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ABSTRACT 
 
 
 

SECOND-ORDER STRUCTURAL ANALYSIS WITH ONE 

ELEMENT PER MEMBER 
 
 
 

Jesse W. Lyon 

Department of Civil and Environmental Engineering 

Master of Science 
 
 
 

In this thesis, formulas for the local tangent stiffness matrix of a plane frame 

member are derived by differentiating the member resistance vector in the displaced 

position.  This approach facilitates an analysis using only one element per member.  The 

formulas are checked by finite difference.  The derivation leads to the familiar elastic and 

geometric stiffness matrices used by other authors plus an additional higher order 

geometric stiffness matrix. 

Contributions of each of the three sub-matrices to the tangent stiffness matrix are 

studied on both the member and structure levels through two numerical examples.  These 

same examples are analyzed three different ways for comparison.  First, the examples are 

analyzed using the method presented in this thesis.  Second, they are analyzed with the 

finite element modeling software ABAQUS/CAE using only one element per member.  

Third, they are analyzed with ABAQUS using 200 elements per member.  Comparisons 





 

are made assuming the ABAQUS analysis which uses 200 elements per member is the 

most accurate.  The element presented in this thesis performs much better than the 

ABAQUS analysis which uses one element per member, with maximum errors of 1.0% 

and 40.8% respectively, for a cantilever column example.  The maximum error for the 

two story frame example using the ABAQUS analysis with one element per member is 

42.8%, while the results from the analysis using the element presented in this thesis are 

within 1.5%.  Using the element presented in this thesis with only one element per 

member gives good and computationally efficient results for second-order analysis. 
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1 0BIntroduction 

The first objective of this thesis is to present a second-order nonlinear plane frame 

analysis method which uses only one element per member.  Many of the procedures 

currently available employ finite element techniques which involve dividing the members 

of the frame into multiple elements for a more accurate analysis.  Analyzing large frames 

with such an approach can be computationally intensive.  The analysis presented herein 

uses a single element per member. 

The finite element modeling software ABAQUS/CAE is used to illustrate the 

importance of this objective in Section 4 of this thesis.  The results from ABAQUS 

models using only one element per member are compared to the results of ABAQUS 

models which use 200 elements per member.  The resulting joint displacements are very 

different, with errors as large as 41% for a cantilever column example and 43% for a two-

story plane frame example. 

The second objective is to derive a tangent stiffness matrix for the plane frame 

element that is the direct derivative of the resistance vector.  This relationship stems from 

the Newton-Raphson method used in the nonlinear matrix stiffness method.  To illustrate 

the importance of this direct derivation, a brief summary of the Newton-Raphson method 

follows.   
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For a second-order analysis, the governing equation of the matrix stiffness method 

is shown in Equation 1-1. 

( )uzf =           (1-1) 

where f is the force vector of the element, and z is known as the resistance vector, a 

nonlinear function of the displacement vector u.  To solve this system of nonlinear 

equations, an iterative solution method is used, namely the Newton-Raphson method 

(Cheney and Kincaid 2008).  The procedure begins with an initial guess for u, 
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is a more accurate solution.  The Taylor expansion leads to the following equation 
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where kT is the Jacobian matrix, which in structural analysis is the tangent stiffness 
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Note that the tangent stiffness matrix is the derivative of the resistance vector with 

respect to each of the displacements.  If kT is nonsingular, then the corrected 

displacements can be found by solving Equation 1-4 for Δu. 

 The derivation of the tangent stiffness matrix presented in section 3 of this thesis 

is the work of Dr. Richard J. Balling.  The remainder of this thesis, including an extensive 

literature review in Section 2, the analysis of two examples in Section 4 and their 

comparisons to ABAQUS analyses, the validation of the derivation of the tangent 

stiffness matrix by finite difference and the study of the contributions of the three sub-

matrices to the tangent stiffness matrix is the work of Jesse W. Lyon. 
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2 1BLiterature Review 

In the literature, a variety of methods exist for the derivation of the element 

tangent stiffness matrix.  However, many of these methods are not sufficiently accurate 

for the analysis of long slender members without the use of multiple elements.  Also, a 

majority of these tangent stiffness matrices are not derived from the relationship between 

the resistance vector and the tangent stiffness matrix.   

Typically, the tangent stiffness matrix is the sum of two matrices, the elastic and 

geometric stiffness matrices.  The elastic stiffness matrix accounts for the effects of the 

elastic deformations of the element, and is generally the same throughout the literature.  

The geometric stiffness matrix deals with the effects of large displacements on the 

element, and varies depending on the derivation.   

