Molecular Systematics of Spiny Pocket Mice (Subfamily Heteromyinae) Inferred from Mitochondrial and Nuclear Sequence Data

Melina Crystal Williamson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Biology Commons

BYU ScholarsArchive Citation

Williamson, Melina Crystal, "Molecular Systematics of Spiny Pocket Mice (Subfamily Heteromyinae) Inferred from Mitochondrial and Nuclear Sequence Data" (2009). All Theses and Dissertations. 1718.
https://scholarsarchive.byu.edu/etd/1718

MOLECULAR SYSTEMATICS OF SPINY POCKET MICE (SUBFAMILY HETEROMYINAE) INFERRED FROM MITOCHONDRIAL AND NUCLEAR SEQUENCE DATA

by
Melina C. Williamson

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Master of Science

Department of Biology
Brigham Young University
August 2009

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by
Melina C. Williamson

This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory.

Date

Date

Date

Duke S. Rogers, Chair

Leigh A. Johnson

Jack W. Sites, Jr.

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Melina C. Williamson in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.

Date

Accepted for the Department

Russell B. Rader

Graduate Coordinator

Accepted for the College

Rodney J. Brown

Dean, College of Life Sciences

ABSTRACT
MOLECULAR SYSTEMATICS OF SPINY POCKET MICE (SUBFAMILY HETEROMYINAE) INFERRED FROM MITOCHONDRIAL AND NUCLEAR SEQUENCE DATA
Melina C. Williamson
Department of Biology
Master of Science

This study aims to determine species-level relationships within the genus Heteromys, as well as generic-level relationships among members of the subfamily Heteromyinae using a phylogenetic framework. Molecular sequence data were generated from two mitochondrial genes (cytochrome b and cytochrome oxidase I) and three nuclear gene segments (β-fibrinogen, engrailed protein II, and myosin heavy chain II), and analyzed under maximum parsimony, maximum likelihood, and Bayesian optimality criteria to infer relationships.

Chapter 1 focuses on the phylogenetic and taxonomic implications for Heteromys from the analyses of sequence data. Phylogenies also provided a framework for delimiting species boundaries within the wide-ranging Heteromys desmarestianus complex using the Wiens and Penkrot method. Several well-supported clades within this complex were recovered, including H. goldmani, H. nubicolens, and H. oresterus, as well as five groups identified as candidate species. Heteromys oasicus was not found to be
genetically diagnosable from H. anomalus, and was relegated to subspecific status. I present a revised taxonomy as follows: the monotypic subgenus Xylomys is maintained (H. nelsoni); the subgenus Heteromys is divided into three species groups - anomalus (H. anomalus [including H. oasicus], H. australis, and H. teleus), desmarestianus (H. desmarestianus, H. goldmani, H. nubicolens, H. oresterus, and the five candidate species), and gaumeri (H. gaumeri).

Chapter 2 describes phylogenetic inferences made from analyses of heteromyine taxa, genera Heteromys and Liomys. Many studies have recovered Liomys as paraphyletic relative to Heteromys, and the goal of this chapter was to address this taxonomic problem. The Liomys pictus species group (L. irroratus, L. pictus, and L. spectabilis) was recovered as sister to Heteromys rather than to the L. salvini group (L. adspersus and L. salvini). I recommend a revised taxonomy for the subfamily as follows: the genus Heteromys is retained as delineated in Chapter 1; the genus Liomys is reduced in scope to include only L. irroratus, L. pictus, and L. spectabilis; the subgeneric name Schaeferia is elevated to generic rank and includes S. adspersus and S. salvini. This classification better reflects the phyletic diversity within the subfamily Heteromyinae, and requires fewer name changes; thus providing nomenclatural stability.

ACKNOWLEDGMENTS

Sincere thanks to my advisor, Dr. Duke S. Rogers for his guidance and mentorship, and also to my committee: Drs. Leigh A. Johnson and Jack W. Sites, Jr. for their help on this project. I also thank the following investigators for providing tissue samples: Marisol Aguilera of the Universidad Central de Venezuela; Robert P. Anderson of the City College of New York; Elizabeth Arellano and Francisco González-Cózatl of the Universidad Autónoma del Estado de Morelos; Michael D. Carleton and Alfred E. Gardner of the National Museum of Natural History; Jim Dines of the Natural History Museum of Los Angeles County; Robert C. Dowler of Angelo State University; Mark D. Engstrom of the Royal Ontario Museum; Mark S. Hafner of Louisiana State University; Robert M. Timm of the University of Kansas Museum of Natural History; and Robert Voss of the American Museum of Natural History. I thank Ruth S. Rogers, whose translation of German text into English was an important factor in this project. I also greatly appreciate Sarah Frey, Rustin Reed, Ashley Pond, and Greg Crewdson for their assistance with lab work, as well as Greg Crewdson, Francisco González-Cózatl, Nicole Lewis-Rogers, Amanda Madsen, Ashley Pond, Rustin Reed and Quinn Shurtliff for their help collecting spiny pocket mice in Mexico. Thanks also to Nicole Lewis-Rogers and Matthew Bendall for their help with analyses and document formatting. I thank Mindy González for her work with the systematics of Heteromys, which has provided the springboard for my own project. I am very grateful to my family and parents, who have always encouraged me in my educational pursuits. Finally, I want to express deep gratitude to my husband, Ben, for all of his support and encouragement on my behalf.

TABLE OF CONTENTS

Abstract iv
Acknowledgments vi
Chapter 1: Systematics of spiny pocket mice (Genus Heteromys) 1
Introduction 1
Materials and Methods 6
Results 14
Discussion 21
Literature Cited 29
Tables 37
Figures 41
Appendix 50
Chapter 2: Systematics of the subfamily Heteromyinae 64
Introduction 64
Materials and Methods 67
Results 74
Discussion 80
Literature Cited 83
Tables 91
Figures 93
Appendix 102

CHAPTER 1

SYSTEMATICS OF SPINY POCKET MICE (GENUS HETEROMYS)

Introduction

The rodent family Heteromyidae is exclusively Neotropical in distribution, and is endemic to the New World, with its origin in western North America (Wahlert 1993). The two extant members of the subfamily Heteromyinae (genera Heteromys and Liomys) are commonly known as spiny pocket mice and are found in southern Texas, throughout Mexico and Central America, and into northern South America (Colombia, Venezuela, and Ecuador—Schmidly et al. 1993; Williams et al. 1993). Heteromyines tend to demonstrate strong specificity to particular habitats, which collectively constitute an array of tropical environments including thorn scrub, pluvial rainforest, and montane cloud forests (Genoways 1973; Schmidly et al. 1993; Anderson 1999; 2003). The association, however, between particular taxa and their preferred habitat has yet to be investigated in a rigorous fashion. Moreover, the number of species-level taxa of heteromyines likely is underestimated (González 2005; Rogers and Vance 2005) and, given changes in land use practices throughout Latin America (e.g. Ochoa-Gaona 2000), there is a real risk to the long-term existence of some taxa.

Species of Heteromys (forest spiny pocket mice) can be distinguished from Liomys based on several morphological characteristics, including a V-shaped mesopterygoid fossa, more complex dentition, and relatively small optic foramina (Anderson 2003; Genoways 1973; Williams et al. 1993). Additionally, species of Liomys generally prefer drier habitats throughout their range than do Heteromys and as a result, instances of sympatry are rare (Genoways 1973; Rogers and Vance 2005). No
phylogenetic study had documented reciprocal monophyly between these two genera. Recently however, studies have demonstrated that the genus Heteromys is monophyletic relative to Liomys, which was recovered as paraphyletic relative to Heteromys (Anderson et al. 2006; Hafner et al. 2007; Rogers and Vance 2006).

Heteromys was originally described under the name Mus anomalus (= H. anomalus), from the island of Trinidad by Thompson in 1815 (Table 1). Following this initial description, several more species were assigned to the genus Heteromys in the decades that followed. By the mid-1800's, six species had been named, although of these only H. anomalus and H. desmarestianus (Gray 1868) are considered valid today. Allen and Chapman described H. gaumeri in 1897, and in 1901 Thomas described H. australis. In 1902 three new species, including H. goldmani, were added to the genus and the subgenus Xylomys was created, to which H. nelsoni was assigned (Merriam). In 1911, Goldman revised the subfamily Heteromyinae to include two genera, Heteromys and Liomys, and divided Heteromys into two subgenera, Heteromys and Xylomys. Two decades later, in 1932, Harris described the species H. oresterus. The taxonomy of Heteromys was summarized by Hall (1981) and Williams et al. (1993), but until recently this group had received little taxonomic treatment: H. teleus was described in 2002 from Ecuador, H. oasicus, from Venezuela, in 2003, H. nubicolens, from Costa Rica, in 2006, and H. catopterius, from Venezuela (Anderson and Jarrín-V 2002; Anderson 2003; Anderson and Timm 2006; Anderson and Gutiérrez in press, respectively).

Despite the recent alpha taxonomic work on this group, systematic problems remain. Rogers (1989) attempted to clarify relationships among Heteromys using karyotypes for five species of Heteromys. He reported differences in diploid number (2n)
and a substantial variation in the number of autosomal arms (FN) among the species examined. Most notably, the H. desmarestianus species complex was found to have a 2n=60 and a FN that ranged broadly from 66 to 90 . Patton and Rogers (1993) suggested that FN variation within H. desmarestianus is most likely due to euchromatic structural transpositions, such as reciprocal translocations or pericentric inversions, which may induce changes sufficient to prohibit gene flow because of meiotic imbalance in heterozygotes. Rogers (1990) quantified allozyme variation among species of heteromyines and failed to resolve basal relationships, including those among the majority of Heteromys species. However, given what was known about the levels of genic and karyotypic variation within the wide ranging H. desmarestianus, previous workers predicted that this taxon likely represented a complex of several morphologically similar, but distinct species-level entities (Anderson 1999; Mascarello and Rogers 1988; Rogers 1986; 1989; 1990). This hypothesis has been supported by more recent investigations (Anderson et al. 2006; Anderson and Timm 2006), and based on first comprehensive analysis of sequence data, González (2005) recovered four clades formerly recognized as H. desmarestianus that she considered undescribed species, but cited the need for additional sampling.

Currently, 11 Heteromys species are recognized (Patton 2005), divided into three species groups (following Hall 1981): the H. anomalus group consisting of H. anomalus, H. australis, H. oasicus, and H. teleus; the H. desmarestianus group, consisting of H. desmarestianus, H. goldmani, H. nubicolens, and H. oresterus; and the monotypic H. gaumeri group. These 9 species are placed in the subgenus Heteromys, whereas H. nelsoni is arranged in the monotypic subgenus Xylomys (González 2005). Heteromys
catopterius recently was described by Anderson and Guitterez (in press), and is tentatively assigned to the H. anomalus group, bringing the total number of Heteromys species recognized to 11 .

A number of species concepts and criteria have been developed over the past several decades (see for example Bradley and Baker 2001; Hey 2006; Wheeler 1999; Wiley and Mayden 2000), though few offer a framework with which species boundaries can be tested objectively. Fortunately, this area of systematics has seen renewed interest recently (see Sites and Marshall 2003; 2004; Wiens 2007), and while methods may not always agree, there has been progress toward objectively delimiting species boundaries. For example, the Wiens and Penkrot (WP-2002) method of species delimitation is a DNA tree-based approach in a hypothesis-testing framework. This approach is used in this study to make decisions at the species level, as it takes advantage of the more rapid coalescing time of mitochondrial DNA (mtDNA).

Thus, my objective is to provide a more clear resolution of relationships among Heteromys species and lineages, with focus on the H. desmarestianus group. I use increased taxon sampling as well as sequence data from five genetic markers (Cytochrome b [cyt b], Cytochrome oxidase I [CoI], Beta fibrinogen [Fgb-17], Engrailed II [En2], and Myosin heavy chain II [Myh2]) to estimate relationships among taxa and to test hypotheses of relationships developed by González (2005) and Rogers (1989). Additionally, I employ species delimitation methods to test whether monophyletic lineages are sufficiently unique to be considered species-level entities. Finally, I test biogeographical hypotheses to: 1) determine whether adaptation within Heteromys to new habitat types occurred once or more than once in different lineages; and 2) determine
whether colonization of South America by members of the genus Heteromys occurred once (e.g. monophyly of the H. anomalus group) or several times.

Materials and Methods

Taxon Sampling:

This study uses animals that were collected from natural populations and preserved as museum voucher specimens. Liver, spleen, kidney, heart, or lung tissue was removed from each individual and preserved in an ultralow freezer at $-80^{\circ} \mathrm{C}$ or in 95% ethanol and maintained at $-20^{\circ} \mathrm{C}$. A sample representing H. teleus was a skin clip taken from a dried museum skin. Tissue samples of additional individuals were obtained via loans from cooperating museums and universities.

This study adds to the work of a previous investigator, González (2005). Her study included 123 specimens representing eight Heteromys and two Liomys species from 52 sampling localities, and she used sequence data from three genetic markers.

In the current study, sequence data for Heteromys specimens were obtained from 284 individuals representing 10 of 11 described species in the genus (H. catopterius is missing from this study), as well as several candidate species identified by González (2005). These specimens represent 88 collecting localities from Mexico, Belize, Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, Venezuela, and Ecuador (Appendix). Figure 1 is a map of collecting localities showing the sampling sites included in this study.

Several taxa were used as outgroups for phylogenetic analyses. Liomys irroratus, L. pictus, and L. spectabilis were included as sister taxa to the genus Heteromys, as documented by Hafner et al. (2007), González (2005), and Rogers and Vance (2005). All Liomys ($\mathrm{N}=12$) were collected in Mexico.

Molecular Data Collection:

Whole genomic DNA was extracted for each individual from the liver, kidney or spleen tissue (or skin for a single individual representing H. teleus) either preserved in 95\% ethanol or frozen, using the Qiagen (Valencia, CA) DNeasy ${ }^{\text {TM }}$ Tissue Kit (Cat. No. 69504) and following the protocol for animal tissues (July 2006, pp 18-20). DNA was eluted with the manufacturer's AE buffer at a final volume of $200 \mu \mathrm{l}$. Four microliters of DNA extraction product was electrophoresed on a 2.0% agarose gel stained with SYBR green to estimate the quality and amount of genomic DNA present.

PCR technique was used to amplify the entire cyt b gene using primers L14724 and H15915 (Irwin et al. 1991). Four internal primers were used for further amplification: CB3H (Palumbi 1996), MVZ16 (Smith and Patton 1993), H15149 (Irwin et al. 1991), and F1 (Whiting et al. 2003). Table 2 provides the PCR conditions used for all five genes or gene segments used in this study.

