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ABSTRACT 

 

 

 

ISOGEOMETRIC FINITE ELEMENT ANALYSIS USING T-SPLINES 

 

 

 

Jingang Li 

Department of Civil and Environmental Engineering 

Master of Science 

 

 

 

Non-uniform rational B-splines (NURBS) methodology is presented, on which 

the isogeometric analysis is based. T-splines are also introduced as a surface design 

methodology, which are a generalization of NURBS and permit local refinement. 

Isogeometric analysis using NURBS and T-splines are applied separately to a structural 

mechanics problem. The results are compared with the closed-form solution. The 

desirable performance of isogeometric analysis using T-splines on engineering analysis is 

demonstrated.  
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1 Introduction 

Finite element analysis (FEA) uses shape functions and nodes, while Computer-

aided design (CAD) employs basis functions and control points. The typical situation in 

engineering practice is that designs are created in CAD systems, meshes are generated 

from CAD data, and FEA is executed as shown in Figure 1-1. 

 

 

Figure 1-1: Relationship between CAD and FEA in traditional analysis. 

Tremendous effort has been made to integrate CAD and FEA. Recently, Dr. 

Thomas J.R. Hughes introduced the concept of isogeometric analysis to make viable a 

seamless interaction between CAD and FEA [1]. The name of isogeometric analysis 

signifies that the same basis functions can be used in both CAD and FEA. Figure 1-2 

shows relationship between CAD and FEA in isogeometric analysis.  
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Figure 1-2: Relationship between CAD and FEA in isogeometric analysis. 

Isogeometric analysis possesses many desirable features. In many cases, mesh 

generation is unnecessary. It is deemed costly and time consuming. In addition, accuracy 

problems can be avoided, since geometries may be exactly represented using 

isogeometric analysis.  

The most extensively used computational geometry technology in isogeometric 

analysis is Non-uniform rational B-splines (NURBS). Although NURBS are ubiquitous 

in the CAD industry, NURBS possesses some deficiencies. First, NURBS do not allow 

for local refinement. In order to refine a local area, a global refinement is required 

because the B-spline control grid traverses the entire domain. As a result of global 

refinement, many superfluous control points are created, which is inefficient. In Figure 

1-3.a, the red NURBS control points are superfluous [12]. Second, gaps and overlaps are 

inevitable at intersections of NURBS-based surfaces. Figure 1-4 illustrates a hand model 

comprised of seven B-spline surfaces with gap at the intersection of the hand and arm 

[11].  
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T-splines were recently proposed by Dr. Thomas Sederberg as a generalization of 

NURBS technology that is capable of substantially reducing the number of superfluous 

control points [11]. In terms of applications in CAD industry, T-splines preserve all of the 

desirable properties of NURBS. In addition, T-splines permit local refinement by using 

T-junctions. T-splines allow a row of control points to terminate. The final control point 

in a partial row is called a T-junction [11]. All the purple points shown in Figure 1-3.b 

are T-junctions [12]. Control points can be inserted into the control grid without 

propagating an entire row or column of superfluous control points. T-splines are also 

capable of closing gaps at intersections of geometric model shapes. Figure 1-5 shows a 

gap between two B-spline surfaces, which is fixed with T-splines [11].   

 

 

Figure 1-3: Head modeled (a) as a NURBS and (b) as a T-spline [12]. 
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Figure 1-4: Model of a hand comprised of B-spline surfaces [11]. 

 

 

Figure 1-5 A gap at the intersection of B-spline surfaces, fixed with a T-spline [11]. 

The goal of this thesis is to verify that the same features making T-splines 

desirable for CAD make it desirable for analysis. In this thesis, isogeometric analysis 

using T-splines is introduced. The isogeometric analyses of a structural mechanics 

problem are performed using B-splines and using T-splines, respectively. It is anticipated 

that isogeometric analyses using both B-splines and T-splines can produce results with 

the same level of accuracy, while T-splines use significantly fewer control points than B-

splines, and is therefore more computationally efficient.  
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2 Literature Review 

2.1 Isogeometric Analysis  

Hughes [1] introduced the concept of isogeometric analysis using NURBS to 

explore the new generation of computational mechanics procedures based on modern 

developments in computational geometry.  

Bazilevs and Hughes [2] explored the mathematical study of isogeometric 

analysis based on NURBS. They investigated approximation and stability properties in 

the context of h-refinement. Furthermore, they developed approximation estimates based 

on a new Bramble-Hilbert lemma in so-called “bent” Sobolev spaces appropriate for 

NURBS approximations and established inverse estimates similar to ones for finite 

elements.  

Cottrell and Hughes [3] investigated the effects of smoothness of basis functions 

on solution accuracy within the isogeometric analysis framework using NURBS. They 

also developed a local refinement strategy that can be utilized in one of the shell analyses. 

Hughes, Reali and Sangalli [4] initiated a study of efficient quadrature rules for 

NURBS-based isogeometric analysis. They developed efficient rules for spaces arising in 

the calculation of mass, stiffness, and advection matrices. 
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Auricchio, Beirão de Veiga et al. [5] investigated plane incompressible elastic 

problems by means of a “stream function” formulation and developed the numerical 

scheme within the framework of NURBS-based isogeometric analysis. They also 

proposed a discontinuous Galerking approach to deal with multiple mapped, possibly 

multiply connected domains. 

Cottrell, Reali et al. [6, 7] initiated the study of the isogeometric analysis in the 

field of structural vibration analysis. They emphasized the concept of k-refinement, a 

higher-order procedure employing smooth basis functions, which was used repeatedly in 

the vibration calculations. They applied isogeometric analysis to some simple model 

problems of structural vibration. The k-method was shown to provide more robust and 

accurate frequency spectra than typical higher-order finite elements (i.e., the p-method). 

Bazilevs, Calo et al. [8] developed a fully-coupled isogeometric monolithic 

formulation of the fluid-structure interaction of an incompressible fluid on a moving 

domain with a nonlinear hyperelastic solid.  

Bazilevs, Calo et al. [9] developed a NURBS based isogeometric fluid-structure 

interaction formulation, coupling incompressible fluids with nonlinear elastic solids, and 

allowing for large structural displacements. They applied this methodology to problems 

of arterial blood flow modeling. 

Zhang, Bazilevs et al. [10] introduced an approach to construct hexahedral solid 

NURBS meshes and applied the meshes to patient-specific vascular geometric models 

from imaging data for use in isogeometric analysis. 
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2.2 T-splines 

Sederberg, Zheng et al. [11] proposed a generalization of non-uniform B-spline 

surfaces called T-splines to allow for local refinements. They also introduced a locally 

renewable subdivision surface called T-NURCCs (Non-uniform rational Catmull-Clark 

surfaces with T-junctions). 

