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a b s t r a c t

Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the at-
mosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme
weather events. Here, we focus on the effects of rising atmospheric CO2 concentrations, rising tem-
perature, and drought stress and their interaction on plant developmental processes in leaves, roots, and
in reproductive structures. While in some cases these responses are conserved across species, such as
decreased root elongation, perturbation of root growth angle and reduced seed yield in response to
drought, or an increase in root biomass in shallow soil in response to elevated CO2, most responses are
variable within and between species and are dependent on developmental stage. These variable re-
sponses include species-specific thresholds that arrest development of reproductive structures, reduce
root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf
developmental responses to elevated CO2 vary by cell type and by species. Variability also exists between
C3 and C4 species in response to elevated CO2, especially in terms of growth and seed yield stimulation.
At the molecular level, significantly less is understood regarding conservation and variability in mole-
cular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely
underlie reductions in growth rate in response to drought, and changes in known regulators of flowering
time likely underlie altered reproductive transitions in response to elevated temperature and CO2. Genes
that underlie most other organ or tissue-level responses have largely only been identified in a single
species in response to a single stress and their level of conservation is unknown. We conclude that there
is a need for further research regarding the molecular mechanisms of plant developmental responses to
climate change factors in general, and that this lack of data is particularly prevalent in the case of in-
teractive effects of multiple climate change factors. As future growing conditions will likely expose plants
to multiple climate change factors simultaneously, with a sum negative influence on global agriculture,
further research in this area is critical.

& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Variation in developmental processes lies at the core of func-
tional differences among plant genotypes and species growing in
different environmental conditions. Environmental stresses have
varying effects on different organs and tissues within a plant, and
as such, molecular, cellular and morphological responses to stress
vary among tissues, and throughout the developmental lifetime of
a plant. The range in developmental processes across genotypes,
and the ability of a plant of a given genotype to dynamically shift
these developmental processes in response to the environment is
the key to plant success in natural and agricultural settings (re-
viewed in Nicotra et al. (2010)).

Climate change, entailing shifts in temperature, precipitation,
and atmospheric composition among other factors, represents a
moving target for plant developmental adaptation. Human activ-
ities including fossil fuel burning and deforestation have increased
the concentration of greenhouse gases in the atmosphere, result-
ing in climate warming, and perturbations of hydrologic cycles.
Specifically, atmospheric CO2 is predicted to reach 730–1000 ppm
by the end of the century, contributing to expected increases in
global average surface temperature of 1.0–3.7 °C during this same
time (Meehl et al., 2007; IPCC, 2014). Precipitation patterns are
also expected to differ as a result of climate change, with more
frequent drought events predicted for regions that are already arid
(IPCC, 2014). These climate change factors affect plants at the level
of molecular function, developmental processes, morphological
traits, and physiology. Here we summarize the knowledge to date
on plant responses to these stimuli, with a particular focus on
developmental processes, at both the organ, tissue and cell type-
specific level as well as the underlying molecular regulatory me-
chanisms. Finally, we discuss and provide perspective on the most
pressing knowledge gaps in our understanding of plant develop-
mental responses to climate change.

Plant developmental responses to the environment can take
the form of altered initiation of developmental events, altered
timing of developmental events, and altered final form or archi-
tecture of individual organs and whole plants. One example of
altered initiation of developmental events is repressed initiation of
lateral roots in response to water deficit (Babé et al., 2012). Altered
timing of developmental events in response to the environment
can be observed as an earlier shift from vegetative to reproductive
development in response to elevated temperature, for instance, in
Arabidopsis thaliana (Balasubramanian et al., 2006). These changes
can ultimately be observed in the plant’s final form or architecture,
at the level of individual organs and at the level of the whole
plant; for example, the presence of additional leaf nodes and lar-
ger leaves in response to elevated CO2 in soybean (Dermody et al.,
2006). These developmental responses demonstrate the plasticity
of plant form in an altered environment. The developmental re-
sponses to climate change factors described above, including al-
tered lateral root initiation (Babé et al. 2012), altered timing of
developmental events (Balasubramanian et al., 2006), and altered
number and size of leaves (Dermody et al., 2006) will likely have
significant impacts on plant function. Plant functions may be af-
fected by changes in the plant’s ability to capture resources (in the
case of lateral root number or leaf size/number), and altering al-
location of those resources among developing organs (in the case
of shifted timing of reproductive development). Such changes in
function can have significant impacts on yield in agricultural
plants, and fitness in natural populations. An important gap in our
knowledge is in the extent of how conserved or species-specific
these responses are as well as the underlying molecular regulatory
mechanisms. This review will highlight developmental responses
to the key climate change factors of rising temperatures, changing
precipitation patterns, and rising atmospheric CO2, their under-
lying molecular nature, where known and will explore the func-
tional significance of altered development in this context.
2. Effects of elevated CO2 on plant development and
morphology

Since the Industrial Revolution, the CO2 concentration in the
atmosphere has increased from 280 ppm to more than 400 ppm
today (Meehl et al., 2007; https://scripps.ucsd.edu/programs/kee
lingcurve/). CO2 directly affects plants via impacts on photo-
synthetic gas exchange and downstream developmental processes
(Ainsworth and Long, 2005). CO2 also has indirect effects on
plants, as it is a potent greenhouse gas that contributes to climate
warming and associated changes in climate (Meehl et al., 2007).
Elevated CO2 stimulated photosynthetic carbon assimilation rates
by an average of 31% across 40 species that have been investigated
at twelve Free Air CO2 Enrichment (FACE) experiments (reviewed
in Ainsworth and Long (2005)). In the C3 species included in the
meta-analysis by Ainsworth and Long (2005), aboveground bio-
mass increased by an average of 20% in response to elevated CO2.
Reich et al. (2014) found that elevated CO2 stimulated above-
ground biomass in a grassland by up to 33%, but that the degree of
stimulation depended on water and nitrogen availability, with
lower biomass stimulation observed in drier, lower nutrient con-
ditions. Root biomass has also been observed to increase sig-
nificantly in response to elevated CO2 in many crop species (re-
viewed in Madhu and Hatfield (2013)). The increase in shoot
biomass includes significant increases in seed yield in many spe-
cies, including soybean, wheat, rice, peanut and bean (reviewed in
Hatfield et al., 2011). One particularly well-studied model of whole
plant growth and reproductive output responses to elevated CO2 is
soybean (Glycine max; Fig. 1; Table 1). Developmental responses of
soybean to elevated CO2 include increased number of leaf nodes
and increased leaf size (Dermody et al., 2006), increased root
length, altered root depth distribution and nodulation (Gray et al.,
2013, 2016), and increased pod number and seed yield (Morgan
et al., 2005; Bishop et al., 2014). Yield stimulation makes CO2 re-
sponse a trait of agricultural interest and poses the question of
how developmental processes interact with CO2 to alter re-
productive output.

http://https://scripps.ucsd.edu/programs/keelingcurve/
http://https://scripps.ucsd.edu/programs/keelingcurve/


Fig. 1. A diagram illustrating the effects of elevated CO2 on growth and develop-
ment of soybean (Glycine max). References are as follows: (Dermody et al., 2006;
Castro et al., 2009; Gray et al., 2013, 2016; Bishop et al., 2014).
Drawing is adapted from University of Illinois Pocket Guide to Crop Development
(http://weeds.cropsci.illinois.edu/extension/Other/POCKETcrop.pdf)
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2.1. Leaf developmental responses to elevated CO2

