
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2009-08-12

Isogeometric Finite Element Analysis Using T-
Splines
Jingang Li
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Civil and Environmental Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Li, Jingang, "Isogeometric Finite Element Analysis Using T-Splines" (2009). All Theses and Dissertations. 1904.
https://scholarsarchive.byu.edu/etd/1904

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=scholarsarchive.byu.edu%2Fetd%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1904?utm_source=scholarsarchive.byu.edu%2Fetd%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

ISOGEOMETRIC FINITE ELEMENT ANALYSIS USING T-SPLINES

by

Jingang Li

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Civil and Environmental Engineering

Brigham Young University

December 2009

Copyright (C) 2009 Jingang Li

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Jingang Li

This thesis has been read by each member of the following graduate committee and by

majority vote has been found to be satisfactory.

Date Richard J. Balling, Chair

Date Steven E. Benzley

Date David W. Jensen

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Jingang Li in

its final form and have found that (1) its format, citations, and bibliographical style are

consistent and acceptable and fulfill university and department style requirements; (2)

its illustrative materials including figures, tables, and charts are in place; and (3) the

final manuscript is satisfactory to the graduate committee and is ready for submission

to the university library.

Date Richard J. Balling

Chair, Graduate Committee

Accepted for the Department

 E. James Nelson

Graduate Coordinator

Accepted for the College

 Alan R. Parkinson

Dean, Ira A. Fulton College of Engineering

and Technology

ABSTRACT

ISOGEOMETRIC FINITE ELEMENT ANALYSIS USING T-SPLINES

Jingang Li

Department of Civil and Environmental Engineering

Master of Science

Non-uniform rational B-splines (NURBS) methodology is presented, on which

the isogeometric analysis is based. T-splines are also introduced as a surface design

methodology, which are a generalization of NURBS and permit local refinement.

Isogeometric analysis using NURBS and T-splines are applied separately to a structural

mechanics problem. The results are compared with the closed-form solution. The

desirable performance of isogeometric analysis using T-splines on engineering analysis is

demonstrated.

ACKNOWLEDGMENTS

I would like to gratefully thank my advisor Dr. Richard J. Balling for his counsel

and guidance, along with my other committee members, Dr. Steven E. Benzley and Dr.

David W. Jensen for their input and suggestions in my research. I would also like to

thank Dr. Thomas W. Sederberg for his insight on T-splines. Finally, I would like to

thank my beautiful wife for her incredible patience, understanding, encouragement and

support.

 vii

TABLE OF CONTENTS

1 Introduction ... 1

2 Literature Review ... 5

2.1 Isogeometric Analysis ... 5

2.2 T-splines .. 7

3 Bézier Curves, B-splines and T-splines ... 9

3.1 Bézier Curves .. 9

3.1.1 The Equation of a Bézier Curve .. 10

3.1.2 Bézier Curves over Arbitrary Parameter Intervals .. 12

3.1.3 Rational Bézier Curves ... 12

3.1.4 Rational Bézier Curve Representation of Circular Arcs 13

3.2 B-spline Curves ... 14

3.2.1 Polar Form .. 15

3.2.2 Knot Vectors ... 17

3.2.3 Knot Insertion ... 20

3.3 T-splines .. 20

3.3.1 Control Point Insertion .. 21

4 Finite Element Program ... 23

4.1 Input and Output ... 24

4.2 Program Organization ... 25

4.3 Element Functions .. 27

 viii

4.4 Finite Element Program Using T-splines .. 33

4.4.1 Modification to Program Input ... 33

4.4.2 The Tspline2D Function ... 35

4.4.3 The TsplineDeBoor Function ... 36

5 Test Example ... 39

5.1 B-spline Model (B.1) .. 40

5.2 B-spline Model (B.2) .. 44

5.3 B-spline Model (B.3) .. 48

5.4 B-spline Model (B.4) .. 49

5.5 B-spline Model (B.5) .. 50

5.6 B-spline Model (B.6) .. 51

5.7 T-spline Model (T.5) ... 52

5.8 T-spline Model (T.6) ... 53

6 Results .. 55

6.1 Closed Form Solution ... 55

6.2 Output Results ... 56

6.3 Comparison of Norms ... 61

6.4 Comparison of Computational Efforts .. 62

7 Conclusion ... 65

References .. 67

 ix

LIST OF TABLES

Table 5-1: Knot vectors for B-spline model (B.1). ..42

Table 5-2: X and Y coordinates of all control points for B-spline model (B.1).43

Table 5-3: Knot vectors of all control points for B-spline model (B.2).45

Table 5-4: X and Y coordinates of all control points for B-spline model (B.2).46

Table 6-1: Closed form solution using rectangular coordinate system..................................56

Table 6-2: Output results of B-spline model (B.1). ...57

Table 6-3: Output results of B-spline model (B.2). ...57

Table 6-4: Output results of B-spline model (B.3). ...58

Table 6-5: Output results of B-spline model (B.4). ...58

Table 6-6: Output results of B-spline model (B.5). ...59

Table 6-7: Output results of B-spline model (B.6). ...59

Table 6-8: Output results of T-spline model (T.5). ..60

Table 6-9: Output results of T-spline model (T.6) ...60

Table 6-10: Comparison of computational efforts. ..63

 x

 xi

LIST OF FIGURES

Figure 1-1: Relationship between CAD and FEA in traditional analysis.1

Figure 1-2: Relationship between CAD and FEA in isogeometric analysis.2

Figure 1-3: Head modeled (a) as a NURBS and (b) as a T-spline [12].3

Figure 1-4: Model of a hand comprised of B-spline surfaces [11].4

Figure 1-5 A gap at the intersection of B-spline surfaces, fixed with a T-spline [11]...........4

Figure 3-1: Illustration of Bézier curves. ...10

Figure 3-2: Cubic Bézier mass functions [21]. ..11

Figure 3-3: Example of rational Bézier curve with one varying scalar weight [21].13

Figure 3-4: Rational Bézier curve representations of circular arcs [21].14

Figure 3-5: Spline and ducks [21]. ...15

Figure 3-6: Polar form representation of Bézier curves [21]. ..16

Figure 3-7: Affine map property of polar form. ..17

Figure 3-8: Polar form representation and knot vector of B-spline [21].18

Figure 3-9: Imposition of Bézier curve end conditions on B-spline [21].19

Figure 3-10: Example of T-mesh [11]. ..21

Figure 3-11: T-mesh knot insertion [11]. ...22

Figure 5-1: Membrane with a circular hole. ...39

Figure 5-2: Finite quarter membrane with a circular hole. ..40

Figure 5-3: B-spline model (B.1). ..41

Figure 5-4: B-spline model (B.2). ..44

Figure 5-5: B-spline model (B.3). ..48

 xii

Figure 5-6: B-spline model (B.4). ..49

Figure 5-7: B-spline model (B.5). ..50

Figure 5-8: B-spline model (B.6). ..51

Figure 5-9: T-spline model (T.5). ..52

Figure 5-10: T-spline model (T.6). ..53

Figure 6-1: Comparison of square root norms. ...61

Figure 6-2: Comparison of maximum norms..62

1

1 Introduction

Finite element analysis (FEA) uses shape functions and nodes, while Computer-

aided design (CAD) employs basis functions and control points. The typical situation in

engineering practice is that designs are created in CAD systems, meshes are generated

from CAD data, and FEA is executed as shown in Figure 1-1.

Figure 1-1: Relationship between CAD and FEA in traditional analysis.

Tremendous effort has been made to integrate CAD and FEA. Recently, Dr.

Thomas J.R. Hughes introduced the concept of isogeometric analysis to make viable a

seamless interaction between CAD and FEA [1]. The name of isogeometric analysis

signifies that the same basis functions can be used in both CAD and FEA. Figure 1-2

shows relationship between CAD and FEA in isogeometric analysis.

2

Figure 1-2: Relationship between CAD and FEA in isogeometric analysis.

Isogeometric analysis possesses many desirable features. In many cases, mesh

generation is unnecessary. It is deemed costly and time consuming. In addition, accuracy

problems can be avoided, since geometries may be exactly represented using

isogeometric analysis.