Sederberg, Cardon et al. [12] introduced a T-spline simplification algorithm to 

eliminate superfluous control points. They also presented a new T-spline local refinement 

algorithm  

Li, Ray, and Lévy [13] introduced an algorithm for the automatic generation of a 

control mesh driven by the anisotropy of the shape. Their algorithm made it possible an 

automatic conversion from a mesh of arbitrary topology to a T-spline surface. 

Wang, Zheng, and Seah [14] introduced two local knot insertion based algorithms 

to resolve the issue of conversion back and forth of a surface between the T-spline and 

hierarchical B-spline representations. 

He, Wang et al. [15] developed the manifold T-splines to extend the currently 

available algorithms of the popular planar tensor-product NURBS and T-splines to 

arbitrary manifold domain of any topological type. 

Zheng, Wang, and Seah [16] introduced an automatic algorithm to develop 

smooth parametric surfaces using T-splines from z-map data. The algorithm starts with a 

rough surface approximation and then progressively refines it in the regions where the 

approximation accuracy does not meet the requirement. 
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Bazilevs, Calo et al. [17] explored T-splines as a basis for isogeometric analysis. 

They applied T-splines to some basic problems of computational fluid and structural 

mechanics and attained desirable results in all cases.   

Yang, Fuchs et al. [18] investigated the evolution of T-spline level sets. They 

avoided extra branches and singularities of the T-spline level sets without having to use 

re-initialization steps by incorporating the distance field constraints.  

Yang and Jüttler [19] introduced a method for 3D shape metamorphosis based on 

the evolution of T-spline level sets. They verified that the morphing process of T-spline 

level sets can be formulated as least squares problems. They also developed a fully 

automatic algorithm to produce metamorphosis between shapes of any topology. 

Deng, Chen and Feng [20] introduced polynomial spline functions over T-meshes. 

They forced the spline function on every cell to be a tensor-product polynomial, and to 

achieve the specified smoothness across the common edges. They also demonstrated 

several advantages of splines over T-meshes overt T-splines. 
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3 Bézier Curves, B-splines and T-splines 

3.1 Bézier Curves 

Bézier curves are named after Dr. Pierre Bézier who was an engineer with the 

Renault car company. He started to create a method known as the Bézier curve 

formulation in the 1960’s, which would be easy and intuitive enough to allow drafters to 

develop curves without a background in the corresponding mathematics fields. A degree 

n Bézier curve has a few characteristics as follows: 

A Bézier curve has a corresponding control polygon. 

A control polygon has n+1 control points numbered from 0 to n. 

A control polygon is comprised of straight lines connecting the control points. 

A Bézier curve passes through the first and last control points. 

A Bézier curve is tangent to the control polygon at the end control points. 

Figure 3-1 illustrates two different Bézier curves associated with their 

corresponding control polygons.  
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Figure 3-1: Illustration of Bézier curves. 

3.1.1 The Equation of a Bézier Curve 

The equation of a Bézier curve is given in Equation 3-1. 

 





n

i

i

n

i PtBtP
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)()(                                                                                                                       (3-1) 

 

Where t is a parameter ranging from 0 to 1, P(t) is either the X or Y coordinate of 

a point on the curve corresponding to t. Pi is either the X or Y coordinate of a control 

point i. )(tBn

i  is the basis function for the control point i. For cubic Bézier curves (n=3), 

the basis functions are given in Equation 3-2. 
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The cubic Bézier mass functions are plotted in Figure 3-2 [21]. 

 

 

Figure 3-2: Cubic Bézier mass functions [21]. 

Note that for a given value of t, the basis functions sum to one. This is true for any 

degree n. Although cubic Bézier curves are extensively used in all kinds of industry, 

other degree Bézier curve may be used in some cases. Therefore, it’s desirable to 

generalize the basis function for a degree n Bézier curve. Equation 3-3 provides a 

formula for degree n Bézier curve blending functions denoted )(tB n

i  where the parameter 

i = 0, 1, …, n. 
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3.1.2 Bézier Curves over Arbitrary Parameter Intervals 

In Equation 3-3, the parameter t ranges from zero to one. It is desirable to have 

the parameter t vary over an arbitrary parameter interval (t0, t1). The Equation 3-4 

provides a new formula for the basis function with the parameter t ranging over an 

arbitrary parameter interval (t0, t1). 
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3.1.3 Rational Bézier Curves 

If each control point of a Bézier curve Pi is assigned a scalar weight, it will 

become the rational Bézier curve. The equation of a rational Bézier curve is calculated by 

Equation 3-5. 
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The Equation 3-6 provides a formula for the rational Bézier basis function.  
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)(tB
n

i
 represents the Bézier basis function and Wi indicates the weight. When the 

scale weight of a control point is changed, the shape of the Bézier curve will be changed 

accordingly. Figure 3-3 illustrates how a set of Bézier curves is developed by changing a 

control point weight. The reason why this type of Bézier curve is called a rational Bézier 

curve is because the blending functions are rational polynomials, or the ratio of two 

polynomial functions of the same variable t. If each control point is assigned the same 

scalar weight, a rational Bézier curve will be exactly the same as a standard Bézier curve.   

   

 

Figure 3-3: Example of rational Bézier curve with one varying scalar weight [21]. 

3.1.4 Rational Bézier Curve Representation of Circular Arcs 

Rational Bézier curves can represent circular arcs exactly. Figure 3-4 illustrates a 

circular arc represented both by a degree 2 and a degree 3 rational Bézier curve [21]. 
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Figure 3-4: Rational Bézier curve representations of circular arcs [21].  

The length e shown in Figure 3-4 is calculated in Equation 3-7. 

 

re

2
cos21

2
sin2







                                                                                                               (3-7) 

 

3.2 B-spline Curves 

The word “spline” stems from the ship building industry, where it is originally 

referred to a thin strip. Drafts men needed to plot a line through a set of points. The  

solution was to place metal weights (called ducks) at the control points, and bend a thin 

strip through the ducks. Figure 3-5 shows a spline and ducks [21]. The B in B-spline 

stands for basis function. B-spline curves are a series of Bézier curves connected end to 

end. 
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Figure 3-5: Spline and ducks [21]. 

The physics behind B-spline is that a duck has the greatest control over the shape 

of the curve at the point of contact, and the influence decreases gradually further along 

the spline. The draftsmen could insert more metal weights into a certain part of the spline 

where more control over the shape would be gained. 