For a subset of individuals that represent the major clades based on cyt b sequence data analyses, additional genes or gene segments were sequenced following the hierarchical reduced sampling protocol of Morando et al. (2003). A second mtDNA gene, CoI, was amplified via PCR using primers CoI-5285F and CoI-6929R (Spradling et al. 2004). Five internal primers also were used for amplification and sequencing: MCo173F, MCo-1345R, MCo-1480R (Hafner et al. 2007), CoI-R1, and CoI-F3 (this study). For both mtDNA genes, standard Taq polymerase (Promega-Madison, WI) was used with its accompanying salts and buffer.

Three nuclear introns also were amplified for the same subset of individuals using PCR technique. The seventh intron of the β-fibrinogen gene (Fgb-17) was amplified with
primers B17 (Wickliffe et al. 2003) and Fgb-571F (this study). Members of the genus Heteromys (and possibly more members of the heteromyid family) possess large, variably sized indels in Fgb-17, so specific primers were designed to amplify the portion of the intron that is homologous to other rodent Fgb-17. β-fibrinogen amplifications used Platinum Taq (Invitrogen - Carlsbad, CA) with pre-mixed buffer and salts. Engrailed protein 2 (En2) was amplified using 1:10 diluted DNA and the following primers, also diluted at a 1:10 ratio: EN2-F and EN2-R (Lyons et al. 1997). Similarly, myosin heavy chain 2 (Myh2) required 1:10 diluted DNA and primers: MYH2-F and MYH2-R (Lyons et al. 1997). For these last two PCRs, HotMaster Taq (Eppendorf - Westbury, NY), with its accompanying buffer and salts, worked best for amplification. Positive and negative controls were run with all amplifications.

Four microliters of double-stranded PCR product were assayed by electrophoresis on a 2% agarose gel. The remaining product (ca. $21 \mu \mathrm{l}$) was purified using the Millipore (Billerica, MA) Multiscreen ${ }^{\text {TM }}$ PCR 96-Well Filtration System (Cat. No. MANU03050), and rehydrated with $25 \mu \mathrm{l}$ HPLC- $\mathrm{H}_{2} 0$. All purified PCR products were then cycle sequenced using the Big Dye v3.1 Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems - Foster City, CA) with the same primers listed above for PCR amplification, all at a 1:10 dilution. Excess dye terminator was removed using a separation column made of a solution of Sephadex G50 in conjunction with Millipore (Billerica, MA) Multiscreen ${ }^{\text {TM }}$ Filter Plates for High Throughput Separations (Cat. No. MAHVN4510). Both strands of DNA fragments were sequenced in order to verify the accuracy of the sequenced nucleotides. Sequences were determined using the ABI 570

Genetic Analyzer (Applied Biosystems - Foster City, CA) located in the DNA Sequencing Center at Brigham Young University.

Sequence Alignment:

All sequences were compiled and edited using Sequencher v4.7 (Gene Codes Corporation, 2006). Base pairs exhibiting multiple peaks in the chromatographs of the nuclear markers were interpreted as heterozygous sites and coded as ambiguous characters. Manual alignment was possible with the Sequencher software for the cyt b and CoI genes, as well as the En2 intron, as there were no insertion-deletions (indels) present. The Myh2 intron contained only a single 1 base pair (bp) indel, and was also aligned manually. For the Fgb-17 intron, alignment was less obvious due to variablelength indels. As a result, MAFFT (Katoh et al. 2005) and MUSCLE (Edgar 2004) programs were used to align these sequences. MAFFT multiple alignment software offers several general ways to align sequences, each differing in speed and accuracy. I employed the strategy that maximized accuracy rather than speed to obtain my Fgb-17 alignment, and the iterative refinement method (L-INS-i) using the weighted sum-ofpairs (WSP) and consistency scores was selected by the automated program. This method (Katoh et al. 2005) undergoes four stages of alignment: (1) a distance matrix is made based on all pairwise alignments, (2) a guide tree is constructed, (3) progressive alignment, and (4) iterative refinement of the alignment using WSP scores (Gotoh 1995) and COFFEE-like scores (Notredame et al. 2000). MUSCLE is another multiple sequence alignment program, and it undergoes three stages of alignment: (1) an initial progressive alignment generated from a distance matrix, (2) refinement of the progressive alignment by generation of alternative trees and comparison of tree scores, and (3)
refinement of the alignment using a profile-profile alignment (Edgar 2004). MAFFT and MUSCLE produced very similar alignments, and I used the MAFFT alignment for all subsequent analyses.

In addition to multiple indels, Fgb-17 also contained a poly-A region that varied in length among individuals. The varying lengths among taxa introduced gaps of different sizes, making statements of homology less clear. To clarify coding in this region, I removed a 10 bp portion from all Fgb - 17 sequences adjacent to the poly-A region so that the lowest common denominator of repeating adenines was still represented without the confusion of different sized gaps.

Phylogenetic Analyses:

Sequences were analyzed in Collapse v1.2 (available from http://darwin.uvigo.es) to identify redundant haplotypes in the cyt b data set. Redundant haplotypes were removed prior to data analysis. However, if redundant haplotypes represented different localities, at least one sequence was retained for each collecting location. In total, the cyt b data set was reduced from 284 to 156 individuals. Models of evolution were determined among 56 different models using ModelTest v3.7 (Posada and Crandall 1998) for cyt b, CoI, Fbg-17, En2, and Myh2. The Akaike information criterion (AIC) was used to obtain the best model and likelihood settings for each gene separately, as well as the combined data set comprised of five gene segments. Indels in the Fgb-17 and Myh2 markers were coded according to the simple indel coding (SIC) scheme outlined by Simmons and Ochoterena (2000) in the gap coding program SeqState (Müller 2005). Each SIC matrix was appended to its corresponding data matrix for Fgb-17 and Myh2 for use in Bayesian and parsimony analyses.

Maximum parsimony (MP) analyses were conducted in PAUP* v4.0 (Swofford 2002) as unweighted heuristic searches with 1000 random additions and TBR branch swapping. Separate analyses were conducted for each of the genetic markers individually, and also for a combined data set in which all five markers were concatenated into one data matrix. Two cyt b data sets were used for comparative analyses: the 156-taxon data set representing all unique haplotypes, and a 90-taxon data set that contained only specimens for which nuclear data also were available. All other single and multi-gene data sets were congruent, in that each represented the same 90 individuals. Nonparametric bootstrap values (Felsenstein 1985) also were obtained in PAUP* for each data set using 1000 pseudoreplicates and 100 random additions. Bootstrap values $\geq 70 \%$ were considered well supported (Hillis and Bull 1993). Partitioned Bremer supports (PBS) were generated for the most optimal five-gene MP tree in TreeRot v3 (Sorenson and Franzosa 2007). For the final parsimony search of 20 repetitions in the TreeRot protocol, the "maxtrees" setting was increased from its 100tree default to 500 trees.

A maximum likelihood (ML) approach also was used to analyze the genetic markers for the independent and combined data sets. ML analyses were performed using the Garli v0.94 software (Zwickl 2006), and were set to autoterminate when resolution in \log likelihood scores was <0.001 after 500 generations. The AIC model of evolution obtained from ModelTest v3.7 (Posada and Crandall 1998) was used in these analyses, and the parameters estimated in Garli. As the ML algorithm allows only one model of evolution, the most complex model, GTR $+\mathrm{I}+\Gamma$, was employed for the combined analysis.

Bootstrap nodal support values were estimated in PhyML (Guindon and Gascuel 2003) using 1000 replicates.

Additionally, Bayesian inference (BI) was performed on individual genetic markers and on the combined data set using MrBayes v3.1 (Huelsenbeck and Ronquist 2001; Nylander et al. 2004). The appropriate AIC model of evolution was assigned for each analysis, as determined in ModelTest v3.7 (Posada and Crandall 1998). For the combined data set, a mixed-model Bayesian analysis was run using the appropriate model of evolution for each gene partition. Each data set was run twice for 20 million generations using Markov Chain Monte Carlo (MCMC) with four chains per run. Each run began with a random starting tree and trees were sampled every 2000 generations. Log-likelihood scores and standard errors from the log file were examined in Tracer v1.4 (Rambaut and Drummond 2007) to determine stationarity, and the first 20\% of the trees were discarded as burn-in. Posterior probabilities were generated from the remaining trees in PAUP* v4.0 (Swofford 2002), using the 50\% majority rule consensus tree function.

Hypothesis Testing:

Alternative phylogenetic hypotheses were tested under the maximum likelihood criterion. Tree searches were conducted with topology constraints designed to match each hypothesis. Differences in likelihood tree scores between all equally optimal trees from constrained searches were compared to overall optimal trees using the Shimodaira and Hasegawa test (S-H; Shimodaira and Hasegawa 1999) as implemented in PAUP* 4.0b10 (Swofford 2002). If topology constraints yielded likelihood tree scores
significantly worse than the optimal tree, with a $\mathrm{P} \leq 0.05$, then this was considered strong evidence that the constraint did not represent a valid relationship.

Species Delimitation:

The WP (Wiens and Penkrot 2002) DNA tree-based approach was used to hypothesize species boundaries. This method takes advantage of the rapid coalescing time of mtDNA and it employs a dichotomous key approach to delimit species in a hypothesis-testing framework. Given a haplotype phylogeny for a selected set of populations currently classified as a species (the focal species), and one or more closely related species, the haplotype tree will show the focal species to be either exclusive (monophyletic) or nonexclusive by locality. A species is exclusive if no gene flow is detected between other lineages. If the selected haplotypes are recovered as strongly supported basal clades, which are exclusive by locality, then the terminal is considered distinct at the species level. Use of this method can identify species suggested by wellsupported basal lineages that may have been previously overlooked when comparison of gross morphology was all that was taken into account. An important requirement of this method is the inclusion of two or more localities per "species," which is satisfied by my taxon sampling for all of the lineages represented in my study, except two.

Heteromys desmarestianus was selected as the focal species, as karyotypic (Rogers 1989), allozymic and morphological (Anderson et al. 2006), as well as DNA sequence data (González 2005) all suggested there were multiple species-level lineages in this complex. The WP method was used to delimit species at the deepest level of divergence in the combined data tree as well as the cyt b gene tree.

Results

Sequence Analysis:

The entire cyt b gene was sequenced for all 284 specimens represented in this study, including 10 outgroup taxa. Elimination of redundant haplotypes reduced the number of individuals to 156. Sequence data also was obtained for the entire CoI gene, and for Fgb-17, En2, and Myh2 introns for 90 individuals (six of which were outgroup taxa) representing the majority of genetic diversity recovered from the analysis of the cyt b data set.

Alignment of the cyt b gene was trivial and yielded 1140 base pairs (bp), with 415 parsimony-informative characters and 33 variable non-informative characters across all taxa. The CoI alignment resulted in 1548 bp, with 534 parsimony-informative characters and 37 variable non-informative characters. For a number of Heteromys specimens (14 out of 90), the β-fibrinogen intron contained a large insertion adjacent to a poly-A region of hypervariable length. There were 19 indels [SeqState Simple Indel Coding (SIC) results] after the 10-character segment adjacent to the hypervariable poly-A region was removed. The aligned length of the Fgb-17 intron was 878 bp , with 131 parsimonyinformative characters and 51 variable non-informative characters. A data matrix with the 19 coded indels also was made for Bayesian analyses, and for this mixed-data matrix, there were 897 characters. The gene segment En2 contained no indels, and was 146 bp in length with 12 parsimony-informative characters and 11 non-informative variable characters. The Myh2 gene segment contained one indel (SeqState SIC results), and had an aligned length of 194 bp , with 20 parsimony-informative characters and 18 variable non-informative characters. A mixed-data matrix with the one coded indel for Myh2 was
made for Bayesian analyses, and this resulted in 195 characters. The combined data set, with the concatenation of all five genetic markers (without the SIC matrices), generated a total alignment length of 3906 bp , with 1110 parsimony-informative characters and 148 variable non-informative characters.

Phylogenetic analysis of individual genes:

The cyt b data set generated a GTR $+\mathrm{I}+\Gamma$ model of evolution (ModelTest v3, AIC). The base frequencies were $\mathrm{A}=0.3357, \mathrm{C}=0.3179, \mathrm{G}=0.0526$, and $\mathrm{T}=0.2938$; transversion (tv) rates were (A-C)=0.3095, (A-G)=10.9957, (A-T)=0.6564, (C-$G)=0.6514,(C-T)=6.5711,(G-T)=1.0000$; the proportion of invariable sites (I) was 0.5009 , and the gamma distribution shape parameter (Γ) was 0.8524 . ML analysis of the 156-taxon cyt b data set yielded a single tree ($\operatorname{lnL}=-12597.68$), with moderate-to-high bootstrap support for the majority of ingroup clades (Figure 2). MP analysis of the same data set also yielded a single best tree of 2530 steps (not shown; consistency index $[C I]=0.272$, retention index $[R I]=0.864$) with a topology very similar to that generated by the ML analysis. The ML and MP tree topologies also were congruent, in terms of the major internal nodes, to the trees (not shown) generated from the cyt b data set containing 90 specimens, each represented by the four additional genetic markers (see below). The BI cyt b tree (not shown) had a similar topology to the ML tree depicted in Figure 2, but with an unresolved polytomy among the clades $\mathrm{B}, \mathrm{C}, \mathrm{D} / \mathrm{E}$, and the remaining desmarestianus species group taxa (clade A, H. oresterus, H. nubicolens, H. goldmani, and H. desmarestianus). Gene tree topologies for the cyt b data set were congruent with those of González (2005), in that H. anomalus, H. australis, H. gaumeri, and H. nelsoni consistently were recovered as monophyletic clades with high support, and were basal to
those lineages belonging to the H. desmarestianus species group (H. desmarestianus, H. goldmani, H. nubicolens, and H. oresterus).

The model of evolution selected for the CoI gene also was GTR $+\mathrm{I}+\Gamma .(\mathrm{A}=0.3346$, $\mathrm{C}=0.2377, \mathrm{G}=0.0978$, and $\mathrm{T}=0.3298$; tv rates $[\mathrm{A}-\mathrm{C}]=0.6479$, $[\mathrm{A}-\mathrm{G}]=13.5460$, $[\mathrm{A}-$ $\mathrm{T}]=1.1534,[\mathrm{C}-\mathrm{G}]=0.3841,[\mathrm{C}-\mathrm{T}]=10.7976,[\mathrm{G}-\mathrm{T}]=1.0000 ; \mathrm{I}=0.6025 ; \Gamma=1.4551$.) ML analysis of this gene produced a topology ($\operatorname{lnL}=-13624.48$) similar to the cyt b gene tree, but with better resolution and higher nodal support values (Figure 3). MP analysis generated a single best tree of 2715 steps $(\mathrm{CI}=0.317, \mathrm{RI}=0.793)$; this tree and the BI tree (both not shown) were identical to the ML topology.