The most extensively used computational geometry technology in isogeometric

analysis is Non-uniform rational B-splines (NURBS). Although NURBS are ubiquitous

in the CAD industry, NURBS possesses some deficiencies. First, NURBS do not allow

for local refinement. In order to refine a local area, a global refinement is required

because the B-spline control grid traverses the entire domain. As a result of global

refinement, many superfluous control points are created, which is inefficient. In Figure

1-3.a, the red NURBS control points are superfluous [12]. Second, gaps and overlaps are

inevitable at intersections of NURBS-based surfaces. Figure 1-4 illustrates a hand model

comprised of seven B-spline surfaces with gap at the intersection of the hand and arm

[11].

3

T-splines were recently proposed by Dr. Thomas Sederberg as a generalization of

NURBS technology that is capable of substantially reducing the number of superfluous

control points [11]. In terms of applications in CAD industry, T-splines preserve all of the

desirable properties of NURBS. In addition, T-splines permit local refinement by using

T-junctions. T-splines allow a row of control points to terminate. The final control point

in a partial row is called a T-junction [11]. All the purple points shown in Figure 1-3.b

are T-junctions [12]. Control points can be inserted into the control grid without

propagating an entire row or column of superfluous control points. T-splines are also

capable of closing gaps at intersections of geometric model shapes. Figure 1-5 shows a

gap between two B-spline surfaces, which is fixed with T-splines [11].

Figure 1-3: Head modeled (a) as a NURBS and (b) as a T-spline [12].

4

Figure 1-4: Model of a hand comprised of B-spline surfaces [11].

Figure 1-5 A gap at the intersection of B-spline surfaces, fixed with a T-spline [11].

The goal of this thesis is to verify that the same features making T-splines

desirable for CAD make it desirable for analysis. In this thesis, isogeometric analysis

using T-splines is introduced. The isogeometric analyses of a structural mechanics

problem are performed using B-splines and using T-splines, respectively. It is anticipated

that isogeometric analyses using both B-splines and T-splines can produce results with

the same level of accuracy, while T-splines use significantly fewer control points than B-

splines, and is therefore more computationally efficient.

5

2 Literature Review

2.1 Isogeometric Analysis

Hughes [1] introduced the concept of isogeometric analysis using NURBS to

explore the new generation of computational mechanics procedures based on modern

developments in computational geometry.

Bazilevs and Hughes [2] explored the mathematical study of isogeometric

analysis based on NURBS. They investigated approximation and stability properties in

the context of h-refinement. Furthermore, they developed approximation estimates based

on a new Bramble-Hilbert lemma in so-called “bent” Sobolev spaces appropriate for

NURBS approximations and established inverse estimates similar to ones for finite

elements.

Cottrell and Hughes [3] investigated the effects of smoothness of basis functions

on solution accuracy within the isogeometric analysis framework using NURBS. They

also developed a local refinement strategy that can be utilized in one of the shell analyses.

Hughes, Reali and Sangalli [4] initiated a study of efficient quadrature rules for

NURBS-based isogeometric analysis. They developed efficient rules for spaces arising in

the calculation of mass, stiffness, and advection matrices.

6

Auricchio, Beirão de Veiga et al. [5] investigated plane incompressible elastic

problems by means of a “stream function” formulation and developed the numerical

scheme within the framework of NURBS-based isogeometric analysis. They also

proposed a discontinuous Galerking approach to deal with multiple mapped, possibly

multiply connected domains.

Cottrell, Reali et al. [6, 7] initiated the study of the isogeometric analysis in the

field of structural vibration analysis. They emphasized the concept of k-refinement, a

higher-order procedure employing smooth basis functions, which was used repeatedly in

the vibration calculations. They applied isogeometric analysis to some simple model

problems of structural vibration. The k-method was shown to provide more robust and

accurate frequency spectra than typical higher-order finite elements (i.e., the p-method).

Bazilevs, Calo et al. [8] developed a fully-coupled isogeometric monolithic

formulation of the fluid-structure interaction of an incompressible fluid on a moving

domain with a nonlinear hyperelastic solid.

Bazilevs, Calo et al. [9] developed a NURBS based isogeometric fluid-structure

interaction formulation, coupling incompressible fluids with nonlinear elastic solids, and

allowing for large structural displacements. They applied this methodology to problems

of arterial blood flow modeling.

Zhang, Bazilevs et al. [10] introduced an approach to construct hexahedral solid

NURBS meshes and applied the meshes to patient-specific vascular geometric models

from imaging data for use in isogeometric analysis.

7

2.2 T-splines

Sederberg, Zheng et al. [11] proposed a generalization of non-uniform B-spline

surfaces called T-splines to allow for local refinements. They also introduced a locally

renewable subdivision surface called T-NURCCs (Non-uniform rational Catmull-Clark

surfaces with T-junctions).

Sederberg, Cardon et al. [12] introduced a T-spline simplification algorithm to

eliminate superfluous control points. They also presented a new T-spline local refinement

algorithm

Li, Ray, and Lévy [13] introduced an algorithm for the automatic generation of a

control mesh driven by the anisotropy of the shape. Their algorithm made it possible an

automatic conversion from a mesh of arbitrary topology to a T-spline surface.

Wang, Zheng, and Seah [14] introduced two local knot insertion based algorithms

to resolve the issue of conversion back and forth of a surface between the T-spline and

hierarchical B-spline representations.

He, Wang et al. [15] developed the manifold T-splines to extend the currently

available algorithms of the popular planar tensor-product NURBS and T-splines to

arbitrary manifold domain of any topological type.

Zheng, Wang, and Seah [16] introduced an automatic algorithm to develop

smooth parametric surfaces using T-splines from z-map data. The algorithm starts with a

rough surface approximation and then progressively refines it in the regions where the

approximation accuracy does not meet the requirement.

8

Bazilevs, Calo et al. [17] explored T-splines as a basis for isogeometric analysis.

They applied T-splines to some basic problems of computational fluid and structural

mechanics and attained desirable results in all cases.

Yang, Fuchs et al. [18] investigated the evolution of T-spline level sets. They

avoided extra branches and singularities of the T-spline level sets without having to use

re-initialization steps by incorporating the distance field constraints.

Yang and Jüttler [19] introduced a method for 3D shape metamorphosis based on

the evolution of T-spline level sets. They verified that the morphing process of T-spline

level sets can be formulated as least squares problems. They also developed a fully

automatic algorithm to produce metamorphosis between shapes of any topology.

Deng, Chen and Feng [20] introduced polynomial spline functions over T-meshes.

They forced the spline function on every cell to be a tensor-product polynomial, and to

achieve the specified smoothness across the common edges. They also demonstrated

several advantages of splines over T-meshes overt T-splines.

9

3 Bézier Curves, B-splines and T-splines

3.1 Bézier Curves

Bézier curves are named after Dr. Pierre Bézier who was an engineer with the

Renault car company. He started to create a method known as the Bézier curve

formulation in the 1960’s, which would be easy and intuitive enough to allow drafters to

develop curves without a background in the corresponding mathematics fields. A degree

n Bézier curve has a few characteristics as follows:

A Bézier curve has a corresponding control polygon.

A control polygon has n+1 control points numbered from 0 to n.

A control polygon is comprised of straight lines connecting the control points.

A Bézier curve passes through the first and last control points.

A Bézier curve is tangent to the control polygon at the end control points.

Figure 3-1 illustrates two different Bézier curves associated with their

corresponding control polygons.

10

Figure 3-1: Illustration of Bézier curves.

3.1.1 The Equation of a Bézier Curve

The equation of a Bézier curve is given in Equation 3-1.

n

i

i

n

i PtBtP
0

)()((3-1)

Where t is a parameter ranging from 0 to 1, P(t) is either the X or Y coordinate of

a point on the curve corresponding to t. Pi is either the X or Y coordinate of a control

point i.)(tBn

i is the basis function for the control point i. For cubic Bézier curves (n=3),

the basis functions are given in Equation 3-2.

.

 33

3

23

2

23

1

33

0
)(,13)(,13)(,1)(tttttttttt BBBB (3-2)

11

The cubic Bézier mass functions are plotted in Figure 3-2 [21].

Figure 3-2: Cubic Bézier mass functions [21].

Note that for a given value of t, the basis functions sum to one. This is true for any

degree n. Although cubic Bézier curves are extensively used in all kinds of industry,

other degree Bézier curve may be used in some cases. Therefore, it’s desirable to

generalize the basis function for a degree n Bézier curve. Equation 3-3 provides a

formula for degree n Bézier curve blending functions denoted)(tB n

i where the parameter

i = 0, 1, …, n.

n

i

iinn

i tt
ini

n
tB

0

)1(
)!(!