The stimulation of aboveground biomass by elevated CO2 is
associated with increased average leaf size in soybean and poplar
(Dermody et al., 2006; Taylor et al., 2003). Increased leaf size can
be the result of increased cell production and/or increased cell
expansion, and both of these processes appear to contribute to
enhanced leaf size in elevated CO2 in the species in which these
processes have been investigated. Interesting variation exists in
these responses across cell types. For example, in the hybrid Po-
pulus � euramericana (Populus deltoides� P. nigra, clone I-214),
Taylor et al. (2003) found that elevated CO2 increased the size of
epidermal cells in developing leaves, but not in mature leaves;
whereas spongy and palisade mesophyll cell size increased in re-
sponse to elevated CO2 in young and old leaves. Taylor et al. (2003)
also found that the rate of production of new epidermal cells was
stimulated by elevated CO2, but that this effect varied along a
basipetal gradient. Masle (2000) found that elevated CO2 had cell
type-specific effects on leaf anatomy of wheat, encompassing an
additional cell layer and larger intercellular air spaces in the
spongy mesophyll, but minimal effects on epidermal anatomy.
Enhanced leaf growth in elevated CO2 has often been hypothesized
to be associated with increased cell wall extensibility. Evidence of
this effect is apparent in poplar, but is leaf age-dependent (Taylor
et al., 2003; Ranasinghe and Taylor, 1996; Ferris et al., 2001). These
findings demonstrate that there are spatially-specific, temporally-
specific and species-specific cell growth responses to elevated CO2

in leaves.
Elevated CO2 has targeted effects on specific cell types or cell

type specification within the leaf. In many species, including
multiple accessions of Arabidopsis, elevated CO2 reduces stomatal
index (ratio of stomata to epidermal cells) (Woodward and Kelly,
1995). The gene, High CO2 (HIC), a CO2-responsive negative reg-
ulator of stomatal development, has been described to regulate
stomatal index in Arabidopsis (Gray et al., 2000). Here, the wild
type Arabidopsis accession (C24) did not show a significant change

http://weeds.cropsci.illinois.edu/extension/Other/POCKETcrop.pdf
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in stomatal index in response to elevated CO2, but the hic mutant
showed an increase in stomatal index of 18–28% in response to
elevated CO2, suggesting that HIC, a putative 3-keto acyl coenzyme
A synthase that plays a role in cell wall wax biosynthesis, is im-
portant for negatively regulating stomatal development in re-
sponse to elevated CO2 (Gray et al., 2000). Engineer et al. (2014)
demonstrated that Arabidopsis double mutants in β-carbonic an-
hydrase (ca1 ca4) showed a reversal of the typical stomatal density
reduction in response to elevated CO2. Further work demonstrated
that carbonic anhydrases are involved in an extracellular signaling
pathway conferring CO2 control over stomatal development (En-
gineer et al., 2014). Ferris et al. (2002) utilized a P. trichocarpa � P.
deltoides mapping population to identify QTL for stomatal re-
sponse to elevated CO2. They found that elevated CO2 reduced
stomatal density and stomatal index in P. deltoides, but in P. tri-
chocarpa, elevated CO2 did not affect these traits on the adaxial
leaf surface. The authors identified QTL for stomatal trait respon-
siveness to elevated CO2, but thus far candidate genes have not
been identified for these species (Ferris et al., 2002). Potential
regulators of stomatal development responses to elevated CO2

have been recently reviewed by Xu et al. (2016).
In addition to altering the cellular traits of individual leaves,

elevated CO2 alters shoot architecture. Examples of these changes
include increases in the total number of vegetative nodes in soy-
bean (Dermody et al., 2006), and promotion of axillary meristems
in wheat, which increases the number of tillers, or branches (Ni-
colas et al., 1993; Christ and Korner, 1995; Slafer and Rawson,
1997). Increased number of tillers has also been described in rice
grown in elevated CO2 (Jitla et al., 1997). Evidence is beginning to
build for molecular mechanisms that may contribute to altered
shoot architecture in elevated CO2. Morita et al. (2015) identified a
phloem-expressed, CO2-responsive regulator of starch accumula-
tion (CO2-Responsive CONSTANS, CONSTANS-like and Time of
Chlorophyll a/b Binding Protein1 (CRCT)) in rice. Overexpression of
CRCT increased starch content of the leaf sheath, and significantly
increased tillering angle, such that branches had a wider lateral
spread. Wide tillering angle is a trait that has likely been selected
against throughout rice domestication to enable dense planting
(Jin et al., 2008), and may pose a challenge for production if this
trait is altered by elevated CO2 in the future.

Leaf transcriptional responses to elevated CO2 center around
altered carbon metabolism. In soybean, Leakey et al. (2009) de-
monstrated that elevated CO2 increased transcript abundance of
genes related to starch metabolism, sugar metabolism, glycolysis,
the tricarboxylic acid cycle, and mitochondrial electron transport.
These transcriptional changes were associated with stimulation of
photosynthetic carbon assimilation and dark respiration rates
(Leakey et al., 2009). Similarly, in Arabidopsis, increased abun-
dance of transcripts in the respiratory pathway co-occurred with
increased leaf dark respiration rates (Markelz et al., 2014a), and
showed developmental specificity, as the magnitude of transcrip-
tional and respiratory responses to elevated CO2 increased in
mature relative to expanding leaves (Markelz et al., 2014b). Similar
transcriptional responses have been described in rice, with ele-
vated CO2 increasing expression of genes involved in sucrose
synthesis, glycolysis, and the TCA cycle (Fukayama et al., 2011).
Elevated CO2 likely alters plant development both by increasing
the flux of carbohydrates and related metabolites that are needed
for growth and development, and by the action of glucose as a
signaling molecule. In Arabidopsis, three glucose-modulated
master regulators have been described: hexokinase1 (HXK1) glu-
cose sensor, KIN10/KIN11 kinases, and the target of rapamycin
(TOR) kinase (Sheen, 2014). These glucose-responsive regulators
direct many diverse processes, including regulation of glucose-
responsive transcription and plant growth by HXK1 (Xiao et al.,
2000), regulation of the vegetative-to-reproductive phase
transition by KIN10 (Baena-Gonzalez et al., 2007), and regulation
of primary and secondary metabolism, transcription, and transla-
tion by the TOR kinase (reviewed in Sheen (2014)). It remains to be
determined if these master regulators are responsible for the al-
tered transcriptional regulation of metabolic genes in rice, soybean
and Arabidopsis in elevated CO2. Thus, conserved transcriptional
responses to elevated CO2 have been described for the leaves of
multiple species likely resulting in perturbations in primary car-
bon metabolism. It is unclear if these transcriptional changes
precede the observed changes in leaf anatomy, or are a con-
sequence of the perturbations in leaf anatomy. Furthermore, the
role of glucose as a signaling molecule regulating transcriptional
and developmental responses to elevated CO2 seems likely but has
yet to be elucidated.

2.2. Root developmental responses to elevated Co2

Root biomass is significantly increased in response to elevated
CO2 in numerous species. An increase in the root: shoot ratio is
also often observed, suggesting increased investment in acquisi-
tion of mineral or water resources (Rogers et al., 1997). This in-
crease has been measured in controlled environment experiments
as the biomass of total root systems, as estimates of root length
from field-based minirhizotron experiments (clear observation
tubes which are buried into the soil, enabling imaging of roots
with a digital camera), or as estimates of root length per unit vo-
lume of soil measured from soil cores.