The β-fibrinogen gene segment was analyzed using BI and ML optimality criteria under the GTR $+\Gamma$ model of evolution. $(\mathrm{A}=0.2824, \mathrm{C}=0.2320, \mathrm{G}=0.2165$, and $\mathrm{T}=0.2691$; tv rates $[\mathrm{A}-\mathrm{C}]=1.7847,[\mathrm{~A}-\mathrm{G}]=4.8225,[\mathrm{~A}-\mathrm{T}]=1.0700,[\mathrm{C}-\mathrm{G}]=2.0396,[\mathrm{C}-\mathrm{T}]=6.4067,[\mathrm{G}-$ $\mathrm{T}]=1.0000 ; \Gamma=0.9373$.) BI analysis was run for 10 million generations with and without a simple indel-coding (SIC) matrix, and the resulting trees yielded the same topology and similar pP values for both Bayesian analyses. Topologies were largely congruent for this gene segment among the ML, BI, and MP analyses. Figure 4 shows the ML topology ($\operatorname{lnL}=-2917.20$) for $F g b-17$, with bootstrap and pP support values mapped onto the nodes (pP values reported here are from the Bayesian analysis that included the SIC matrix). In each analysis, H. nelsoni was recovered as sister to the anomalus species group rather than basal. This relationship is supported by high bootstrap, but relatively low pP values. Fgb-17 data generally support relationships among the deeper nodes in the tree, including H. nelsoni and the anomalus and gaumeri groups, but is less well resolved for all species
in the desmarestianus group (H. desmarestianus, H. goldmani, H. nubicolens, and H. oresterus).

The En2 data set was analyzed under a K81uf $+\mathrm{I}+\Gamma$ model of evolution. (A=0.2636, $\mathrm{C}=0.3192, \mathrm{G}=0.3026$, and $\mathrm{T}=0.1145$; tv rates $[\mathrm{A}-\mathrm{C}]=1.0000,[\mathrm{~A}-\mathrm{G}]=5.5079$, $[A-T]=2.2816,[\mathrm{C}-\mathrm{G}]=2.2816,[\mathrm{C}-\mathrm{T}]=5.5079,[\mathrm{G}-\mathrm{T}]=1.0000 ; \mathrm{I}=0.9072 ; \Gamma=0.7251$.) The ML topology produced ($\operatorname{lnL}=-405.52$) is illustrated in Figure 5. Here, the H. anomalus species group (H. anomalus, H. australis, H. oasicus, and H. teleus) maintained its relatively basal position within the genus Heteromys. However, Liomys is arranged as polyphyletic, with three of the six Liomys taxa nested within the Heteromys clade. Overall, the En2 gene segment yielded little phylogenetic resolution, as both the ML and BI searching methods resulted in trees containing several large polytomies. MP analysis was not conducted for En2 because the intron contained relatively few parsimonyinformative characters, resulting in excessive computation time.

The Myh2 sequence data was analyzed using ML and BI criteria under a $\operatorname{TrN}+\Gamma$ model of evolution. $(\mathrm{A}=0.2706, \mathrm{C}=0.2697, \mathrm{G}=0.3117$, and $\mathrm{T}=0.1479$; tv rates [A -$C]=1.0000,[A-G]=3.6270,[A-T]=1.0000,[C-G]=1.0000,[C-T]=10.0306,[G-T]=1.0000$; $\Gamma=0.4071$.) The Myh2 gene segment also yielded relatively little phylogenetic signal as evidenced in the results of the ML and BI analyses. However, ML analysis of this gene segment produced a tree ($\operatorname{lnL}=-566.97$) that did recover several basal clades (Figure 6). Liomys irroratus was recovered as the most basal species, whereas L. pictus and L. spectabilis were arranged as a sister group to the genus Heteromys. Within Heteromys, however, there was no resolution among terminals.

Phylogenetic analysis of the combined data set:

The combined data set contained 90 specimens with a total aligned sequence length of 3906 bp . For ML analysis, the most complex model of evolution, GTR $+\mathrm{I}+\Gamma$, was chosen $(A=0.3041, C=0.2669, G=0.1433$, and $T=0.2857$; tv rates $[A-C]=1.5331$, [A-$\mathrm{G}]=11.8479,[\mathrm{~A}-\mathrm{T}]=2.6823,[\mathrm{C}-\mathrm{G}]=1.4379,[\mathrm{C}-\mathrm{T}]=21.7754,[\mathrm{G}-\mathrm{T}]=1.0000 ; \mathrm{I}=0.5155$; $\Gamma=0.7611$), whereas BI analysis involved a mixed-model analysis in which each gene partition was assigned its own model of evolution, as determined by ModelTest (cyt b and $\mathrm{CoI}=\mathrm{GTR}+\mathrm{I}+\Gamma ; F g b-17=\mathrm{GTR}+\Gamma ; E n 2=\mathrm{K} 81 \mathrm{uf}+\mathrm{I}+\Gamma ; M y h 2=\mathrm{TrN}+\Gamma)$. Figure 7 depicts the ML tree ($\mathrm{lnL}=-30181.07$) with bootstrap and pP values mapped onto the nodes. Under both likelihood and Bayesian criteria, the same topology was recovered with relatively high nodal support values. MP analysis produced 26 equally parsimonious trees (5443 steps, not shown; CI=0.330, RI=0.789), which were congruent with the ML and BI topologies. In addition to ML bootstrap values and pP supports, Partitioned Bremer Support (PBS) values also were mapped onto the nodes (Figure 7cyt b/CoI/Fgb-17/En2/Myh2).

Trees from ML, BI, and MP analyses each recovered a trichotomy among three clades representing outgroup and ingroup taxa as follows: (1) L. irroratus, (2) L. pictus and L. spectabilis, and (3) all Heteromys species. Within Heteromys, H. nelsoni was recovered as the most basal species. In turn, three clades within Heteromys, each with strong nodal support, were recovered. One clade consisted of the South American taxa (H. anomalus, H. australis, H. oasicus and H. teleus), a second was represented by H. gaumeri, and the third was comprised of the H. desmarestianus complex (H. desmarestianus, H. goldmani, H. nubicolens, and H. oresterus—Figure 7).

Heteromys teleus was recovered as the sister taxon to H. australis with high nodal support. Within H. australis there was a subdivision between the Ecuadorian and Panamanian specimens of this species. The clade containing H. teleus and H. australis was sister to H. anomalus, and H. oasicus did not show genetic differentiation from H. anomalus. Specimens of H. gaumeri were recovered as a monophyletic clade, sister to the desmarestianus complex.

Specimens representing desmarestianus clades D and E consistently were arranged as sister taxa with high nodal support. The node connecting clade C to other Heteromys taxa had relatively lower bootstrap support, but high pP support ($\mathrm{p} \mathrm{P}=0.99$); PBS indicated that only the CoI gene gave support to this node. Clade B also had high nodal support, and H. nubicolens and H. oresterus were always recovered as sister taxa relative to clade A.

Heteromys goldmani was placed sister to H. desmarestianus sensu stricto. Within H. desmarestianus three distinct groupings were recovered, which generally follow the geographic locations of the collecting localities. These groupings were as follows: 1Costa Rica and Nicaragua, 2-Mainland Mexico, and 3-the Yucatan Peninsula region.

Hypothesis testing:

A-priori hypotheses were tested using topology constraints and the ShimodaraHasegawa statistical test. Table 3 summarizes the results of the fifteen hypotheses tested. A topological constraint that yielded a likelihood tree score significantly worse than the optimal tree, with a $\mathrm{P} \leq 0.05$, was interpreted to depict an invalid relationship. All constraint tests resulted in a significantly less likely tree with the exceptions of tests 8 , 10, 12, and 13 (see Table 3).

Species delimitation:

The WP dichotomous key methodology was applied to the five-gene tree topology (Figure 7). Based on this phylogentic estimate, H. desmarestianus is nonexclusive (paraphyletic) relative to one or more distinct, exclusive species (H. goldmani, H. nubicolens, and H. oresterus). This suggests that the desmarestianus complex houses multiple species, and five candidate species (designated as clades A through E in Figure 7) are recognized.

An important requirement of this method is the inclusion of two or more localities per candidate species. Because of this, the WP method could not be applied to clade E for the combined data tree because there was only one terminal that represented this clade. However, the 156-terminal cyt b tree (Figure 2) included three clade E specimens (samples 73, 78, and 79; see Appendix), and when the WP method was applied to this gene tree topology, clade E animals were found to be exclusive by locality, suggesting that these mice represent a distinct haplotype clade.

Discussion

Relationships among species of Heteromys

Heteromys nelsoni consistently was recovered as the most basal clade relative to the remaining Heteromys taxa (Figures 2, 3, 4, and 7). This species occurs in cloud forest habitats, as do H. nubicolens and H. oresterus. All three species share the morphological feature of less spiny pelage, presumably an adaptation to the colder conditions of cloud forests. In topology constraint tests forcing the monophyly of cloud forest species (Table 3, test 1), the resulting trees were significantly less likely. Therefore, the hypothesis that evolution for adaptation to cloud forest habitats occurred once is rejected. Instead, I hypothesize that an ecological shift to cloud forest habitats from low- or mid-elevation forest habitats occurred independently in the common ancestor of the H . nubicolens/H. oresterus clade. Anderson et al. (2006) recovered H. nelsoni as sister to H. oresterus. In contrast, Rogers' phenetic analysis of allozyme, karyotypic, and morphological characters (1986; 1989; 1990) found that H. nelsoni either clustered with H. desmarestianus, H. goldmani and H. oresterus (exclusive of the H. anomalus group), or formed its own basal lineage. Based on the results of this study and those of González (2005), I support maintaining H. nelsoni in the monotypic subgenus Xylomys.

The H. anomalus group (H. anomalus, H. australis, H. oasicus, and H. teleus) represents a second, basal clade, with strong nodal support from cyt b and $\mathrm{Fgb}-17$ sequences (ML bootstrap>95\% and pP>0.95 for both). CoI and En2 also recovered this monophyletic group as basal, but with lower support values. This arrangement of the anomalus group is supported by combined cladistic analysis of morphological and allozyme data by Anderson et al. (2006), but is discordant with allozyme results of

Rogers (1990), which revealed no affinity between H. anomalus and H. australis (his study did not include H. catopterius, H. oasicus, or H. teleus). González (2005) included only H. anomalus and H. australis in her analyses, but also recovered these two taxa as a basal, monophyletic group. Heteromys australis is restricted in its distribution, known only from low- to middle-elevation localities in eastern Panama, western Colombia and northern Ecuador (Anderson 2003); at higher elevations in eastern Panama it is replaced by H. anomalus (Rogers 1986), which also occurs in Colombia, Venezuela, and Ecuador (Anderson 2003). Forcing non-monophyly of the anomalus group resulted in significantly less-likely trees (Table 3, test 2). Therefore, the most parsimonious explanation for colonization of South America by progenitors of the anomalus group suggests that it occurred once.

For the entity described by Anderson (2003) as H. oasicus, neither mitochondrial nor nuclear sequence data provide evidence of reciprocal monophyly between it and H. anomalus. As a result, H. oasicus is not distinct genealogically. However, H. oasicus is morphologically and ecologically diagnosable from adjacent populations of H. anomalus, and apparently H. oasicus is geographically isolated, as it occurs only on the Península de Paraguaná in Venezuela (sample 84, Figure 1). Given the lack of genetic differentiation exhibited by H. oasicus, it is likely that morphological and ecological divergence in H. oasicus, as described by Anderson (2003), occurred relatively recently. I therefore recommend that H. oasicus be relegated to subspecific status within H. anomalus.

Heteromys catopterius, a new species described from Venezuela by Anderson and Gutiérrez (in press), occurs in sympatry with H. anomalus. Pending sequence data to address the phylogenetic affinities of this taxon, I hypothesize that one of the two
phyletic groups within what is now considered H. anomalus, as documented by González (2005) and results presented herein, corresponds to this newly described species (note the structure of the H. anomalus clade in Figure 7).

Heteromys gaumeri was recovered as the sister clade to the H. desmarestianus species group in most analyses with strong nodal support (ML bootstrap=98, $\mathrm{pP}=1.0$). Additionally, H. gaumeri showed no close relationship with the H. desmarestianus complex in allozyme or morphological analyses (Anderson et al. 2006; Rogers 1986; 1990), and has a unique karyotype ($2 \mathrm{n}=56$; $\mathrm{FN}=76$). Based on phylogenetic analysis of sequence data, González (2005) concluded that this species was distinct from, and sister to the H. desmarestianus complex. Results of this study also are supportive of the recommendation by Engstrom et al. (1987) that H. gaumeri belongs in a species group of its own.

Species-level phylogenetics in the H. desmarestianus complex

As presently recognized, H. desmarestianus is not an exclusive species. Given that animals now recognized as H. desmarestianus are paraphyletic relative to H. goldmani, H. nubicolens and H. oresterus (see Figure 7), the first approach should be to determine whether these three lineages merit species-level status. If not, then the H. desmarestianus complex could be viewed as a wide-ranging species with high levels of genetic, karyotypic, morphological, and ecological diversity. The range of H. desmarestianus is very broad, spanning nearly $2,000 \mathrm{~km}$ from southern Mexico to northern South America (Rogers 1986; Williams et al. 1993), and previous studies have consistently suggested subdivisions in this species (Anderson et al. 2006; Rogers 1986; 1989; 1990). I will address the species-level status of H. goldmani first.

Rogers (1986) found that H. goldmani averaged larger than H. desmarestianus in many cranial features, and Rogers and Schmidly (1982) noted that H. goldmani had a smaller, more rounded baculum, and generally had darker pelage without the pronounced sprinkling of ochraceous hairs typical of H. desmarestianus. While these features fall within the range of morphological variation of H. desmarestianus from southern Mexico, other evidence would suggest that H. goldmani is distinct at the species-level. For instance, Rogers (1990) found that although H. goldmani did not differ significantly from nearby populations of H. desmarestianus based on morphology, H. goldmani did have fixed allozyme differences relative to H. desmarestianus at two loci. Additionally, H. goldmani possesses a karyotype distinct from H. desmarestianus (Rogers 1989—Table 4). In this study, there was one instance of sympatry for H. desmarestianus and H. goldmani in Chiapas, Mexico (locality 36-see Appendix). However, H. goldmani, from Chiapas, consistently was recovered as a well-supported clade, distinct from nearby H. desmarestianus in Chiapas and Oaxaca, Mexico. These results are consistent with those of González (2005). Constraint tests that forced non-monophyly of H. goldmani relative to adjacent populations of H. desmarestianus resulted in significantly less likely trees (Table 3, test 5). Therefore, I regard H. goldmani as a species-level taxon, and recommend that it remain in the H. desmarestianus species group within the subgenus Heteromys.