3.2.1 Polar Form 

The traditional approach to define B-spline was mainly focused on basis functions 

and recurrence relations which required the background in the underlying mathematics. 

The alternative method of developing a Bézier curve or B-spline curve is denoted Polar 

Form, which was introduced by Dr. Lyle Ramshaw. The polar form eliminates the 

necessity of delving into the corresponding intricate mathematical theories to allow 

people to grasp the concept of a B-spline curve. 

The following three rules are essential to develop Bézier and B-spline curves.  

1. For a degree n Bézier curve P[a,b](t), the control points are relabeled Pi = P(u1, 

u2, . . . un) where uj = a if j <= n − i and otherwise uj = b. Figure 3-6 shows that two 

degree three Bézier curves marked with polar values are connected together [21]. The 

parameter interval for the first curve is [0, 2] and the parameter t of the second curve 
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ranges from 2 to 3. Note that the polar value P(t, t, …, t) corresponds to the point located 

on a Bézier curve with parameter value t. 

 

 

Figure 3-6: Polar form representation of Bézier curves [21]. 

2. A polar value is symmetric in its arguments. This signifies that the order of 

arguments has no influence on the polar value. In other words, a polar value can not be 

changed by changing the order of the arguments.  

3.  Given (u1, u2, …, u n-1, a) and P(u1, u2, …, u n-1, b), Equation  (3-8 provides a 

formula to calculate P(u1, u2, …, u n-1, c). ),,...,,( 121 cuuuP u  can be treated as the affine 

combination of  (u1, u2, …, u n-1, a) and (u1, u2, …, u n-1, b) 

 

)(

),,...,,()(),,...,,()(
),,...,,( 121121

121
ab

buuuPacauuuPcb
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Equation 3-8 has the geometrical significance which indicates that if one 

parameter of a polar value varies when the others remain constant, the polar value will 

form a straight line as illustrated in Figure 3-7. 

 

   

Figure 3-7: Affine map property of polar form. 

3.2.2 Knot Vectors 

A knot vector is comprised of a list of parameter values denoted knots, which 

specify the parameter intervals for all the Bézier curves connected together to form a B-

spline. Assume that a cubic B-spline is comprised of three Bézier curves whose 

parameter intervals are [1, 3], [3, 5] and [5, 8]. Thus, the knot vector of this B-spline 

would be [t0, t1, 1, 3, 5, 8, t6, t7]. Note that there are two additional knots listed at the 

beginning and end of the knot vector. These end knots have control over the end 

conditions of the B-spline curve.  
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Due to historical reasons, the knot vector of a degree n B-spline seems to need n 

knots attached to its front and back. In practice, the first and the last knots are usually 

ignored because they have no impact on the shape of the curve. Therefore, n-1 end-

condition knots would be prepended and appended to the knot vector. Given the knot 

vector for a degree n B-spline [t1, t2, t3, …],  the parameters of any polar value are 

comprised of n adjacent knots extracted from the knot vector and hence the i
th

 polar value 

can be denoted Pi(ti, …, ti+n-1).  

Apparently, a knot vector consists of non-decreasing series of real numbers. If any 

knot value is placed more than once at the same coordinate in the knot vector, it is 

referred to as a multiple knot and the corresponding Bézier curve can be thought of as a 

zero length curve. If the knot vector of a B-spline curve is evenly spaced, the curve is 

uniform B-spline. Otherwise, it is a non-uniform B-spline. Figure 3-8 shows the polar 

form representation and the knot vector of a B-spline curve [21]. 

 

 

Figure 3-8: Polar form representation and knot vector of B-spline [21]. 
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As indicated earlier, there are n-1 additional knots at the beginning and end of a 

knot vector. All these extra knots do not represent the parameter intervals of the Bézier 

curves that constitute the B-spline. However, they play an important role in determining 

the shape of the B-spline at its ends. For an open B-spline, the conventional practice is to 

place n identical knots at each end of the knot vector. This makes a B-spline assume a 

Bézier behavior at its ends. In other words, the B-spline passes through its end control 

points. Furthermore, the B-spline is tangent to the control polygon at its end control 

points just as a Bézier curve does. Figure 3-9 illustrates how the Bézier curve end 

conditions are imposed on the ends of a B-spline [21]. 

 

 

Figure 3-9: Imposition of Bézier curve end conditions on B-spline [21]. 
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3.2.3 Knot Insertion 

One of the standard operations of B-spline is knot insertion. The definition of knot 

insertion is to insert one knot into the existing knot vector without changing the shape of 

the curve. In addition, some of the existing control points are deleted and replaced with 

new ones due to the inserted knot. Knot insertion is extensively used to provide more 

local control by only modifying the part of the curve of interest. The operation of knot 

insertion can be easily performed with the symmetry and affine properties of polar 

values. 

3.3 T-splines 

This subchapter is extracted from reference [11]. T-splines are a generalization of 

NURBS surfaces that allow for local refinement. Figure 3-10 illustrates an example of a 

T-mesh in parameters s and t [11]. The si represents s coordinates, the ti represents t 

coordinates, and the di and ei represent knot intervals. 

The control grid of T-splines is called T-mesh, which is simply a rectangular grid 

permitting T-junctions. Each edge in a T-mesh is a line segment of constant s or of 

constant t. A T-junction is a vertex shared by one s-edge and two t-edges, or by one         

t-edge and two s-edges. Each edge of a T-mesh has a knot interval, which is governed by 

the following rules. 

Rule 1: The sum of knot intervals on one edge must equal the sum of knot 

intervals on the opposing edge.  

Rule 2: If T-junctions on opposing edges of a face can be connected with rule 1 

being held valid, that edge mush be deemed as part of the T-mesh. 
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Figure 3-10: Example of T-mesh [11]. 

3.3.1 Control Point Insertion 

  The general practice of control point insertion using B-splines is that additional 

control points are inserted where needed, and the shape of the B-splines will be changed 

globally.  

One of the advantages of T-splines over B-splines is that T-splines allow for local 

knot insertion, which is the procedure of inserting a single control point into a T-mesh 

without altering the shape of T-splines.  

Local knot insertion requires executing knot insertion into all of the basis 

functions whose knot vectors will be altered by the insertion of the new control point. In 

Figure 3-11, only the basis functions of control points P1, P2, P4, and P5 are altered due to 

the presence of the new control point P3’ [11].  
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Figure 3-11: T-mesh knot insertion [11]. 
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4 Finite Element Program 

A simple finite element program for the analysis of membrane (plane stress) 

problems was developed.  This program uses quadrilateral Lagrangian elements. The 

order of the shape functions is the square root of the number of nodes per element, minus 

one.  Thus, the shape functions for the 4-node Lagrangian quad element are linear, the 

shape functions for the 9-node Lagrangian quad element are quadratic, etc.  There is one 

shape function corresponding to each node in an element, and the ith shape function has a 

value of one at node i and a value of zero at all other nodes ij   in the element. 