!
)((3-3)

12

3.1.2 Bézier Curves over Arbitrary Parameter Intervals

In Equation 3-3, the parameter t ranges from zero to one. It is desirable to have

the parameter t vary over an arbitrary parameter interval (t0, t1). The Equation 3-4

provides a new formula for the basis function with the parameter t ranging over an

arbitrary parameter interval (t0, t1).

n

i

iinn

i
tt

tt

tt

tt

ini

n
tB

0 01

0

01

1)()(
)!(!

!
)((3-4)

3.1.3 Rational Bézier Curves

If each control point of a Bézier curve Pi is assigned a scalar weight, it will

become the rational Bézier curve. The equation of a rational Bézier curve is calculated by

Equation 3-5.

1

1

)()(
n

i
i

n

i PR ttP (3-5)

The Equation 3-6 provides a formula for the rational Bézier basis function.

n

j

n

jj

n

iin

i

t

t
t

Bw

Bw
R

0

)(

)(
)((3-6)

13

)(tB
n

i
 represents the Bézier basis function and Wi indicates the weight. When the

scale weight of a control point is changed, the shape of the Bézier curve will be changed

accordingly. Figure 3-3 illustrates how a set of Bézier curves is developed by changing a

control point weight. The reason why this type of Bézier curve is called a rational Bézier

curve is because the blending functions are rational polynomials, or the ratio of two

polynomial functions of the same variable t. If each control point is assigned the same

scalar weight, a rational Bézier curve will be exactly the same as a standard Bézier curve.

Figure 3-3: Example of rational Bézier curve with one varying scalar weight [21].

3.1.4 Rational Bézier Curve Representation of Circular Arcs

Rational Bézier curves can represent circular arcs exactly. Figure 3-4 illustrates a

circular arc represented both by a degree 2 and a degree 3 rational Bézier curve [21].

14

Figure 3-4: Rational Bézier curve representations of circular arcs [21].

The length e shown in Figure 3-4 is calculated in Equation 3-7.

re

2
cos21

2
sin2

 (3-7)

3.2 B-spline Curves

The word “spline” stems from the ship building industry, where it is originally

referred to a thin strip. Drafts men needed to plot a line through a set of points. The

solution was to place metal weights (called ducks) at the control points, and bend a thin

strip through the ducks. Figure 3-5 shows a spline and ducks [21]. The B in B-spline

stands for basis function. B-spline curves are a series of Bézier curves connected end to

end.

15

Figure 3-5: Spline and ducks [21].

The physics behind B-spline is that a duck has the greatest control over the shape

of the curve at the point of contact, and the influence decreases gradually further along

the spline. The draftsmen could insert more metal weights into a certain part of the spline

where more control over the shape would be gained.

3.2.1 Polar Form

The traditional approach to define B-spline was mainly focused on basis functions

and recurrence relations which required the background in the underlying mathematics.

The alternative method of developing a Bézier curve or B-spline curve is denoted Polar

Form, which was introduced by Dr. Lyle Ramshaw. The polar form eliminates the

necessity of delving into the corresponding intricate mathematical theories to allow

people to grasp the concept of a B-spline curve.

The following three rules are essential to develop Bézier and B-spline curves.

1. For a degree n Bézier curve P[a,b](t), the control points are relabeled Pi = P(u1,

u2, . . . un) where uj = a if j <= n − i and otherwise uj = b. Figure 3-6 shows that two

degree three Bézier curves marked with polar values are connected together [21]. The

parameter interval for the first curve is [0, 2] and the parameter t of the second curve

16

ranges from 2 to 3. Note that the polar value P(t, t, …, t) corresponds to the point located

on a Bézier curve with parameter value t.

Figure 3-6: Polar form representation of Bézier curves [21].

2. A polar value is symmetric in its arguments. This signifies that the order of

arguments has no influence on the polar value. In other words, a polar value can not be

changed by changing the order of the arguments.

3. Given (u1, u2, …, u n-1, a) and P(u1, u2, …, u n-1, b), Equation (3-8 provides a

formula to calculate P(u1, u2, …, u n-1, c).),,...,,(121 cuuuP u can be treated as the affine

combination of (u1, u2, …, u n-1, a) and (u1, u2, …, u n-1, b)

)(

),,...,,()(),,...,,()(
),,...,,(121121

121
ab

buuuPacauuuPcb
cuuuP uu

u

 (3-8)

17

Equation 3-8 has the geometrical significance which indicates that if one

parameter of a polar value varies when the others remain constant, the polar value will

form a straight line as illustrated in Figure 3-7.

Figure 3-7: Affine map property of polar form.

3.2.2 Knot Vectors

A knot vector is comprised of a list of parameter values denoted knots, which

specify the parameter intervals for all the Bézier curves connected together to form a B-

spline. Assume that a cubic B-spline is comprised of three Bézier curves whose

parameter intervals are [1, 3], [3, 5] and [5, 8]. Thus, the knot vector of this B-spline

would be [t0, t1, 1, 3, 5, 8, t6, t7]. Note that there are two additional knots listed at the

beginning and end of the knot vector. These end knots have control over the end

conditions of the B-spline curve.

18

Due to historical reasons, the knot vector of a degree n B-spline seems to need n

knots attached to its front and back. In practice, the first and the last knots are usually

ignored because they have no impact on the shape of the curve. Therefore, n-1 end-

condition knots would be prepended and appended to the knot vector. Given the knot

vector for a degree n B-spline [t1, t2, t3, …], the parameters of any polar value are

comprised of n adjacent knots extracted from the knot vector and hence the i
th

 polar value

can be denoted Pi(ti, …, ti+n-1).

Apparently, a knot vector consists of non-decreasing series of real numbers. If any

knot value is placed more than once at the same coordinate in the knot vector, it is

referred to as a multiple knot and the corresponding Bézier curve can be thought of as a

zero length curve. If the knot vector of a B-spline curve is evenly spaced, the curve is

uniform B-spline. Otherwise, it is a non-uniform B-spline. Figure 3-8 shows the polar

form representation and the knot vector of a B-spline curve [21].

Figure 3-8: Polar form representation and knot vector of B-spline [21].

19

As indicated earlier, there are n-1 additional knots at the beginning and end of a

knot vector. All these extra knots do not represent the parameter intervals of the Bézier

curves that constitute the B-spline. However, they play an important role in determining

the shape of the B-spline at its ends. For an open B-spline, the conventional practice is to

place n identical knots at each end of the knot vector. This makes a B-spline assume a

Bézier behavior at its ends. In other words, the B-spline passes through its end control

points. Furthermore, the B-spline is tangent to the control polygon at its end control

points just as a Bézier curve does. Figure 3-9 illustrates how the Bézier curve end

conditions are imposed on the ends of a B-spline [21].

Figure 3-9: Imposition of Bézier curve end conditions on B-spline [21].

20

3.2.3 Knot Insertion

One of the standard operations of B-spline is knot insertion. The definition of knot

insertion is to insert one knot into the existing knot vector without changing the shape of

the curve. In addition, some of the existing control points are deleted and replaced with

new ones due to the inserted knot. Knot insertion is extensively used to provide more

local control by only modifying the part of the curve of interest. The operation of knot

insertion can be easily performed with the symmetry and affine properties of polar

values.

3.3 T-splines

This subchapter is extracted from reference [11]. T-splines are a generalization of

NURBS surfaces that allow for local refinement. Figure 3-10 illustrates an example of a

T-mesh in parameters s and t [11]. The si represents s coordinates, the ti represents t

coordinates, and the di and ei represent knot intervals.

The control grid of T-splines is called T-mesh, which is simply a rectangular grid

permitting T-junctions. Each edge in a T-mesh is a line segment of constant s or of

constant t. A T-junction is a vertex shared by one s-edge and two t-edges, or by one

t-edge and two s-edges. Each edge of a T-mesh has a knot interval, which is governed by

the following rules.

Rule 1: The sum of knot intervals on one edge must equal the sum of knot

intervals on the opposing edge.

Rule 2: If T-junctions on opposing edges of a face can be connected with rule 1

being held valid, that edge mush be deemed as part of the T-mesh.