The conventional method of deriving the tangent stiffness matrix uses the 

principle of virtual work or virtual displacements, and the general or simplified beam 

theory equations are presented in Yang and Kuo (1994).  While analyzing curved beams, 

Yang et al. (2007) summarized the conventional method.  Their derivation of the stiffness 

matrix for a two-dimensional beam element is applicable to this thesis.  The incremental 

equilibrium for the response of an element to externally applied loads is derived from the 

principle of virtual work.  Then using the finite element procedure, an incremental 

stiffness equation for the element is obtained, which includes both the elastic and 

5 



geometric stiffness matrices.  This approach has also been employed by Yang and Chiou 

(1987), Zhao and Wong (2006), and Leu et al. (2008).   

Yang and McGuire (1986) presented a similar derivation.  They modified the 

incremental stiffness equation by including a nonuniform torsional force in the element 

force vector.  This leads to a more complex tangent stiffness matrix.   

Yang et al. (2002) developed the elastic and geometric stiffness matrices from 

force-displacement relationships derived using incremental theory.  The deformation of a 

beam element due to externally applied loads is described as being a series of small 

incremental translations and rotations.  These displacements are calculated for each step 

with reference to the previous step; however, rigid body motion is excluded.  After 

deriving the element forces and moments, the elastic and geometric stiffness matrices are 

calculated.  This procedure produces a tangent stiffness matrix that is identical to the 

conventional stiffness matrix presented by Yang and Kuo (1994). 

Izzudin (2006) used a rotational spring analogy to determine the geometric 

stiffness of both a two-dimensional and three-dimensional frame element.  The stiffness 

of a beam element is related to the stiffness of a rotational spring attached to the element 

and the element chord.  The stiffness of the spring is calculated using simple linear 

kinematics, which leads to a linear tangent stiffness matrix.  This method is conceptually 

easy to understand and can be modified such that only a single member is required for a 

simplified linear analysis.  This approach does not produce a tangent stiffness matrix that 

is the direct derivative of the element resistance vector. 

Oran (1973a) proposed a derivation of the tangent stiffness matrix using a 

differential relationship between the stiffness matrix and the element force vector similar 

6 



to the one used in the Newton-Raphson method.  The member force vector presented by 

Oran (1973a) differs from the member resistance vector used in this thesis in that it 

contains only three elements instead of six elements.  As a result, Oran’s member tangent 

stiffness matrix is a 3x3 elastic stiffness matrix.  Oran (1973b) extended the previous 

derivation to three dimensions.  Chandra et al. (1990) used the same geometric stiffness 

matrix as Oran (1973b) in their analysis method. 

Gu and Chan (2000) derived the stiffness matrix of an element which included the 

effects of initial imperfections.  The equations of equilibrium which incorporate the 

imperfections are constructed for the element in its deformed configuration.   Force-

deflection equations are then derived from the equilibrium equations, and the tangent 

stiffness matrix of the element is computed using a derivative approach similar to Oran 

(1973a).  The analysis they presented requires only one element per member.  Gu and 

Chan (2005) extended this derivation to space frames. 

The inclusion of initial imperfections in the derivation was also explored by Chan 

and Zhou (1995).  The deformed shape of the member is assumed to be a fifth-order 

polynomial.  Boundary conditions are applied that incorporate the initial imperfection in 

order to obtain the shape function for the element, which is used to derive the energy 

function.  The tangent stiffness matrix is formed by a differential equation involving the 

total potential energy function.  Once again, this approach does not take advantage of the 

relationship between the resistance vector and the tangent stiffness matrix.   

Albermani and Kitipornchai (1990) presented a tangent stiffness matrix that was 

comprised of a deformation stiffness matrix in addition to the conventional elastic and 

geometric stiffness matrices.  An equation for the strain energy in terms of the axial strain 
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is derived using the principle of virtual displacements.  Using a Lagrange interpolation 

polynomial to approximate the displacement field, the strain energy equation is integrated 

over the cross sectional area of the element.  The resulting equation includes the 

deformation stiffness matrix, which is a function of the element deformations.   

Zhou and Chan (2004a) derived the secant and tangent stiffness matrices which 

incorporate the formation of a plastic hinge along the length of the element.  A 

displacement function is derived as the superposition of an elastic deformation function 

and a triangular plastic deformation function.  Then, using the total potential energy 

function modified to account for the plastic hinges, the member forces are developed.  

The tangent stiffness matrix is derived by differentiating the force vector with respect to 

the member displacements, similar to Oran (1973a).  Zhou and Chan (2004b) extended 

this derivation to incorporate three plastic hinges per member.  The formation of plastic 

hinges allows an analysis that uses only a single element per member.   

Haktanir (1994) developed a tangent stiffness matrix for planar bars using force-

displacement relationships and the method of complementary functions.  Equations for 

the stiffness of the element, along with the constitutive and compatibility equations are 

used to derive a set of governing differential equations for the behavior of the element.   