More detailed studies provide insight into how this increase in
biomass can occur by describing changes in root system archi-
tecture as well as in changes in cellular anatomy. However, no
systematic study has assessed the conservation of all these re-
sponses across and within diverse plant species. In soybean,
minirhizotron experiments demonstrated that elevated CO2 in-
creases root length, primarily at shallow and intermediate soil
depths, and that elevated CO2 in combination with reduced pre-
cipitation increases the number and density of root nodules, which
house Bradyrhizobia nitrogen-fixing bacteria (Gray et al., 2013,
2016). Further studies have revealed that the increase in root
biomass in agricultural and forest species takes the form of in-
creased root length, enhanced root branching, and increased root
diameter (reviewed in Madhu and Hatfield (2013)). In Arabidopsis,
elevated CO2 results in increased primary root length and expan-
sion rate, increased lateral root formation and elongation (Crook-
shanks et al., 1998). Altered root system architecture in elevated
CO2 may influence the root system’s efficiency in water uptake by
altering distribution of root length relative to water resources
(Gray et al., 2016). Further, altered root depth distribution may
impact a plant’s ability to gather nutrient resources, which are
distributed heterogeneously across soil depth gradients (Lynch,
2015). Altered root system architecture in elevated CO2 takes the
form of increased branching and expansion of lateral roots, con-
tributing to proliferation of roots in shallow layers, rather than
growth of the root system into deeper soil in spring wheat, winter
wheat, cotton, and sorghum (Reviewed in Pritchard and Rogers
(2000)).

At the anatomical level, an increased stele and cortex diameter,
increased root diameter in the root maturation zone, and in-
creased total root system volume has been observed in cotton
exposed to elevated CO2 (Rogers et al., 1992). In Arabidopsis, in-
creased cortical cell expansion and cell wall extensibility (Crook-
shanks et al., 1998) was also reported. Changes in the architecture,
cellular anatomy and interactions of root systems with soil mi-
crobes may significantly impact root function in a future, high CO2

environment.
Inter-specific genetic variation in root density responses to

elevated CO2 has been described in Populus deltoides and Populus
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trichocarpa, with P. trichocarpa showing a stronger magnitude of
root density responses to elevated CO2 (Rae et al., 2007). 285
members of an F2 population from the P. deltoides � P. trichocarpa
cross were used to identify three QTL associated with root growth
rate and primary root density response to elevated CO2 (Rae et al.,
2007). However, these QTL were identified via experiments that
used rhizotrons. Rhizotrons likely do not capture the full magni-
tude of loci controlling the root CO2 response, as the soil en-
vironment surrounding a rhizotron obscures the developmental
order of roots and limitations in quantification introduce pheno-
typing errors. Identification of candidate genes from QTL of plant
roots exposed to elevated CO2 deserves further study. Likewise,
changes in gene expression of root tissue in response to elevated
CO2 have been investigated in a very limited number of experi-
ments (e.g. Plett et al., 2015). This results in large gaps in our
understanding of the molecular mechanisms and genetic diversity
of root responses to this climate change factor.

2.3. Responses of reproductive development and phenology to ele-
vated CO2

Elevated CO2 increases seed yield in numerous agricultural
species, but the nutritional quality of the grain is generally re-
duced, due to altered ion profiles, notably reduced iron and zinc
content (Loladze, 2014; Myers et al., 2014). Elevated CO2 also re-
duces nitrogen and protein content of seeds of non-legume crops
(Jablonski et al., 2002; Myers et al., 2014). A meta-analysis of 79
species grown in elevated CO2 demonstrates consistent effects on
reproductive output: elevated CO2 increased the number of flow-
ers, fruit, and seeds by 16–19% on average, and increased the total
seed mass by 25%, but caused a smaller increase (4%) in individual
seed mass (Jablonski et al., 2002). This result is corroborated by a
study in soybean, in which the increase in seed yield was caused
by an increase in pod number or number of seeds per pod, rather
than an increase in the mass of individual seeds (Morgan et al.,
2005). The molecular mechanism of this increase in seed number
that is conserved across all these species is unknown.

Bishop et al. (2014) demonstrated that, across 18 genotypes of
soybean, elevated CO2 stimulated seed yield by an average of 9%
across multiple growing seasons, but the partitioning coefficient
decreased by 11%. The magnitude of seed yield stimulation of
soybean by elevated CO2 depended on climate, with stimulation of
seed yield diminishing to zero in hot, dry conditions (Ruiz-Vera
et al., 2013; Bishop et al., 2014; Gray et al., 2016). Jablonski et al.
(2002) found that, while crop species and wild species did not
differ in their overall biomass response to elevated CO2, they did
differ significantly in their allocation to reproductive output at
elevated CO2. Specifically, crop species showed an average 28%
increase in fruit production, while wild species showed only a 4%
increase in fruit production, likely reflecting artificial selection for
enhanced carbon partitioning to fruit and seed development in
crop species (Jablonski et al., 2002). Wild species also showed a
greater amount of variability in fruit and seed production re-
sponses to elevated CO2 than domesticated species (Jablonski
et al., 2002), potentially reflecting variability in the ecosystems
that these species are adapted to, or canalization of traits de-
termining allocation to reproductive tissues in crop plants.

Castro et al. (2009) observed that elevated CO2 delayed re-
productive development of soybean overall. The length of the
growing season of elevated CO2-grown soybean was extended
through addition of new leaf nodes, rather than extending the life
of individual leaves (Dermody et al., 2006). Additionally, full bloom
and beginning seed stages were extended in elevated CO2-grown
soybean, associated with an increased number of stem nodes and
an extended period for addition of new leaves (Castro et al., 2009).
Springer and Ward (2007) found that, depending on the genotype,
elevated CO2 could delay, accelerate, or not affect flowering time in
Arabidopsis. Ward and coauthors (2012) identified MOTHER OF FT
AND TFL1 (MFT) as a likely player in CO2-regulation of flowering
time. These authors developed a mapping population by crossing a
genotype selected for high fitness at elevated CO2 (Selection
Genotype; SG), which showed delayed flowering in elevated CO2,
to the Cape Verde Islands ecotype, which did not show a flowering
time response to elevated CO2. A QTL was then identified which
explained almost one third of the variation in flowering time re-
sponse to elevated CO2, leading to identification of MFT as a gene
candidate, as the knock-out mutant for this gene showed earlier,
rather than delayed, flowering in elevated CO2 (Ward et al., 2012).
Springer et al. (2008) demonstrated that an Arabidopsis genotype
exhibiting delayed flowering in elevated CO2 showed sustained
expression of FLOWERING LOCUS C (FLC) in elevated CO2; whereas
a genotype that did not exhibit delayed flowering in response to
elevated CO2 showed no significant differences in FLC expression
in elevated CO2 compared to ambient CO2. This research demon-
strates that this known repressor of flowering plays a role in CO2-
regulation of this process, and contributes to genotypic diversity in
this response. Delays in timing of reproductive developmental
events may prolong the period for carbon capture and nutrient
acquisition, contributing to increased seed yield of plants grown in
elevated CO2; however, this extended growth period could also
increase the risk of reproductive failure from terminal drought
(Springer and Ward, 2007).