My analyses consistently recovered H. oresterus (San José and Cartago provinces, Costa Rica) as the sister group to individuals of H. nubicolens from the nearby provinces of Guanacaste and Puntarenas, Costa Rica (Figure 7; see Appendix for localities), with strong nodal support in all gene trees. These results are consistent with those of González
(2005). Heteromys oresterus (2n=60, FN=78) also differed from H. nubicolens (2n=60, FN=86) karyotypically, and forcing non-monophyly of samples regarded as either H. oresterus or H. nubicolens resulted in significantly less likely trees (Table 3, tests 3 and 4). Based on this evidence, I retain H. nubicolens and H. oresterus as valid species, and recommend their retention in the H. desmarestianus complex within the subgenus

Heteromys.

The H. desmarestianus species complex contains at least five clades (Figure 7) that likely represent candidate species. González (2005) first proposed candidate species A, B, C, and D, and this study adds candidate clade E. This study supports recognition of these clades as candidate species-level taxa, inasmuch as each of these lineages was determined by the WP method to be exclusive by locality, and thereby representative of distinct haplotypes and unique evolutionary lineages.

Clade A consistently was recovered as sister to the H. oresterus/H. nubicolens clade (see Figure 7). Both H. oresterus and H. nubicolens inhabit cloud forests, whereas samples representing clade A were collected in low- or mid-elevation forest habitats. Forcing non-monophyly of clade A resulted in a significantly less likely tree topology (Table 3, test 9). According to Rogers (1990), specimens representing clade A differ from examples of H. nubicolens by three fixed allozyme differences. Clade A specimens and H. nubicolens apparently possess the same standard karyotype but differ from H. oresterus (see Table 4). These data, coupled with González's genetic divergence results (2005), confirm that candidate species A should be considered for formal description and assignment of species-level status.

Specimens representing clade B were collected from low elevation localities in Veracruz and Oaxaca, Mexico, and clade C individuals were found in low elevation sites in the humid forests of the Chiriqui province in Panama as well as the Puntarenas province in Costa Rica. While there was some incongruence between cyt b and CoI gene trees regarding the relative placement of these two clades, each is a distinct phyletic entity. Topological constraint tests forcing monophyly of either clades B or C with H. desmarestianus proper were significantly less likely. However, constraint tests that forced the paraphyly of clades B and C (Table 3, tests 10-13) yielded several nonsignificant P values. Clearly, constraint test results do not support retaining clades B or C as H. desmarestianus. Rogers (1990) examined Costa Rican mice representing clade C, and found that compared to other Heteromys from Costa Rica, these specimens possessed at least two fixed allozyme differences. Likewise, specimens from low elevations in Veracruz and Oaxaca also differed from nearby samples of Heteromys by three fixed allozyme differences (Rogers 1990). In addition, mice representing both clades B and C possess karyotypes that differ in the number of bi-armed chromosomes (FN value) compared to other samples of Heteromys from Mexico and Costa Rica (Rogers 1989). Given these allozyme results in combination with the phylogenies recovered by González (2005) and in this study, I recognize clades B and C as candidate species B and C, respectively.

Clades D and E consistently are recovered as sister taxa and this clade always was well supported in the mitochondrial (both cyt b and CoI) and combined data analyses. However, the placement of this node shifted based on different analyses and optimality criterion used. Mice representing clade D were collected from two localities in the

Darién province in Panama, and clade E specimens came from three localities in the Panamanian province of Bocas del Toro. Topological constraint tests forcing monophyly of either clades D or E with H. desmarestianus proper were significantly less likely. Likewise, constraint tests forcing non-monophyly of this group generated significantly worse tree scores (Table 3, tests 14 and 15). Additionally, allozyme data are available for clade D, and it has fixed allelic differences relative to H. desmarestianus proper at 13 allozyme loci. These data, coupled with González’s (2005) genetic divergence results for clade D, suggest that clades D and E should each be considered as candidate species pending formal species description.

Within H. desmarestianus sensu stricto, three distinct clades (Figure 7) consistently were recovered with high nodal support values. These groups were consistent with geography as follows: group 1, Costa Rica and Nicaragua; group 2, southern Mexico (Chiapas and Oaxaca); and group 3, the Yucatan Peninsula region (Mexican states of Quintana Roo and Campeche together with samples from Belize, Guatemala and El Salvador). Karyotypic variation exists among these three groups (FN values varying among 67, 68, 72, and 86—Rogers 1989; see Table 4), as well as some diversity in habitat preference. For example, mice with FN = 67 and 68 occur in upper humid tropical forests at elevations greater than 1000 m , whereas animals that possess FN $=72$ or 86 are found in lowland tropical forests. Based on these differences, I predict that more species-level lineages ultimately will be recognized.

Recommendations for Heteromys taxonomy are summarized in Table 4. The two subgenera Xylomys and Heteromys are retained, with the former remaining monotypic (H. nelsoni). The subgenus Heteromys is divided into three species groups: the H.
anomalus group (H. anomalus [including H. oasicus], H. australis, and H. teleus); the H. desmarestianus group (H. desmarestianus, H. goldmani, H. nubicolens, H. oresterus, and candidate species A, B, C, D, and E); and the H. gaumeri group (H. gaumeri). I follow Anderson and Guitérrez (manuscript in press) in assigning H. caropterius to the anomalus group, pending phylogeny reconstruction using sequence data.

Given that many names are available either in synonymy or as subspecies of H. desmarestianus, it would be unwise to suggest formal name changes at this time. However, sequence data from topotypes would shed light on the appropriateness of names in synonymy for these candidate species.

Literature Cited

Allen, J. A., and F. M. Chapman. 1897. On mammals from Yucatan with descriptions of new species. Bulletin of the American Museum of Natural History 9:1-12.

Anderson, R. P. 1999. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modeling 162:211-232.

Anderson, R. P. 2003. Taxonomy, distribution, and natural history of the genus Heteromys (Rodentia: Heteromyidae) in western Venezuela, with the description of a dwarf species from the Peninsula de Paraguana. American Museum Novitates 3396:1-43.

Anderson, R. P., and V. P. Jarrín. 2002. A new species of spiny pocket mouse (Heteromyidae: Heteromys) endemic to Western Ecuador. American Museum Novitates 3382:1-26.

Anderson, R. P., and R. M. Timm. 2006. A new montane species of spiny pocket mouse (Rodentia: Heteromyidae: Heteromys) from Nothwestern Costa Rica. American Museum Novitates 3509:1-38.

Anderson, R. P., M. Weksler, and D. S. Rogers. 2006. Phylogenetic analyses of spiny pocket mice (Heteromyidae: Heteromyinae) based on allozymic and morphological data. Journal of Mammalogy 87:1218-1233.

Bradley, R. D., and R. J. Baker. 2001. A test of the genetic species concept: Cytochrome-b sequences and mammals. Journal of Mammalogy 82:960-973.

Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792-1797.

Engstrom, M. D., H. H. Genoways, and P. K. Tucker. 1987. Morphological variation, karyology, and systematic relationships of Heteromys gaumeri (Rodentia: Heteromyidae). Pages 289-303 in Studies in Neotropical mammalogy: essays in honor of Philip Hershkovitz. Fieldiana: Zoology, new series (B. D. Patterson, and R. M. Timm, eds.).

Felsenstein, J. 1985. Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Genoways, H. H. 1973. Systematics and evolutionary relationships of spiny pocket mice, genus Liomys. Special Publications of the Museum, Texas Tech University 5:1-368.

Goldman, E. A. 1911. Revision of the spiny pocket mice (genera Heteromys and Liomys). North American Fauna 34:1-70.

González, M. 2005. Phylogenetic relationships of forest spiny pocket mice (Genus Heteromys) inferred from mitochondrial and nuclear markers with implications for species boundaries. M.S. thesis. Brigham Young University, Provo, Utah.

Gotoh, O. 1995. A weighting system and algorithm for aligning many phylogenetically related sequences. Computer Applications in the Biosciences 11:543-551.

Gray, J. E. 1868. Synopsis of the species of Saccomyinae, or pouched mice in the collection of the British Museum. Proceedings of the Zoological Society of London 1868:199-206.

Guindon, S., and O. Gascuel. 2003. PhyML: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696704.

Hafner, J. C., and M. S. Hafner. 1983. Evolutionary relationships of heteromyid rodents. Great Basin Naturalist 7:3-29.

Hafner, J. C., J. E. Light, D. J. Hafner, M. S. Hafner, E. Reddington, D. S. Rogers, and B. R. Riddle. 2007. Basal clades and molecular systematics of Heteromyid rodents. Journal of Mammalogy 88:1129-1145.

Harris, W. P., Jr. 1932. Four new mammals from Costa Rica. Occasional Papers of the Museum of Zoology, University of Michigan 248:1-6.

Hey, J. 2006. On the failure of modern species concepts. TRENDS in Ecology and Evolution 21:447-450.

Hillis, D. M., and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42:182-192.

Homan, J. A., and H. H. Genoways. 1978. An analysis of hair structure and its phylogenetic implications among heteromyid rodents. Journal of Mammalogy 59:740-760.

Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755.

Irwin, D. M., T. D. Kocher, and A. C. Wilson. 1991. Evolution of the cytochrome b gene in mammals. Journal of Molecular Evolution 32:128-134.

Katoh, K., K. Kuma, H. Toh, and T. Miyata. 2005. MAFFT version 5: improvement in accuracy of multiply sequence alignment. Nucleic Acids Research 33:511-518.

Lyons, L. A., T. F. Laughlin, N. G. Copeland, N. A. Jenkins, J. E. Womack, and S. J. O'Brien. 1997. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nature Genetics 15.

Mascarello, J. T., and D. S. Rogers. 1988. Banded chromosomes of Liomys salvini, Heteromys oresterus, and H. desmarestianus. Journal of Mammalogy 69:126130.

Merriam, C. H. 1902. Twenty new pocket mice (Heteromys and Liomys) from Mexico. Proceedings of the Biological Society of Washington 15:41:50.

Morando, M., L., J. Avila, and J. W. Sites, Jr. 2003. Sampling strategies for delimiting species: Genes, individuals, and populations in the Liolaemus elongatus-kriegi complex (Squamata: Liolaemidae) in Andean-Patagonian South America. Systematic Biology 52:159-185.

Müller, K. 2005. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Applied Bioinformatics 4:65-69.

Notredame, C., D. G. Higgins, and J. Heringa. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302:205-217.

Nylander, J. A. A., F. Ronquist, J. P. Huelsenbeck, and J. L. Nieves-Aldrey. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology 53:47-67.

Ochoa-Gaona, S., and M. Gonzalez-Espinosa. 2000. Land use and deforestation in the highlands of Chiapas, Mexico. Applied Geography 20:17-42.

Palumbi, S. R. 1996. Nucleic acids I: The polymerase chain reaction. Pages 205-247 in Molecular systematics, $2^{\text {nd }}$ ed. (D. M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer, Sunderland, Massachusetts.

Patton, J. L. 2005. Family Heteromyidae. Pages 477-485 in Mammal Species of the World: a taxonomic and geographic reference, $2^{\text {nd }}$ ed. (D. E. Wilson, and D. M. Reeder, eds.). Washington, DC: Smithsonian Institution Press.

Patton, J. L., and D. S. Rogers. 1993. Cytogenetics. Pages 236-258 in Biology of the Heteromyidae. Special Publications, American Society of Mammalogists (H. H. Genoways and J. H. Brown, eds.).

Posada D., and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817-818.

Rambaut, A., and A. J. Drummond. 2007. Tracer v1.4: MCMC trace analysis tool. University of Edinburgh and University of Auckland. (http://tree.bio.ed.ac.uk/software/tracer/)

Reid, F. A. 1998. A Field Guide to the Mammals of Central America and Southeast Mexico. Oxford University Press.

Rogers, D. S. 1986. Evolutionary relationships within the family Heteromyinae (genera Heteromys and Liomys). Ph.D. dissertation, 256 pgs. University of California, Berkeley.

Rogers, D. S. 1989. Evolutionary implications of chromosomal variation among spiny pocket mice, genus Heteromys (Order Rodentia). The Southwestern Naturalist 34:85-100.

Rogers, D. S. 1990. Genic evolution, historical biogeography, and systematic relationships among spiny pocket mice (subfamily Heteromyinae). Journal of Mammalogy 71:668-685.

Rogers, D. S., and V. L. Vance. 2005. Phylgenetics of spiny pocket mice (genus Liomys): analysis of cytochrome b based on multiple heuristic approaches. Journal of Mammalogy 86:1085-1094.

Rogers, D. S., and D. J. Schmidly. 1982. Systematics of spiny pocket mice (Genus Heteromys) of the desmarestianus species group from Mexico and Northern Central America. Journal of Mammalogy 63:375-386.

Schmidly, D. J., K. T. Wilkens, and J. N. Derr. 1993. Biogeography. Pages 319-356 in Biology of the Heteromyidae. Special Publications, American Society of Mammalogists (H. H. Genoways, and J. H. Brown, eds.).

Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16:1114-1116.

Simmons, M. P., and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49:369-381.

Sites, J. W., Jr., and J. C. Marshall. 2003. Delimiting species: a renaissance issue in systematic biology. TRENDS in Ecology and Evolution 18:462-470.

Sites, J. W., Jr., and J. C. Marshall. 2004. Operational criteria for delimiting species. Annual Review of Ecology and Evolutionary Systematics 35:199-227.

Smith, M. F., and J. L. Patton. 1993. The diversification of South American muroid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnaean Society 50:149-177.

Sorensen, M. D., and E. A. Franzosa. 2007. TreeRot, version 3. Boston University, Boston, MA.

Spradling T. A., S. V. Brant, M. S. Hafner, and C. J. Dickerson. 2004. DNA data support a rapid radiation of pocket gopher genera (Rodentia: Geomyidae). Journal of Mammalian Evolution 11:105-125.

Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA.

Thomas, O. 1901. New South American Sciuri, Heteromys, Cavia, and Caluromys. Annals and Magazine of Natural History 7:192-196.

Thompson, J. W. 1815. Description of a new species of the genus Mus, belonging to the section of pouched rats. Transactions of the Linnaean Society, London 11:161163.

Wahlert, J. H. 1993. The fossil record. Pages 1-37 in Biology of the Heteromyidae. Special Publication, American Society of Mammalogists (H. H. Genoways, and J. H. Brown, eds.).

Wheeler, Q. D. 1999. Why the phylogenetic species concept? Elementary. Journal of Nematology 31:134-141.

Whiting, A. S., A. M. Bauer, and J. W. Sites, Jr. 2003. Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Molecular Phylogenetics and Evolution 29:583-598.

Wickliffe, J. K., F. G. Hoffmann, D. S. Carroll, Y. V. Dunina-Barkovshaya, R. D. Bradley, and R. J. Baker. 2003. Intron 7 (FGB): a nuclear DNA phylogenetic marker for mammals. Occasional Papers, Museum Texas Tech University 219:16.

Wiens, J. J. 2007. Species delimitation: new approaches for discovering diversity. Systematic Biology 56:875-878.

