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ABSTRACT 

 

 

Automatic All-Hex Topology Operations Using  
Edge Valence Prediction with Application 

to Localized Coarsening 
 
 
 

Timothy I. Miller 
Department of Civil and Environmental Engineering 

Master of Science 
 

 

In this work, we propose using edge valence as a quality predictor when used as a driver 
for adapting all hexahedral meshes.  Edge valence, for hexahedra, is defined as the number of 
faces attached to an edge.  It has shown to be a more reliable quality predictor than node 
valence for hexahedral meshes.  An edge valence of 3, 4, or 5 within the volume of a hexahedral 
mesh has provided at least a positive scaled Jacobian for all observed meshes, without the 
presence of over constraining geometry.  It is often desirable to adapt an existing mesh through 
sheet operations such as column collapse, sheet insertion, or sheet extraction.  Examples of 
hexahedral mesh adaptation include refining and coarsening.  This work presents a general 
algorithm for a priori prediction of edge valence when used with column collapse and sheet 
extraction operations.  Using the predicted edge valence we present a method for guiding the 
mesh adaptation procedure which will result in an overall higher quality mesh than when driven 
by mesh quality alone.  Other quality metrics such as the Jacobian are unfit for predictive 
algorithms because of their heavy dependence on node positioning instead of hex topology.  
Results have been derived from application of the algorithm towards the localized coarsening 
process. 
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1. INTRODUCTION  

 

The Finite Element Method (FEM) is a powerful analytical tool used to solve differential 

equations for many science and engineering applications.  While the FEM has been used since 

the 1950’s [1], the proliferation of personal computers and the rapid increase in affordable 

computational power has made the method much more common for science and engineering 

applications.  Today the FEM has been applied to a variety of numerical problems including 

stress analysis, fluid dynamics, and structural vibrations.   

As part of the FEM, the domain must be discretized into smaller elements.  For two 

dimensional problems, the most common element shapes are triangles and quadrilaterals.  For 

three dimensional problems the most common element shapes are tetrahedra and hexahedra.  

Each of these different element types has advantages and disadvantages over the other 

element type. For example, tetrahedral meshing algorithms are more general purpose than 

hexahedral algorithms but hexahedral elements provide greater accuracy for the same number 

nodes [2].   

The accuracy of the FEM solution is very dependent on the number of nodes and quality 

of elements in the domain.  In the FEM, each element is mapped to a unit element of the same 

shape.  For example, a hexahedron is mapped to the unit cube.  Thus, hexahedra with 
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elemental dihedral angles of approximately 90° are considered ideal.  These ideal elements will 

yield the greatest accuracy but dihedral angles much greater than, or less than, the ideal 90° 

often occur due to topological constraints.  Increasing the number of nodes will increase the 

number of degrees of freedom which will increase the accuracy of the FEM solution.  Increasing 

the number of degrees of freedom will also increase the computational time which may be 

significant on large meshes or slow processors.      

A compromise in node density may be reached by increasing the number of nodes in 

regions of the mesh where greater accuracy is needed and reducing the number of nodes in 

regions where less accuracy is needed.  Regions that may need greater accuracy include 

locations of high stress or strain, complex geometry, or a high error count.  When generating 

the initial mesh, the user may know what areas will require a high node density and what areas 

are appropriate for a lower node density, but often these areas can only be identified after the 

FEM has been performed and error estimates are obtained [3].  In response to this initial FEM 

solution, the user may change the mesh by either re-meshing the entire domain or modifying 

specific regions of the initial mesh. 

For hexahedron meshes, many mesh modification techniques include some type of 

sheet operation1 4-7 [ ].  A sheet can be defined as a set of contiguous hexahedron with each 

hexahedron sharing geometrically opposite faces with other hexahedron of the same sheet, as 

shown in Figure 1-1(a).  The intersection of two sheets forms one or more columns, as shown in 

Figure 1-1(b).  