A single global coordinate system exists for the entire system of elements with the 

global x-coordinate in the horizontal direction and the global y-coordinate in the vertical 

direction.  A natural coordinate system exists for each element.  Two opposite sides of 

each quadrilateral element are arbitrarily designated as the "left" and "right" sides, while 

the other two opposite sides are designated as the "top" and "bottom" sides.  The natural 

s-coordinate ranges from a value of -1 on the left side to +1 on the right side, and the 

natural t-coordinate ranges from a value of -1 on the bottom side to +1 on the top side.  

Opposite sides of an element need not be parallel, and in fact, the sides may be curved if 

there are more than two nodes on a side.  The shape functions are functions of the natural 

coordinates s and t. 
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4.1 Input and Output 

The geometry input to the finite element program includes the following scalars: 

 nnode   = number of nodes in the system 

 nelem   = number of elements in the system 

 nodel  = number of nodes per element 

 nsupport = number of supports 

 E  = Young's modulus of elasticity 

 ν  = Poisson's ratio 

 H  = membrane thickness 

The geometry input to the finite element program includes the following arrays: 

 xsys[nnode][2] = global x and y coordinates of each node in system 

 conn[nelem][nodel] = list of node numbers connected to each element 

 support[nsupport][2] = node number and direction number for each    

                                                   support 

The value of the direction number is either one, representing support restraint in 

the x direction, or two, representing support restraint in the y direction. 

The program considers nodal loads and boundary loads.  Nodal loads are point 

forces applied to unsupported nodes.  Boundary loads are stress traction vectors applied 

on the sides of elements.  Boundary loads may vary from element to element and from 

point to point along a side.  The user must supply a function that evaluates the stress 

traction vector at a given point on the side of an element.  The load input to the finite 

element program includes the following: 
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nnodeload = number of nodal loads 

nodeload[nnodeload][2] = node number and direction number of each nodal load 

point[nnodeload] = value of each nodal load 

nboundload = number of boundary loads 

boundload[nboundload][2] = element number and side number for each boundary    

                                               load 

npar = number of parameters needed for user function 

boundpar[nboundload][npar] = boundary load parameters for each boundary load 

The four sides of an element are ordered as follows: 1 = bottom, 2 = top, 3 = left, 

and 4 = right.  The user-supplied function for boundary loads is named UserBoundLoad, 

and is given the boundary load parameters, the x and y coordinates of a point on the 

boundary, and the x and y components of an unit outward normal vector at the point.  

This function returns the x and y components of the stress traction vector at the point. 

The program outputs global coordinates, displacements ux and uy, and stresses 

xx, yy, andxy at each output point.  The user must specify: 

noutput  = number of output points 

eoutput[noutput] = element number of each output point 

coutput[noutput][2] = natural s and t coordinates of each output point 

4.2 Program Organization 

The program is organized into five portions: 1) preprocessing, 2) stiffness matrix, 

3) force vector, 4) equation solving, and 5) postprocessing.  The preprocessing portion 

reads input data, allocates memory space for internal arrays, and numbers the degrees of 
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freedom (dof's).  Degrees of freedom correspond to the x and y displacements at the 

unsupported nodes.  The total number of dof's is ndof. 

The stiffness matrix portion of the program assembles the system stiffness matrix, 

ksys[ndof][ndof].  The ksys matrix is assembled by looping through the elements and 

calling two functions.  The first function, ElementStiff, constructs the element stiffness 

matrix, kelem[2*nodel][2*nodel].  The second function, ElemToSysStiff, adds the kelem 

matrix into the ksys matrix according to the connectivity of the elements to nodes and the 

numbering of the dof's.   

The force vector portion of the program assembles the system force vector, 

fsys[ndof].  First, the nodal loads are added to the fsys vector according to the degree of 

freedom numbering for the nodes.  Second, the boundary loads are added to fsys by 

looping through the elements and calling two functions.  The first function, 

ElementForce, constructs the element force vector, felem[2*nodel].  The second function, 

ElemToSysForce, adds the felem vector into the fsys vector according to the connectivity 

of the elements to nodes and the numbering of the dof's.   

The equation solving portion of the program solves the linear system of equations 

ksys*usys = fsys for the system displacement vector, usys[ndof].  The system is normally 

solved by triangularizing the symmetric system stiffness matrix, ksys, into the product of 

a lower triangular matrix, a diagonal matrix, and an upper triangular matrix.  Then 

backsubstitution is performed to solve the lower triangular system, the diagonal system, 

and the upper triangular system of equations. 

The postprocessing portion of the program evaluates and outputs the global 

coordinates and global components of displacement and stress at each output point.  This 
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is accomplished by looping through the output points, obtaining the element number and 

s and t coordinates from the eoutput and coutput arrays, and calling two functions.  The 

first function, SysToElemDisp, extracts the element displacement vector, 

uelem[2*nodel], from the usys vector according to the connectivity of the elements to 

nodes and the numbering of the dof's.  The second function, ElementOutput, evaluates 

and outputs the coordinates, displacements, and stresses at the output point. 

4.3 Element Functions 

The ElementStiff function (Equation 4-1) evaluates the element stiffness matrix 

by evaluating the following integral by Gauss quadrature. The D matrix in Equation 4-1 

is a 3 x 3 stiffness matrix involving Young's modulus and Poisson's ratio. 
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The B matrix in Equation 4-1 is a 3 x 2*nodel matrix involving derivatives of the 

shape functions N
(1)

, N
(2)

, ... , N
(nodel)

 with respect to global x and y coordinates. 
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The shape functions are constructed in terms of the local s and t coordinates in 

Equation 4-4. 
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The derivatives of the shape functions with respect to global x and y coordinates 

are obtained from the derivatives of the shape functions with respect to the natural s and t 

coordinates via the inverse Jacobian matrix (Equation 4-5) 
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The Jacobian matrix whose determinant is in Equation 4-1, and whose inverse is 

in Equation 4-5 is calculated from the natural derivatives of the shape functions and the 

global coordinates of the nodes (Equation 4-6).  
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In summary, the ElementStiff function loops through each Gauss point, whose 

natural coordinates are given, and: 

1) Calls the Lagrange2D function that evaluates the shape functions and their 

natural derivatives at the Gauss point according to Equation 4-4. 2) Calls the 

Isoparametric2D function that evaluates Equations 4-6 and 4-5 at the Gauss point. 3) 
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Evaluates Equations 4-2 and 4-3 to get the D and B matrices at the Gauss point. 4) 

Computes the product WJDBHBT  at the Gauss point where W is the Gauss weight, and 

adds this product to kelem. 