Wiens, J. J., and T. A. Penkrot. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51:69-91.

Wiley, E. O., and R. Mayden. 2000. The evolutionary species concept in Species Concepts and Phylogenetic Theory: A Debate (Q.D. Wheeler and R. Meier, eds.). Columbia University Press.

Williams, D. F., H. H. Genoways, and J. K. Braun. 1993. Taxonomy. Pages 38-196 in Biology of the Heteromyidae. Special Publications, American Society of Mammalogists (H. H. Genoways, and J. H. Brown, eds.).

Wood, A. E. 1935. Evolution and relationships of the heteromyid rodents with new forms from the Tertiary of western North America. Annals of Carnegie Museum 24:73-262.

Yang, Z. 1997. PAML: a program package for phylogenetics analysis by maximum likelihood. Computer Applications in the Biosciences 13:555-556.

Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin. www.bio.utexas.edu/faculty/antisense/garli/Garli.html

Table 1: Chronology of species descriptions in the genus Heteromys. The following species are currently recognized as valid (Patton 2005; Anderson and Timm 2006; Anderson and Gutiérrez [in press]).

Year	Author	Species	Common Name	Distribution
1815	Thompson	Mus anomalus (= H. anomalus)	Caribbean spiny pocket mouse	Colombia, Venezuela, Trinidad, Tobago
1868	Gray	H. desmarestianus	Desmarest's spiny pocket mouse	Southern Mexico to Colombia
1897	 Chapman	H. gaumeri	Gaumer’s spiny pocket mouse	Mexico, Guatemala, Belize
1901	Thomas	H. australis	Southern spiny pocket mouse	Panama, Colombia, Ecuador, Venezuela
1902	Merriam	H. goldmani	Goldman's spiny pocket mouse Nelson’s spiny pocket mouse	Mexico, Guatemala
1932	Harris	H. nelsoni		
(subgenus Xylomys)	Heresterus	Mountain spiny pocket mouse	Costa Rica	
2002	 Jarrín-V	H. teleus	Ecuadorian spiny pocket mouse	Ecuador
2003	Anderson	H. oasicus	Paraguaná spiny pocket mouse	Northern Venezuela
2006	 Timm	H. nubicolens	Dark-tailed spiny pocket mouse	Costa Rica
in press	 Gutiérrez	H. catopterius	Overlook spiny pocket mouse	Northern Venezuela

Table 2: PCR conditions used for cytochrome b (cyt b), Cytochrome oxidase I (CoI), Intron 7 of β-fibrinogen (Fgb-17), Engrailed II protein (En2), and Myosin heavy chain II (Myh2). Final volume $=25 \mu$ l. MM $=$ Master Mix. See text for primer sources.

Gene	PCR conditions	Primer	Primer sequence
cyt b	$\begin{aligned} & 94^{\circ} / 3 \mathrm{~min} \mid 39 \text { cycles: } 94^{\circ} / 1 \mathrm{~min} ; 50^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \mid \\ & 72^{\circ} / 3 \mathrm{~min} \\ & 24 \mu 1 \mathrm{MM}+1 \mu 1 \mathrm{DNA} \end{aligned}$	$\begin{aligned} & \text { L14724 } \\ & \text { H15915 } \\ & \text { CB3H } \\ & \text { MVZ16 } \\ & \text { H15149 } \\ & \text { F1 } \end{aligned}$	5'-CGA AGC TTG ATA TGA AAA ACC ATC GTT G-3' 5'-AAC TGC AGT CAT CTC GGG TTT ACA AGA C-3' 5'-GGC AAA TAG GAA RTA TCA TTC-3' 5^{\prime} - TAG GAA RTA TCA YTC TGG TTT RAT- 3 ' 5'-AAA CTG CAG CCC CTC AGA ATG ATA TTT GTC CTC A-3' 5'-TGA GGA CAR ATA TCH TTY TGR GG-3'
CoI	$94^{\circ} / 2 \mathrm{~min} \mid 4$ cycles: $94^{\circ} / 1 \mathrm{~min} ; 47^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min}$ \| 34 cycles: $94^{\circ} / 1 \mathrm{~min} ; 54^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \mid 72^{\circ} / 10 \mathrm{~min}$ $24 \mu \mathrm{l}$ MM $+1 \mu \mathrm{l}$ DNA	CoI-5285F CoI-6929R MCo-173F MCo-1345R MCo-1480R CoI-R1 CoI-F3	5'-CCY CTG TNY TTA GAT TTA CAG TCT A-3' 5^{\prime} '-ACA ARG TTA TGT AAT DDT TTT ACT A-3' 5'-TAT TAG GNG AYG AYC ARA T-3' 5^{\prime}-TGT TGW GGG AAR AAD GTT A-3' 5^{\prime}-GCT TCT CAR ATT ATR WAR ATT AT-3' 5'-ATG TAR ACT TCA GGG TGA C-3' 5'-GAT CWT TMT TAA TTA CTG CTG-3'
$\begin{aligned} & \text { Fgb- } \\ & 17 \end{aligned}$	$\begin{aligned} & 85^{\circ} \text { Hot Start \| } 94^{\circ} / 10 \min \mid 32 \text { cycles: } 94^{\circ} / 1 \mathrm{~min} ; \\ & 65^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \\ & 19.36 \mu \mathrm{l} \text { MM }+3 \mu \mathrm{l} \text { DNA }+2.64 \mu \mathrm{l} \text { dNTP Mix } \end{aligned}$	$\begin{aligned} & \text { B17 } \\ & \text { Fgb-571F } \end{aligned}$	5'-ACC CCA GTA GTA TCT GCC GTT TGG AT-3' 5^{\prime}-CGT AGC CTT GTG CTT GCA ATA G-3'
En2	$\begin{aligned} & 94^{\circ} / 10 \mathrm{~min} \mid 32 \text { cycles: } 94^{\circ} / 1 \mathrm{~min} ; 57^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \\ & 12.5 \mu \mathrm{l} \text { MM }+12.5 \mu \mathrm{l} \text { DNA }(1: 10) \end{aligned}$	$\begin{aligned} & \text { EN2-F } \\ & \text { EN2-R } \end{aligned}$	5'-CCC GAA AAC CAA AGA AGA AG-3' 5^{\prime} '-GTT CTG GAA CCA AAT CTT GAT C- ${ }^{\prime}$ '
Myh2	$\begin{aligned} & 85^{\circ} \text { Hot Start }\left\|94^{\circ} / 10 \mathrm{~min}\right\| 32 \text { cycles: } 94^{\circ} / 1 \mathrm{~min} ; \\ & 62^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \\ & 9.85 \mu \mathrm{l} \text { MM }+12.5 \mu \mathrm{l} \text { DNA }(1: 10)+2.64 \mu \mathrm{l} \text { dNTP Mix } \end{aligned}$	$\begin{aligned} & \text { MYH2-F } \\ & \text { MYH2-R } \end{aligned}$	$\begin{aligned} & \text { 5'-GAA CAC CAG CCT CAT CAA CC- } 3^{\prime} \\ & \text { 5'-TGG TGT CCT GCT ССТ TCT TC-3' } \end{aligned}$

Table 3: Shimodaira-Hasegawa test results for topological constraints representing a priori hypotheses. Optimal Maximum Likelihood tree score for the combined data set was $\ln L=-35175.59$. P-values less than 0.05 were considered significant (bolded).

Hypothesis	Log Score Difference	\mathbf{P}-value
1. Force monophyly of cloud forest species (H. nelsoni, H. oresterus, and H. nubicolens)	287.23	< 0.0001
2. Force non-monophyly of SA taxa (H. anomalus group)	66.84	< 0.0001
3. Force non-monophyly of H. nubicolens	201.02	<0.0001
4. Force non-monophyly of H. oresterus	192.12	<0.0001
5. Force non-monophyly of H. goldmani	74.93	<0.0001
6. Force non-monophyly of H. teleus	51.90	<0.0001
7. Force monophyly of H. anomalus relative to H. oasicus	128.40	<0.0001
8. Force monophyly of the two clades recovered for H. anomalus relative to H. oasicus	5.06	0.3028
9. Force non-monophyly of clade A.	72.23	0.0002
10. Force non-monophyly of clade B relative to clade C	24.14	0.0656
11. Force non-monophyly of clade B relative to nubicolens/oresterus/clade A	57.20	0.0018
12. Force non-monophyly of clade C relative to clade D/E	8.79	0.2408
13. Force non-monophyly of clade C relative to clade D only	32.43	0.0772
14. Force non-monophyly of clade D relative to clade E	282.64	<0.0001
15. Force non-monophyly of clade D/E relative to clade C	56.12	0.0036

Table 4: Taxonomic recommendations for Heteromys, together with karyotypic data ($2 \mathrm{n}=$ diploid number; FN = fundamental number) as reported in Rogers (1989), Patton and Rogers (1993), Anderson and Timm (2006) and Anderson et al. (2006).

Genus Heteromys	Standard karyotype
Subgenus Heteromys	
H. anomalus group	
H. anomalus	$2 \mathrm{n}=60, \mathrm{FN}=68$
H. a. anomalus	Unknown
H. a oasicus	Unknown
H. australis	Unknown
H. catoperius*	Unknown
H. teleus	$2 \mathrm{n}=60, \mathrm{FN}=67,68,72,86$
H. desmarestianus group	$2 \mathrm{n}=60, \mathrm{FN}=78$
H. desmarestianus	$2 \mathrm{n}=60, \mathrm{FN}=86$
H. goldmani	$2 \mathrm{n}=60, \mathrm{FN}=78$
H. nubicolens	$2 \mathrm{n}=60, \mathrm{FN}=86$
H. oresterus	$2 \mathrm{n}=60, \mathrm{FN}=82,86$
Candidate species A	$2 \mathrm{n}=60, \mathrm{FN}=90$
Candidate species B	Unknown
Candidate species C	Unknown
Candidate species D	$2 \mathrm{n}=56, \mathrm{FN}=76$
Candidate species E	$2 \mathrm{n}=42, \mathrm{FN}=72$
H. gaumeri group	
H. gaumeri	
Subgenus Xylomys	Helsoni

*No sequence data for H. catopterius were available for this study; assignment of this species is tentative.

Figure 1: Map of Mexico and Central America with an insert of northern South America. Dots indicate collecting localities of Heteromys. Triangles are collecting locations of Liomys. Collecting sites of H. teleus (locality no. 60), a single H. australis from Ecuador (locality no. 85), and outgroup taxa are not shown. Numbers correspond to localities as listed in the Appendix.

Figure 2: Phylogram ($\operatorname{lnL}=-12597.68$) generated from ML analysis of the cyt b data set with 156 samples (redundant haplotypes omitted from this analysis) representing 10 Heteromys species, and selected Liomys taxa designated as outgroups. ML bootstrap support values (based on 1000 iterations) and BI pP values (based on 50\% majority rule for the consensus tree) have been mapped onto the major nodes with relatively strong support. Bootstrap values ≥ 70 are above branches; pP values ≥ 0.95 are represented by a dot.

Figure 3: Phylogram ($\operatorname{lnL}=-13624.48$) generated from ML analysis of the CoI data set with 90 taxa representing 10 Heteromys species, and selected Liomys taxa as the outgroups; nodal support values and symbols are as in Fig. 2.

Figure 4: Phylogram ($\operatorname{lnL}=-2917.20$) generated from ML analysis of the $7^{\text {th }}$ intron of the β-fibrinogen (Fgb-17) data set with 90 samples representing 10 Heteromys species, and selected Liomys taxa designated as outgroups. Clades labeled A-E correspond to the five H. desmarestianus clades, as denoted in Figs. 2 and 3; nodal support values and symbols are as in Fig. 2.

Figure 5: Phylogram ($\operatorname{lnL=}-405.52$) generated from ML analysis of the En2 data set with 90 taxa representing 10 Heteromys species, and selected Liomys taxa designated as outgroups. Clades labeled A-E correspond to the five H. desmarestianus clades, as denoted in Figs. 2 and 3; nodal support values and symbols are as in Fig. 2.

Figure 6: Phylogram ($\operatorname{lnL}=-566.97$) generated from ML analysis of the Myh2 data set with 90 taxa representing 10 Heteromys species, and selected Liomys taxa designated as outgroups. Clades labeled A-E correspond to the five H. desmarestianus clades, as denoted in Figs. 2 and 3; nodal support values and symbols are as in Fig. 2.

Figure 7: Phylogram (lnL= -30181.07) generated from ML analysis of the combined (5gene) data set with 90 taxa representing 10 Heteromys species, and selected Liomys taxa designated as outgroups; nodal support values and symbols are as in Fig. 2. Additionally, PBS values are below the branches to show partitioned support for each node (cyt b/CoI/Fgb-17/En2/Myh2). Within H. desmarestianus, there are three monophyletic clades that correspond to geography: 1=Costa Rica and Nicaragua, 2=Mainland Mexico, and $3=$ Yucatan Peninsula region.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Appendix: List of taxa included in this study with locality number, collecting location (Country: Province: locality), and specimen identification numbers. Geographic abbreviations are as follows: $\mathrm{BE}=$ Belize; CR = Costa Rica; EC = Ecuador; ES = El Salvador; GU = Guatemala; MX = Mexico; NI = Nicaragua; PN = Panama; VZ = Venezuela. Locality numbers 1-56 are congruent with those of González and Rogers (manuscript in preparation-their locality \#51 is not represented in this study), and localities 59-93 are new to this study. Museum abbreviations are as follows: AMNH = American Museum of Natural History; ASNHC = Angelo State Natural History Collections; BYU = Brigham Young University; CM = Carnegie Museum of Natural History; CMC = Collecion de Mamiferos CEAMISH (Centro de Educación Ambiental e Investigación Sierra de Huautla), Universidad Autónoma del Estado de Morelos; EBRG = Estación Biológica Rancho Grande; KU = Museum of Natural History, University of Kansas; LACM = Natural History Museum of Los Angeles County; LSUMZ = Louisiana State University Museum of Zoology; MVZ = Museum of Vertebrate Zoology; ROM = Royal Ontario Museum; TCWC = Texas Cooperative Wildlife Collection, Texas A\&M University; USNM = National Museum of Natural History.