21

Figure 3-10: Example of T-mesh [11].

3.3.1 Control Point Insertion

 The general practice of control point insertion using B-splines is that additional

control points are inserted where needed, and the shape of the B-splines will be changed

globally.

One of the advantages of T-splines over B-splines is that T-splines allow for local

knot insertion, which is the procedure of inserting a single control point into a T-mesh

without altering the shape of T-splines.

Local knot insertion requires executing knot insertion into all of the basis

functions whose knot vectors will be altered by the insertion of the new control point. In

Figure 3-11, only the basis functions of control points P1, P2, P4, and P5 are altered due to

the presence of the new control point P3’ [11].

22

Figure 3-11: T-mesh knot insertion [11].

23

4 Finite Element Program

A simple finite element program for the analysis of membrane (plane stress)

problems was developed. This program uses quadrilateral Lagrangian elements. The

order of the shape functions is the square root of the number of nodes per element, minus

one. Thus, the shape functions for the 4-node Lagrangian quad element are linear, the

shape functions for the 9-node Lagrangian quad element are quadratic, etc. There is one

shape function corresponding to each node in an element, and the ith shape function has a

value of one at node i and a value of zero at all other nodes ij in the element.

A single global coordinate system exists for the entire system of elements with the

global x-coordinate in the horizontal direction and the global y-coordinate in the vertical

direction. A natural coordinate system exists for each element. Two opposite sides of

each quadrilateral element are arbitrarily designated as the "left" and "right" sides, while

the other two opposite sides are designated as the "top" and "bottom" sides. The natural

s-coordinate ranges from a value of -1 on the left side to +1 on the right side, and the

natural t-coordinate ranges from a value of -1 on the bottom side to +1 on the top side.

Opposite sides of an element need not be parallel, and in fact, the sides may be curved if

there are more than two nodes on a side. The shape functions are functions of the natural

coordinates s and t.

24

4.1 Input and Output

The geometry input to the finite element program includes the following scalars:

 nnode = number of nodes in the system

 nelem = number of elements in the system

 nodel = number of nodes per element

 nsupport = number of supports

 E = Young's modulus of elasticity

 ν = Poisson's ratio

 H = membrane thickness

The geometry input to the finite element program includes the following arrays:

 xsys[nnode][2] = global x and y coordinates of each node in system

 conn[nelem][nodel] = list of node numbers connected to each element

 support[nsupport][2] = node number and direction number for each

 support

The value of the direction number is either one, representing support restraint in

the x direction, or two, representing support restraint in the y direction.

The program considers nodal loads and boundary loads. Nodal loads are point

forces applied to unsupported nodes. Boundary loads are stress traction vectors applied

on the sides of elements. Boundary loads may vary from element to element and from

point to point along a side. The user must supply a function that evaluates the stress

traction vector at a given point on the side of an element. The load input to the finite

element program includes the following:

25

nnodeload = number of nodal loads

nodeload[nnodeload][2] = node number and direction number of each nodal load

point[nnodeload] = value of each nodal load

nboundload = number of boundary loads

boundload[nboundload][2] = element number and side number for each boundary

 load

npar = number of parameters needed for user function

boundpar[nboundload][npar] = boundary load parameters for each boundary load

The four sides of an element are ordered as follows: 1 = bottom, 2 = top, 3 = left,

and 4 = right. The user-supplied function for boundary loads is named UserBoundLoad,

and is given the boundary load parameters, the x and y coordinates of a point on the

boundary, and the x and y components of an unit outward normal vector at the point.

This function returns the x and y components of the stress traction vector at the point.

The program outputs global coordinates, displacements ux and uy, and stresses

xx, yy, andxy at each output point. The user must specify:

noutput = number of output points

eoutput[noutput] = element number of each output point

coutput[noutput][2] = natural s and t coordinates of each output point

4.2 Program Organization

The program is organized into five portions: 1) preprocessing, 2) stiffness matrix,

3) force vector, 4) equation solving, and 5) postprocessing. The preprocessing portion

reads input data, allocates memory space for internal arrays, and numbers the degrees of

26

freedom (dof's). Degrees of freedom correspond to the x and y displacements at the

unsupported nodes. The total number of dof's is ndof.

The stiffness matrix portion of the program assembles the system stiffness matrix,

ksys[ndof][ndof]. The ksys matrix is assembled by looping through the elements and

calling two functions. The first function, ElementStiff, constructs the element stiffness

matrix, kelem[2*nodel][2*nodel]. The second function, ElemToSysStiff, adds the kelem

matrix into the ksys matrix according to the connectivity of the elements to nodes and the

numbering of the dof's.

The force vector portion of the program assembles the system force vector,

fsys[ndof]. First, the nodal loads are added to the fsys vector according to the degree of

freedom numbering for the nodes. Second, the boundary loads are added to fsys by

looping through the elements and calling two functions. The first function,

ElementForce, constructs the element force vector, felem[2*nodel]. The second function,

ElemToSysForce, adds the felem vector into the fsys vector according to the connectivity

of the elements to nodes and the numbering of the dof's.

The equation solving portion of the program solves the linear system of equations

ksys*usys = fsys for the system displacement vector, usys[ndof]. The system is normally

solved by triangularizing the symmetric system stiffness matrix, ksys, into the product of

a lower triangular matrix, a diagonal matrix, and an upper triangular matrix. Then

backsubstitution is performed to solve the lower triangular system, the diagonal system,

and the upper triangular system of equations.

The postprocessing portion of the program evaluates and outputs the global

coordinates and global components of displacement and stress at each output point. This

27

is accomplished by looping through the output points, obtaining the element number and

s and t coordinates from the eoutput and coutput arrays, and calling two functions. The

first function, SysToElemDisp, extracts the element displacement vector,

uelem[2*nodel], from the usys vector according to the connectivity of the elements to

nodes and the numbering of the dof's. The second function, ElementOutput, evaluates

and outputs the coordinates, displacements, and stresses at the output point.

4.3 Element Functions

The ElementStiff function (Equation 4-1) evaluates the element stiffness matrix

by evaluating the following integral by Gauss quadrature. The D matrix in Equation 4-1

is a 3 x 3 stiffness matrix involving Young's modulus and Poisson's ratio.

dsdtJDBBHkelem

1

1

1

1

T

 (4-1)

)1(2

E
00

0
1

E

1

E

0
1

E

1

E

D
22

22

 (4-2)

The B matrix in Equation 4-1 is a 3 x 2*nodel matrix involving derivatives of the

shape functions N
(1)

, N
(2)

, ... , N
(nodel)

 with respect to global x and y coordinates.

28

x

N
...

x

N

y

N

x

N

y

N

y

N
...

y

N
0

y

N
0

0...0
x

N
0

x

N

B

(nodel))2()2()1()1(

(nodel))2()1(

)2()1(

 (4-3)

The shape functions are constructed in terms of the local s and t coordinates in

Equation 4-4.

)t(T)s(S)t,s(N)m()k()i((4-4)

where:

 nodeln k = 1+remainder

n

1i
 m = 1+truncate

n

1i

n

kj
1j

)j()k(

)j(
)k(

ss

ss
)s(S

n

mj
1j

)j()m(

)j(
)m(

tt

tt
)t(T

 1
1n

1j
2s)j(

 1

1n

1k
2s)k(

 1
1n

1j
2t)j(

 1

1n

1m
2t)m(

29

The derivatives of the shape functions with respect to global x and y coordinates

are obtained from the derivatives of the shape functions with respect to the natural s and t

coordinates via the inverse Jacobian matrix (Equation 4-5)

t

N
...

t

N

t

N

s

N
...

s

N

s

N

J

y

N
...

y

N

y

N

x

N
...

x

N

x

N

(nodel))2()1(

(nodel))2()1(

1
(nodel))2()1(

(nod))2()1(

 (4-5)

The Jacobian matrix whose determinant is in Equation 4-1, and whose inverse is

in Equation 4-5 is calculated from the natural derivatives of the shape functions and the

global coordinates of the nodes (Equation 4-6).

J =

(nodel)(nodel)

)2()2(

)1()1(

(nodel))2()1(

(nodel))2()1(

yx

..

..