The ElementForce function (Equation 4-7) evaluates the element force vector by 

evaluating the following integral by Gauss quadrature on the sides of the element that 

have boundary loads. 

 






1

1

T JTAHfelem (ds or dt)                                                                   (4-7) 

 

Equation 4-7 is integrated over ds for the top and bottom sides with t held constant 

at -1 for the bottom side and +1 for the top side.  Equation 4-7 is integrated over dt for the 

left and right sides with s held constant at -1 for the left side and +1 for the right side.  

The A matrix in Equation (4-7) is a 2 x 2*nodel matrix involving shape functions N(1), 

N(2), ... N(nodel). 
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The shape functions are constructed in terms of the local s and t coordinates 

according to Equation 4-4 given previously.  The Jacobian matrix is constructed 
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according to Equation 4-6 given previously.  The norm of the Jacobian in Equation 4-7 is 

determined from the elements of the Jacobian matrix: 

 

Top and bottom sides: 
2
12

2
11 JJJ   Left and right sides: 

2
22

2
21 JJJ      (4-9) 

 

The T vector in Equation 4-7 is the stress traction vector, which is evaluated on 

the boundary by calling the user-supplied function, UserBoundLoad. This function is 

given the x and y coordinates of a Gauss point, which are determined from the natural 

coordinates of the Gauss point by evaluating the shape functions at the Gauss point and 

pre-multiplying by the global coordinates of the nodes. 
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The UserBoundLoad function is also given the x and y components of a unit 

outward normal vector at the Gauss point.  These components are different for each side 

of the element and are determined from the elements of the Jacobian matrix and the 

scalars in Equation 4-9. 
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In summary, the ElementForce function loops through each Gauss point on the 

loaded side of an element and: 

 Calls the Lagrange2D function that evaluates the shape functions and their natural 

derivatives at the Gauss point according to Equation 4-4. 

 Calls the Isoparametric2D function that evaluates Equations 4-6, 4-9, 4-10, and 4-

11 at the Gauss point. 

 Evaluates Equation 4-8 to get the A matrix at the Guass point, and calls the 

UserBoundLoad function to get the stress traction vector at the Gauss point. 

 Computes the product WJTHAT  at the Gauss point where W is the Gauss 

weight, and adds this product to felem. 

The ElementOutput function evaluates the coordinates, displacements, and 

stresses at an output point by calling the Lagrange2D function to evaluate the shape 

functions and their natural derivatives according to Equation 4-4, and then calling the 

Isoparametric2D function to evaluate Equations 4-6, 4-5, and 4-10.  Equation 4-10 gives 

the coordinates of the output point.  Equation 4-8 is evaluated to get the a matrix, and the 

displacements at the output point are given in Equation 4-12. 
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Equations 4-2 and 4-3 are evaluated to get the D and B matrices, and the stresses 

at the output point are given in Equation 4-13. 
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4.4 Finite Element Program Using T-splines 

The finite element program described previously was modified to use T-spline 

shape functions rather than Lagrange shape functions.  To do so, the Lagrange2D 

function was replaced with the Tspline2D function. All other functions remain 

unchanged.  In addition, the program input was modified slightly. 

4.4.1 Modification to Program Input 

The nodes in the finite element program become the control points in the T-spline 

program.  The shape functions in the finite element program become the basis functions 

in the T-spline program.  There is one basis function for each control point.  The T-spline 

basis functions are functions of natural coordinates s and t, but there is only one natural 

coordinate system for the entire system of elements, rather than a separate natural 
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coordinate system for each element.  Thus, the natural coordinates do not always range 

from -1 to +1 in each element as they do for Lagrange shape functions.  In fact, the user 

must specify the range of s and t for each element as part of the program input: 

srange[nelem][2] = minimum and maximum s value for each element 

trange[nelem][2] = minimum and maximum t value for each element 

The only Lagrange shape functions that are nonzero (i.e. that are supported) on 

the domain of an element are those corresponding to the nodes within the element 

domain.  This is not true for T-spline basis functions.  There are T-spline basis functions 

corresponding to control points lying outside the domain of an element that may be 

supported on the domain of the element.  If nodel is the number of T-spline basis 

functions supported on the domain of an element, it's possible that nodel may vary from 

element to element.  In the T-spline program, the conservative assumption is made to set 

nodel equal to the total number of nodes in the system, and the connectivity matrix 

conn[nelem][nodel] is set to be the same for every element, consecutively listing all 

control points in the system.  Thus, the scalar nodel and the conn matrix are not input by 

the user in the T-spline program. 

To calculate the value of the ith T-spline basis function, it is necessary to know 

the s and t values at the ith control point and at two adjacent lines of control points on 

either side of the ith control point.  In addition, it is necessary to know the weighting 

value corresponding to the ith control point.  This information must be input by the user: 

 sval[nnode][5]  = s values of five control point lines for each control point 

 tval[nnode][5]  = t values of five control point lines for each control point 

 wval[nnode]  = weight value for each control point 
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The five control point lines include two preceding control point lines, the control 

point iteself, and two succeeding control point lines. 

4.4.2 The Tspline2D Function 

The Tspline2D function is given the sval, tval, and wval arrays that were input by 

the user.  It is also given the s and t coordinates of a Gauss point.  It returns the values of 

all basis functions evaluated at the Gauss point as well as the values of the derivatives of 

all basis functions with respect to s and t evaluated at the Gauss point.  This function 

computes the value of the ith basis function and its derivatives, where i ranges from one 

to nnode, as follows: 
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In Equations 4-14, 4-15 and 4-16, W(i) = wval[i].  The values of S(i)(s) and 

)s(
ds

dS )i(

are calculated by sending the s-coordinate of the Gauss point as well as 

sval[i][1], sval[i][2], sval[i][3], sval[i][4], and sval[i][5] to the TsplineDeBoor function.  

The values of T(i)(t) and )t(
dt

dT )i(

are calculated by sending the t-coordinate of the Gauss 

point as well as tval[i][1], tval[i][2], tval[i][3], tval[i][4], and tval[i][5] to the 

TsplineDeBoor function.  Equations 4-14, 4-15 and 4-16 are only evaluated for the ith 

basis function if the s and t coordinates of the Gauss point fall in the range: 

 sval[i][1]   s   sval[i][5]         

 tval[i][1]   t   tval[i][5]                                                                            

Otherwise, N
(i)

(s,t) and its derivatives are set to zero. 