Locality No.	Current Name	Sampling Locality	Collector No.	Museum Voucher No.	Karyotype, Field, or Tissue No.
1	H. anomalus	VZ: Sucre: 40 km NW Caripito, 250 m, Andres Eloy Blanco	MDE 1999 MDE 2033 MDE 2034 MDE 2062	CM 78166 CM 78167 CM 78168 CM 78169	AK 3411 AK 3436 AK 3437 AK 3449
2a	H. anomalus	VZ: Miranda: 25 km N Altagracia de Oricuto, 500 m, Acevedo	MDE 2087 MDE 2091 MDE 2130	CM 78170 TCWC 37494 CM 78172	AK 3468 AK 3472 AK 3483
$2 b$ 3	H. australis	VZ: Miranda: 40 km N Altagracia de Oricuto, 500 m, Acevedo PN: Darién: Cerro Pirre, Parque Nacional Darien	MDE 2129	TCWC 39720 ROM 104356 ROM 104357	AK 3482 $\begin{aligned} & \text { F } 38215 \\ & \text { F } 38216 \end{aligned}$

4	H. australis
5	Candidate species B
6a	Candidate species B
6b	Candidate species B
6c	Candidate species B
7	Candidate species B
8	H. desmarestianus
9 a	H. desmarestianus
9b	"
10a	H. desmarestianus
10b	"
11a	H. desmarestianus
11b	H. desmarestianus
11c	H. desmarestianus
11d	H. desmarestianus
12a	H. desmarestianus
12b	H. desmarestianus
13	H. desmarestianus

MSH 1187	LSUMZ 25452	TK 22565
DSR 936	AMNH 254697	AK 3110
DSR 921	AMNH 254693	AK 3098
EA 823	BYU 16042	
EA 836	BYU 16043	
MDE 1010	AMNH 254694	
DSR 922	CM 79532	AK 3099
DSR 923	CM 79533	AK 3100
HD1	-99	
DSR 934	CM 79530	AK 3108
DSR 1685	MVZ 161229	
ASK 660	ASNHC 1424	
ASK 689	ASNHC 1425	
MDE 5003	ASNHC 3515	LAF 1689
DSR 1686	MVZ 161230 ROM 96096	FN 29887
	ROM 96105	FN 29896
ASK 29	ASNHC 1440	
ASK 31	ASNHC 1441	
ASK 49	ASNHC 5826	
ASK 51	ASNHC 1426	
	ROM 97542	FN 33018
ASK 589	ASNHC 1431	
ASK 591	ASNHC 1432	
	ROM 96089	FN 29880

14	H. desmarestianus	MX: Campeche: 10 km N El Refugio	ROM 97050	FN 30853
	"	"	ROM 97051	FN 30854
	"	"	ROM 97052	FN 30855
	"	"	ROM 97053	FN 30856
15	H. desmarestianus	MX: Quintana Roo: 1 km N Noh-Bec	ROM 97520	FN 30995
	"	"	ROM 97521	FN 30996
	"	"	ASNHC 7051	FN 32561
	"	"	ASNHC 7052	FN 32562
		BE: Stann Creek Dist: 7.7 km WNW Quam		
16a	H. desmarestianus	Bank, Cockscomb Basin	CM 91960	AK 7664
			CM 91951	AK 7665
	H. desmarestianus	BE: Stann Creek Dist: 6.8 km WNW Quam Bank, Cockscomb Basin	CM 91980	AK 7688
16b		BE: Stann Creek Dist: 3.4 km WNW Quam Bank, Cockscomb Basin	CM 91988	AK 7663
16c	H. desmarestianus	BE: Toledo Dist: 1 km NNE Salamanca, Forestry Camp, Columbio Forest Reserve	CM 91991	AK 7540
17a	H. desmarestianus	BE: Toledo Dist: 2.4 km NNW Salamanca, Forestry Camp, Columbio Forest Reserve	CM 91989	AK 7555
17b		BE: Toledo Dist: 2.1 km NNE Salamanca, Forestry Camp, Columbio Forest Reserve	CM 91994	AK 7586
17c			CM 91993	AK 7588
		"	CM 91995	AK 7589
18	H. desmarestianus	GU: Baja Verapaz: 5 km E Puruhla	ROM 98405	FN 31394
		"	ROM 98406	FN 31395
	"	"	ROM 98407	FN 31396
	"	"	ROM 98408	FN 31397
	"	"	-99	FN 31402
19	H. desmarestianus	GU: El Peten: Tikal	ROM 99292	FN 31842

20	"	"		ROM 99293	FN 31843
		"		ROM 99294	FN 31844
		GU: El Peten: Biotope Cerro Cahui, El Remate		ROM 99639	FN 32211
	"	"		ROM 99603	FN 32272
	"	"		ROM 99604	FN 32273
	"	"		ROM 99605	FN 32274
21		GU: El Peten: Campo los Guacamayos, 40 km N Biotopo Laguna del Tigre		ROM 99469	FN 32318
	H. desmarestianus			ROM 99504	FN 32353
22	H. desmarestianus	GU: Sacatepequez: 5 km W San Miguel			
		Duenas		ROM 98265	FN 31254
		"		ROM 98266	FN 31255
		"		ROM 98267	FN 31256
	"			ROM 98269	FN 31258
23	H. desmarestianus	ES: Santa Ana: Parque Nacional			
		Montecristo, Bosque Nebuloso, 2,200 m		ROM 101369	F 35547
				ROM 101389	F 35567
				ROM 101390	F 35568
24	H. desmarestianus	CR: Alajuela: 10 km E Sucre, Parque			
		Nacional, Juan Castro Blanco		ROM 113310	F 48617
				ROM 113311	F 48618
25	H. desmarestianus	CR: Cartago: Iztaru: Cerros de la Carpintera		ROM 113130	F 48436
				ROM 113131	F 48437
				ROM 113132	F 48438
26	H. desmarestianus	CR: Cartago: Catie: 4 km SE (by road)			
		Turrialba, 600 m	FAR 111	ROM 97324	
		"	FAR 112	ROM 97325	
			FAR 113	ROM 97326	

34	H. desmarestianus	NI: Esteli		ROM 112284	F 48170
35	H. goldmani	MX: Chiapas: 15.5 mi SE (by road) Mapastepec, 150 ft	MDE 1224	CM 79529	AK 3150
36	H. desmarestianus	MX: Chiapas: El Triunfo, 10 km SSE Finca Prusia	LJB 3108	LACM 74200	LAF 1773
	H. goldmani	"	LJB 3109	LACM 74201	LAF 1774
	"	"	MDE 5049	ASNHC 3523	LAF 1790
37	H. oresterus	CR: Cartago: Catie: 4 km (by road; Pan American Hwy) Villa Mills		ROM 102753	
38	H. oresterus	CR: San José: 2.2 km E (by road) La Trínidad de Dota, 2600 m	DSR 2092	MVZ 164861	
	"		DSR 2107	MVZ 164863	
	"		DSR 2244	MVZ 165786	
39	H. oresterus	CR: San José: Cerro la Muerte, San Gerardo de Dota		ROM 113208	F 48514
				ROM 113229	F 48535
		CR: Guanacaste: Monteverde, Campbell's			
40	H. nubicolens	Woods	DSR 1744	MVZ 161224	
			DSR 1745	MVZ 161225	
		CR: Puntarenas, Monte Verde Biological			
41	H. nubicolens	Station, elevation 1,655 m		ROM 113257	F 48564
42	Candidate species A	CR: Limón: 4.6 km W (by road) Limón, 25 m	DSR 2150	MVZ 164844	
			DSR 2151	MVZ 164845	
	"		DSR 2155	MVZ 164846	
	"		DSR 2163	MVZ 164847	
	"		DSR 2165	MVZ 164849	
	"		DSR 2245	MVZ 164851	
		CR: Alajuela: 7 km NE (by road) Quesada,		LSUMZ 26357	
43	Candidate species A	2297 m	DJH 2469	LSUMZ 26357	M-607

44	Candidate species C	CR: Puntarenas: 1.1 km SE (by road) Ciudad Nielly, 25 m	DSR 2193 DSR 2195 DSR 2222 DSR 2242	MVZ 164852 MVZ 164854 MVZ 164865 MVZ 164856	
45	Candidate species C	PN: Chiriqui: Ojo de Agua, 2 km N Santa		ROM 104296	F 38147
	"			ROM 104297	F 38148
	"	"		ROM 104307	F38158
	"	"		ROM 104308	F 38159
	"	"		ROM 104324	F 38175
				ROM 104325	F 38176
	"			-99	F 38177
	"			ROM 104326	F 38178
46	Candidate species D	PN: Darién: abt. 6 km NW Cana, E slope Cerro Pirre, 1400 m	DJH 2427	LSUMZ 25451	
47	H. gaumeri	MX: Quintana Roo: 7 km NE Xul-Ha		ASNHC 7127	FN 32575
				ASNHC 7128	FN 32576
48	H. gaumeri	MX: Campeche: 7 km N Escarcega		ASNHC 7118	FN 32736
49	H. gaumeri	MX: Quintana Roo: Puerto Morelos		ASNHC 7127	AJ 389536
50	H. nelsoni	MX: Chiapas: Cerro Mozotal, 2930 m	DSR 7181	CMC 391	
			DSR 7187	BYU 20643	
	"	"	DSR 7189	BYU 20644	
			DSR 7191	CMC 396	
			DSR 7212	CMC 398	
52	L. irroratus	MX: Puebla: 4 mi. SW Xicotepec de Juarez	MDE 986	CM 79450	AK 3083
53	L. irroratus	MX: Tamaulipas: 2.2 mi. N Soto la Marina	MDE 3280	TCWC 42044	AK 4335
			MDE 3284	TCWC 42048	AK 4339

59d	H. anomalus	VZ: Falcón: Serranía de San Luis; Parque Nacional J. C. Falcón, Sector Cumbres de Uria, ca. 9 km N Cabure	JOG 4570	AMNH 276519 / EBRG 25310	
	"		JOG 4571	EBRG 25397 AMNH 276520	
	"	"	JOG 4572	/ EBRG 25398	
	"	"	JOG 4578	EBRG 25404 AMNH 276574	
	"	"	RPA 300	/ EBRG 25419	
	"	"	RPA 301	EBRG 25312 AMNH 276575	
	"	"	RPA 302	/ EBRG 25313	
	"	"	RPA 303	no catalog \# AMNH 276583	
	"	"	RPA 316	/ EBRG 25428	
	"		RPA 317	EBRG 25314	
	"	"	RPA 318	EBRG 25315	
	"	"	RPA 319	EBRG 25429	
			RPA 325	EBRG 25434 AMNH 276587	
			RPA 326	/ EBRG 25316	
			RPA 327	EBRG 25317 AMNH 276588	
			RPA 328	/ EBRG 25318	
60	H. australis	EC: Esmeraldas: 2 km S Alto Tambo		ROM 105784	F 40077
61	H. australis	PN: Darién: Cana		ROM 116253	F 48794
				ROM 116302	F 48843
62	H. desmarestianus	ES: Santa Ana: Parque Nacional Montecristo, Los Planes		ROM 101505	F 35683
				ROM 101510	F 35688
63	H. desmarestianus	CR: Guanacaste: Volcán Santa Maria		ROM 113246	F 48553
64	H. desmarestianus	CR: Alajuela: 12.7 km NE Zarcero		ROM 113293	F 48600

65	H. nubicolens	CR: Puntarenas: Sainta Elena, Monte Verde Station
66a	Candidate species D	PN: Darién: Mount Pirre
	"	"
	"	"
	"	"
	"	
	"	
	"	
	"	
	"	
66 b	H. desmarestianus	PN: Darién: Cerro Pirre
67a	H. desmarestianus	BE: Orange Walk: 4 km S Las Milpas Camp, 12 m mark, Rio Bravo area
67b	H. desmarestianus	BE: Orange Walk: 8 km S Las Milpas, Rio Bravo
68	H. desmarestianus	GU: El Peten: $1.5 \mathrm{~km} \mathrm{~S}, 1 \mathrm{~km}$ W Poptun
69	H. desmarestianus	GU: El Peten: 10 km N of Tikal
70	H. desmarestianus	GU: El Peten: Campo los Guacamayos, Biotopo Laguna del Tigre, 40 km N El Naranjo
	"	

71	H. desmarestianus	MX: Quintana Roo: 6 km S, 1.5 km W Tres Garantias		ASNHC 7053 ASNHC 7059	$\begin{aligned} & \text { FN } 32683 \\ & \text { FN } 32686 \end{aligned}$
		CR: Guanacaste: Liberia, $\sim 39 \mathrm{~km} \mathrm{~N}$ Pitilla,			
72	H. desmarestianus	Sendero Orosilito	KM 99-091	KU 158510	
	"		KM 99-092	KU 158511	
	"	"	KM 99-093	KU 158512	
	"	"	KM 99-094	KU 158513	
	"	"	KM 99-102	KU 158514	
	"	"	KM 99-095	KU 158711	
		PN: Bocas Del Toro: Isla Popa, 1 km SE			
73	Candidate species E	Deer Island Channel	J-501	USNM 464382	
	"	"	COH 14867	USNM 464383	
	"		COH 14887	USNM 464384	
	"		COH 14890	USNM 464385	
	H. desmarestianus	GU: Quetzaltenango: 4 km SE Zunil, Finca la Chingada	WB 8425	USNM 569675	
		GU: Alta Verapaz: Chelemha, Yalijux			
75	H. desmarestianus	Mountain		USNM 569852	TK 151027
	"	"		USNM 569866	TK 151041
	"	"		USNM 569945	TK 151134
	"	"		USNM 569949	TK 151139
	"	"		USNM 569956	TK 151150
	"	"		USNM 569981	TK 151178
	"	"		USNM 569984	TK 151183
	"	"		USNM 569985	TK 151184
	"	"		USNM 569991	TK 151190
	"	"		USNM 570003	TK 151126
	"	"		USNM 570007	TK 151140

76	H. desmarestianus	GU: Zacapa: Gualan Municipality: 9.5 km NW Gualan, El Limo, Sierra de las Minas	WB 8477	USNM 570034	
	"	"	WB 8478	USNM 570035	
	"	"	WB 8479	USNM 570036	
	"	"	WB 8517	USNM 570073	
	"	"	WB 8518	USNM 570074	
	"	"	WB 8546	USNM 570097	
	"	"	WB 8549	USNM 570131	
		GU: Baja Verapaz: 9 km S of Pasmola, btwn km 166 \& 167 on CA-14, Hotel			
77	H. desmarestianus	Country Delights	NW 1293	USNM 570134	
78	Candidate species E	PN: Bocas Del Toro: Nuri	FMG 2793	USNM 575655	
79	Candidate species E	PN: Bocas Del Toro: Peninsula Valiente, Quebrada Hido	FMG 2623	USNM 578383	
80a	Candidate species B	MX: Veracruz: 13.0 km NW (by road) Sontecomapan, Estacion Los Tuxtlas, IBUNAM, 40 m	DSR 8546	CMC 2004	
			DSR 8547	CMC 2005	
	"	"	DSR 8548	CMC 2006	
	"	"	DSR 8549	CMC 2007	
	"	"	DSR 8550	CMC 2008	
	"	"	DSR 8551	CMC 2009	
	"	"	DSR 8552	CMC 2010	
	"		DSR 8553	CMC 2011	
		MX: Veracruz: 12.1 km NW (by road)			
80b	Candidate species B	Sontecomapán, 150 m	DSR 8561 DSR 8562	CMC 2002 CMC 2003	
		MX: Chiapas: 18.5 km S Frontera	DSR 8562	CMC 2003	
81	H. goldmani	Comalapa		ROM 97673	FN 33154