These equations are used to calculate the member end forces.  From the equation relating 

the member displacements to the member end forces, the element tangent stiffness matrix 

is derived by the method of complementary functions.   

Moran et al. (1998) proposed a derivation of the secant and tangent stiffness 

matrices using strain energy.  First, the total strain energy is calculated by integrating the 

function for the strain energy density within the element volume.  An equation for the 
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total potential energy is obtained by using the principle of virtual work.  Then, by 

employing the finite element procedure, symmetric expressions for the generalized and 

simplified secant and tangent stiffness matrices are derived. 

So and Chan (1991) presented a tangent stiffness matrix for a modified Hermite 

cubic beam element.   First, a shape function for the element is derived using the 

assumption that the deflected shape of the element is a fourth-order polynomial.  Then, 

from the total potential energy function of the element, the tangent stiffness matrix is 

calculated.   

The element derived in this thesis allows for an analysis using only a single 

element per member.  The tangent stiffness matrix for this element is the direct derivative 

of the resistance vector, and as such can be incorporated directly into the Newton-

Raphson method.  In order to achieve the objectives of this thesis, certain simplifications 

were made in the derivation of the tangent stiffness matrix.  For example, the governing 

constitutive equation for the second-order Euler beam theory used is 

dx
dEIM θ

=  

where the derivative of the slope is with respect to the local coordinate axis, x which runs 

longitudinally along the undeformed member.  Shoup and McLarnan (1971) presented a 

more accurate equation with reference to the arc length of the element in the deformed 

configuration, as follows 

 
ds
dEIM θ

=  

Though this equation leads to a more complicated solution to the differential equations 

within the analysis, it deserves future investigation.  
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3 2BDerivation of the Member Tangent Stiffness Matrix 

The member tangent stiffness matrix is the direct derivative of the member 

resistance vector with respect to the member displacements.  In this chapter a formula 

for the member resistance vector as a function of the member displacements will first be 

derived.  The derivation of the member tangent stiffness matrix, involving the 

differentiation of the resistance vector will follow.  

3.1 8BThe Member Resistance Vector 

The member resistance vector is the set of forces required to hold the member in a 

displaced position.  Consider the single plane frame member shown in XFigure 3-1X.  The 

dashed line represents the deformed configuration of the member. 
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Figure 3-1 A Plane Frame Member 
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Expressions for the member end moments, M1 and M2 are obtained using the governing 

differential equation of second-order Euler beam theory, 
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Δ
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where E is the modulus of elasticity of the member, I is the moment of inertia of the cross 

section, F is the axial force in the member and Δ is the equation for the deformed 

configuration of the member in terms of x.  The solution to Equation 3-1 can be written in 

terms of the nodal rotations, θ1 and θ2, 
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where L0 is the undeformed length of the member.  For a more thorough derivation of 

Equation 3-2 refer to Appendix A.  AG, BG and CG are the geometric coefficients and are 

dependent on the sign of the axial force.  For F < 0 
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If F > 0, the geometric coefficients are 
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where 

EI
FL0=λ  

 
As λ goes to zero, both Equations 3-3 and 3-4 degenerate to 
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The rotation angles θ1 and θ2 in Equation 3-2 can also be written in terms of the 

member displacements with the use of XFigure 3-2X, which shows the geometric properties 

of a plane frame member for both the original and deformed positions.   
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Figure 3-2  Geometric Properties of a Plane Frame Member 
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The member in its deformed position is represented by the dashed line.  The initial 

position of the member is represented by the solid straight line between points A and B.  

The coordinates of A and B in the global coordinate system are (x1
A, x2

A) and (x1
B, x2

B), 

respectively.  Note that translational displacements u1 and u4 are parallel to the global x1 

axis, and translational displacements u2 and u5 are parallel to the global x2 axis.  Note that 

rotational displacements u3 and u6 are measured from lines parallel to the initial line 

between A and B, while rotations θ1 and θ2 are measured from a straight line between the 

displaced ends of the member.  The original length of the member is given by the 

following equation 

 
2

22
2

110 )()( ABAB xxxxL −+−=       (3-6) 

 
The deformed length of the member due to the nodal translations is defined as follows 
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The nodal rotations measured from the deformed reference line are 
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The axial force, F is given by the following equation 
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Using simple statics, the member resistance vector can then be written as 
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The ^ above z signifies that the end forces of magnitude F and (M1+M2)/L in Equation 3-

11 are parallel to the axes of the local member coordinate system.  The local axis runs 

from the displaced position of A to the displaced position of B, and the local axis is 

normal to the local axis.  A transformation matrix is used to convert the member 

stiffness matrices and resistance vectors from the local coordinate system of each 

member to the global coordinate system, so that they are all compatible with one another.  