4.4.3 The TsplineDeBoor Function  

The TsplineDeBoor function is called with either s values and t values by the 

Tspline2D function.  It is given the coordinate, s (or t), of a Gauss point, and it is given 

five values, val[1] through val[5], representing control point lines of s (or t).  It returns 

the value of a function, S (or T), and its derivative, dS (or dT), evaluated at s (or t). 

The TsplineDeBoor function begins by determining the interval into which the 

Gauss point falls: 

if (val[1]   s   val[2] and val[1]   val[2] )   

 k = 1  f2 = s-val[1] 

else if (val[2]   s   val[3] and val[2]   val[3] ) 
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 k = 2 f1 = s-val[1] f2 = val[5]-s 

else if (val[3]   s   val[4] and val[3]   val[4] ) 

 k = 3 f1 = val[5]-s f2 = s-val[1] 

else if (val[4]   s   val[5] and val[4]   val[5] ) 

 k = 4 f2 = val[5]-s 

else 

 return S = dS = 0 

 

Then function values are calculated by the following DeBoor algorithm: 

if (2   k   3) 
]1k[val]2k[val

f
h 1

1


    else h1 = 0 
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]k[val]3k[val

f
h 2

2


    else h2 = 0 

if (3   k   4) 
]2k[val]1k[val
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5 Test Example 

A membrane is evaluated by the finite element program with T-spline shape 

functions. The stresses at the points of interest on the membrane using both T-splines and 

B-splines are obtained. Both results are compared to the closed-form solution. 

The membrane is an infinite plate with circular hole under constant in-plane 

tension. Specifically, the membrane is subjected to tensile stress p; the radius of the 

circular hole α is equal to 5 in; the width of the membrane is equal to 40 in; the thickness 

of the membrane is equal to 0.1 in; the Poisson’s ratio ν is equal to 0.3 and the Young’s 

modulus E equals 10000 ksi. For simplicity and analysis reasons, the infinite membrane 

is reduced to a finite quarter plate. Figure 5-1 and Figure 5-2 show respectively the 

original infinite membrane and the simplified finite quarter plate.  

 

 

Figure 5-1:  Membrane with a circular hole. 
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Figure 5-2: Finite quarter membrane with a circular hole. 

5.1 B-spline Model (B.1) 

The initial B-spline model (B.1) includes 16 control points. The bottom and left 

sides of the model are restrained by the nodal supports. There are four nodal supports on 

each side. The bottom side of the model is restrained in Y direction. The left side of the 

model is restrained in X direction. Only the right side of the system is subject to the 

uniform load of 100 psi and there are no nodal loads involved in this model. During the 

process of the determination of the stiffness matrix, Gaussian quadrature method is 

adopted to evaluate the integral of the stiffness matrix formula. 64 gauss points are 

required to integrate the polynomial T-spline basis functions. The whole model has only 

one region. S and t coordinates of that region range from 0 to 1 and 0 to 2, respectively. 



41 

 

There are three points of interest, whose displacements, stresses and norms are evaluated. 

Figure 5-3 illustrates the B-spline model (B.1) with three output points (point 1, 4 and the 

middle point of arc 14, which are designated as point A, C and B, respectively.  

 

 

Figure 5-3: B-spline model (B.1). 

Each control point corresponds to two knot vectors. The knot coordinates of a 

control point Pi are designated as (si2, ti2). Thus, the knot vectors of Psi are denoted as si = 

(si0, si1, si2, si3, si4) and ti = ( ti0, ti1, ti2, ti3, ti4). The knots ti3, ti4 can be determined by 

imposing a ray in the parameter space R(α) = (si2, ti2 + α). Thus, ti3, ti4 become the t 
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coordinates of the first t-edges intersected by the ray excluding the initial (si2, ti2). The 

knot vectors for B-spline Model (B.1) are listed in the Table 5-1.  

Table 5-1: Knot vectors for B-spline model (B.1). 

Control 
Point 

knot vectors in terms of s coordinate 

1 0 0 0 0 1 

2 0 0 0 0 1 

3 0 0 0 0 1 

4 0 0 0 0 1 

5 0 0 0 1 1 

6 0 0 0 1 1 

7 0 0 0 1 1 

8 0 0 0 1 1 

9 0 0 1 1 1 

10 0 0 1 1 1 

11 0 0 1 1 1 

12 0 0 1 1 1 

13 0 1 1 1 1 

14 0 1 1 1 1 

15 0 1 1 1 1 

16 0 1 1 1 1 

Control 
Point  

knot vectors in terms of t coordinate 

1 0 0 0 0 2 

2 0 0 0 2 2 

3 0 0 2 2 2 

4 0 2 2 2 2 

5 0 0 0 0 2 

6 0 0 0 2 2 

7 0 0 2 2 2 

8 0 2 2 2 2 

9 0 0 0 0 2 

10 0 0 0 2 2 

11 0 0 2 2 2 

12 0 2 2 2 2 

13 0 0 0 0 2 

14 0 0 0 2 2 

15 0 0 2 2 2 

16 0 2 2 2 2 
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The weights of all control points are equal to one except for the ones of control 

points 2 and 3. According to the equations shown in Figure 3-4, the weights of control 

points 2 and 3 are evaluated as follows, w = (1 + 2cos(90°)/2)/3 = 0.804738. 

Equation 3-7 provides a formula to determine Y coordinate of control point 2 as 

follows, y = re

2
cos21

2
sin2







  = 5

2

90
cos21

2

90
sin2








= 2.928932. X and Y coordinates of 

other control points can be determined in the same manner. Table 5-2 shows the X and Y 

coordinates of all control points for B-spline Model (B.1). 

Table 5-2: X and Y coordinates of all control points for B-spline model (B.1). 

Control 
Point 

X Y 

1 5 0 

2 5 2.928932 

3 2.928932 5 

4 0 5 

5 10 0 

6 10 5.857864 

7 5.857864 10 

8 0 10 

9 15 0 

10 15 8.786797 

11 8.786797 15 

12 0 15 

13 20 0 

14 20 11.71573 

15 11.71573 20 

16 0 20 
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5.2 B-spline Model (B.2) 

Based on the B-spline model (B.1), a B-spline model (B.2) is created by inserting 

four new control points (s = 0.5) on all four radial control grids of B.1 as illustrated in 

Figure 5-4. The knot vectors of all control points for B-spline Model (B.2) are listed in 

Table 5-3.  