..

yx

yx

t

N
...

t

N

t

N

s

N
...

s

N

s

N

t

y

t

x
s

y

s

x

 (4-6)

In summary, the ElementStiff function loops through each Gauss point, whose

natural coordinates are given, and:

1) Calls the Lagrange2D function that evaluates the shape functions and their

natural derivatives at the Gauss point according to Equation 4-4. 2) Calls the

Isoparametric2D function that evaluates Equations 4-6 and 4-5 at the Gauss point. 3)

30

Evaluates Equations 4-2 and 4-3 to get the D and B matrices at the Gauss point. 4)

Computes the product WJDBHBT at the Gauss point where W is the Gauss weight, and

adds this product to kelem.

The ElementForce function (Equation 4-7) evaluates the element force vector by

evaluating the following integral by Gauss quadrature on the sides of the element that

have boundary loads.

1

1

T JTAHfelem (ds or dt) (4-7)

Equation 4-7 is integrated over ds for the top and bottom sides with t held constant

at -1 for the bottom side and +1 for the top side. Equation 4-7 is integrated over dt for the

left and right sides with s held constant at -1 for the left side and +1 for the right side.

The A matrix in Equation (4-7) is a 2 x 2*nodel matrix involving shape functions N(1),

N(2), ... N(nodel).

)nodel()2()1(

)2()1(

N...N0N0

0...0N0N
A (4-8)

The shape functions are constructed in terms of the local s and t coordinates

according to Equation 4-4 given previously. The Jacobian matrix is constructed

31

according to Equation 4-6 given previously. The norm of the Jacobian in Equation 4-7 is

determined from the elements of the Jacobian matrix:

Top and bottom sides:
2
12

2
11 JJJ Left and right sides:

2
22

2
21 JJJ (4-9)

The T vector in Equation 4-7 is the stress traction vector, which is evaluated on

the boundary by calling the user-supplied function, UserBoundLoad. This function is

given the x and y coordinates of a Gauss point, which are determined from the natural

coordinates of the Gauss point by evaluating the shape functions at the Gauss point and

pre-multiplying by the global coordinates of the nodes.

)nodel(

)2(

)1(

(nodel))2()1(

(nodel))2()1(

N

.

.

.

N

N

y...yy

x...xx

y

x
 (4-10)

The UserBoundLoad function is also given the x and y components of a unit

outward normal vector at the Gauss point. These components are different for each side

of the element and are determined from the elements of the Jacobian matrix and the

scalars in Equation 4-9.

32

 Bottom side:

J/J

J/J

n

n

11

12

y

x
 Top side:

J/J

J/J

n

n

11

12

y

x

 Left side:

J/J

J/J

n

n

21

22

y

x
 Right side:

JJ

JJ

n

n

y

x

/

/

21

22
 (4-11)

In summary, the ElementForce function loops through each Gauss point on the

loaded side of an element and:

 Calls the Lagrange2D function that evaluates the shape functions and their natural

derivatives at the Gauss point according to Equation 4-4.

 Calls the Isoparametric2D function that evaluates Equations 4-6, 4-9, 4-10, and 4-

11 at the Gauss point.

 Evaluates Equation 4-8 to get the A matrix at the Guass point, and calls the

UserBoundLoad function to get the stress traction vector at the Gauss point.

 Computes the product WJTHAT at the Gauss point where W is the Gauss

weight, and adds this product to felem.

The ElementOutput function evaluates the coordinates, displacements, and

stresses at an output point by calling the Lagrange2D function to evaluate the shape

functions and their natural derivatives according to Equation 4-4, and then calling the

Isoparametric2D function to evaluate Equations 4-6, 4-5, and 4-10. Equation 4-10 gives

the coordinates of the output point. Equation 4-8 is evaluated to get the a matrix, and the

displacements at the output point are given in Equation 4-12.

33

Equations 4-2 and 4-3 are evaluated to get the D and B matrices, and the stresses

at the output point are given in Equation 4-13.

A
u

u

y

x

uelem (4-12)

xy

yy

xx

 = D B uelem (4-13)

4.4 Finite Element Program Using T-splines

The finite element program described previously was modified to use T-spline

shape functions rather than Lagrange shape functions. To do so, the Lagrange2D

function was replaced with the Tspline2D function. All other functions remain

unchanged. In addition, the program input was modified slightly.

4.4.1 Modification to Program Input

The nodes in the finite element program become the control points in the T-spline

program. The shape functions in the finite element program become the basis functions

in the T-spline program. There is one basis function for each control point. The T-spline

basis functions are functions of natural coordinates s and t, but there is only one natural

coordinate system for the entire system of elements, rather than a separate natural

34

coordinate system for each element. Thus, the natural coordinates do not always range

from -1 to +1 in each element as they do for Lagrange shape functions. In fact, the user

must specify the range of s and t for each element as part of the program input:

srange[nelem][2] = minimum and maximum s value for each element

trange[nelem][2] = minimum and maximum t value for each element

The only Lagrange shape functions that are nonzero (i.e. that are supported) on

the domain of an element are those corresponding to the nodes within the element

domain. This is not true for T-spline basis functions. There are T-spline basis functions

corresponding to control points lying outside the domain of an element that may be

supported on the domain of the element. If nodel is the number of T-spline basis

functions supported on the domain of an element, it's possible that nodel may vary from

element to element. In the T-spline program, the conservative assumption is made to set

nodel equal to the total number of nodes in the system, and the connectivity matrix

conn[nelem][nodel] is set to be the same for every element, consecutively listing all

control points in the system. Thus, the scalar nodel and the conn matrix are not input by

the user in the T-spline program.

To calculate the value of the ith T-spline basis function, it is necessary to know

the s and t values at the ith control point and at two adjacent lines of control points on

either side of the ith control point. In addition, it is necessary to know the weighting

value corresponding to the ith control point. This information must be input by the user:

 sval[nnode][5] = s values of five control point lines for each control point

 tval[nnode][5] = t values of five control point lines for each control point

 wval[nnode] = weight value for each control point

35

The five control point lines include two preceding control point lines, the control

point iteself, and two succeeding control point lines.

4.4.2 The Tspline2D Function

The Tspline2D function is given the sval, tval, and wval arrays that were input by

the user. It is also given the s and t coordinates of a Gauss point. It returns the values of

all basis functions evaluated at the Gauss point as well as the values of the derivatives of

all basis functions with respect to s and t evaluated at the Gauss point. This function

computes the value of the ith basis function and its derivatives, where i ranges from one

to nnode, as follows:

nnode

1j

)j()j()j(

)i()i()i(
)i(

)t(T)s(SW

)t(T)s(SW
)t,s(N (4-14)

nnode

1j

)j()j()j(

nnode

1j

)j(
)j(

)j()i()i(
)i(

)i(

)i(

)t(T)s(SW

)t(T)s(
ds

dS
W)t,s(N)t(T)s(

ds

dS
W

)t,s(
s

N
 (4-15)

nnode

1j

)j()j()j(

nnode

1j

)j(
)j()j()i(

)i(
)i()i(

)i(

)t(T)s(SW

)t(
dt

dT
)s(SW)t,s(N)t(

dt

dT
)s(SW

)t,s(
t

N

 (4-16)

36

In Equations 4-14, 4-15 and 4-16, W(i) = wval[i]. The values of S(i)(s) and

)s(
ds

dS)i(

are calculated by sending the s-coordinate of the Gauss point as well as

sval[i][1], sval[i][2], sval[i][3], sval[i][4], and sval[i][5] to the TsplineDeBoor function.

The values of T(i)(t) and)t(
dt

dT)i(

are calculated by sending the t-coordinate of the Gauss

point as well as tval[i][1], tval[i][2], tval[i][3], tval[i][4], and tval[i][5] to the

TsplineDeBoor function. Equations 4-14, 4-15 and 4-16 are only evaluated for the ith

basis function if the s and t coordinates of the Gauss point fall in the range:

 sval[i][1] s sval[i][5]

 tval[i][1] t tval[i][5]

Otherwise, N
(i)

(s,t) and its derivatives are set to zero.

4.4.3 The TsplineDeBoor Function

The TsplineDeBoor function is called with either s values and t values by the

Tspline2D function. It is given the coordinate, s (or t), of a Gauss point, and it is given

five values, val[1] through val[5], representing control point lines of s (or t). It returns

the value of a function, S (or T), and its derivative, dS (or dT), evaluated at s (or t).