The orthogonal transformation matrix for plane frames is defined as follows 
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The global member resistance vector, written as a transformation of the local member 

resistance vector is 

 
zTz ˆ=            (3-14) 

3.2 9BDerivation of the Member Tangent Stiffness Matrix 

The global member tangent stiffness matrix is the derivative of the global member 

resistance vector.  However, for computation within the matrix stiffness method, the local 

tangent stiffness matrix is used.  The local tangent stiffness matrix is written as 
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Using the product rule, Equation 3-16 becomes 
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In order to continue with the derivation, a few preliminary steps are performed.  

First, the equation for the deformed length given in Equation 3-7 is differentiated with 

respect to the member displacements.  The following 6 equations constitute Equation  

3-18. 
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0
6
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∂
∂
u
L  

 
 

Second, the end rotations are differentiated with respect to each member displacement.  

To do this, α and α0 are differentiated.  Remember that the length, L, is a function of the 

member displacements, so the derivatives of α and α0 involve the application of the chain 

rule.   
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The following 7 equations constitute Equations 3-19 and 3-20. 
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The following derivatives of θ1 and θ2 constitute Equation 3-21. 
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Third, the cosine and sine of α must be differentiated with respect to the different 

displacements.  The following equations constitute Equation 3-22. 
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The derivative of the transformation matrix with respect to u1 can now be determined. 
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where 
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The remaining derivatives of the transformation matrix are similarly derived.  The 

preceding equation and the following 5 equations constitute Equation 3-23.  
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Substituting from Equation 3-23, Equation 3-17 then becomes 
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After some matrix multiplication, Equation 3-24 becomes 
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 The local member resistance vector give in Equation 3-11 must be differentiated 

with respect to each of the displacements, u1 through u6.  Equation 3-11 is repeated 

below. 
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where M1 and M2 are given by Equation 3-2, and F is given by Equation 3-10.  Each term 

in the resistance vector is dependent on some or all of the member displacements.  The 
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equations for the end moments and axial force are substituted into Equation 3-11 and the 

geometric coefficients are assumed to be the constants given by Equation 3-5 in order to 

find the derivatives of the resistance vector.  Equation 3-11 and its derivatives, along with 

Equation 3-12 are then substituted into Equation 3-25 and the local member tangent 

stiffness matrix is determined to be 
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If L is set equal to L0 in Equations 3-27 and 3-28 then  and  become the 

elastic and geometric stiffness matrices commonly found in the literature (ex. Yang et. al. 

2002, Zhao et. al. 2006).  The third matrix, , is a higher-order local member geometric 

stiffness matrix.  Note that  is not symmetric.  This is because the axial force does not 

take into account the lengthening of the curved shape in Figures 3-1 and 3-2 due to the 

end rotations, θ1 and θ2.  A cubic polynomial is used to approximate the deformed shape 

of the member due to the end rotations in order to calculate the following expression for 

the axial force  
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The derivation of the Equation 3-31 is given in Appendix A.  The new equation for the 

axial force is used to obtain the following symmetric  matrix 2
ˆ
Gk
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4 3BNumerical Examples 

4.1 10BExample: Cantilever Column 

Consider the cantilever column shown in XFigure 4-1X, where L = 240 inches, P = 

400 kips and Q = 50 kips.  A large vertical load was chosen in order to assure that the    

p-delta effects were significant. The column has a modulus of elasticity equal to 29,000 

ksi, a cross-sectional area equal to 100 in2, and a moment of inertia of 833.3 in4.   

P

Q

L

 

Figure 4-1 Cantilever Column 

 

The cantilever column was analyzed using the method presented in this thesis, 

which incorporates the elastic, geometric and higher-order geometric stiffness matrices in 

the tangent stiffness matrix.  The analysis yielded end displacements at the top of the 

column of 15.3 inches horizontally, 0.62 inches vertically downward and a rotation of 

0.098 radians.   
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4.1.1 14BComparison with ABAQUS/CAE 

The same cantilever column example was modeled using the finite element 

software ABAQUS/CAE for comparison.  The column was first analyzed using only one 

element.  It was then divided into 200 elements and a second analysis was performed.  

The beam element B21 was used for both ABAQUS analyses, which is explained in 

Appendix B.  XTable 4-1X shows the results of this comparison.  The ABAQUS analysis 

which used 200 elements was considered to be the most accurate of the three methods 

used to analyze this example.  The errors between the results from the ABAQUS analysis 

with 200 elements and the other two analyses are shown in Table 4-2. 

