0.5 3.28E-03 - - - - -
43 1 3.49E-03 - - - - -
44 0 4.53E-03 - - - - -
44 0.5 3.33E-03 - - - - -
44 1 3.08E-03 - - - - -
45 0 3.83E-03 - - - - -
46 0 4.42E-03 - - - - -
47 0 3.10E-03 - - - - -
48 0 2.71E-03 - - - - -
49 0 5.54E-03 - - - - -
50 0 3.22E-03 - - - - -
51 0 5.24E-03 - - - - -
52 0 3.89E-03 - - - - -
53 0 3.16E-03 - - - - -
54 0 3.23E-03 - - - - -
55 0 3.01E-03 - - - - -
56 0 2.67E-03 - - - - -
57 0 2.65E-03 - - - - -
58 0 3.10E-03 - - - - -
59 0 3.37E-03 - - - - -
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Table C.5: Sediment P Concentrations (mg·g−1) for Repeat Fractionations

Location Depth (ft) WS KCl NaOH HCl PFD
12 2 1.89E-03 1.96E-03 - 1.45E+00 -
22 0 4.37E-03 3.71E-03 - 1.53E+00 -
24 0 2.12E-03 2.67E-03 - 1.24E+00 -
32 0 1.81E-03 2.49E-03 - 4.32E-01 -
32 1 3.22E-03 2.10E-03 - 1.04E+00 -
35 0 2.30E-03 3.20E-03 - 1.49E+00 -
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Appendix D

Geostatistical Plots in GMS

Figure D.1: Preliminary KCl Extractable P Concentration Contours across Delta
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Figure D.2: Preliminary NaOH Extractable P Concentration Contours across Delta
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Figure D.3: Preliminary HCl Extractable P Concentration Contours across Delta
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Figure D.4: Preliminary Organic (by digestion) P Concentration Contours across
Delta
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