                                                           
1 See Appendix for descriptions of hexahedral topology modification operations 
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The purpose of this work is to develop a method for guiding the localized hexahedral 

coarsening process based on a reliable quality metric.  This method must accurately predict 

mesh quality for sheet operations without actually performing those operations in order to 

guide the modification process.  This new method must also show an improvement over 

existing methods. 

 

(a) Example of highlighted sheet (b) Intersection of two sheets defines a 
column 

Figure 1-1: Intersection of two sheets forms a column. 

 

 Sheet operations of importance to this work include column collapse, sheet extraction, 

and pillowing.  Column collapse is the process of merging two diagonally opposite edges of a 

hex to form a single edge.  Each column has two possible directions to collapse, each creating a 

unique sheet as shown in Figure 1-2.  Sheet extraction is the process of removing a hexahedral 

sheet by collapsing the edges that form the sheet as shown in Figure 1-3.  Pillowing may be 
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considered the opposite of sheet extraction and is the process of inserting a sheet into a mesh 

[8].  A pillow may be applied to a contiguous set of hexahedra known as a “shrink” set.  This set 

of hexahedra are reduced in size and pulled away from the rest of the mesh.  A new sheet is 

then inserted into the ensuing gap as shown in Figure 1-4. 
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(a) Highlighted 
column 

(b) Column collapsed 
one direction 
with effected 
sheets 
highlighted 

(c) Column collapsed 
in the other 
direction with 
effected sheets 
highlighted 

Figure 1-2: Example of column collapse in each direction. 

 

 

 

   

(a) Highlighted hexahedra define the 
sheet 

(b) Final mesh after the sheet is 
removed 

Figure 1-3: Example of sheet extraction. 
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(a) Highlighted region will be pillowed (b) Region is separated from 
surrounding mesh 

 

  

(c) A hexahedron sheet is inserted into 
the remaining gap 

(d) Resulting mesh with pillow 
highlighted 

Figure 1-4: Pillowing procedure.
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2. EDGE VALENCE BACKGROUND 
 

2.1 Review of Edge Valence 

As previously stated, the accuracy of the FEM is dependent on the quality of the mesh 

provided.  Assessing the quality of a mesh before performing the FEM can be done using one or 

more of the many available metrics [9-11].  Several of the available metrics such as the scaled 

Jacobian, shape, and condition number rely on the Jacobian matrix of the element shown as 

Equation 2-1 with yn = natural coordinate and xn = actual coordinate.  The natural coordinates 

are taken from the unit cube while the actual coordinates are taken from the actual element 

node locations.  The Jacobian matrix, computed for each of the nodes of a hexahedral element, 

provides useful information such as element shape, volume, and orientation.  The determinate 

of the Jacobian matrix is often referred to simply as the element Jacobian.   
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For hexahedral elements, the Jacobian matrix for each node can be divided by 

thelengths of the three edge vectors that intersect that particular node to produce the scaled 
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Jacobian matrix.  The determinate of each of these scaled Jacobian matrices can then be 

calculated to produce the scaled Jacobian for each node.  The minimum scaled Jacobian for 

each of the eight nodes is then taken as the minimum scaled Jacobian for that element.  Scaled 

Jacobians have a range from 1 for perfect cubes to -1 for inverted cubes. 

When adapting existing meshes, several candidate adaptations are often available.  

Ideally, a quality metric is used to determine which candidate is best.  Woodbury [12] uses a 

shape metric based on the element Jacobian matrices to choose between different coarsening 

adaptations.  Unfortunately, the Jacobian matrix is dependent on the global spatial positions of 

the nodes of an element.  During adaptation, the precise locations of new nodes resulting from 

a potential adaptation are not known, making any metric based on the Jacobian matrix difficult 

to use.  Thus, we seek a metric which will predict element quality without precise node 

locations and, if obtained, consistently result in good scaled Jacobians. 