 

Table 4-1 Results of Three Analyses 

Displacement Present 
Method

ABAQUS/CAE 
with 1 element 

per member

ABAQUS/CAE 
with 200 elements 

per member
Horizontal (in) 15.344922 12.7932 15.3914

Vertical (in) -0.624892 -0.374151 -0.631485
Rotation (rad) -0.097584 -0.0848857 -0.0977828  

 

Table 4-2 Comparison to the 200 Element ABAQUS Analysis 

Displacement Present 
Method

ABAQUS/CAE 
with 1 element 

per member
Horizontal (in) 0.3% 16.9%

Vertical (in) 1.0% 40.8%
Rotation (rad) 0.2% 13.2%  
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The analysis method presented in this thesis which used a single element to model 

the cantilever column and the ABAQUS model which used 200 elements yielded very 

similar results, with a maximum error of 1.0%.  The ABAQUS analysis which used only 

one element to model the column had an error of 16.9% for the horizontal displacement 

and a maximum error of 40.8%. 

A convergence study was done to determine the number of elements required for 

ABAQUS to obtain results with the same accuracy as the results from the analysis which 

used the element presented in this thesis.  Figure 4-2 plots the horizontal displacement 

calculated by ABAQUS as a function of the number of elements used to analyze the 

column.  Ten elements were required for the ABAQUS analysis to produce a similar 

horizontal displacement as the method presented in this thesis.  The convergence study 

also verified the assumption that the ABAQUS analysis with 200 elements was accurate. 
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Figure 4-2 Convergence Study of ABAQUS Analysis 
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4.1.2 15BValidation of the Derivation of the Local Member Tangent Stiffness Matrix 

The cantilever column example was also used to validate the derivation of the 

tangent stiffness matrix presented in section 3.  An initial displacement vector was input 

into the analysis and the corresponding structure resistance vector was calculated.  The 

following initial displacement vector was used 

[ Τ= 111u ]         (4-1) 

where displacements are measured in inches and rotations are measured in radians.  

Using the finite difference method the derivative of the resistance vector was determined 

and compared to the original tangent stiffness matrix.  The structure tangent stiffness 

matrix that corresponds to the displacement vector in Equation 4-1 is  
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⎣

⎡
=Τ

3.1946604425.387609112.63641
247.387609878.120739492.1161

1123.636419492.11613276.1180
K     (4-2) 

 
The structure tangent stiffness matrix computed using the finite difference method is  

 

     (4-3) 
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⎣

⎡
=Τ

1.1946790625.38760922.63641
56.38762888.1207395.1161
99.6364695.116133.1180

K

 
which constitutes a maximum error of 0.0096%.  Such a small error suggests that the 

stiffness matrix calculated in the analysis is a reasonable approximation to the true 

derivative of the resistance vector. 
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4.1.3 16BContributions of Sub-Matrices to the Tangent Stiffness Matrix 

Equation 3-26 shows that the local member tangent stiffness matrix is the sum of 

three sub-matrices; =the elastic, =geometric and =higher-order geometric 

stiffness matrices.  Figures 4-3, 4-4, and 4-5 show the contributions of these three sub-

matrices to the local member tangent stiffness matrix in the first Newton-Raphson 

iteration as a function of the horizontal displacement, vertical displacement, and rotation, 

respectively.  The contribution percentages were calculated element by element and then 

averaged over all the elements in the matrix. 

Ek̂ 1Gk̂ 2Gk̂

Figure 4-6 shows the contribution percentages of the three sub-matrices to the 

local member tangent stiffness matrix as the horizontal and rotational displacements are 

simultaneously increased.   The vertical displacement was set equal to zero.  The 

following ratio was used to determine the rotation 

 

L2
3

=
Δ
θ

          (4-4) 

 

where Δ is the horizontal displacement and L is the height of the column.  Equation 4-4 is 

the same equation used in first-order linear analysis to find the rotation at the end of a 

cantilever beam.     
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Figure 4-3 Contribution Percentages for Variable Horizontal Displacement 
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Figure 4-4 Contribution Percentages for Variable Vertical Displacement 
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Figure 4-5 Contribution Percentages for Variable Rotation 
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Figure 4-6 Contribution Percentages for Variable Displacements and Rotations 
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Figures 4-3 through 4-6 show that the elastic stiffness matrix constitutes most of 

the element’s response when the displacements are small.  The contributions of the 

geometric stiffness matrices increase as the deformations become larger.  Figure 4-4 

shows that the contribution of the higher-order geometric stiffness matrix is not affected 

by the vertical displacement. 

The same procedure was used to obtain Figure 4-6, which shows the contributions 

of the sub-matrices to the structure tangent stiffness matrix.  The horizontal and rotational 

displacements were increased simultaneously using Equation 4-4.  The vertical 

displacement was set to zero.  As XFigure 4-7X demonstrates, the contributions from the 

geometric stiffness matrices to the structure tangent stiffness matrix increase as the 

deformations become larger. 
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Figure 4-7 Contribution Percentages to the Structure Tangent Stiffness Matrix 
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4.2 11BExample: Two-Story Plane Frame 

Consider the two-story plane frame shown in XFigure 4-8X, where L1 = 120 inches 

and L2=144 inches.  The forces, P = 400 kips and Q = 50 kips are applied to joints 3 

through 6.  The letter J with a subscript is used to label the joints. 