The TsplineDeBoor function begins by determining the interval into which the

Gauss point falls:

if (val[1] s val[2] and val[1] val[2])

 k = 1 f2 = s-val[1]

else if (val[2] s val[3] and val[2] val[3])

37

 k = 2 f1 = s-val[1] f2 = val[5]-s

else if (val[3] s val[4] and val[3] val[4])

 k = 3 f1 = val[5]-s f2 = s-val[1]

else if (val[4] s val[5] and val[4] val[5])

 k = 4 f2 = val[5]-s

else

 return S = dS = 0

Then function values are calculated by the following DeBoor algorithm:

if (2 k 3)
]1k[val]2k[val

f
h 1

1

 else h1 = 0

if (1 k 2)
]k[val]3k[val

f
h 2

2

 else h2 = 0

if (3 k 4)
]2k[val]1k[val

f
h 2

3

 else h3 = 0

if (1 k 3)
]k[val]2k[val

])k[vals(h)s]2k[val(h
h 21

4

 else h4 = 0

if (2 k 4)
]1k[val]1k[val

)s]1k[val(h])1k[vals(h
h 31

5

 else h5 = 0

]k[val]1k[val

)s]1k[val(h])k[vals(h
S 54

]k[val]1k[val

)hh(3
dS 54

38

39

5 Test Example

A membrane is evaluated by the finite element program with T-spline shape

functions. The stresses at the points of interest on the membrane using both T-splines and

B-splines are obtained. Both results are compared to the closed-form solution.

The membrane is an infinite plate with circular hole under constant in-plane

tension. Specifically, the membrane is subjected to tensile stress p; the radius of the

circular hole α is equal to 5 in; the width of the membrane is equal to 40 in; the thickness

of the membrane is equal to 0.1 in; the Poisson’s ratio ν is equal to 0.3 and the Young’s

modulus E equals 10000 ksi. For simplicity and analysis reasons, the infinite membrane

is reduced to a finite quarter plate. Figure 5-1 and Figure 5-2 show respectively the

original infinite membrane and the simplified finite quarter plate.

Figure 5-1: Membrane with a circular hole.

40

Figure 5-2: Finite quarter membrane with a circular hole.

5.1 B-spline Model (B.1)

The initial B-spline model (B.1) includes 16 control points. The bottom and left

sides of the model are restrained by the nodal supports. There are four nodal supports on

each side. The bottom side of the model is restrained in Y direction. The left side of the

model is restrained in X direction. Only the right side of the system is subject to the

uniform load of 100 psi and there are no nodal loads involved in this model. During the

process of the determination of the stiffness matrix, Gaussian quadrature method is

adopted to evaluate the integral of the stiffness matrix formula. 64 gauss points are

required to integrate the polynomial T-spline basis functions. The whole model has only

one region. S and t coordinates of that region range from 0 to 1 and 0 to 2, respectively.

41

There are three points of interest, whose displacements, stresses and norms are evaluated.

Figure 5-3 illustrates the B-spline model (B.1) with three output points (point 1, 4 and the

middle point of arc 14, which are designated as point A, C and B, respectively.

Figure 5-3: B-spline model (B.1).

Each control point corresponds to two knot vectors. The knot coordinates of a

control point Pi are designated as (si2, ti2). Thus, the knot vectors of Psi are denoted as si =

(si0, si1, si2, si3, si4) and ti = (ti0, ti1, ti2, ti3, ti4). The knots ti3, ti4 can be determined by

imposing a ray in the parameter space R(α) = (si2, ti2 + α). Thus, ti3, ti4 become the t

42

coordinates of the first t-edges intersected by the ray excluding the initial (si2, ti2). The

knot vectors for B-spline Model (B.1) are listed in the Table 5-1.

Table 5-1: Knot vectors for B-spline model (B.1).

Control
Point

knot vectors in terms of s coordinate

1 0 0 0 0 1

2 0 0 0 0 1

3 0 0 0 0 1

4 0 0 0 0 1

5 0 0 0 1 1

6 0 0 0 1 1

7 0 0 0 1 1

8 0 0 0 1 1

9 0 0 1 1 1

10 0 0 1 1 1

11 0 0 1 1 1

12 0 0 1 1 1

13 0 1 1 1 1

14 0 1 1 1 1

15 0 1 1 1 1

16 0 1 1 1 1

Control
Point

knot vectors in terms of t coordinate

1 0 0 0 0 2

2 0 0 0 2 2

3 0 0 2 2 2

4 0 2 2 2 2

5 0 0 0 0 2

6 0 0 0 2 2

7 0 0 2 2 2

8 0 2 2 2 2

9 0 0 0 0 2

10 0 0 0 2 2

11 0 0 2 2 2

12 0 2 2 2 2

13 0 0 0 0 2

14 0 0 0 2 2

15 0 0 2 2 2

16 0 2 2 2 2

43

The weights of all control points are equal to one except for the ones of control

points 2 and 3. According to the equations shown in Figure 3-4, the weights of control

points 2 and 3 are evaluated as follows, w = (1 + 2cos(90°)/2)/3 = 0.804738.

Equation 3-7 provides a formula to determine Y coordinate of control point 2 as

follows, y = re

2
cos21

2
sin2

 = 5

2

90
cos21

2

90
sin2

= 2.928932. X and Y coordinates of

other control points can be determined in the same manner. Table 5-2 shows the X and Y

coordinates of all control points for B-spline Model (B.1).

Table 5-2: X and Y coordinates of all control points for B-spline model (B.1).

Control
Point

X Y

1 5 0

2 5 2.928932

3 2.928932 5

4 0 5

5 10 0

6 10 5.857864

7 5.857864 10

8 0 10

9 15 0

10 15 8.786797

11 8.786797 15

12 0 15

13 20 0

14 20 11.71573

15 11.71573 20

16 0 20

44

5.2 B-spline Model (B.2)

Based on the B-spline model (B.1), a B-spline model (B.2) is created by inserting

four new control points (s = 0.5) on all four radial control grids of B.1 as illustrated in

Figure 5-4. The knot vectors of all control points for B-spline Model (B.2) are listed in

Table 5-3.

Figure 5-4: B-spline model (B.2).

45

Table 5-3: Knot vectors of all control points for B-spline model (B.2).

Control
Point

knot vectors in terms of s coordinate

1 0 0 0 0 0.5

2 0 0 0 0 0.5

3 0 0 0 0 0.5

4 0 0 0 0 0.5

5 0 0 0 0.5 1

6 0 0 0 0.5 1

7 0 0 0 0.5 1

8 0 0 0 0.5 1

9 0 0 0.5 1 1

10 0 0 0.5 1 1

11 0 0 0.5 1 1

12 0 0 0.5 1 1

13 0 0.5 1 1 1

14 0 0.5 1 1 1

15 0 0.5 1 1 1

16 0 0.5 1 1 1

17 0.5 1 1 1 1

18 0.5 1 1 1 1

19 0.5 1 1 1 1

20 0.5 1 1 1 1

Control
Point

knot vectors in terms of t coordinate

1 0 0 0 0 2

2 0 0 0 2 2

3 0 0 2 2 2

4 0 2 2 2 2

5 0 0 0 0 2

6 0 0 0 2 2

7 0 0 2 2 2

8 0 2 2 2 2

9 0 0 0 0 2

10 0 0 0 2 2

11 0 0 2 2 2

12 0 2 2 2 2

13 0 0 0 0 2

14 0 0 0 2 2

15 0 0 2 2 2

16 0 2 2 2 2

17 0 0 0 0 2

18 0 0 0 2 2

19 0 0 2 2 2

20 0 2 2 2 2

46

Table 5-4: X and Y coordinates of all control points for B-spline model (B.2).

Control
Point

X Y

1 5 0

2 5 2.928932

3 2.928932 5

4 0 5

5 7.5 0

6 7.770485 4.551845

7 4.551845 7.770485

8 0 7.5

9 12.5 0

10 12.5 7.32233

11 7.32233 12.5

12 0 12.5

13 17.5 0

14 17.5 10.25126

15 10.25126 17.5

16 0 17.5

17 20 0

18 20 11.71573

19 11.71573 20

20 0 20

Due to the insertion of the new control point 10 shown in Figure 5-4, the locations

of the existing adjacent control points 6 and 10 shown in Figure 5.3 are altered. Those

existing adjacent control points become the control points 6 and 14 of the B-spline model

(B.2). Control points at the ends of the control grids remain fixed in this case. In addition,

the weights of the existing adjacent control points are also affected. The weights of

control points 6, 10 and 14 of the B-spline model (B.2) are calculated in Equation 5-1.