Edge valence is a relatively new quality metric developed by Staten [13] that has shown 

to be an accurate predictor of hexahedral mesh quality.  Edge valence is defined as the number 

of quadrilateral faces connected to a single edge.  Staten asserts that if the edge valence of all 

edges in a hexahedra mesh is 3, 4, or 5 then the scaled Jacobian of that element will be greater 

than zero and likely much higher, in the absence of over constraining geometric topology.  For 

an edge on the interior of the mesh, if the edge valence is less than 3 the element will contain a 

doublet and consequently be inverted.  Elements with an edge valence greater than 5 may have 

acceptable quality but if a doublet exists, the element will be inverted and admit only poor 

quality. 
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Two types of doublets may exist in elements with an edge valence greater than 5 or less 

than 3.  Face doublets occur when two elements share two adjacent faces and edge doublets 

occur when two elements share two or more adjacent edges without sharing a face as shown in 

Figure 2-1.  While the existence of doublets does impact mesh quality, the algorithm presented 

later in this work does not predict the creation of doublets.  Rather, we avoid the introduction 

of doublets by only allowing operations that guarantee edge valences of 3, 4, or 5 within the 

volume of the mesh.  

 

(a) Hexahedral face doublet (b) Hexahedral edge doublet 

Figure 2-1: Hexahedral doublets. 

 

2.2 Review of Localized Hexahedral Coarsening 

Several mesh adaptation algorithms exist for hexahedral meshes including coarsening 

[12], refinement [4], mesh matching [6], and grafting [5].  An existing mesh may be modified to 

adjust node density through refining and/or coarsening to increase the quality of elements of a 

mesh, to create a conformal mesh, or to more easily mesh a domain.  The coarsening algorithm 
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presented by Woodbury [12] uses pillowing, column collapse, and sheet extraction to achieve 

completely local coarsening of an existing mesh.  A brief review of this process is presented 

below. 

There are 3 main steps required for localized coarsening of hexahedral meshes 

according to Woodbury’s algorithm [12].  Step 1 is to pillow the desired coarsening region.  By 

inserting a pillow, columns are created that will be local to the desired coarsening region.  Step 

2 is to collapse columns within the pillow in such a manner as to create sheets local to the 

coarsening region.  Step 3 is to extract the local sheets that were created in step 2.  Figure 2-2 

shows these coarsening steps on a simple structured mesh.   

Several columns are often available for collapse in step 2.  In addition, each column can 

be collapsed two unique directions, often providing many different collapse and extract 

combinations.  The two criteria that are used to decide which columns to collapse are: 

1. Level of coarsening desired for resulting mesh and, 

2. Resulting mesh quality 

Which columns are collapsed determines which sheets will be extracted; the number of 

elements within those sheets must not exceed the target number of elements to be removed.  

Determining the resulting mesh quality for a particular column collapse option can be difficult.  

Woodbury’s coarsening algorithm decides which column collapses will result in a poor mesh 

quality by evaluating the quality of the sheets bordering the sheet that would be extracted as 

shown in Figure 2-3.  



11 

 

 

 

   

(a) Highlighted portion will be coarsened (b) Pillow is inserted around the 
coarsening region 

 

(c) Highlighted columns 
will be collapsed 

(d) After columns are 
collapsed, local 

sheets are extracted 

(e) Final coarsened mesh 

Figure 2-2: Overview of coarsening process showing pillowing (b), column collapse (d), and 
sheet extraction (e). 
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Figure 2-3: Shaded hexahedral represent bordering sheets for the sheet in between the two. 

 

The quality of these bordering sheets is evaluated by calculating a shape metric, fshape as 

presented by Knupp [14], for each element within that sheet.  This metric is mathematically 

defined in Equation 2-2 and has a value of 1.0 for a perfect cube and 0 for a degenerate 

element.  For this equation, the metric tensor is defined as AT
k Ak with Ak being the Jacobian 

matrix for the kth node.  The minimum element fshape for each pair of bordering sheets is then 

taken as the quality of the sheet and compared to the qualities of the sheets bordering other 

potential extraction sheets.  This method of predicting sheet quality has been effective and 

reliable for structured meshes but does not guarantee acceptable mesh quality because it uses 

the pre-adaptation location of nodes. 
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where:  λij
k = the ijth component of the kth metric tensor 

  αk = the determinate of the kth jacobian matrix 

The difficulty in using Woodbury’s approach to predict mesh quality stems from the fact 

that the mesh is being evaluated prior to any mesh manipulation.  It is an oversimplification to 

assume that the mesh quality will not significantly change after a series of pillowing, collapsing 

columns, and extracting sheets.  Any attempt to precisely predict fshape through these 

coarsening steps, and smoothing, would be unrealistic due to the many possibilities of node 

positioning.
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3. EDGE VALENCE PREDICTION ALGORITHM 
 

A new algorithm that can be used during hexahedral coarsening is presented below.  