 

 P P

Q 

Q 

L1

L2

L2

J1 J2

J3 J4

J5 J6

P P

Q

Q

 

Figure 4-8 Two-Story Plane Frame 

 

The columns have a cross-sectional area equal to 100 in2, and a moment of inertia of 

833.3 in4.  The girders have a cross-sectional area equal to 25 in2, and a moment of inertia 

of 52.1 in4.  All of the members have a modulus of elasticity equal to 29,000 ksi. 

 An analysis was performed which incorporated the elastic, geometric and higher-

order geometric stiffness matrices into the tangent stiffness matrix.  The resulting joint 

displacements of the analysis are shown in XTable 4-3X. 
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Table 4-3 Displacements from the Analysis on the Two-Story Plane Frame 

Joint
Horizontal 

Displacement 
(IN)

Vertical 
Displacement 

(IN)

Rotation 
(rad)

J1 0.0 0.0 0.0
J2 0.0 0.0 0.0
J3 6.317 -0.199 -0.06800
J4 6.263 -0.213 -0.06787
J5 17.105 -0.619 -0.07054
J6 17.047 -0.642 -0.07057  

4.2.1 17BComparison with ABAQUS/CAE 

As was done with the cantilever column example, this same problem was modeled 

using the finite element software ABAQUS/CAE for comparison.  Table 4-4 shows the 

results of the ABAQUS analysis which used only a single element per member.  Table   

4-5 shows the results of the ABAQUS analysis which used 200 elements per member.  

Once again, both ABAQUS analyses were done using the B21 element explained in 

Appendix B. 

 

Table 4-4 Results from the ABAQUS Analysis with a Single Element per Member 

Joint
Horizontal 

Displacement 
(IN)

Vertical 
Displacement 

(IN)

Rotation 
(rad)

J1 0.0 0.0 0.0
J2 0.0 0.0 0.0
J3 4.927 -0.115 -0.05427
J4 4.926 -0.133 -0.05427
J5 13.315 -0.375 -0.05416
J6 13.315 -0.401 -0.05417  
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Table 4-5 Results from the ABAQUS Analysis with 200 Elements per Member 

Joint
Horizontal 

Displacement 
(IN)

Vertical 
Displacement 

(IN)

Rotation 
(rad)

J1 0.0 0.0 0.0
J2 0.0 0.0 0.0
J3 6.362 -0.201 -0.06831
J4 6.308 -0.216 -0.06818
J5 17.215 -0.627 -0.07094
J6 17.156 -0.650 -0.07096  

 

The comparison of the analysis using the method presented in this thesis and the 

ABAQUS analysis which used 200 elements per member is given in XTable 4-6X.  The 

comparison between the ABAQUS analysis which used a single element per member and 

the ABAQUS analysis which used 200 elements per member is given in Table 4-7. 

 

Table 4-6 Error between the Present Analysis and the 200 Element per Member ABAQUS Analysis 

Joint Horizontal 
Displacement

Vertical 
Displacement Rotation 

J3 0.7% 1.4% 0.5%
J4 0.7% 1.4% 0.5%
J5 0.6% 1.2% 0.6%
J6 0.6% 1.2% 0.5%  
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Table 4-7 Error between the Two ABAQUS Analyses 

Joint Horizontal 
Displacement

Vertical 
Displacement Rotation 

J3 22.6% 42.8% 20.6%
J4 21.9% 38.7% 20.4%
J5 22.7% 40.2% 23.6%
J6 22.4% 38.3% 23.7%  

 

The analysis using the method presented in this thesis and the ABAQUS analysis 

which used 200 elements per member yielded very similar results, with a maximum error 

of 1.4%.  Once again, the method presented in this thesis gave reasonable results with the 

use of only one element per member.  The maximum errors between the two ABAQUS 

analyses were 22.7% for the horizontal displacements and 42.8% for the vertical 

displacements.  

4.2.2 18BContributions of the Sub-Matrix to the Tangent Stiffness Matrix 

Figure 4-9 plots the contributions of the three sub-matrices to the structure tangent 

stiffness matrix for the two-story plane frame example.  The same procedure was used to 

generate Figure 4-9 as was used in the cantilever column example.  The relative 

horizontal displacements and the rotations were incremented simultaneously for each 

story using the relationship given in Equation 4-4.  The vertical displacements were set to 

zero.   
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Figure 4-9 Contributions to the Structure Tangent Stiffness Matrix 

  

XFigure 4-9X shows that the elastic stiffness matrix constitutes most of the structure’s 

response when the displacements are small.  The two geometric stiffness matrices 

become more important in the analysis as the deformations become larger. 
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5 4BConclusions 

The first objective of this thesis was to present a second-order nonlinear plane 

frame analysis method which uses only one element per member.  The second objective 

was to derive a tangent stiffness matrix for the plane frame element that is the direct 

derivative of the resistance vector.  Both objectives have been achieved.  Formulas for the 

local tangent stiffness matrix have been successfully derived by differentiating the 

member resistance vector in the displaced position which facilitates an analysis using 

only one element per member.  These formulas have been checked by finite difference.  