Delayed senescence in response to elevated CO2 has been de-
scribed in tree species. In poplar (P. tremuloides and P. � eur-
americana), elevated CO2 delayed autumnal senescence in two
separate field sites (Taylor et al., 2008). A delay in senescence of P.
euramericana trees was associated with increased leaf anthocyanin
content and increased expression of transcripts involved in the
anthocyanin biosynthesis pathway (Tallis et al., 2010). Anthocya-
nins can play protective roles with regards to UV damage, patho-
gen stress, and scavenging of reactive oxygen species, and may
thereby enhance leaf longevity (Gould, 2004).
3. Effects of elevated temperature on plant development and
morphology

Rising concentrations of CO2 and other greenhouse gases have
contributed to an increase of 0.85 °C in global average surface
temperature from 1880 to 2012 (Hartmann et al., 2013). Global
mean surface temperature is projected to rise by 1.0–3.7 °C by the
end of the century (IPCC, 2014). In addition to a consistent increase
in background global mean temperatures, plants will also experi-
ence heat stress via increased frequency, intensity, and duration of
heat waves (IPCC, 2014). Unlike atmospheric CO2, which is well
mixed and thus quite uniform across the globe, future predictions
for global surface temperature vary significantly across geo-
graphical regions, and as such will be experienced differently by
plants growing in different regions. For example, the surface
temperature in the Arctic is projected to rise faster than the global
average (IPCC, 2014). The range of today’s global surface tem-
perature paired with variability in how different latitudes will
experience temperature increases mean that global warming will
result in different degrees of temperature stress for plants growing
in different regions. For example, elevated temperatures are ex-
pected to cause 2.4% yield losses of soybean (Glycine max) growing
in the Southern U.S., but a 1.7% increase in yield in the Midwestern
U.S. (Hatfield et al., 2011). Similarly, Lobell and Asner (2003) de-
monstrated that temperature had different effects on yield of
maize and soybean in the Midwestern U.S. compared to the
Northern Great Plains. In regions where yield showed a negative
relationship with temperature, a 17% decrease in yield was
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estimated for every 1 °C increase in growing season temperature
for both maize and soybean (Lobell and Asner, 2003).

Species-specific factors relating to changes in plant develop-
ment and physiology will also influence yield in response to
temperature (reviewed in Hatfield et al. (2011)). One clear example
of how elevated temperature changes plant physiology is the
variability in rates of photosynthetic carbon assimilation. Ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (Rubsico) catalyzes
the fixation of CO2 from the atmosphere into organic compounds
in the plant. While Rubisco itself is heat-stable up to 50 °C (Crafts-
Brandner and Salvucci, 2000), limitations to photosynthesis at
more moderate temperature increases can be explained by re-
duced function of Rubisco activase, an enzyme that removes in-
hibitory molecules from the catalytic site of Rubisco; or by reduced
regeneration of ribulose-1,5-bisphosphate (RuBP; the 5 carbon
sugar that serves as a substrate for the carboxylation reaction of
Rubisco) (Sage et al., 2008). The temperature optimum for pho-
tosynthesis varies between species (Sage et al., 2008), with species
adapted to hot, desert climates having a higher temperature op-
timum and safe operating range compared to species adapted to
more moderate or cold-adapted climates (reviewed in Sage and
Kubien (2007)). Photosynthetic functional type also influences
response to temperature, as C3 plants exhibit a lower thermal
optimum for photosynthesis compared to C4 plants (Sage and
Kubien, 2007). This range provides a functional lens through
which to view plant yield responses to warming—the photo-
synthetic response to rising temperature, and thus plant growth
and yield will depend upon the species-specific temperature
optimum.

3.1. Leaf developmental responses to elevated temperature

Leaf development is strongly regulated by temperature. In
Arabidopsis, the rate of leaf initiation, leaf expansion, and the
duration of expansion increases linearly with temperature in the
range of 6–26 °C (Granier et al., 2002). Similarly, the pace of ad-
dition of new leaves throughout a crop plant’s vegetative devel-
opment increases as temperature increases, until a species-specific
optimum temperature (ranging from 26 °C for wheat to 37 °C for
cotton) and corresponding rate of leaf initiation is exceeded
(Hatfield et al., 2011). Leaf morphology, as well as rate of emer-
gence is sensitive to temperature. Leaf and stem developmental
and morphological responses to temperature stress are similar to
those observed in the shade avoidance response, including auxin-
dependent hypocotyl and petiole elongation (Gray et al., 1998;
Franklin, 2009; van Zanten et al., 2009). The molecular mechan-
isms by which elevated temperature regulates leaf morphology
and the rate of leaf initiation and expansion are largely unknown.

3.2. Root developmental responses to elevated temperature

As soil temperature is closely related to, and dependent on, air
temperature (Zheng et al., 1993), the projected 1.0–3.7 °C increase
in global average surface temperature this century will result in
increased soil temperatures (IPCC, 2014). Root development may
be affected directly by elevated soil temperatures, or may be af-
fected indirectly via changes in the physiology, development and
resource acquisition of the shoot in response to warmer air tem-
peratures, or by a combination of both factors. In a broad sense,
allocation to roots may be increased in response to elevated
temperature, and rising temperatures may also have significant
impacts on critical root functions, including respiration (Atkin
et al., 2000) and nutrient uptake (Awal et al., 2003).

Elevated temperature stimulates root growth rate up to a spe-
cies-specific temperature optimum, and significantly alters several
root architecture parameters. The following species-specific
examples have typically been studied in only one genotype;
however, given genotypic variation in molecular and morpholo-
gical responses to temperature stress in other tissues (e.g. Bita
et al., 2011; Kumagai and Sameshima, 2014), it is likely that there
is significant intra-species variation in root traits, in addition to the
inter-species variation that is described here. In maize (Zea mays),
increasing the temperature of hydroponic media from 13 °C to
22 °C caused significant increases in total root length, but root
length plateaued at 22–25 °C (Nagel et al., 2009). Similarly, oilseed
rape (Brassica napus) tap root length and lateral root number in-
creased as root growth media temperature increased from 10 to
20 °C (Nagel et al., 2009). In cotton, taproot length and lateral root
number increased from 10 °C to 35 °C, but decreased at tempera-
tures greater than 35 °C. In sunflower, the optimal temperatures
(before inhibition of growth) for tap root length and lateral root
number is 25–30 °C (McMichael and Quisenberry, 1993).

The transition zone of the primary root of Arabidopsis defines
the transition from the proximal meristem to the zone of elon-
gation and differentiation/maturation. In the proximal meristem,
high concentrations of auxin promote degradation of the Aux/IAA
auxin signaling repressor, short hypocotyl 2 (SHY2) enabling cell
division (Perilli et al., 2012). In contrast, high concentrations of
cytokinin in the transition zone and zone of elongation/differ-
entiation up-regulate SHY2, repressing auxin-responsive gene
expression and promoting cell elongation over cell division (Perilli
et al., 2012). Hanzawa et al. (2013) demonstrated that elevated
temperature (29 °C compared to 23 °C) stimulated primary root
elongation rate via increased cell division rates. In addition to in-
creasing the rate of root elongation, elevated temperature also
increased root auxin content in Arabidopsis, and increased the rate
of the root reorientation response to a gravity stimulus (Hanzawa
et al., 2013). Further, Hanzawa et al. (2013) found that elevated
temperature reduced vacuolar content of the auxin efflux carrier
PIN2, suggesting improved efficiency of PIN2 localization in the
plasma membrane and enhanced shootward auxin transport. The
authors used this finding to explain the seemingly contradictory
result of increased root auxin content and increased root elonga-
tion in elevated temperature: they reasoned that the plants had an
enhanced ability to transport auxin out of the cell and thereby
maintain intracellular auxin homeostasis even in the presence of
increased total root auxin content.