This algorithm accurately predicts the valence of each edge in a given mesh through the steps 

of column collapse and sheet extraction.  The algorithm assumes the coarsening region has 

been selected, the pillow has been inserted, and a coarsening layout has been determined.  For 

the purpose of this thesis, a coarsening layout is defined as a set of columns and sheets that 

could be, respectively, collapsed and extracted to produce a coarsened mesh.  

A coarsening layout is created by evaluating every sheet within the coarsening region 

and determining which of these sheets will produce a sufficiently coarsened mesh.  Woodbury’s 

algorithm [12] will only generate one coarsening layout at any given time; for this reason, if a 

coarsening layout is rejected due to poor edge valence, a new layout must be created using a 

different combination of sheets.  If the initial mesh in the coarsening region does not contain 

acceptable edge valences, the edge valence prediction algorithm would be skipped and 

Woodbury’s original method of evaluating mesh quality, presented earlier, would be used.  For 

this algorithm, unacceptable edge valences are those greater than 5 or less than 3 for an 

interior edge. 
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For this algorithm equation 3-1 is used to predict the edge valence for edges that will 

merge with another edge during column collapse and equation 3-2 is used for edges that will 

not merge with another edge during column collapse.   Equation 3-3 is used to predict edge 

valence for edges during sheet extraction.  These equations are presented below with 

examples.   

α+−+= 321 2mmmPEVC                          (3-1)
    

β+−= 1mPEVC                          (3-2)  
 

where:  PEVC =  Predicted edge valence for column collapse 

m1 =  Number of hexes attached to edge 1  

m2 =  Number of hexes attached to edge 2 

m3 =  Number of hexes common to edge 1, edge 2, and the 

column 

m =  Number of hexes attached to edge 

α =  1 if at least 1 edge is on the mesh boundary 

   0 otherwise 

  Β =  1 if edge is on mesh boundary 

   0 otherwise 

 

α+−+= 321 2mmmPEVS                         (3-3) 

where:  PEVS =  Predicted edge valence for sheet extraction 
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m1 =  Number of hexes attached to edge 1 

m2 =  Number of hexes attached to edge 2 

m3 =  Number of hexes common to edge 1, edge 2, and the 

sheet 

α =  0 if neither edge is on the mesh boundary 

   1 otherwise 

To demonstrate these equations, a simple structured mesh will be used.  Figure 3-1 

shows a highlighted column with three labeled edges.  For this example, the column will be 

collapsed such that edge #1 and edge #3 will be merged together and edge #2 will not merge 

with any other edge.  Using equation 3-1 we can predict the edge valence of the resulting edge 

when edge #1 and edge #3 are merged as follows. 

PEVC  = 2 + 2 – 2(1) + 1                         (3-4) 
 = 3  
 
The edge valence of edge #2 may be predicted through column collapse by using 

equation 3-2 as follows with the results verified in Figure 3-2. 

PEVC  = 4 – 1                            (3-5) 
 = 3 

Continuing with the same mesh that was used to demonstrate the equations used for 

column collapse, we will now demonstrate equation 3-3 for sheet extraction.  Figure 3-3 shows 

a highlighted sheet that will be extracted and two edges labeled edge #4 and edge #5 that will 

be merged in the extraction process.  Using equation 3-3 the valence can be predicted for the
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 resulting edge when edge #4 and edge #5 are merged as follows.  Results may be verified from 

Figure 3-4. 

PEVS  = 3 + 6 – 2(2) + 0                          (3-6) 
 = 5 

 

 

Figure 3-1: Highlighted column will be collapsed. 

