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Apoptosis, a morphologically and mechanistically distinct

form of programmed cell death, is essential for normal

animal development and tissue homeostasis. The key

executioners in apoptosis are caspases (cysteine aspartases),

a family of proteases that have been conserved through

much of animal evolution. Caspases are present as inactive

precursor proteins in virtually all cells and are specifically

activated by proteolytic cleavage. Their activation is

regulated by both activators, which promote the conversion

of the weakly active precursor caspase to the mature

protease, and inhibitors, which prevent unwanted caspase

activity and cell death [1]. One important family of caspase

inhibitors comprises the inhibitor of apoptosis proteins

(IAPs), which can directly bind to and inhibit caspases. In

Drosophila, Diap1 is required to prevent inappropriate

caspase activation and ubiquitous apoptosis. In response to

death-inducing stimuli, antagonists of IAPs such as Reaper,

Hid and Grim are produced to inactivate Diap1 and thereby

remove the ‘brakes on death’. Although caspases are often

viewed as general destroyers of cellular components during

apoptosis, there are now many studies showing that they

can act with a great degree of local specificity to remove

unwanted cellular compartments [2-4].

Cleavage by caspases can either activate or inactivate their

substrates; for example, cleavage activates the Rho-asso-

ciated kinase ROCK1, which promotes membrane blebbing

[5,6], whereas proteolysis by a caspase inhibits the DNase

inhibitor iCAD and unleashes DNA fragmentation by the

CAD nuclease [7,8]. Among the very large number of

caspase substrates identified so far, only a few have been

linked to a specific apoptotic function. In a recent paper in

BMC Developmental Biology, Kessler and Muller [9] describe

one such example. They show that cleavage of the β-catenin

homolog Armadillo (Arm) by the effector caspase DrICE in

Drosophila is essential to regulate the adhesive properties of

apoptotic cells.

DDeessttaabbiilliizziinngg  aaddhheerreennss  jjuunnccttiioonnss
The protein β-catenin has two crucial functions in epithelial

cells. It can act as a transcriptional coactivator in the Wnt

signaling pathway (Wingless in Drosophila). It is also

essential for maintaining the adherens junctions that link

epithelial cells together; these contain multiprotein

adhesion complexes composed of the adhesion molecule

E-cadherin, β-catenin and α-catenin. E-cadherins on
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Apoptosis appears to be a carefully orchestrated process for the ordered dismantling of cells.
A recent paper in BMC Developmental Biology shows that the disassembly of adherens junc-
tions during apoptosis in Drosophila is progressive and requires the amino-terminal cleavage
of the β-catenin Armadillo by the apoptotic effector caspase DrICE.
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adjacent cells initiate the assembly of an adhesion complex

by homophilic binding of their extracellular domains.

β-Catenin binds to the cytoplasmic portion of E-cadherin

and connects it, via α-catenin, to the actin cytoskeleton. The

linkage of cadherin to the cytoskeleton by β- and α-catenins

is essential both for establishing cell-cell contacts and

organizing the cytoskeleton.

To study the morphological changes in Drosophila apoptotic

cells in vivo, Kessler and Muller used embryos genetically

deficient in Diap1, in which apoptosis is activated in

virtually all cells [9]. They define, morphologically and

molecularly, two separate steps in the apoptotic process,

revealing a progressive destruction of the adherens junction

and shining new light on the mechanism by which the

adhesive complexes are destabilized. During early apop-

tosis, Arm is cleaved and the amounts of E-cadherin at the

cell surface greatly reduced, whereas α-catenin remains

stable. α-Catenin is only affected in a second step, defined

as late-stage apoptosis, when E-cadherin and Arm have

disappeared completely.

The authors show that Arm is cleaved in its amino-terminal

region in vivo and that the cleavage can be reproduced in

vitro by DrICE (a Drosophila homolog of mammalian

caspase-3). Cleavage occurs at the DQVD88 motif, as

demonstrated in vivo by the cleavage resistance of Arm with

an aspartate (D) to alanine (A) mutation in the DQVD88

motif (ArmD88A). When ArmD88A is overexpressed in Diap1-

lacking embryos, E-cadherin and ArmD88A are maintained at

the membrane until late apoptosis, whereas endogenous

Arm is removed, showing that Arm cleavage is required for

the removal of these two junctional components from the

membrane.