 

 

Figure 5-4: B-spline model (B.2). 
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Table 5-3: Knot vectors of all control points for B-spline model (B.2). 

Control 
Point 

knot vectors in terms of s coordinate 

1 0 0 0 0 0.5 

2 0 0 0 0 0.5 

3 0 0 0 0 0.5 

4 0 0 0 0 0.5 

5 0 0 0 0.5 1 

6 0 0 0 0.5 1 

7 0 0 0 0.5 1 

8 0 0 0 0.5 1 

9 0 0 0.5 1 1 

10 0 0 0.5 1 1 

11 0 0 0.5 1 1 

12 0 0 0.5 1 1 

13 0 0.5 1 1 1 

14 0 0.5 1 1 1 

15 0 0.5 1 1 1 

16 0 0.5 1 1 1 

17 0.5 1 1 1 1 

18 0.5 1 1 1 1 

19 0.5 1 1 1 1 

20 0.5 1 1 1 1 

Control 
Point 

knot vectors in terms of t coordinate 

1 0 0 0 0 2 

2 0 0 0 2 2 

3 0 0 2 2 2 

4 0 2 2 2 2 

5 0 0 0 0 2 

6 0 0 0 2 2 

7 0 0 2 2 2 

8 0 2 2 2 2 

9 0 0 0 0 2 

10 0 0 0 2 2 

11 0 0 2 2 2 

12 0 2 2 2 2 

13 0 0 0 0 2 

14 0 0 0 2 2 

15 0 0 2 2 2 

16 0 2 2 2 2 

17 0 0 0 0 2 

18 0 0 0 2 2 

19 0 0 2 2 2 

20 0 2 2 2 2 
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Table 5-4: X and Y coordinates of all control points for B-spline model (B.2). 

Control 
Point 

X Y 

1 5 0 

2 5 2.928932 

3 2.928932 5 

4 0 5 

5 7.5 0 

6 7.770485 4.551845 

7 4.551845 7.770485 

8 0 7.5 

9 12.5 0 

10 12.5 7.32233 

11 7.32233 12.5 

12 0 12.5 

13 17.5 0 

14 17.5 10.25126 

15 10.25126 17.5 

16 0 17.5 

17 20 0 

18 20 11.71573 

19 11.71573 20 

20 0 20 

 

 

Due to the insertion of the new control point 10 shown in Figure 5-4, the locations 

of the existing adjacent control points 6 and 10 shown in Figure 5.3 are altered. Those 

existing adjacent control points become the control points 6 and 14 of the B-spline model 

(B.2). Control points at the ends of the control grids remain fixed in this case. In addition, 

the weights of the existing adjacent control points are also affected. The weights of 

control points 6, 10 and 14 of the B-spline model (B.2) are calculated in Equation 5-1.  
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                                                  (5-1) 

 

Weights of all the other control points can be determined in like manner.  

Since the B-spline curves involved in this case are non-uniform rational degree 

three B-spline curves. The coordinates of the control point 6 of the B-spline model (B.2) 

are evaluated using Equation 5-2 as follows: 

 

77.7
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BY                                (5-2)                    

 

The X and Y coordinates of all the other control points are determined in like 

manner. 
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5.3 B-spline Model (B.3) 

Based on the B-spline model (B.2), a B-spline model (B.3) is created by inserting 

four new control points (s = 0.25) on all four radial control grids of B.2 as illustrated in 

Figure 5-5.  

 

 

Figure 5-5: B-spline model (B.3). 
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5.4 B-spline Model (B.4) 

Based on the B-spline model (B.3), a B-spline model (B.4) is created by inserting 

four new control points (s = 0.125) on all four radial control grids of B.3 as illustrated in 

Figure 5-6.  

 

 

Figure 5-6: B-spline model (B.4). 
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5.5 B-spline Model (B.5) 

From subchapter 5.1 to 5.4, circumferential refinements have been performed. 

Starting form this model, radial refinements are conducted. Based on B.4, B.5 is 

generated by adding one additional radial control line (t = 1) propagating the entire 

control girds as shown in Figure 5-7. 

 

 

Figure 5-7: B-spline model (B.5). 



51 

 

5.6 B-spline Model (B.6) 

Based on B.5, B.6 is generated by adding two additional radial control lines         

(t = 0.5 and t = 1.5) propagating the entire control girds as shown in Figure 5-8. 

 

 

Figure 5-8: B-spline model (B.6). 
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5.7 T-spline Model (T.5) 

In this section, local refinement is performed by inserting partial control line into 

the control grid. Based on B.4, a T-spline model (T.5) is generated by adding a radial 

control line (t = 1), which terminates at the circumferential control line (s = 0.125) as 

shown in Figure 5-9. 

 

 

Figure 5-9: T-spline model (T.5). 
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5.8 T-spline Model (T.6) 

Based on T.5, a T-spline model (T.6) is generated by adding two partial radial 

control lines (t = 0.5 and t =1.5), which terminate at the circumferential control line        

(s = 0.125) as shown in Figure 5-10. 

 

 

Figure 5-10: T-spline model (T.6). 
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6 Results 

All the models were constructed in the previous chapter. The required information 

for the input files of the finite element program using T-splines were obtained. In this 

chapter, the results are determined by performing the finite element program and are 

compared with the closed-form solution.  

6.1 Closed Form Solution 

The closed-form solution using a cylindrical coordinate system to the membrane 

problem was solved by Kirsch. Equations 6-1, 6-2 and 6-3 provide formulas for the 

stresses  ,  rr  and  r  of a point in the membrane [22].  
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The transformation of the stress matrix from cylindrical to rectangular coordinate 

system is given in Equation 6-4 [22]. 
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Equation 6-4 is then evaluated to determine the closed-form solution using a 

rectangular coordinate system to the membrane problem at three points of interest (point 

A, C, and B), which is indicated in Table 6-1. The three points of interest (point A, C and 

B) are points 1, 4 and the middle point of arc 14 shown in Figure 5-3.  

 

 

Table 6-1: Closed form solution using rectangular coordinate system 

  σθθ σrr σrθ 

Point A 0 -100 0 

Point B 50 50 -50 

Point C 300 0 0 
  

6.2 Output Results 

Table 6-2 is the output file of the finite element program for the B-spline model 

(B.1), which includes the stresses and displacements at the points of interest and the 

corresponding norms. Tables 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9 show the output results for 

models B.2, B.3, B.4, B.5 , B.6, T.5 and T.6, respectively. 
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Table 6-2: Output results of B-spline model (B.1). 