In addition to effects on primary root length, the overall shape
and architecture of a root system can be altered by growth tem-
perature. Elevated temperature can impact root elongation in a
spatially explicit manner. For example, increased primary root
branching angle in higher temperature conditions could lead to a
root system with a more shallow and broad root distribution re-
lative to plants grown in lower temperatures. Nagel et al. (2009)
found that, in plants exposed to gradients in root zone tempera-
ture, root growth along a depth gradient was modified dynami-
cally leading to increased root density in the depth of growth
media with the most favorable growth temperatures. An increased
number and length of lateral root branches has been reported for
increasing temperatures up to 30 °C in sunflower and up to 35 °C
in cotton (McMichael and Quisenberry, 1993). Lateral root
branching increased in response to temperature increases (up to
the optimal temperature), and was more sensitive than tap root
growth. Lateral root angle also responded significantly to tem-
perature, with branching angle being significantly greater in plants
growing at 20 °C compared to those growing at 10 °C (Nagel et al.,
2009).

Projections for rising soil temperature associated with climate
change are more complex than the corresponding changes in air
temperature, because soil temperature is influenced by a wide
range of factors including soil texture and moisture properties,
degree of insulation by snowpack or vegetation, latitude, and



Fig. 2. A diagram illustrating the effects of elevated temperature stress (left) and drought stress (right) on reproductive development of Arabidopsis thaliana. References are
as follows: (Blázquez et al., 2003; Warner and Erwin, 2005; Balasubramanian et al., 2006; Oshino et al., 2007; Sakata and Higashitani, 2008; Whittle et al., 2009; Yang et al.,
2009; Zinn et al., 2010; Parish et al., 2012; Su et al., 2013; van Zanten et al., 2013; Ma et al., 2014).
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season (Jungvist et al., 2014). Specific model predictions for in-
creases in soil temperature in the second half of this century in-
clude up to 4 °C increase in boreal forest soil in Northern Sweden
(Jungvist et al., 2014), and up to 5 °C increase in black spruce forest
soil in eastern Canada (Houle et al., 2012). These increases in soil
temperature will likely result in regionally-specific root develop-
mental responses to rising temperatures.

3.3. Reproductive development responses to elevated temperature

Plant developmental responses to elevated temperature vary
significantly by tissue and developmental stage. For example, in
rice, peak vegetative biomass is observed at 33 °C, while grain
formation and yield are adversely affected by temperatures above
25 °C (Matsushima et al., 1964; Baker et al., 1995). These thresh-
olds vary significantly by species as well; in sorghum the optimum
temperature range for vegetative growth is 26–34 °C, while the
optimum range for reproductive growth is 25–28 °C (Maiti, 1996).
In Arabidopsis, abortion of the entire inflorescence was observed
starting at heat stress treatments of 36 °C (Warner and Erwin,
2005). Thus, the final impact of temperature stress on yield or
reproductive fitness depends on the developmental stage at which
high temperature stress occurs.

Elevated temperature may impact reproductive development
by altering the timing of reproductive events, or by causing heat
damage to reproductive structures (Fig. 2). Reproductive devel-
opmental events tend to occur earlier when plants are grown at
elevated temperature. For example, an earlier transition to flow-
ering has been well documented in Arabidopsis grown at elevated
temperature (Blázquez et al., 2003; Balasubramanian et al., 2006;
van Zanten et al., 2013). Numerous crop species are reported to
progress more rapidly through vegetative and reproductive de-
velopment as temperature rises, up to a species-specific optimum,
after which growth and development slows and eventually stops
(Hatfield et al., 2011). Acceleration of flowering in elevated tem-
perature conditions may reduce the plant’s ability to accumulate
the resources required for successful gamete production (Zinn
et al., 2010). Interestingly, Burghardt et al. (2016) recently
demonstrated that fluctuating warm temperatures caused flow-
ering to occur even earlier than constant warm temperatures in
several Arabidopsis accessions, suggesting that temperature range
plays a role in regulating flowering time, in addition to average
temperature. Rising temperatures may also affect the timing and
success of reproductive development by altering winter chilling
conditions. Fruit and nut trees, for example, have winter chilling
thresholds that are required for synchronous flowering and suc-
cessful fruit set. Luedeling et al. (2009) used various greenhouse
gas emission scenarios to model winter chill in important pro-
duction regions in California, and found that the area of land that
will meet the safe winter chill requirements for many trees is
projected to decrease by 90–100% by the end of the century. Such a
change in conditions in the current area of production has im-
portant agricultural and economic implications, and further re-
search is needed to elucidate the molecular mechanisms of the
response of reproductive development to rising temperature in
these species.

During reproductive stages of growth, the largest develop-
mental impacts of temperature on crop production occur through
the extreme sensitivity of the male gametophyte to this stress
(Zinn et al., 2010). The male gametophyte is more sensitive to high
temperature stress than the pistil or the female gametophyte
(Hedhly, 2011). For example, as rice flowers near mid-day, a
maximum mid-day temperature above 33 °C reduces viability of
pollen, and viability decreases to zero at mid-day temperatures of
40 °C (Kim et al., 1996). Pollen viability can be further reduced by
early abortion of tapetal cells and programmed cell death in pollen
mother cells in response to elevated temperature (Oshino et al.,
2007; Sakata and Higashitani, 2008; Parish et al., 2012). Significant
genetic diversity has been described among Arabidopsis acces-
sions in response to heat stress, and pollen tube growth has been
identified as a key factor differentiating more sensitive from more
resistant ecotypes (Zinn et al., 2010). If, despite all of these barriers
to male gametogenesis at high temperatures, successful fertiliza-
tion does occur, grain number and quality is likely to be reduced
by temperature stress (Bita and Gerats, 2013). Sensitivity of female
floral organs can also contribute to loss of reproductive success in
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response to heat stress. In Arabidopsis, heat stress reduces the
number of ovules and increases ovule abortion rate (Whittle et al.,
2009). In peach trees, there is a shorter window of time during
which the stigmas can support pollen germination at 30 °C com-
pared to 20 °C (Hedhly et al., 2005).

Extreme heat stress can affect plant reproductive development,
through consistent exposure or transient exposure. Ruiz-Vera et al.
(2013) found that constant exposure to elevated temperature
(3.5 °C above ambient) tended to reduce seed yield of soybean, but
the effect depended upon interactions with CO2 treatment and
field season. Siebers et al. (2015) demonstrated that heat waves
(6 °C above ambient) as short as three days caused rapid induction
of, and recovery from, photosynthesis reductions and oxidative
stress in soybean. The impacts of heat waves on seed yield de-
pended upon the developmental stage at which the heat wave
occurred, as heatwaves during early pod development reduced
seed yield by 10–17%, but heat waves during later pod develop-
ment did not significantly affect seed yield. The effects of heat-
waves on yield could be attributed to a reduced number of pods,
rather than reduced individual seed weight, or a reduced number
of seeds per pod, suggesting that increased pod abortion rates in
response to heat stress occurred, but only when pods were at
beginning pod or full pod stage during the heat stress (Siebers
et al., 2015). These data demonstrate the importance of consider-
ing increased occurrence of extreme events as an element of cli-
mate change, as stresses such as elevated temperature cause dis-
tinct effects when experienced at different times or with differing
severity. It is apparent from this research that both consistent
exposure to elevated temperature (Ruiz-Vera et al., 2013) and brief
exposure to extreme temperature (Siebers et al., 2015) sig-
nificantly influence plant reproductive development and yield.