The derivation led to the familiar elastic and geometric stiffness matrices used by other 

authors with an additional higher order geometric stiffness matrix.   

Contributions of each of the sub-matrices to the tangent stiffness matrix were 

studied on both the member and structure levels through two numerical examples.  At 

small deformations, the elastic stiffness matrix contributed the most to the tangent 

stiffness matrix.  The contributions from the geometric stiffness matrices increased as the 

displacements became larger.   

A cantilever column example and a two-story plane frame example were analyzed 

three different ways for comparison.   First, each example was analyzed using the method 

presented in this thesis.  Second, each example was analyzed with the finite element 

modeling software ABAQUS/CAE using only one element per member.  A third analysis 
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was performed using ABAQUS/CAE with 200 elements per member.  The ABAQUS 

analysis which used 200 elements per member was assumed to be the most accurate.  

Comparisons were made between it and the other two analyses.  The ABAQUS analysis 

which used one element per member had maximum errors of 41% for the cantilever 

column example and 43% for the two-story plane frame example.  The element presented 

in this thesis performed much better, with maximum errors of only 1% for the cantilever 

column example and 1.4% for the two-story plane frame example.   

There are, however, limitations to the application of this element in structural 

analysis.  The derivation of the tangent stiffness matrix neglects the shear deformation of 

the members and assumes that the material remains elastic.  Furthermore, this element 

only applies to plane frames and has not been extended to three-dimensional frames.  

Despite these limitations, using the element presented in this thesis with only one element 

per member gives good and computationally efficient results for second-order analysis. 
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Appendix A 6BMember End Moments and Axial Force 

12BA.1  Derivation of the Member End Moments 

The present derivation is used to determine the end moments of a plane frame 

member given in Equation 3-2.  Before beginning with the derivation, the governing 

equation of second-order Euler theory must be derived.  Consider the infinitesimal 

section of a plane frame member in its deformed configuration as shown in XFigure A-1X. 

 

 

F 

F+dF 

V+dV 
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Δ+dΔ 

V 
M 

w 

dx 

Δ 

 

Figure A-1 An Infinitesimal Section of a Plane Frame Member 
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The displacements from the original position are Δ and Δ+dΔ at the left and right ends, 

respectively.  Setting the sum of the horizontal forces equal to zero yields the following 

 
0==−+ dFFdFF         (A-1)  

By setting the summation of the vertical forces equal to zero, the following is determined 

 
0=−=−−+ dVwdxdVVwdxV       (A-2) 

A third equation is developed by setting the sum of the moments about the right end 

equal to zero. 

 

2
)( dxwdxdFVdxMdMM −Δ−Δ+Δ−−−+  

0
2

2

=−Δ−−=
dxwFdVdxdM        (A-3) 

 
By dividing Equations A-1 through A-3 by dx the following three equations are obtained 

 

0=
dx
dF           (A-4) 

0=−
dx
dVw          (A-5) 

0
2

=−
Δ

−−
dxw

dx
dFV

dx
dM        (A-6) 

 
 

In the limit as dx goes to zero Equation A-6 becomes 

 

0=
Δ

−−
dx
dFV

dx
dM

        (A-7) 
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Differentiating Equation A-7 and substituting from Equations A-4 and A-5 

 

w
dx
dF

dx
Md

=
Δ

− 2

2

2

2

        (A-8) 

Substituting the flexural constitutive equation into Equation A-8 

 

w
dx
dF

dx
dEI =

Δ
−

Δ
2

2

4

4

        (A-9) 

 
With Equation A-9, the governing equation of second-order Euler beam theory, the end 

moments of a plane frame member can be derived.   

Consider the skeletal member shown in XFigure A-2X.  This member may be part of a 

plane frame.  The dotted line represents the deformed configuration of the member. 