B-spline model (B.1) 
  Stresses 

  

σ11 σ22 σ12 

Point A -15.4208 -84.6847 -10.7170 

Point B 111.0062 11.6209 -41.7564 

Point C 299.8741 57.6585 11.6407 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.143884 0   

Point B 0.098318 -0.02812   

Point C 0 -0.04594   

  Square Root Norm 96.48783 

  Maximum Norm 61.00617 

Table 6-3: Output results of B-spline model (B.2). 

B-spline Model (B.2) 
  Stresses 

  

σ11 σ22 σ12 

Point A -21.1879 -101.5465 -11.2417 

Point B 93.4618 20.8630 -44.9467 

Point C 312.3041 45.8567 11.6653 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.146534 0   

Point B 0.101156 -0.03041   

Point C 0 -0.04739   

  Square Root Norm 75.70623 

  Maximum Norm 45.85675 
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Table 6-4: Output results of B-spline model (B.3). 

B-spline Model (B.3) 
  Stresses 

  

σ11 σ22 σ12 

Point A -10.7025 -109.628 -11.2842 

Point B 71.98185 33.7959 -47.7359 

Point C 315.6899 21.28265 11.77187 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.14808 0   

Point B 0.103031 -0.03213   

Point C 0 -0.04855   

  Square Root Norm 43.85399 

  Maximum Norm 21.98185 

Table 6-5: Output results of B-spline model (B.4). 

B-spline Model (B.4) 
  Stresses 

  

σ11 σ22 σ12 

Point A 4.274096 -107.297 -11.2553 

Point B 60.31171 41.52561 -48.8883 

Point C 311.7068 1.657165 11.80785 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.148352 0   

Point B 0.103372 -0.03246   

Point C 0 -0.04879   

  Square Root Norm 25.628 

  Maximum Norm 11.80785 
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Table 6-6: Output results of B-spline model (B.5). 

B-spline Model (B.5) 
  Stresses 

  

σ11 σ22 σ12 

Point A -11.2603 -107.843 -1.9467 

Point B 55.43312 45.71679 -49.5358 

Point C 308.6477 13.61196 1.707825 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.150206 0   

Point B 0.105766 -0.03499   

Point C 0 -0.05026   

  Square Root Norm 22.43121 

  Maximum Norm 13.61196 

Table 6-7: Output results of B-spline model (B.6). 

B-spline Model (B.6) 
  Stresses 

  σ11 σ22 σ12 
Point A -4.78673 -101.382 0.198392 

Point B 55.68806 45.81124 -49.5799 

Point C 301.8389 6.217114 -0.22238 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.149984 0   

Point B 0.106015 -0.0353   

Point C 0 -0.04999   

  Square Root Norm 10.81766 

  Maximum Norm 6.217114 
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Table 6-8: Output results of T-spline model (T.5). 

T-spline Model (T.5) 
  Stresses 

  σ11 σ22 σ12 
Point A -9.26513 -105.186 -2.01601 

Point B 57.52785 43.78103 -49.4035 

Point C 306.7462 12.62881 1.870246 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.148253 0   

Point B 0.104395 -0.0336   

Point C 0 -0.04837   

  Square Root Norm 20.51819 

  Maximum Norm 12.62881 

Table 6-9: Output results of T-spline model (T.6) 

T-spline Model (T.6) 
  Stresses 

  σ11 σ22 σ12 
Point A -5.26607 -100.92 -0.17832 

Point B 56.49355 45.14399 -49.1476 

Point C 303.3424 7.953875 0.071057 

  Coordinates ( X and Y) 

Point A 5 0   

Point B 3.535534 3.535534   

Point C 0 5   

  Displacements (X and Y) 

Point A 0.147922 0   

Point B 0.104713 -0.03384   

Point C 0 -0.04817   

  Square Root Norm 13.02015 

  Maximum Norm 7.953875 
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6.3 Comparison of Norms  

Figure 6-1 illustrates comparison of square root norms, which are square root of 

the sum of the square of the difference between closed form solution and σ11, σ22 and σ12 

of all three points of interest created by the finite element program using B-splines and 

using T-splines. By observation, square root norms for B-spline models and its 

corresponding T-spline models are really close. In addition, the square root norms 

converge to zero when more control points are inserted in the control grid. 

 

 

Figure 6-1:  Comparison of square root norms. 

Figure 6-2 illustrates comparison of maximum norms, which are maximum 

absolute difference between closed form solution and σ11, σ22 and σ12 of all three points 

of interest generated by finite element program using B-splines and using T-splines. By 

observation, max norms for B-spline models and its corresponding T-spline models are 

really close. In addition, the max norms converge to zero when more control points are 

inserted in the control grid. 
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Figure 6-2:  Comparison of maximum norms.             

6.4 Comparison of Computational Efforts 

For numerically-intensive programs such as finite element programs, the 

computational effort can be measured in terms of floating-point operations or FLOPS. A 

FLOP is multiplication or division between two real numbers [22]. In this finite element 

program, the most of the computational effort is devoted to solving the system stiffness 

equation. The most expensive computational operation for solving that equation is 

triangularization. Equation 6-5 calculates the FLOPS for triangularization, where ndof 

stands for the total number of degrees of freedom.  
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26

23
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FLOPS


                                                                                    (6-5)                                                                                                                                          
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Table 6-10 shows the comparison of the computational efforts. The equation of 

FLOPS for triangularization is a function of degrees of freedom. Since a T-spline model 

requires fewer ndof than its corresponding B-spline model, isogeometric analysis using     

T-splines requires less computational effort than using B-splines. 

Table 6-10: Comparison of computational efforts. 

  B5 T5   B6 T6 

ndof 56 48   84 60 

FLOPS 30,800 19,552   102,256 37,760 
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7 Conclusion 

Isogeometric analysis using T-splines has been successfully implemented. A 

structural mechanics problem consisting of an infinite membrane with circular hole under 

constant tension was analyzed using B-splines and using T-splines.  

The analysis results were obtained and compared with the closed-form solution of 

the membrane model at selected points of interest. Isogeometric analyses using both      

B-splines and T-splines converged to the closed-form solution as more control points 

were added, while T-splines employed substantially fewer control points than B-spline. 

Isogeometric analysis with T-splines involving fewer control points appears to less costly 

and less time consuming. T-splines achieved the same accuracy as B-splines with less 

computational effort in the FEA. In conclusion, we believe the isogeometric analysis 

using T-splines holds significant potential in computer-aided engineering and is a 

desirable alternative to the current isogeometric analysis using B-splines. 

Although the strength of isogeometric analysis using T-spline has been presented 

in this thesis, it still needs to be tested on a wider range of analysis applications in the 

future.  
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