82a	$"$	CR: Puntarenas: Monteverde Biological		ROM 97674	FN 33155
	H. nubicolens			ROM 113258	F 48565
		Station		ROM 113259	F 48566
	"	"		ROM 113260	F 48567
		"		ROM 113261	F 48568
	"	"		ROM 113262	F 48569
	"	"		ROM 113263	F 48570
	"	"		ROM 113264	F 48571
	"	"		ROM 113265	F 48572
				ROM 113282	F 48589
82b	H. nubicolens	CR: Puntarenas: Monteverde, Cerro Amigos CR: Puntarenas: Monteverde, Cerro Amigos, Puntarenas-Guanacaste border	TRM 3746	KU 142057	
			TRM 3869	KU 143455	
82d	H. nubicolens	CR: Puntarenas: Monteverde, Monteverde Cloud Forest Reserve, investigator trail			
			RMT 4461	KU 159022	
		"	RMT 4462	KU 159023	
		"	RMT 4467	KU 159024	
		"	RMT 4468	KU 159025	
			RMT 4469	KU 159026	
			RMT 4471	KU 159027	
83a	H. nubicolens	CR: Alejuela: Monteverde, Monteverde Cloud Forest Reserve, Cerro Amigos	CMM 222	KU 159101	
83b		CR: Alejuela: Monteverde, Monteverde Cloud Forest Reserve, Camino a Penas			
83b	H. nubicolens	Blancas	CMM 258	$\text { KU } 159103$	

84	H. oasicus	VZ: Falcón: Península de Paraguaná; Cerro	JOG 4460	EBRG 25450	
		Santa Ana, ca. 4 km N Santa Ana	JOG 4460	$\text { AMNH } 276500$	
	"	"	JOG 4505	/ EBRG 25485	
	"	"	JOG 4550	EBRG 25532	
	"	"	JOG 4554	EBRG 25533 AMNH 276534	
	"		RPA 209	/ EBRG 25339	
85	H. teleus	EC: Los Rios: Rio Palenque Biological Station	ATS 183	KU 149134	
86	H. desmarestianus	CR: Alajuela: Parque Nacional Volcán Poas		ROM 113332	F 48640
87	H. anomalus	VZ: Zulia	RSV 1124	USNM 448559	
89	L. pictus	MX: Chiapas: 7.5 km SW of Ixtapa	MDE 2420	TCWC 37059	AK 4200
90	L. pictus	MX: Nayarit: 4.6 km NE Jalcocotán	ASK 1701	ASNHC 3260	
91	L. pictus	MX: Colima: 5 km S Alzada	ASK 2034	ASNHC 3072	
93	L. spectabilis	MX: Jalisco: 3 mi NE of Contla	MDE 3012	TCWC 42412	AK 5884
	"	"	MDE 3014	TCWC 42413	AK 5885
	"	"		TCWC 42405	AK 5894

CHAPTER 2

SYSTEMATICS OF THE SUBFAMILY HETEROMYINAE

Introduction

The rodent family Heteromyidae (pocket mice) consists of three subfamilies (Alexander and Riddle 2005; Hafner et al. 2007) and is endemic to the New World, with its origin in western North America (Wahlert 1993). The Perognathinae (silky pocket mice) and Dipodomyinae (kangaroo rats and kangaroo mice) inhabit grasslands, deserts, and other semiarid environments in the western United States and Mexico. Members of the third subfamily, Heteromyinae (spiny pocket mice), occur from southern Texas to Ecuador (Schmidly et al. 1993; Williams et al. 1993). Species of heteromyines tend to demonstrate strong specificity to particular habitats, which collectively constitute an array of tropical environments including thorn scrub, pluvial rainforest, and montane cloud forests (Genoways 1973; Schmidly et al. 1993; Anderson 1999; 2003). Moreover, the number of species-level taxa of heteromyines likely is underestimated (González 2005; Rogers and Vance 2005).

Heteromyines also represent one of many mammal groups to have dispersed across the Central American isthmus after the land bridge closed completely during the Pliocence, about 3 million years ago (Marshall et al. 1982; Coates et al. 1992; Graham 1992; Hooghiemstra 1994; Webb and Rancy 1996). Wallace first recognized this and other dispersal events—known collectively as the Great American Biotic Interchange between North and South America-in 1876. Unlike many other North American mammal groups that dispersed broadly, spiny pocket mice only colonized the northwestern reaches of South America. Due to lack of a fossil record in this region
(Wahlert 1993), they are generally considered to be among the most recent immigrants into the area (Patterson and Pascual 1968; Hershkovitz 1972; Marshall et al. 1982; Webb and Marshall 1982; Stehli and Webb 1985). Although their history of diversification and restricted colonization remains unclear, molecular phylogenetic data may help to address biotic dispersal patterns in the subfamily Heteromyinae by providing objective data for testable hypotheses.

Two genera, Liomys and Heteromys, comprise the subfamily Heteromyinae (but see Hafner et al. 2007), with five and 11 recognized species, respectively (Williams et al. 1993; Patton 2005; Anderson et al. 2006; Anderson and Gutiérrez in press). Members of the genus Liomys inhabit arid and semiarid thorn-scrub regions in Central and South America and are replaced by Heteromys in more mesic tropical habitats (Alexander and Riddle 2005).

Currently, the genus Liomys contains five species: L. adspersus, L. irroratus, L. pictus, L. salvini, and L. spectabilis (as revised by Genoways 1973). Genoways’ (1973) hypothesis of relationships was as follows: (((L. pictus, L. spectabilis), L. irroratus) (L. adspersus, L. salvini)). Von Lehmann and Schaefer (1979) suggested that L. adspersus and L. salvini were phylogenetically distinct and should be placed in a separate subgenus (Schaeferia), but this recommendation was only recently appreciated in the context of potential nomenclatural implications (Anderson and Gutiérrez in press). Rogers (1990) confirmed the relationships defined by Genoways (1973) with allozyme data but concluded that L. pictus was paraphyletic. With further analyses of genetic differentiation in the L. pictus species group using mtDNA sequence data, Rogers and Vance (2005) confirmed that L. pictus, as presently defined, is a composite taxon and is
paraphyletic relative to L. spectabilis. Moreover, L. pictus likely is comprised of at least three candidate species (see also Vance 2006).

The genus Heteromys is comprised of 11 species: H. anomalus, H. australis, H. catopterius, H. desmarestianus, H. gaumeri, H. goldmani, H. nelsoni, H. nubicolens, H. oasicus, H. oresterus, and H. teleus (Anderson et al. 2006; Anderson and Gutiérrez in press; González 2005). Studies based on sequence data and morphology have determined that Heteromys is a monophyletic taxon (Anderson et al. 2006; Hafner et al. 2007; Rogers and Vance 2005).

However, molecular data suggest that Liomys is paraphyletic relative to Heteromys (Hafner et al. 2007; Rogers and Vance 2005), and allozyme and morphological data do not contradict this (Anderson et al. 2006; Rogers 1990). In the recent study by Hafner et al. (2007), sequence data from three mtDNA genes were used to demonstrate strong nodal support for Liomys paraphyly. These authors also showed that the L. pictus group ((L. pictus, L. spectabilis), L. irroratus) formed the sister group to Heteromys rather than to the L. salvini group (L. adspersus, L. salvini). As a taxonomic solution to paraphyly among species in the genus Liomys, Hafner et al. (2007) proposed that Liomys be synonymized with Heteromys.

My study aims to address this taxonomic problem. I include representatives of all described species of heteromyines with the exception of H. catopterius from Venezuela (Anderson and Gutiérrez in press), and develop sequence data for mtDNA (Cytochrome b [cyt b] and Cytochrome oxidase I [CoI]), and nucDNA (Beta fibrinogen [Fgb-17], Engrailed II [En2], and Myosin heavy chain II [Myh2]) to test the current hypothesis of relationships for the subfamily Heteromyinae.

Materials and Methods

Taxon Sampling:

Mice used in this study were collected from natural populations and were preserved as museum voucher specimens. Liver, spleen, kidney, heart, or lung tissue was removed from each individual and maintained in ultralow freezers at $-80^{\circ} \mathrm{C}$ or in 95% ethanol at $-20^{\circ} \mathrm{C}$. The sample representing H. teleus was a skin clip. Tissue samples of some individuals were obtained through tissue loans from cooperating museums and universities. Sequence data for specimens representing the subfamily Heteromyinae were generated from 294 individuals representing 10 described species in the genus Heteromys; including several candidate species identified by a previous investigator (González 2005), as well as all five species currently recognized in the genus Liomys (Appendix). These specimens represent collecting localities from throughout Mexico, Belize, Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, Venezuela, and Ecuador. Figure 1 is a map of collecting localities showing the sampling sites included in this study; numbers correspond to localities as numbered in the Appendix.

Dipodomys ordii from the subfamily Dipodomyinae as well as Chaetodipus pencillatus and Perognathus apache from the subfamily Perognathinae were used as outgroup taxa for this study, as these two subfamilies, with Heteromyinae, make up the family Heteromyidae (Hafner et al. 2007; González 2005; Rogers and Vance 2005).

Molecular Data Collection:

Whole genomic DNA was extracted for each individual from tissue (or skin from a single representative of H. teleus) using the Qiagen (Valencia, CA) DNeasy ${ }^{\text {TM }}$ Tissue Kit (Cat. No. 69504) and following the protocol for animal tissues (July 2006, pp 18-20).

DNA was eluted with the manufacturer's AE buffer at a final volume of $200 \mu \mathrm{l}$. Four microliters of DNA extraction product was electrophoresed on a 2.0% agarose gel stained with SYBR green to estimate the quality and amount of genomic DNA present.

PCR technique was used to amplify the entire cyt b gene using primers L14724 and H15915 (Irwin et al. 1991). Four internal primers were also used for amplification and sequencing: CB3H (Palumbi 1996), MVZ16 (Smith and Patton 1993), H15149 (Irwin et al. 1991), and F1 (Whiting et al. 2003). Table 1 describes the PCR conditions employed for all five genes or gene segments used in this study. For a subset of individuals that represent the major clades based on cyt b sequence data analyses, additional genes or gene segments were sequenced. A second mtDNA marker, CoI, was amplified via PCR using primers CoI-5285F and CoI-6929R (Spradling et al. 2004). Five internal primers also were used for amplification and sequencing: MCo-173F, MCo-1345R, MCo-1480R (Hafner et al. 2007), CoI-R1, and CoI-F3 (this study). For both mtDNA markers, standard Taq polymerase (Promega -Madison, WI) was used with its accompanying salts and buffer.

Sequence data for three nuclear introns also were obtained for the same subset of individuals using PCR technique. The seventh intron of the β-fibrinogen gene (Fgb-17) was amplified with primers B17 (Wickliffe et al. 2003) and Fgb-571F (this study). Members of the genus Heteromys (and possibly more members of the heteromyid family) possess large, variably sized indels in Fgb-17, so specific primers were designed (Table 1) to amplify the portion of the intron that is homologous to other rodent Fgb-17. β fibrinogen amplifications used Platinum Taq (Invitrogen - Carlsbad, CA) with pre-mixed buffer and salts. Engrailed protein 2 (En2) was amplified using 1:10 diluted DNA and
the following primers, also diluted at a 1:10 ratio: EN2-F and EN2-R (Lyons et al. 1997). Similarly, myosin heavy chain 2 (Myh2) required 1:10 diluted DNA and primers: MYH2-F and MYH2-R (Lyons et al. 1997). For these last two PCRs, HotMaster Taq (Eppendorf - Westbury, NY), with its accompanying buffer and salts, worked best for amplification. Positive and negative controls were run with all amplifications.

Four microliters of double-stranded PCR product were assayed by electrophoresis on a 2% agarose gel. The remaining product (ca. $21 \mu \mathrm{l}$) was purified using the Millipore (Billerica, MA) Multiscreen ${ }^{\text {TM }}$ PCR 96-Well Filtration System (Cat. No. MANU03050), and rehydrated with $25 \mu \mathrm{l}$ HPLC- $\mathrm{H}_{2} 0$. All purified PCR products were then cycle sequenced using the Big Dye v3.1 Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems - Foster City, CA) with the same primers listed above for PCR amplification, all at a 1:10 dilution. Excess dye terminator was removed using a separation column made of a solution of Sephadex G50 in conjunction with Millipore (Billerica, MA) Multiscreen ${ }^{\mathrm{TM}}$ Filter Plates for High Throughput Separations (Cat. No. MAHVN4510). Both strands of DNA fragments were sequenced in order to verify the accuracy of the sequenced nucleotides. Sequences were determined using the ABI 570 Genetic Analyzer (Applied Biosystems - Foster City, CA) located in the DNA Sequencing Center at Brigham Young University.

Sequence Alignment:

All sequences were compiled and edited using Sequencher v4.7 (Gene Codes Corporation, 2006). Base pairs exhibiting multiple peaks in the chromatographs of the nuclear markers were interpreted as heterozygous sites and coded as ambiguous characters. Manual alignment was possible with the Sequencher software for the cyt b
gene and the En2 intron, as there were no insertion-deletions (indels) present. The CoI, Myh2, and Fgb-17 sequences each contained at least one indel. As a result, MAFFT (Katoh et al. 2005) and MUSCLE (Edgar 2004) programs were used to align these sequences. MAFFT multiple alignment software offers three general ways to align sequences, each differing in speed and accuracy. I employed the strategy that maximized accuracy rather than speed to obtain my Fgb-17 alignment, and the iterative refinement method (L-INS-i) using the weighted sum-of-pairs (WSP) and consistency scores was selected by the automated program. This method (Katoh et al. 2005) undergoes four stages of alignment: (1) a distance matrix is made based on all pairwise alignments, (2) a guide tree is constructed, (3) progressive alignment, and (4) iterative refinement of the alignment using WSP scores (Gotoh 1995) and COFFEE-like scores (Notredame et al. 2000). MUSCLE is another multiple sequence alignment program that implements three stages of alignment: (1) an initial progressive alignment generated from a distance matrix, (2) refinement of the progressive alignment by generation of alternative trees and comparison of tree scores, and (3) refinement of the alignment using a profile-profile alignment (Edgar 2004). MAFFT and MUSCLE produced very similar alignments, and I used the MAFFT alignment for all subsequent analyses.

Phylogenetic Analyses:

Collapse v1.2 (available from http://darwin.uvigo.es) was used to identify nonredundant haplotypes in the cyt b data set and to remove redundant haplotypes.