 

 

 

L 
x 

P M1 

M2 θ1 
θ2 

  

 

Figure A-2  A Plane Frame Member 

 

 

The angles θ1 and θ2 are the end rotations at the left and right ends of the member, 

respectively.  M1 and M2 are the end moments of the left and right ends of the member, 
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respectively.  For this derivation, the uniform load along the beam, w is set to zero, and 

the axial force in the member is P.  The governing differential equation becomes 

 

02

2

4

4

=
Δ

−
Δ

dx
dP

dx
dEI         (A-10) 

The general solution to Equation A-10 is 

 

dcx
L
xb

L
xax +++=Δ

λλ cossin)(       (A-11) 

where 

EI
PL=λ  

 
By differentiating Equation A-11, the following equations for the rotation and bending 

moment are obtained 

 

c
L
x

L
b

L
x

L
a

dx
dx +−=

Δ
=

λλλλθ sincos)(       (A-12) 

⎟
⎠
⎞

⎜
⎝
⎛ +−=

Δ
=

L
xb

L
xa

L
EI

dx
dEIxM λλλ cossin)( 2

2

2

2

    (A-13) 

 
 

Applying the appropriate boundary conditions to Equations A-11 through A-13, 

equations for the coefficients a and b are determined. 
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⎫
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⎦

⎤
⎢
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⎡
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⎫
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sincos22 θ
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L

b
a

  (A-14) 
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The coefficients c and d can then be calculated using the values of a and b. 

 

( )cos1sin λλ −+−=
L
b

L
ac )        (A-15) 

bd −=           (A-16) 

 
To obtain equations for the end moments of the member, two addition boundary 

conditions are used. 

At x = 0, M = M1: 

12

2

Mb
L

EI −=−
λ

        (A-17) 

At x = L, M = M2: 

( 22

2

cossin Mba
L

EI =+− λλλ )       (A-18) 

Equations A-17 and A-18 can be written in matrix form as follows 

 

⎭
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Substituting a and b into Equation A-19 
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The above derivation is valid for an axial force, P of tension.  A similar process can be 

used to derive the end moments of a plane frame member where P is a compression force.  

Equation A-21 is the result of such a derivation. 
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 (A-21) 

 
where 

EI
PL=λ  

13BA.2  Derivation of the Axial Force 

 The derivation of the axial force in a plane frame member given in Equation 3-31 

follows.  The axial force in a member is equal to the cross sectional area of that member 

multiplied by the stress applied to the cross section.  This is represented in Equation      

A-22. 

 

( 0
0

LL
L
EAF −= )        (A-22) 

where 

 L = the length of the member in the deformed position 

 L0 = the length of the member in the original position 

 E = the modulus of elasticity of the member 

 A = the cross sectional area of the member 
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The axial force presented in Equation A-22 leads to an asymmetric higher-order 

geometric stiffness matrix, because it does not take into to account the lengthening of the 

member due to the end rotations. 

In order to determine the lengthening due to the end rotations, consider the 

skeletal member shown in XFigure A-3X.  This member may be part of a plane frame.  The 

solid line shows the undeformed position of the member, while the dotted line represents 

the deformed configuration of the member. 

 
 

 

L 
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θ1 
θ2 

  

 

Figure A-3  A Plane Frame Member 

 
 

The angles θ1 and θ2 are the end rotations at the left and right ends of the member, 

respectively.  Notice that L in this figure refers to the length of the member in its 

undeformed position.  To begin, the deformed shape is approximated by a cubic 

polynomial. 

 
dcxbxax +++=Δ 23         (A-23) 

The slope of the deformed member is 

 
cbxax ++= 23 2θ         (A-24) 
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By using the correct boundary conditions the coefficients a, b, c and d are determined.  

The following four equations constitute Equation A-25. 

 

2
21

L
a θθ +

=  

L
b 212 θθ +

−=          (A-25) 

1θ=c  

0=d  

The deformed length of the member is 
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Using the following first-order Maclaurin series approximation,  

 

2
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Equation A-26 becomes 
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Then substituting from Equation A-25, Equation A-27 becomes 
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The strain is equal to the change in length over the original length.  By subtracting L from 

Equation A-28 and then dividing by L, the following strain is found 

 

153015

2
221

2
1 θθθθ

+−         (A-29) 

The axial force in the member is determined by multiplying the strain by the modulus of 

elasticity, E, to get the stress and then multiplying the stress by the cross sectional area, 

as follows 
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EAF        (A-30) 

Equation A-30 is added to Equation A-22 to get the total axial force in the member. 
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Using the axial force given in Equation A-31, the derivation of the higher-order 

geometric stiffness matrix leads to the symmetric matrix in Equation 3-32.  
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Appendix B 7BABAQUS Element B21 

The B21 element was used in all of the ABAQUS analyses presented in this 

thesis.  The following comes from the information found in the “Choosing a beam 

element” section of the ABAQUS Analysis User’s Manual.  According to the naming 

convention used by ABAQUS, the B21 element is a two-dimensional beam element that 

uses a linear interpolation formulation.  It can be used for slender beams as well as for 

non-slender or deep beams.  The user may specify whether shear deformation of the 

beam is considered. 
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