 

 

Figure 3-2: Resulting mesh after column collapse. 
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Using edge valence as the quality metric for accurately predicting mesh quality through 

sheet operations is achievable partly due to the simplicity of edge valence.  Unlike the Jacobian, 

edge valence is a positive integer value that is based on mesh topology rather than node 

location.  Therefore, most smoothing techniques will not alter edge valence and the discrete 

values are more easily calculated.  Cleanup operations that alter node connectivity [15] may 

change the edge valence of a mesh but these operations only occur after the sheet operations 

have taken place and should only improve the mesh quality.  These attributes make it possible 

to accurately predict edge valence through sheet operations. 

 

 

Figure 3-3: Highlighted sheet will be extracted. 
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Figure 3-4: Resulting mesh after sheet extraction. 

 

With the edge valence prediction equation presented, the following 6 steps now show 

the algorithm as applied to the coarsening process.  

1. From the coarsening layout, find the hexahedral columns that will collapse and the 

collapse direction. 

2. For each edge that will collapse find the opposite edge with which it will be merged. 

3. Predict the valence for all the edges that are part of the hex columns that will be 

collapsed.  If the edge will merge with another edge use Equation 3-1, otherwise use 

Equation 3-2 and save these new valences. 

4. From the coarsening layout, find each of the hexahedral sheets that will be removed.   

5. For each edge that will collapse find the opposite edge with which it will be merged. 

6. Predict the valence for all the edges that will be collapsed using Equation 3-3 and the 

valences calculated in step 3 as needed. 

The algorithm presented above was used to create the examples in the results section.  

A flowchart of this algorithm is presented in Figure 3-5. 
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Figure 3-5: Flowchart of the edge valence prediction algorithm. 
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4. RESULTS 
 

 The following examples have been generated using the CUBIT geometry and mesh 

generation software [16].  The examples demonstrate the ability of the edge valence prediction 

algorithm to accurately predict edge valence through sheet operations as well as its ability to 

guide the coarsening process.  The first example uses a simple cylinder with a swept mesh 

shown in Figure 4-1 (a).  The area highlighted in Figure 4-1 (b) will be coarsened by 50% using 

Woodbury’s coarsening algorithm.  Figure 4-2 (a) shows the resulting mesh with the original 

algorithm and Figure 4-2 (b) shows the resulting mesh when edge valence prediction is used to 

guide the coarsening process.  Resulting edge valence and scaled Jacobian for the two 

coarsened meshes are shown in Table 4-1.  A histogram showing the distribution of scaled 

Jacobians among elements within the coarsening region is shown in Figure 4-3. 

This next example uses another swept mesh, shown in Figure 4-4, which will be 

coarsened to 50% and 75% as shown in Figure 4-5 and Figure 4-6 respectively.  Edge valence 

and Jacobian results are shown in Table 4-2 and Table 4-3.  Again, histograms are provided in 

Figure 4-7 and Figure 4-8 for the 50% and 75% coarsening respectively.  These histograms show 

that not only does the minimum scaled Jacobian increase but the overall average element 

scaled Jacobian also increases when edge valence prediction is used. 
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(a) Original mesh (b) Highlighted portion will be 
coarsened 50% 

Figure 4-1: Original mesh on cylinder with highlighted portion to be coarsened by 50%. 
 

  

(a) 50% coarsening without edge valence 
prediction 

(b) 50% coarsening with edge valence 
prediction 

Figure 4-2: Results of coarsened cylinder without edge valence prediction (a), and with edge 
valence prediction (b). 
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Table 4-1: Edge Valence and Jacobian Results for 50% Coarsening of Cylinder 

 

 

 

 

Figure 4-3: Histogram of Scaled Jacobian for 50% coarsening of cylinder. 