47

 0.902369
0)-(1

w0)-(0.5 w)5.01(
 w

B.1) (6,B.1) (2,

B.2) 6,Point (Control

1
0)-(1

w0)-(0.5 w)5.01(
 w

B.1) (14,B.1) (10,

B.2) 4, 1Point (Control

1
0)-(1

w0)-(0.5 w)5.01(
 w

B.1) (10,B.1) (6,

B.2) 10,Point (Control

 (5-1)

Weights of all the other control points can be determined in like manner.

Since the B-spline curves involved in this case are non-uniform rational degree

three B-spline curves. The coordinates of the control point 6 of the B-spline model (B.2)

are evaluated using Equation 5-2 as follows:

77.7
 w0)-(1

Xw0)-(0.5 X w)5.01(

B..2) (6,

B.1) (6,B.1)(6,B.1) (2,B.1)(2,

)2.,6(

BX

55.4
 w0)-(1

Yw0)-(0.5 Y w)5.01(

B..2) (6,

B.1) (6,B.1)(6,B.1) (2,B.1)(2,

)2.,6(

BY (5-2)

The X and Y coordinates of all the other control points are determined in like

manner.

48

5.3 B-spline Model (B.3)

Based on the B-spline model (B.2), a B-spline model (B.3) is created by inserting

four new control points (s = 0.25) on all four radial control grids of B.2 as illustrated in

Figure 5-5.

Figure 5-5: B-spline model (B.3).

49

5.4 B-spline Model (B.4)

Based on the B-spline model (B.3), a B-spline model (B.4) is created by inserting

four new control points (s = 0.125) on all four radial control grids of B.3 as illustrated in

Figure 5-6.

Figure 5-6: B-spline model (B.4).

50

5.5 B-spline Model (B.5)

From subchapter 5.1 to 5.4, circumferential refinements have been performed.

Starting form this model, radial refinements are conducted. Based on B.4, B.5 is

generated by adding one additional radial control line (t = 1) propagating the entire

control girds as shown in Figure 5-7.

Figure 5-7: B-spline model (B.5).

51

5.6 B-spline Model (B.6)

Based on B.5, B.6 is generated by adding two additional radial control lines

(t = 0.5 and t = 1.5) propagating the entire control girds as shown in Figure 5-8.

Figure 5-8: B-spline model (B.6).

52

5.7 T-spline Model (T.5)

In this section, local refinement is performed by inserting partial control line into

the control grid. Based on B.4, a T-spline model (T.5) is generated by adding a radial

control line (t = 1), which terminates at the circumferential control line (s = 0.125) as

shown in Figure 5-9.

Figure 5-9: T-spline model (T.5).

53

5.8 T-spline Model (T.6)

Based on T.5, a T-spline model (T.6) is generated by adding two partial radial

control lines (t = 0.5 and t =1.5), which terminate at the circumferential control line

(s = 0.125) as shown in Figure 5-10.

Figure 5-10: T-spline model (T.6).

54

55

6 Results

All the models were constructed in the previous chapter. The required information

for the input files of the finite element program using T-splines were obtained. In this

chapter, the results are determined by performing the finite element program and are

compared with the closed-form solution.

6.1 Closed Form Solution

The closed-form solution using a cylindrical coordinate system to the membrane

problem was solved by Kirsch. Equations 6-1, 6-2 and 6-3 provide formulas for the

stresses , rr and r of a point in the membrane [22].

 2cos

34
11

2 4

4

2

2

2

2

rrr

p
rr

 (6-1)

 2cos

3
11

2 4

4

2

2

rr

p
 (6-2)

 2sin
32

1
2 4

4

2

2

rr

p
r (6-3)

56

The transformation of the stress matrix from cylindrical to rectangular coordinate

system is given in Equation 6-4 [22].

100

0cossin

0sincos

100

0cossin

0sincos

12

22

11

r

rr

 (6-4)

Equation 6-4 is then evaluated to determine the closed-form solution using a

rectangular coordinate system to the membrane problem at three points of interest (point

A, C, and B), which is indicated in Table 6-1. The three points of interest (point A, C and

B) are points 1, 4 and the middle point of arc 14 shown in Figure 5-3.

Table 6-1: Closed form solution using rectangular coordinate system

 σθθ σrr σrθ

Point A 0 -100 0

Point B 50 50 -50

Point C 300 0 0

6.2 Output Results

Table 6-2 is the output file of the finite element program for the B-spline model

(B.1), which includes the stresses and displacements at the points of interest and the

corresponding norms. Tables 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9 show the output results for

models B.2, B.3, B.4, B.5 , B.6, T.5 and T.6, respectively.

57

Table 6-2: Output results of B-spline model (B.1).

B-spline model (B.1)
 Stresses

σ11 σ22 σ12

Point A -15.4208 -84.6847 -10.7170

Point B 111.0062 11.6209 -41.7564

Point C 299.8741 57.6585 11.6407

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.143884 0

Point B 0.098318 -0.02812

Point C 0 -0.04594

 Square Root Norm 96.48783

 Maximum Norm 61.00617

Table 6-3: Output results of B-spline model (B.2).

B-spline Model (B.2)
 Stresses

σ11 σ22 σ12

Point A -21.1879 -101.5465 -11.2417

Point B 93.4618 20.8630 -44.9467

Point C 312.3041 45.8567 11.6653

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.146534 0

Point B 0.101156 -0.03041

Point C 0 -0.04739

 Square Root Norm 75.70623

 Maximum Norm 45.85675

58

Table 6-4: Output results of B-spline model (B.3).

B-spline Model (B.3)
 Stresses

σ11 σ22 σ12

Point A -10.7025 -109.628 -11.2842

Point B 71.98185 33.7959 -47.7359

Point C 315.6899 21.28265 11.77187

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.14808 0

Point B 0.103031 -0.03213

Point C 0 -0.04855

 Square Root Norm 43.85399

 Maximum Norm 21.98185

Table 6-5: Output results of B-spline model (B.4).

B-spline Model (B.4)
 Stresses

σ11 σ22 σ12

Point A 4.274096 -107.297 -11.2553

Point B 60.31171 41.52561 -48.8883

Point C 311.7068 1.657165 11.80785

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.148352 0

Point B 0.103372 -0.03246

Point C 0 -0.04879

 Square Root Norm 25.628

 Maximum Norm 11.80785

59

Table 6-6: Output results of B-spline model (B.5).

B-spline Model (B.5)
 Stresses

σ11 σ22 σ12

Point A -11.2603 -107.843 -1.9467

Point B 55.43312 45.71679 -49.5358

Point C 308.6477 13.61196 1.707825

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.150206 0

Point B 0.105766 -0.03499

Point C 0 -0.05026

 Square Root Norm 22.43121

 Maximum Norm 13.61196

Table 6-7: Output results of B-spline model (B.6).

B-spline Model (B.6)
 Stresses

 σ11 σ22 σ12
Point A -4.78673 -101.382 0.198392

Point B 55.68806 45.81124 -49.5799

Point C 301.8389 6.217114 -0.22238

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.149984 0

Point B 0.106015 -0.0353

Point C 0 -0.04999

 Square Root Norm 10.81766

 Maximum Norm 6.217114

60

Table 6-8: Output results of T-spline model (T.5).

T-spline Model (T.5)
 Stresses

 σ11 σ22 σ12
Point A -9.26513 -105.186 -2.01601

Point B 57.52785 43.78103 -49.4035

Point C 306.7462 12.62881 1.870246

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.148253 0

Point B 0.104395 -0.0336

Point C 0 -0.04837

 Square Root Norm 20.51819

 Maximum Norm 12.62881

Table 6-9: Output results of T-spline model (T.6)

T-spline Model (T.6)
 Stresses

 σ11 σ22 σ12
Point A -5.26607 -100.92 -0.17832

Point B 56.49355 45.14399 -49.1476

Point C 303.3424 7.953875 0.071057

 Coordinates (X and Y)

Point A 5 0

Point B 3.535534 3.535534

Point C 0 5

 Displacements (X and Y)

Point A 0.147922 0

Point B 0.104713 -0.03384

Point C 0 -0.04817

 Square Root Norm 13.02015

 Maximum Norm 7.953875

61

6.3 Comparison of Norms

Figure 6-1 illustrates comparison of square root norms, which are square root of

the sum of the square of the difference between closed form solution and σ11, σ22 and σ12

of all three points of interest created by the finite element program using B-splines and

using T-splines. By observation, square root norms for B-spline models and its

corresponding T-spline models are really close. In addition, the square root norms

converge to zero when more control points are inserted in the control grid.