Underlying the morphological and developmental responses to
elevated temperature described above are molecular and cellular
responses that occur over many tissue types, as well as some cell
type-specific responses. Cellular responses to temperature stress
include altered organization of organelles, cytoskeleton, and
membrane structure (Weis and Berry, 1988). To maintain mem-
brane stability and normal cellular functions in response to heat
stress, plants induce synthesis of heat shock proteins (HSPs),
molecular chaperones that prevent protein misfolding or ag-
gregation (Vierling, 1991); as well as other co-chaperones, hor-
mones, and other protective molecules (Bray et al., 2000). Ex-
pression of HSPs is induced by heat-stress transcription factors
(HSFs) that bind to heat shock elements in the promoters of HSPs
(von Koskull-Doring et al., 2007). There are many steps of reg-
ulation allowing dynamic control of this heat stress response, as
the HSFs themselves can be post-transcriptionally modified (Liu
et al., 2008). In addition to the constitutive role that HSPs play in
heat stress response across cell types, these proteins can acquire
specialized functions that regulate developmental responses of
particular organs to environmental stress. For example, expression
of Arabidopsis TMS1 (Thermosensitive Male Sterile 1), an Hsp40
homolog, is increased in response to heat shock in pollen grains,
pollen tubes, and vegetative tissues, but appears to play a parti-
cularly significant role in pollen tube thermotolerance, as mutants
had impaired pollen tube growth in high temperatures (Yang et al.,
2009).

Heat stress responsive gene expression is regulated at multiple
levels. The interaction of the nucleosome containing H2A.Z with
DNA is altered by temperature stress, suggesting a role for chro-
matin remodeling in gene expression responses to heat stress (Bita
and Gerats, 2013). In further support of the role of altered chro-
matin accessibility in response to temperature, Sullivan et al.
(2014) used DNase I hypersensitive sites and genomic footprinting
to identify changes in transcription factor (TF) occupancy in Ara-
bidopsis seedlings exposed to heat shock. These authors identified
heat-activated and heat-repressed DNase hypersensitivity sites,
with many of the heat-activated sites being located within known
heat response genes, including HSPs and HSFs. Interestingly, they
also found that motifs that were significantly enriched in the heat-
activated DHSs included MADS box motifs. MADS box genes reg-
ulate critical and wide-ranging developmental processes, includ-
ing floral organ identity and flowering time (Rounsley et al., 1995;
Pelaz et al., 2000), as well as root apical meristem properties in-
cluding meristem size and organization (Tapia-López et al., 2008).
Recent evidence demonstrates that FLOWERING LOCUS M (FLM), a
MADS box gene that regulates flowering time (Scortecci et al.,
2001), is alternatively spliced in a temperature-dependent man-
ner, and that the FLM-δ isoform likely affects flowering time by de-
repressing FT and SOC1 in warm temperatures (Lutz et al., 2015).
Thus, multiple mechanisms of transcriptional regulation likely
play a role in the developmental phenotypes in floral and other
organs in response to heat stress. Much of the molecular work
described here has been conducted in Arabidopsis. It is likely that
similar pathways operate in crop species, contributing to the
detrimental impacts that elevated temperature has on gameto-
phyte and fruit/pod development. Future research to elucidate the
molecular mechanisms of heat stress response in crop re-
productive tissue would facilitate breeding climate-resistant crops.
4. Plant developmental and morphological responses to
drought stress

Plants growing in many regions of the world will experience
increasing water stress as a result of climate change. Already, the
area affected by drought has increased substantially since the
middle 20th Century (Dai, 2011), and the frequency of droughts is
predicted to increase in regions that are already dry by the end of
the 21st Century (IPCC, 2014). Droughts can consist of varying
degrees of intensity and duration of water stress, resulting in a
wide range of impacts on plant growth and development, but
drought can generally be defined as a period of abnormally dry
weather long enough to cause serious hydrologic imbalances
(IPCC, 2014). Water availability has long been known as one of the
most important abiotic factors governing crop yield (Boyer, 1982),
owing to the central role it plays in plant growth and development
processes. Drought stress already causes large losses in plant
production and agricultural yield, with the magnitude of the ef-
fects depending upon the developmental stage at which plants
experience drought stress (Skirycz et al., 2010; Verelst et al., 2010)
and soil-related parameters such as soil texture (Daryanto et al.,
2015). Additionally, inter-specific and intra-specific variation in
developmental and physiological responses to drought stress
means that there will be a wide range of sensitivities to climate
change-associated droughts across different ecosystems, both
natural and agricultural.

Specific developmental responses to drought vary among plant
organs and tissues. In a broad sense, drought stress causes plants
to invest resources in root tissue at the expense of shoot tissue.
This can be measured coarsely as an increased ratio of root: shoot
biomass (Poorter and Nagel, 2000), and at the molecular level,
shifts in allocation of resources from shoots to roots in response to
drought stress can also be observed in metabolite profiles of each
tissue. For example, Gargallo-Garriga et al., 2014 reported that
drought increased the root content of sugars, amino acids, and
nucleosides, while decreasing the content of these metabolites in
the shoot tissue in two grass species (Holcus lanatus and Alope-
curus pratensis). These opposite patterns in metabolite content
between the two tissue types reflect the growth patterns in each
tissue in response to drought stress: root elongation is often
maintained in drought, while shoot growth ceases (Sharp and
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Davies, 1989). According to the functional equilibrium theory,
plants will shift allocation among tissues to optimize the acquisi-
tion of the most limiting resource (Brouwer, 1983). In times of
water deficit, investment in root tissue over leaf tissue also has the
benefit of reducing the area for water loss via transpiration.
Adaptations like these may enable a plant to continue through its
developmental program and reach reproductive maturity, even in
the face of water deficit.

4.1. Leaf developmental responses to drought stress

Cell division and cell expansion are the two main processes
defining the developmental program of a leaf, and both of these
processes are significantly affected by drought stress across di-
verse species and accessions (Aguirrezabal et al., 2006; Baer-
enfaller et al., 2012; Clauw et al., 2015). Generally, leaf expansion is
reduced in response to drought stress in several species although
this is dependent on leaf developmental stage. In Arabidopsis, total
rosette area, individual leaf size, and epidermal pavement cell area
and number are all reduced by mild drought stress (Clauw et al.,
2015). The strength of the effect of drought stress on final leaf size
depends upon the developmental stage of the leaf when drought
is imposed. For example, in Ricinus communis, reductions in leaf
expansion rates caused by drought stress could be rescued by re-
hydration if leaves were longer than 12 cm when drought treat-
ment started, but re-watering could not rescue the final size of
leaves that were smaller when drought stress was imposed
(Schurr et al., 2000). This suggests that normal cell division pro-
cesses in early development are critical to the leaf reaching its final
size, and if cell division is arrested at this stage, the final leaf size
cannot recover. Genes that form a conserved transcriptional re-
sponse to mild drought stress across six diverse Arabidopsis ac-
cessions included abscisic acid (ABA) signaling genes, proline
metabolism-associated genes, and genes annotated as functioning
in cell wall adjustments (Clauw et al., 2015). The transcriptional
response is determined by leaf developmental stage, as genes that
were up-regulated in response to mild drought in young leaves,
but not in older leaves included genes related to synthesis, loos-
ening, or remodeling of cell wall components. These genes, in-
cluding pectin lyases and expansins, presumably function to en-
able growth to continue at a low rate in young leaves, even in
conditions of low turgor pressure (Clauw et al., 2015).