CClleeaavveedd  ccaatteenniinnss
Notably, the cleaved form of Arm is stable in vivo and co-

localizes with α-catenin in the periphery of the cell. This

stability suggests a specific role for the truncated Arm during

apoptosis. Given this co-localization, truncated Arm may

ensure the sequential dissociation of the adherens junction,

permitting the dying cell to first detach from its neighbors

(loss of E-cadherin), and then shrink (loss of α-catenin,

cleaved Arm and retraction of actin microfilaments). Hence,

the work of Kessler and Muller [9] constitutes an important

step in defining the function of a cleaved caspase substrate

in the morphological progression of apoptosis. Arm is

probably not a unique case as, in contrast to the widespread

notion that caspase substrates are rapidly degraded, a

number of caspase-cleavage products can persist [2]. This

suggests that caspases can generate truncated proteins with

new activities. Now that numerous caspase substrates have

been identified [2,3], one of the big challenges will be to

understand how the selective cleavages they catalyze lead to

a sequential and organized degradation of the cell.

An exciting prospect will be to elucidate the precise

mechanism of adherens junction destabilization by cleaved

Arm, as the truncated protein retains binding sites for both

E-cadherin and α-catenin. One model proposed by Kessler

and Muller [9] is that the amino-terminal truncation of Arm

may inhibit its association with E-cadherin, as shown for

β-catenin in mammals. However, Arm cleavage does not

seem to completely abolish adherens junction formation, as

suggested by an experiment in which an arm mutant can be

at least partially rescued by amino-terminally truncated

Arm. An alternative is that modifications of other compo-

nents of the adherens junction complex (cleavage of

E-cadherin has been reported in mammals [10]) contribute

to the sequential dissociation of the junction.

β-Catenin was already a known substrate of caspase-3 in

mammals, and its cleavage there coincides with the destabi-

lization of adherens junctions. However, the physiological

significance of this cleavage remains to be tested, and it is

not yet known whether the separation of the adherens

junctions is progressive, as it is in Drosophila (Figure 1). It

has been shown in mammalian cells that the truncated

β-catenin loses its ability to bind α-catenin, thus releasing

α-catenin from the junction and leading to the retraction of

the microfilament system [11]. However, these data are

controversial [12], and loss of α-catenin-binding capacity by

cleaved β-catenin might depend on the cell type. Also, there

are some differences in behavior between Arm and

β-catenin during apoptosis. Arm is only cleaved once by

DrICE, and this cleavage does not remove the α-catenin-

binding domain, and does not prevent truncated Arm from

binding α-catenin in vivo. Nevertheless, like β-catenin, Arm

is cleaved near the amino terminus at a conserved position

(DQVD88 in Drosophila, ADID83 in mammals), suggesting

that the global mechanism of adherens junction

degradation during apoptosis could be partly conserved

between insects and mammals.

The progressive degradation of adherens junctions might

serve to coordinate the elimination of dying cells with

morphological changes in the surrounding tissue that are

aimed at restoring epithelial organization. This leads to the

question of how an apoptotic cell interacts with its neigh-

bors. Apoptosis not only serves to eliminate cells in an

ordered manner, but it also plays an important role in

morphogenesis. For example, apoptosis alters the shape of

surrounding cells during leg-joint development in Droso-

phila [13], and apoptotic cells can stimulate the prolifera-

tion of progenitors to promote the regeneration of damaged
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tissues [14]. This implies that a dying cell can send signals

to its neighbors to coordinate morphological events. In

these and many other cases, it seems likely that modifi-

cations of adhesive contacts between dying cells and their

surviving neighbors are carefully regulated.

Finally, whereas the study by Kessler and Muller [9] focuses

on the regulation of cell adhesion by caspases, changes in

cell adhesion are also known to regulate caspases. Loss of

cellular attachment often leads to a form of apoptosis

termed ‘anoikis’, which is an important mechanism for

preventing detached cells surviving in inappropriate places

and growing dysplastically. It will be interesting to examine

what happens to adherens junctions during anoikis, and to

determine how the event of cellular detachment is

transmitted to the core apoptotic machinery.
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FFiigguurree  11
Caspase-mediated cleavage of β-catenin promotes changes in cell adhesion and cell shape ((aa))  Drosophila; ((bb))  mammals. Adherens junctions are
composed of adhesion complexes of E-cadherin (gray bars), β-catenin (Armadillo (Arm); green ovals) and α-catenin (α-cat; blue circles), which link
to the actin cytoskeleton. When apoptosis is induced, DrICE in Drosophila or its homolog caspase-3 in mammals are activated in the apoptotic cell
(dark gray). DrICE cleaves Armadillo near the amino terminus (Arm∆N), whereas mammalian capsase-3 cleaves β-catenin near both the amino and
carboxyl termini. In Drosophila, an early stage of apoptosis has been described in which the cleaved form of Armadillo remains at the membrane
linked to α-catenin, whereas E-cadherin is removed from the membrane by an unknown mechanism. In mammals, nothing is known so far about an
intermediate step in adherens junction degradation in response to induction of apoptosis. At a later stage of apoptosis, all adherens junction
components are removed from the membrane and the actin cytoskeleton retracts. Meanwhile, neighboring cells form new adherens junctions with
each other and close the gap created by the retraction of the dying cell.
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