 

 

Ave. Scaled Jacobian in coarsening region: 0.8466 Ave. Scaled Jacobian in coarsening region: 0.9206

Predicted Actual Predicted Actual
3 - 1141 3 1107 1107
4 - 56040 4 56169 56169
5 - 979 5 953 953
6 - 5 6 0 0
7 - 0 7 0 0

Predicted Actual Predicted Actual
2 - 148 2 146 146
3 - 7908 3 7902 7902
4 - 0 4 0 0

Surface/Curve Edge Valence # Edges

50% Coarsening With Edge                                  
Valence Prediction

Actual Coarsening: 40.74%
Min. Scaled Jacobian: 0.4206

# EdgesVolume Edge Valence

# EdgesSurface/Curve Edge Valence 

50% Coarsening Without Edge                           
Valence Prediction

Volume Edge Valence # Edges

Actual Coarsening: 46.03%
Min. Scaled Jacobian: 0.3162
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(a) Top view of original mesh (b) Highlighted portion will be coarsened 

Figure 4-4: Original mesh on mechanical part with highlighted portion to be coarsened by 50% 
and 75%. 

 

From this data we can make two observations.  The first is that use of edge valence 

prediction has produced a coarsened mesh with a higher minimum scaled Jacobian.  The 

second is that using edge valence prediction may allow for the mesh to be coarsened closer to 

the prescribed amount of coarsening; in this case, 71% coarsening was achieved instead of 66%.  

This second observation will not always occur and is in reality an exception to what will 

most likely occur.  More often, the use of edge valence prediction will result in a reduction in 

coarsening when compared to Woodbury’s original algorithm because of greater scrutiny of 

each coarsening layout. 
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(a) Without edge valence prediction 

  

(b) With edge valence prediction 

Figure 4-5: Results of 50% coarsened mechanical part without edge valence prediction (a), 
and with edge valence prediction (b). 
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(a) Without edge valence prediction 

  

(b) With edge valence prediction 

Figure 4-6: Results of 75% coarsened mechanical part without edge valence prediction (a), 
and with edge valence prediction (b). 
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Table 4-2: Edge Valence and Jacobian Results for 50% Coarsening of Mechanical Part 

 

 

 

Table 4-3: Edge Valence and Jacobian Results for 75% Coarsening of Mechanical Part

 

Ave. Scaled Jacobian in coarsening region: 0.8717 Ave. Scaled Jacobian in coarsening region: 0.8908

Predicted Actual Predicted Actual
3 - 1566 3 1517 1517
4 - 118073 4 118189 118189
5 - 1518 5 1549 1549
6 - 40 6 0 0
7 - 0 7 0 0

Predicted Actual Predicted Actual
2 - 1804 2 1804 1804
3 - 22008 3 21964 21964
4 - 1280 4 1280 1280

50% Coarsening With Edge                                  
Valence Prediction

Actual Coarsening: 49.58%
Min. Scaled Jacobian: 0.4366

# EdgesVolume Edge Valence

# EdgesSurface/Curve Edge Valence 

50% Coarsening Without Edge                           
Valence Prediction

Volume Edge Valence # Edges

Actual Coarsening: 50%
Min. Scaled Jacobian: 0.4317

Surface/Curve Edge Valence # Edges

Ave. Scaled Jacobian in coarsening region: 0.7999 Ave. Scaled Jacobian in coarsening region: 0.8010

Predicted Actual Predicted Actual
3 - 1644 3 1622 1622
4 - 116715 4 116332 116332
5 - 1528 5 1654 1654
6 - 39 6 0 0
7 - 24 7 0 0

Predicted Actual Predicted Actual
2 - 1798 2 1792 1792
3 - 21798 3 21616 21616
4 - 1280 4 1280 1280

# EdgesVolume Edge Valence

# EdgesSurface/Curve Edge Valence 

75% Coarsening With Edge                                  
Valence Prediction

Actual Coarsening: 70.99%
Min. Scaled Jacobian: 0.3958

# Edges

# Edges

Volume Edge Valence

Surface/Curve Edge Valence 

75% Coarsening Without Edge                           
Valence Prediction

Actual Coarsening: 65.88%
Min. Scaled Jacobian: 0.3726
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Figure 4-7: Histogram of scaled Jacobian for 50% coarsening of mechanical part. 