4.2. Root developmental responses to drought stress

In contrast to shoot growth, root growth is often maintained, or
may even be stimulated in response to drought stress. Smaller
reductions in root growth rate relative to shoot growth rate have
been described in maize, soybean, cotton and squash (Spollen
et al., 1993). Observations of enhanced root growth and shifts to a
deeper root depth distribution in response to drought through
manipulation of the root’s response to gravity has been reported in
numerous species, pointing to plasticity in root stress response
that is dynamic across soil depths and the developmental timeline
of both the root and the whole plant.

In field-grown soybean, drought stress stimulated root growth
rates; and the magnitude of this effect depended upon the plant’s
developmental stage and the soil depth, with the strongest sti-
mulation in root growth rate occurring in late vegetative and early
reproductive developmental stages, and in soil depths deeper than
0.6 m (Hoogenboom et al., 1987). Rellán-Álvarez et al., (2015) used
non-destructive imaging of soil-grown Arabidopsis roots to de-
monstrate that water deficit expanded the size of the root system
and reoriented lateral root tips downward. They also found that
mutants in the auxin receptor TIR1 (TRANSPORT INHIBITOR RE-
SPONSE 1) did not change their root angle in response to water
deficit, suggesting a critical role for auxin in redirecting root
growth angles downward in response to drought stress (Rellán-
Álvarez et al., 2015). Uga et al. (2013) cloned DEEPER ROOTING 1
(DRO1), a gene that regulates rooting depth of rice via a steeper
root growth angle of nodal roots. They found that this allele did
not alter biomass of roots or shoots, and did not affect grain yield
in well-watered conditions, but significantly increased grain yield
in moderate or severe drought conditions (Uga et al., 2013). DRO1
exerts its influence on root angle via altering the root’s response to
gravity—in response to a gravity challenge, auxin causes polar
expression patterns of DRO1 across the root, with an increase at
the outer edge of the elongation zone, presumably stimulating cell
elongation on the upper side of the root (Uga et al., 2013). These
results demonstrate distinct genetic regulation of one specific root
morphological trait, and these results show that seed yield can be
directly affected by root traits in stress conditions.

Sharp and colleagues used kinematics to describe dynamics of
root elongation responses to drought in maize roots at a range of
distances from the root apex. They found that elongation peaked
at a lower rate, and at a shorter distance from the root apex in
water stressed plants compared to well-watered plants, resulting
in a shorter elongation zone (Sharp et al., 1988). In maize, growth
responses of leaf and shoot tissue to water stress depend upon
abscisic acid (ABA) signaling, which may prevent excess ethylene
production (Saab et al., 1990; Spollen et al., 2000). Turgor provides
the driving force for cell expansion, and the rate of expansion is
determined by the yielding properties of the cell wall (Spollen
et al., 1993). Cell turgor is reduced by drought stress in the absence
of osmotic adjustment, and the sensitivity of cell expansion to
water deficit varies along the elongation zone of roots (Sharp et al.,
1988; Spollen and Sharp, 1991). The fact that expansion can be
maintained in roots experiencing drought stress despite low root
water potential suggests changes to cell wall properties to make
them more yielding, such as changes through the action of cell
wall remodeling enzymes such as xyloglucan endotransglycosylase
(XET), which cuts and rejoins xyloglucan polymers, and which is
activated by ABA accumulation (Wu et al., 1994). ABA also plays
important roles in regulating cell type-specific developmental re-
sponses to drought stress. For example, the outermost cortex layer
of the roots of many species differentiates into exodermis with the
deposition of suberin, and this developmental transition may be
hastened by drought stress (Enstone et al., 2002). Barberon et al.
(2016) demonstrated that treatment with exogenous ABA (a clas-
sical drought-responsive and drought-mitigating hormone) was
sufficient to induce suberization in root cortex cells and to lead to
premature/ectopic deposition of suberin in young root tissue.

Root system architecture and depth distribution may be altered
by elongation of primary roots, and by changes in the rate of lat-
eral root initiation. Lateral roots initiate from pericycle tissue in a
tightly controlled series of cell divisions (Péret et al., 2009). The
number or density of lateral roots initiating along a primary root
has long been known to be responsive to environmental stimuli,
including osmotic stress (Deak and Malamy, 2005). Lateral root
development is halted by exogenous application of the drought
stress-signaling hormone ABA in Arabidopsis roots (De Smet et al.,
2003; Seo et al., 2009). Reduced lateral root initiation in response
to drought stress has also been demonstrated in crop species. In
barley and maize, water stress represses lateral root initiation
(Babé et al. 2012). Recent evidence describing the phenomenon of
hydropatterning demonstrates that lateral root initiation can also
be differentially regulated across the radial axis of a root in re-
sponse to spatial heterogeneity in water availability. This occurs
via regulation of the location of lateral root founder cells, with the
side of the root nearer to the water initiating more lateral roots
(Bao et al., 2014). Changes in root cellular anatomy, including
formation of aerenchyma and reduced area or number of cortical
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cells have been associated with improved performance of maize
plants exposed to drought stress, consistent with the “steep, cheap,
and deep” ideotype of optimal root growth in water scarcity
(Lynch, 2015).

4.3. Reproductive developmental responses to drought stress

Time to flowering can be an important determinant of a plant’s
reproductive success in a dry environment. Two strategies have
been described regarding flowering time adaptations for coping
with drought stress: drought escape, or early flowering and
completion of reproductive development before the onset of late-
season droughts (Sherrard and Maherali, 2006; Heschel and Rigi-
nos, 2005); and drought avoidance, or increased water use effi-
ciency to avoid dehydration in ecosystems that experience early-
season droughts (Heschel et al., 2002). The Arabidopsis gene FRI-
GIDA (FRI) encodes a transcription factor that positively regulates
flowering locus C (FLC), delaying flowering (Searle et al., 2006). In
addition to the well-known roles of FRI and FLC in regulating
flowering time responses to vernalization (Searle et al., 2006),
Lovell et al. (2013) demonstrated that variation in allelic state of
FRI plays a role in regulating flowering time response to drought
stress in Arabidopsis thaliana. Specifically, functional alleles of FRI
were associated with a dehydration avoidance strategy, and non-
functional alleles of FRI conferred a drought escape strategy, en-
compassing low water use efficiency and early flowering (Lovell
et al., 2013). The relative fitness consequences of these strategies
depend on the severity and timing of the drought stress (Schma-
lenbach et al., 2014).