Figure 6-1: Comparison of square root norms.

Figure 6-2 illustrates comparison of maximum norms, which are maximum

absolute difference between closed form solution and σ11, σ22 and σ12 of all three points

of interest generated by finite element program using B-splines and using T-splines. By

observation, max norms for B-spline models and its corresponding T-spline models are

really close. In addition, the max norms converge to zero when more control points are

inserted in the control grid.

62

Figure 6-2: Comparison of maximum norms.

6.4 Comparison of Computational Efforts

For numerically-intensive programs such as finite element programs, the

computational effort can be measured in terms of floating-point operations or FLOPS. A

FLOP is multiplication or division between two real numbers [22]. In this finite element

program, the most of the computational effort is devoted to solving the system stiffness

equation. The most expensive computational operation for solving that equation is

triangularization. Equation 6-5 calculates the FLOPS for triangularization, where ndof

stands for the total number of degrees of freedom.

3

2

26

23
ndofndofndof

FLOPS

 (6-5)

63

Table 6-10 shows the comparison of the computational efforts. The equation of

FLOPS for triangularization is a function of degrees of freedom. Since a T-spline model

requires fewer ndof than its corresponding B-spline model, isogeometric analysis using

T-splines requires less computational effort than using B-splines.

Table 6-10: Comparison of computational efforts.

 B5 T5 B6 T6

ndof 56 48 84 60

FLOPS 30,800 19,552 102,256 37,760

64

65

7 Conclusion

Isogeometric analysis using T-splines has been successfully implemented. A

structural mechanics problem consisting of an infinite membrane with circular hole under

constant tension was analyzed using B-splines and using T-splines.

The analysis results were obtained and compared with the closed-form solution of

the membrane model at selected points of interest. Isogeometric analyses using both

B-splines and T-splines converged to the closed-form solution as more control points

were added, while T-splines employed substantially fewer control points than B-spline.

Isogeometric analysis with T-splines involving fewer control points appears to less costly

and less time consuming. T-splines achieved the same accuracy as B-splines with less

computational effort in the FEA. In conclusion, we believe the isogeometric analysis

using T-splines holds significant potential in computer-aided engineering and is a

desirable alternative to the current isogeometric analysis using B-splines.

Although the strength of isogeometric analysis using T-spline has been presented

in this thesis, it still needs to be tested on a wider range of analysis applications in the

future.

66

67

References

[1] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite

elements, NURBS, exact geometry, and mesh refinement,” Computer Methods in

Applied Mechanics and Engineering, 194:4135–4195, 2005.

[2] Y. Bazilevs, L. Beirao da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli,

“Isogeometric analysis: Approximation, stability and error estimates for h-refined

meshes,” Mathematical Models and Methods in Applied Sciences, 16:1031–1090,

2006.

[3] J. A. Cottrell, A. Reali, and T. J. R. Hughes, “Studies of refinement and continuity in

isogeometric structural analysis,” Computer Methods in Applied Mechanics and

Engineering, 196:4160–4183, 2007.

[4] T. J. R. Hughes, A. Reali, G. Sangalli, “Efficient Quadrature for NURBS-based

Isogeometric Analysis,” Computer Methods in Applied Mechanics and

Engineering, to appear, 2009.

[5] F. Auricchio, L. Beirão de Veiga, A. Buffa, C. Lovadina, A. Reali, G. Sangalli, “A

fully “locking-free” isogeometric approach for plane linear elasticity problems: A

stream function formulation,” Computer Methods in Applied Mechanics and

Engineering, Vol. 197, 2007, pp. 160–172.

[6] A. Reali, “An isogeometric analysis approach for the study of structural vibrations,”

Journal of Earthquake Engineering, 10, s.i. 1, 1–30, 2006.

[7] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of

structural vibrations,” Computer Methods in Applied Mechanics and Engineering,

195:5257–5297, 2006.

[8] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang, “Isogeometric fluid-structure

interaction: Theory, algorithms and computations,” Computational Mechanics,

Vol. 43, 3-37, December, 2008.

68

[9] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes, “Isogeometric fluid-structure

interaction analysis with applications to arterial blood flow,” Computational

Mechanics, 38:310–322, 2006.

[10] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and T. J. R. Hughes, “Patient-

specific vascular NURBS modeling for isogeometric analysis of blood flow,” In

Proceedings of the International Meshing Roundtable Conference, 2006.

[11] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri, “T-splines and T-NURCCS,”

ACM Transactions on Graphics 22, 3 (July), 477-484, 2003.

[12] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche,

“T-spline simplification and local refinement,” ACM Transactions on Graphics,

23 (3):276–283, 2004.

[13] W. C. Li, N. Ray, and B. Lévy, “Automatic and interactive mesh to T-spline

conversion,” in SGP ’06: Proceedings of the fourth Eurographics symposium on

Geometry processing. Aire-la-Ville, Switzerland, Switzerland: Eurographics

Association, 2006, pp. 191–200.

[14] Y. Wang, J. Zheng, and H. S. Seah, “Conversion between T-splines and hierarchical

B-splines,” in Computer Graphics and Imaging, 2005, pp. 8–13.

[15] Y. He, K. Wang, H. Wang, X. Gu, and H. Qin, “Manifold T-spline,” in GMP, 2006,

pp. 409–422.

[16] J. Zheng, Y. Wang, and H. S. Seah, “Adaptive T-spline surface fitting to z-map

models,” in GRAPHITE ’05: Proceedings of the 3rd international conference on

Computer graphics and interactive techniques in Australasia and South East Asia.

New York, NY, USA: ACM, 2005, pp. 405–411.

[17] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. Evans, T. J. R. Hughes, S. Lipton, M. A.

Scott, and T. W. Sederberg, “Isogeometric Analysis using T-splines,” Computer

Methods in Applied Mechanics and Engineering, to appear, 2009.

[18] H. Yang, M. Fuchs, B. Jüttler, O. Scherzer, “Evolution of T-spline level sets with

distance field constraints for geometry reconstruction and image segmentation,”

In:Proc. SMI’06, pp. 247–252 (2006).

[19] H, Yang, B, Jüttler, “3D shape metamorphosis based on T-spline level sets,” The

Visual Computer 23(12): 1015-1025 (2007).

[20] J. Deng, F. Chen and Y. Feng, “Dimensions of spline spaces over T-meshes,” J.

Comp. Appl. Math. 194 (2006) 267-283.

69

[21] T. W. Sederberg, “CS 557: Computer-Aided Geometric Design,” Class Notes, 2007.

[22] R. J. Balling, “CEEN 506: Continuum Mechanics and Finite Elements,” BYU Press,

2006.

70

	Brigham Young University
	BYU ScholarsArchive
	2009-08-12

	Isogeometric Finite Element Analysis Using T-Splines
	Jingang Li
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Literature Review
	Isogeometric Analysis
	T-splines

	Bézier Curves, B-splines and T-splines
	Bézier Curves
	The Equation of a Bézier Curve
	Bézier Curves over Arbitrary Parameter Intervals
	Rational Bézier Curves
	Rational Bézier Curve Representation of Circular Arcs

	B-spline Curves
	Polar Form
	Knot Vectors
	Knot Insertion

	T-splines
	Control Point Insertion

	Finite Element Program
	Input and Output
	Program Organization
	Element Functions
	Finite Element Program Using T-splines
	Modification to Program Input
	The Tspline2D Function
	The TsplineDeBoor Function

	Test Example
	B-spline Model (B.1)
	B-spline Model (B.2)
	B-spline Model (B.3)
	B-spline Model (B.4)
	B-spline Model (B.5)
	B-spline Model (B.6)
	T-spline Model (T.5)
	T-spline Model (T.6)

	Results
	Closed Form Solution
	Output Results
	Comparison of Norms
	Comparison of Computational Efforts

	Conclusion
	References