 

 

Figure 4-8: Histogram of scaled Jacobian for 75% coarsening of mechanical part. 

 

The last example presented in Figure 4-9 shows how much the minimum scaled 

Jacobian can be improved using the edge valence prediction algorithm and the ability of the 

algorithm to handle merged surfaces.  Figure 4-10 shows the two resulting meshes after 66% 

coarsening.  Table 4-4 shows again how the edge valence prediction algorithm was able to 
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accurately predict the edge valence of each edge in a mesh through the steps of column 

collapse and sheet extraction.  Figure 4-11 shows a histogram of the scaled Jacobian for these 

two coarsening methods.  These histograms show that using edge valence prediction helps to 

increase the overall scaled Jacobian in the coarsening region.  These results also show the 

ability of the algorithm to successfully guide Woodbury’s coarsening algorithm to produce a 

mesh with a higher minimum scaled Jacobian.  The original algorithm produced a mesh with a 

minimum scaled Jacobian of 0.2087 which is borderline acceptable for some solvers whereas 

the application of edge valence prediction produced a mesh with a minimum scaled Jacobian of 

0.4305. 

 

  

(a) Original Mesh (b) Highlighted portion to be coarsened 

Figure 4-9: Original mesh on blocks with highlighted portion to be coarsened by 66%, 
highlighted portion extends down 5 layers into the mesh. 
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(a) Without edge valence prediction 

 

(b) With edge valence prediction 

Figure 4-10: Results of 66% coarsened block without edge valence prediction (a), and with 
edge valence prediction (b). 
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Table 4-4: Edge Valence and Jacobian Results for 66% Coarsening of Block 

 

 

 

 

Figure 4-11: Histogram of scaled Jacobian for 66% coarsening of block.

Ave. Scaled Jacobian in coarsening region: 0.7412 Ave. Scaled Jacobian in coarsening region: 0.8731

Predicted Actual Predicted Actual
3 - 294 3 172 172
4 - 8046 4 8492 8492
5 - 247 5 188 188
6 - 35 6 0 0
7 - 3 7 0 0

Predicted Actual Predicted Actual
2 - 200 2 200 200
3 - 2912 3 2920 2920
4 - 616 4 626 626

Surface/Curve Edge Valence # Edges

66% Coarsening With Edge                                  
Valence Prediction

Actual Coarsening: 46.28%
Min. Scaled Jacobian: 0.4305

# EdgesVolume Edge Valence

# EdgesSurface/Curve Edge Valence 

66% Coarsening Without Edge                           
Valence Prediction

Volume Edge Valence # Edges

Actual Coarsening: 57.16%
Min. Scaled Jacobian: 0.2087
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5. CONCLUSIONS 
 

This thesis presents an algorithm for predicting the edge valence of edges in an all-

hexahedral mesh through the sheet operations of column collapse and sheet extraction.  This 

prediction algorithm allows for mesh modifications to be analyzed without actually altering the 

mesh in any way.  The operation that will maintain mesh quality can then be selected for 

execution.  This is critical for mesh modification algorithms, which make incremental decisions 

during the modification process, because it allows for an objective quality metric to guide mesh 

modifications without actually having to carry out those modifications.  This ability to guide 

mesh modifications without actually altering the mesh is the principle contribution of this 

thesis.    

To demonstrate this edge valence prediction capability, the algorithm has been applied 

to the localized coarsening process presented by Woodbury [12] with examples shown.  In the 

examples shown, edge valence prediction resulted in higher mesh quality as measured by the 

minimum and average scaled Jacobian.  In two of the four examples, the coarsening process 

was stopped pre-maturely in order to maintain good element quality. 

Future work with edge valence prediction may be the application of this algorithm to 

other all-hex topology modification techniques such as refining or mesh matching.  It is 

expected that the application of this new algorithm would improve these processes because of 



36 

 

its successful application to coarsening but, at this point it is unknown to what extent the 

algorithm may be applied.  Future work may also be considered for adapting the edge valence 

prediction algorithm presented in this work to allow for its use on meshes with an initial poor 

quality.  As stated, this algorithm will not evaluate meshes with unacceptable edge valences 

due to the possible presence and creation of doublets.  However, the algorithms extension to 

poor quality meshes may be useful and possibly controlled by the development of doublet 

prediction algorithms. 