Reproductive development is the stage that is most sensitive to
drought stress (reviewed in Saini and Westgate (1999); Fig. 2).
Development of male floral organs and gametophytes are parti-
cularly vulnerable to the effects of drought. In cereal crops, water
deficit during inflorescence development may slow the rate of
development of inflorescence, or lead to partial or complete in-
hibition of flowering (Saini and Westgate, 1999). Similarly, overall
reproductive development responses to drought in Arabidopsis
include early arrest of floral development (Su et al., 2013). Drought
stress during reproductive development leads to anthers that are
reduced in size, shriveled and unable to dehisce in wheat and rice
(Saini and Aspinall, 1981; Sheoran and Saini, 1996). In Arabidopsis,
drought stress reduced filament elongation and led to abnormal
anther phenotypes (Su et al., 2013). Arabidopsis mutants in MYB
DOMAIN PROTEIN 21 (myb21) showed a stronger reduction in male
filament elongation in response to drought than did wild type,
suggesting an important role for this transcription factor in
maintaining normal floral development during stress (Su et al.,
2013). During gametophyte development, loss of pollen viability is
the predominant response to water deficit across crop species and
model species, leading to reduced seed set or grain yield in cereal
crops (Saini and Westgate, 1999; Su et al., 2013).

Reproductive development of female floral structures and ga-
metophytes are less affected by drought stress compared to de-
velopment of male reproductive structures. Su et al. (2013) sug-
gested that protection of female reproductive development over
male reproductive development is an effective strategy to main-
tain fecundity in a stressful environment, as pollen are numerous
and small compared to ovules. In Arabidopsis, Su et al. (2013)
found that drought stress imposed from the start of flowering to
seed maturation increased ovule abortion rates. Ma et al. (2014)
exposed Arabidopsis to moderate and severe drought stress, and
found that, while plants were able to maintain near-normal
flowering in moderate drought stress, severe drought stress re-
duced branch number, flower number, silique number and seed
count. Unique transcriptional signatures were associated with se-
vere drought stress compared to moderate drought stress of
inflorescence tissue. Genes involved in ABA and water deprivation
response and pollen tube growth were among those upregulated
in moderate drought; a greater number of genes were differen-
tially expressed only in severe drought stress, including nuclear
factor Y’s, which are known to play roles in drought resistance and
regulation of flowering (Ma et al., 2014). Kakumanu et al. (2012)
found that fertilized maize ovary tissue showed stronger tran-
scriptional responses to drought compared to leaf tissue, with
more than three times as many differentially expressed genes in
the ovary tissue compared to the leaf meristem tissue. Specific
processes that were over-represented in drought stress up-regu-
lated genes in the ovary but not in the leaf meristem included
ABA-related processes and sucrose metabolism related genes,
suggesting a role of hormone signaling and sugar signaling in
maize kernel responses to drought stress (Kakumanu et al., 2012).
These data demonstrate the tissue specificity of the response to
drought stress: reproductive processes show greater sensitivity to
drought than do vegetative processes, and male reproductive de-
velopment is more drought sensitive than female reproductive
development.
5. Interactive effects of climate change factors on
development

In the future, plants will not experience climate change factors
individually, but will be exposed to multiple elements of en-
vironmental change simultaneously. However, most studies of
plant developmental responses to climate change expose plants to
only one climate change factor at a time. While exposure of plants
to a single climate change factor is more experimentally tractable,
it also limits our ability to make inferences about plant responses
to realistic climate change scenarios. The studies that have been
conducted on interactive climate change factors have often de-
monstrated interactions that differ strongly from the effects of
climate change factors applied independently. For example, re-
search on soybean has demonstrated that the predicted stimula-
tion of seed yield by elevated CO2 diminishes as drought stress
increases (Bishop et al., 2014; Gray et al.,2016). Factors contribut-
ing to the loss of yield stimulation in drought coupled with ele-
vated CO2 include increased canopy size and canopy temperature
in elevated CO2 (Gray et al., 2016). Additionally, elevated CO2 in-
creased root length density of soybean in both drought and control
precipitation, but elevated CO2 significantly increased the number
of root nodules and altered seed nitrogen content only when
combined with reduced precipitation (Gray et al., 2013). Re-
searchers have also found that the stimulation of leaf area by
elevated CO2 is reduced when plants are exposed to drought in
combination with elevated CO2 in multiple species, including
American sycamore (Platanus occidentalis), sweetgum (Liqui-
dambar styraciflua) and sugar maple (Acer saccharum Marsh.)
(Tschaplinski et al., 1995). These studies suggest that drought
conditions, which will likely co-occur with elevated CO2 in the
future, will modify previously observed plant growth and devel-
opment responses to elevated CO2 only. Furthermore, the mole-
cular mechanisms of plant response to these combined treatments
are unknown.

Similar to the studies on elevated CO2 and drought, elevated
temperature reduces the benefits of elevated CO2 to growth and
seed yield in soybean during a warm field season, albeit with in-
ter-annual variation (Ruiz-Vera et al., 2013). Benlloch-Gonzalez
et al. (2014) also demonstrated that elevated CO2 stimulated root
and shoot growth of wheat, but this stimulation was reduced
when plants were grown in combined elevated temperature and
elevated CO2. Ruiz-Vera et al. (2015) found that in the C4 crop
maize, elevated CO2 did not significantly affect shoot biomass or
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seed yield, but elevated temperature reduced seed yield in both
ambient and elevated CO2. Reduced seed yield in elevated tem-
perature was the result of fewer kernels per cob, suggesting a lack
of successful fertilization or increased ovule abortion rates in re-
sponse to elevated temperature, independent of CO2 treatment
(Ruiz-Vera et al., 2015). Fukayama et al. (2011) found that, in flag
leaves of rice grown in elevated CO2, genes associated with sucrose
synthesis, glycolysis and the TCA cycle were increased in expres-
sion, and that larger numbers of differentially expressed genes
were observed when elevated CO2 was combined with elevated
temperature. This research suggests altered magnitude of tran-
scriptional response to elevated CO2 when it is combined with
temperature stress; however, our understanding of this process
would benefit from a systems approach to characterize biological
processes that are over-represented in the differentially expressed
genes. Overall, these results demonstrate that the effects of a
particular element of climate change on plant developmental
processes often depend upon the presence of other climate change
factors. As many studies on the interactive effects of climate
change factors have focused on big-picture elements of plant re-
sponse such as biomass and seed yield, further research should
focus on molecular and cellular elements of these responses to
improve our mechanistic understanding of these interactions.
6. Conclusion

Climate change will alter plant development in ways that will
have significant impacts on the function of crop plants and plants
in natural ecosystems. Future growing conditions will bring in-
creased temperature, increased frequency of extreme events in-
cluding heatwaves and drought events, and changes in the com-
position of the atmosphere (IPCC, 2014). Plant developmental
plasticity in response to climate change will be critical in main-
taining ecosystem function and agricultural productivity in the
future. Currently, our ability to understand and predict plant de-
velopmental responses to climate change is limited by the number
of experiments that are conducted in physiologically relevant
stress conditions. For example, our understanding of the molecular
mechanisms of plant response to extreme drought stress is
stronger than our understanding of the mechanisms at play in
mild drought stresses (Clauw et al., 2015). A more holistic under-
standing of plant responses to the elements of climate change
requires integration of data from multiple levels of biological re-
search, including molecular studies of developmental processes at
a finer spatial resolution. Molecular studies should be carried out
at the tissue and cell type-specific levels in multiple species in
controlled environments and in realistic field environments,
where effects of molecular and developmental changes on whole
plant morphology and yield can be assessed. Finally, climate
change factors will not impact plants in isolation: increased
greenhouse gas concentrations in the future will coincide with
rising temperatures, changing precipitation patterns, and in-
creasing frequency of extreme climatic events (IPCC, 2014). Im-
proving our mechanistic understanding of plant developmental
responses to multiple, interacting factors of climate change will be
critical for anticipating impacts on agricultural and natural
systems.
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