The efficiency of this algorithm may also be improved, as applied to the coarsening 

process, by restructuring Woodbury’s coarsening algorithm to make more use of edge valence 

prediction.  This may be done by evaluating multiple coarsening layouts at a single time and 

executing the one that provides the best mesh quality, thus eliminating the current greedy 

algorithm.  Another facet of Woodbury’s original algorithm that may benefit from edge valence 

prediction is in deciding which direction to collapse the columns.  Currently, there is no quality 

check for different collapse directions but the application of edge valence prediction may 

improve this process.
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APPENDIX A:   HEXAHEDRAL TOPOLOGY MODIFICATION OPERATIONS 
 

 Developing hexahedral topology modification techniques has proven to be a difficult 

matter due to the perpetuation of local changes throughout the mesh.  Efforts to develop 

robust, and local, hexahedral modification techniques is an ongoing area of research with 

steady progress being made.  The following is a short survey of current hexahedral modification 

techniques. 

Every hexahedral mesh may be understood in terms of its dual or as a primal mesh as 

shown in Figure 0-1.  The dual of a mesh may be seen as a set of intersecting surfaces that 

bisect hexahedral surfaces in each direction.  The dual of a mesh may also be known as the 

spatial twist continuum [17].  Operations on a hexahedral mesh may be categorized into one of 

three main types: sheet operations, flipping operations [18], and atomic operations [15]. 

Sheet operations already discussed include column collapse, sheet extraction and 

pillowing.  Another sheet operation not used in the edge valence prediction algorithm is dicing 

[19].  Dicing is used for refining a hexahedral mesh for the purpose of generating large meshes.  

Dicing is the process of sub-dividing each hexahedron in a mesh to create a refined mesh.  
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(a) Dual of a mesh (b) Primal of a mesh 

Figure 0-1: Two methods for presenting a mesh are in terms of its dual (a) and primal (b). 

 

Flipping operations are well known and commonly used for tetrahedral meshes and 

have been extended for hexahedral use.  Flipping operations are an entirely local process that 

effect small pockets of hexahedron.  Flipping has not been applied to hexahedron with the 

same success as when it was applied to tetrahedron but efforts are still being made to exploit 

their use [20].  For diagrams and further descriptions of the flipping process the reader may 

refer to already published literature [18, 20]. 

 Atomic operations are defined as irreducible local operations that may be used to 

describe any higher order operation such as a sheet or flipping operation.  These atomic 

operations include atomic pillow, face shrink, and face open-collapse.  A fourth operation may 

be added to this list but understanding of its primal expression is limited and thus application 

towards hexahedral topology modifications is not possible [21].  
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 The atomic pillow is performed on a single quadrilateral face that separates two 

hexahedral.  The quad is pulled apart from the hexahedral and split into two separate quads.  

The gap now present between the two quads is filled with two hexahedral each sharing five 

faces.  This process is depicted in two dimensions in Figure 0-2. 

 Face shrink involves two adjacent hexahedral that shares a single face.  Vertices of the 

common face are shrunk towards the center of the face with a new hexahedron inserted into 

each of the four remaining voids.  The face shrink operation is the same as “Inflate Hex Ring” 

operation introduced by Knupp and Mitchell [22].This process is depicted in Figure 0-3.  Face 

open-collapse is the process of splitting and merging neighboring dual sheets.  This is done by 

opening dual edges and reconnecting them in a different but still conformal manner.  The face 

open-collapse is presented in sheet diagrams in already published literature [20] but the primal 

mesh is much more difficult and has been omitted from this survey. 

 



44 

 

 

 

 

 

Figure 0-2: Atomic pillowing in the primal mesh. 

 

 

 

Figure 0-3: Face shrink in the primal mesh. 

 

 

 

 

 