However, if redundant haplotypes represented different localities, at least one sequence was retained for each collecting location. In total, the cyt b data set was reduced from 301 to 170 individuals. Models of evolution were determined among 56 different models
using ModelTest v3.7 (Posada and Crandall 1998) for cyt b, CoI, Fbg-17, En2, and Myh2. The Akaike information criterion (AIC) was used to obtain the best model and likelihood settings for each gene separately, as well as the combined data set consisting of all five gene segments (see below). Indels in the Fgb-17 and Myh2 markers were coded according to the simple indel coding (SIC) scheme outlined by Simmons and Ochoterena (2000) in the gap coding program SeqState (Müller 2005). Each SIC matrix was appended to its corresponding data matrix (Fgb-17 and Myh2) for use in Bayesian and parsimony analyses.

Maximum parsimony (MP) analyses were conducted in PAUP* v4.0 (Swofford 2002) as unweighted heuristic searches with 1000 random additions and TBR branch swapping. Separate analyses were conducted for each of the genetic markers individually, and also for a combined data set in which all five markers were concatenated into one data matrix. Two cyt b data sets were used for comparative analyses: the 170-taxon data set representing all unique haplotypes, and a 97-taxon data set that contained only specimens for which nuclear data also were available. All other single and multi-gene data sets were congruent, in that each represented the same 97 individuals. Nonparametric bootstrap values (Felsenstein 1985) also were obtained in PAUP* for each data set using 1000 pseudoreplicates and 100 random additions. Bootstrap values $\geq 70 \%$ were considered well supported (Hillis and Bull 1993). Partitioned Bremer supports (PBS) were generated for the most optimal five-gene MP tree in TreeRot v3 (Sorenson and Franzosa 2007). For the final parsimony search of 20 repetitions in the TreeRot protocol, the "maxtrees" setting was increased from its 100tree default to 500 trees.

A maximum likelihood (ML) approach also was used to analyze the genetic markers for the independent and combined data sets. ML analyses were performed using Garli v0.94 software (Zwickl 2006), and were set to autoterminate when resolution in log likelihood scores was <0.001 after 500 generations. The AIC model of evolution obtained from ModelTest v3.7 (Posada and Crandall 1998) was used in these analyses, and the parameters were estimated in Garli. As the ML algorithm allows only one model of evolution, the most complex model, GTR $+\mathrm{I}+\Gamma$, was employed for the combined analysis. Bootstrap nodal support values were estimated in PhyML (Guindon and Gascuel 2003) using 1000 replicates.

Additionally, Bayesian inference (BI) was performed on individual genetic markers and on the combined data set using MrBayes v3.1 (Huelsenbeck and Ronquist 2001; Nylander et al. 2004). The appropriate AIC model of evolution was assigned for each analysis, as determined in ModelTest v3.7 (Posada and Crandall 1998). For the combined data set, a mixed-model Bayesian analysis was run using the appropriate model of evolution for each gene partition (see Results). Each data set was run twice for 20 million generations using Markov Chain Monte Carlo (MCMC) with four chains per run. Each run began with a random starting tree and trees were sampled every 2000 generations. Log-likelihood scores and standard errors from the log file were examined in Tracer v1.4 (Rambaut and Drummond 2007) to determine stationarity, and the first 20% of trees were discarded as burn-in. Posterior probabilities were generated from the remaining trees in PAUP* v4.0 (Swofford 2002), using the 50\% majority rule consensus tree function.

Hypothesis Testing:

Alternative phylogenetic hypotheses were evaluated for statistical significance using the one-tailed Shimodaira-Hasegawa (S-H) test (Shimodaira and Hasegawa 1999) with restricted likelihood as implemented in PAUP* 4.0 (Swofford 2002). Ten thousand bootstrap replicates were performed using the S-H topology test by resampling the partial likelihoods for each site (RELL model).

Results

Sequence Analysis:

The entire cyt b gene was sequenced for all 301 specimens represented in this study, including seven outgroup taxa. Elimination of redundant haplotypes reduced the number of individuals to 170 for the cyt b data set. Sequence data also was obtained for the entire CoI gene, and for Fgb-17, En2, and Myh2 introns for a total of 97 individuals, inclusive of three outgroup specimens.

Alignment of the cyt b gene (1140 bp) was trivial and yielded 512 parsimonyinformative characters and 21 variable non-informative characters. The ingroup heteromyines exhibited no gaps for the CoI gene, however the two Chaetodipus pencillatus outgroup individuals contained a 3 bp gap near the 3 ’ end of this gene. This indel is consistent with the findings of Light and Hafner (2008), who also documented a 3 bp deletion in CoI for Chaetodipus mice, relative to other heteromyids. The CoI alignment resulted in 1548 bp , with 578 parsimony-informative characters and 37 variable non-informative characters. For a number of Heteromys specimens (16 of 97), the β-fibrinogen intron contained a large insertion adjacent to a poly-A region of hypervariable length. The varying poly-A lengths among taxa introduced gaps of different sizes and made statements of homology less clear. To clarify coding and alignment in this region, I removed a 10-character segment from all Fgb-17 sequences adjacent to the poly-A region so that the lowest common denominator of repeating adenines was still represented, but without the ambiguous alignment caused by differently sized gaps. There were 32 indels [SeqState Simple Indel Coding (SIC) results] after the 10-character segment adjacent to the hypervariable poly-A region was
removed. The aligned length of the Fgb-17 intron was 899 bp , with 219 parsimonyinformative characters and 79 variable non-informative characters. A data matrix with the 32 coded indels also was made for parsimony and Bayesian analyses, and for this mixed-data matrix there were 931 characters, 240 of which were parsimony-informative and 91 were variable non-informative. The gene segment En2 contained no indels, and was 146 bp in length with 16 parsimony-informative characters and 10 non-informative variable characters. The Myh2 gene segment contained six indels (SeqState SIC results), and had an aligned length of 205 bp , with 40 parsimony-informative characters and 29 variable non-informative characters. A mixed-data matrix with the six coded indels for Myh2 was made for parsimony and Bayesian analyses, and this resulted in 211 characters, with 44 of these being parsimony-informative and 31 being variable noninformative characters. The combined data set, with the concatenation of all five genetic markers (without the SIC matrices), generated a total alignment length of 3938 bp .

Phylogenetic analysis of individual genes:

The cyt b data set generated a GTR $+\mathrm{I}+\Gamma$ model of evolution. The base frequencies were $\mathrm{A}=0.3357, \mathrm{C}=0.3179, \mathrm{G}=0.0526$, and $\mathrm{T}=0.2938$; transversion (tv) rates were $(A-C)=0.3095,(A-G)=10.9957,(A-T)=0.6564,(C-G)=0.6514,(C-T)=6.5711$, (G$\mathrm{T})=1.0000$; the proportion of invariable sites (I) was 0.5009 , and the gamma distribution shape parameter (Γ) was 0.8524 . ML analysis of the 170 -individual cyt b data set yielded a single tree ($\operatorname{lnL}=-15564.98$) with high bootstrap support (≥ 70) for monophyly of the subfamily Heteromyinae with respect to outgroup taxa (Figure 2). This tree also demonstrated high support for Liomys paraphyly, in that the L. pictus group ((L. pictus, L. spectabilis), L. irroratus) formed a sister group to the genus Heteromys rather than to the
L. salvini group (L. adspersus, L. salvini). ML analysis of the cyt b data set containing 97 specimens, each represented by the four additional genetic markers, generated a tree (not shown) with the same topology and similar bootstrap support values as the 170 -terminal data set. MP analysis of the 170-individual cyt b data set generated a single best tree (3310 steps; consistency index $[\mathrm{CI}]=0.263$, retention index $[\mathrm{RI}]=0.852$) analogous to the likelihood topology. Similarly, the 50\% majority rule BI tree also was congruent in resolving the same major clades with high nodal supports [posterior probability (pP) ≥ 0.95] for monophyly of the subfamily Heteromyinae and paraphyly of the genus Liomys. Figure 2 depicts the ML tree for cyt b with ML bootstrap and Bayesian pP support values mapped onto the major nodes.

The CoI gene also was determined to have a GTR $+\mathrm{I}+\Gamma$ evolutionary model. ($\mathrm{A}=0.3346, \mathrm{C}=0.2377, \mathrm{G}=0.0978$, and $\mathrm{T}=0.3298$; tv rates $[\mathrm{A}-\mathrm{C}]=0.6479,[\mathrm{~A}-\mathrm{G}]=13.5460$, $[A-T]=1.1534,[C-G]=0.3841,[C-T]=10.7976,[G-T]=1.0000 ; \mathrm{I}=0.6025 ; \Gamma=1.4551)$. analysis of this gene produced a topology ($\operatorname{lnL}=-15877.24$) similar to the cyt b gene tree, but with several important differences (Figure 3). First, L. salvini was arranged as sister to the Dipodomys outgroup taxon, rather than with the rest of the subfamily Heteromyinae. Secondly, bootstrap support values for the most basal clades in the CoI tree were lower than they were for the cyt b tree. Unlike the ML tree, the BI topology for CoI (not shown) generated high nodal support for the monophyly of the heteromyines and paraphyly of the genus Liomys; and as such was more similar to the cyt b gene tree topology. Figure 3 shows the ML tree for CoI with ML bootstrap and Bayesian pP values mapped onto the nodes, where nodal support was high. The MP tree (not shown; 3329 steps; $\mathrm{CI}=0.293$, $\mathrm{RI}=0.775$) depicts an unresolved trichotomy among the outgroup
genera, the L. salvini group, and the remaining Liomys and Heteromys taxa ((((L. pictus, L. spectabilis), L. irroratus), Heteromys nelsoni) (all other Heteromys)).

The β-fibrinogen gene segment was analyzed using ML and BI approaches under the GTR $+\Gamma$ model of evolution. $(\mathrm{A}=0.2824, \mathrm{C}=0.2320, \mathrm{G}=0.2165$, and $\mathrm{T}=0.2691$; tv rates $[\mathrm{A}-\mathrm{C}]=1.7847,[\mathrm{~A}-\mathrm{G}]=4.8225,[\mathrm{~A}-\mathrm{T}]=1.0700,[\mathrm{C}-\mathrm{G}]=2.0396,[\mathrm{C}-\mathrm{T}]=6.4067,[\mathrm{G}-$ $T]=1.0000 ; \Gamma=0.9373$.) Both these criteria produced similar trees with high nodal supports for the most basal clades within the Heteromyinae. Figure 4 illustrates the ML topology ($\operatorname{lnL}=-3818.82$) with ML bootstrap and pP values mapped onto the major nodes. Under both ML and BI criteria, Fgb-17 clearly supports the monophyly of the subfamily Heteromyinae and the paraphyly of the genus Liomys, again with the L. pictus group clustering sister to members of the genus Heteromys. Bayesian analyses with and without the SIC matrix did not differ in topologies, and only slightly in some pP values. The MP analysis, however, generated different topologies based on the Fgb-17 data set with and without the appended SIC matrix. Without the indel-coding matrix, the single best MP tree (not shown; 444 steps; $\mathrm{CI}=0.786, \mathrm{RI}=0.924$) arranged H. nelsoni sister to H. gaumeri, which also appeared in the ML and BI topologies at low support values, but this relationship was not recovered with the two mtDNA genes. The Fgb-17 data set with the SIC matrix generated a single MP tree (not shown; 486 steps; CI=0.788, RI=0.925) that placed H. nelsoni more basal, and sister to the H. anomalus group; this is more congruent with the phlyogentic relationships recovered with the cyt b and CoI gene trees.

The En2 data set generated a K81uf $+\mathrm{I}+\Gamma$ model of evolution. ($\mathrm{A}=0.2636$, $\mathrm{C}=0.3192, \mathrm{G}=0.3026$, and $\mathrm{T}=0.1145$; tv rates $[\mathrm{A}-\mathrm{C}]=1.0000$, $[\mathrm{A}-\mathrm{G}]=5.5079$, [A-$T]=2.2816,[\mathrm{C}-\mathrm{G}]=2.2816,[\mathrm{C}-\mathrm{T}]=5.5079,[\mathrm{G}-\mathrm{T}]=1.0000 ; \mathrm{I}=0.9072 ; \Gamma=0.7251$.) Under

ML analysis a single tree was produced ($\operatorname{lnL}=-462.37$) with high bootstrap support for the monophyly of the subfamily Heteromyinae and paraphyly of Liomys (Figure 5). However, with so few phylogenetically informative characters in this short nuclear intron (146 bp), the ability to clearly define lower level relationships was diminished. Bayesian analysis yielded similar results, with high pP support values for the higher-level relationships. The En2 gene segment possessed only a few parsimony-informative characters, resulting in the inability to develop a MP tree due to excessively lengthy computation time.

The Myh2 sequence data was analyzed using ML and BI criteria under a $\operatorname{TrN}+\Gamma$ model of evolution. $(\mathrm{A}=0.2706, \mathrm{C}=0.2697, \mathrm{G}=0.3117$, and $\mathrm{T}=0.1479$; tv rates [$\mathrm{A}-$ $C]=1.0000,[A-G]=3.6270,[A-T]=1.0000,[C-G]=1.0000,[C-T]=10.0306,[G-T]=1.0000$; $\Gamma=0.4071$.) ML analysis of the Myh2 gene segment produced a tree ($\ln \mathrm{L}=-824.34$) that confirmed the monophyly of the genus Heteromys and paraphyly of the genus Liomys. However, this gene tree did not resolve a monophyletic heteromyine subfamily; the ML tree (Figure 6) showed the outgroup taxon Dipodomys clustering with Liomys taxa. However, the Bayesian tree (not shown) recovered the subfamily Heteromyinae as monophyletic ($\mathrm{pP}=0.87$). BI analysis also generated high support for the monophyly of the genus Heteromys and arranged the genus Liomys to be paraphyletic. For the Myh2 data sets with and without the SIC matrix, there was no notable difference in BI topologies or pP nodal supports. MP analysis was not conducted for Myh2 due to the excessive computation time required.

Phylogenetic analysis of the combined data set:

The combined data set contained 97 individuals with a total aligned sequence length of 3938 bp . The most complex model of evolution, GTR $+\mathrm{I}+\Gamma$, was applied to this data set for ML analysis ($\mathrm{A}=0.3041, \mathrm{C}=0.2669, \mathrm{G}=0.1433$, and $\mathrm{T}=0.2857$; tv rates [A-$\mathrm{C}]=1.5331,[\mathrm{~A}-\mathrm{G}]=11.8479,[\mathrm{~A}-\mathrm{T}]=2.6823,[\mathrm{C}-\mathrm{G}]=1.4379,[\mathrm{C}-\mathrm{T}]=21.7754,[\mathrm{G}-$ $T]=1.0000 ; \mathrm{I}=0.5155 ; \Gamma=0.7611$). BI utilized a mixed-model analysis wherein each gene partition was assigned its own model of evolution (cyt b and $\mathrm{CoI}=\mathrm{GTR}+\mathrm{I}+\Gamma ; F g b-17=$ GTR $+\Gamma ; E n 2=$ K81uf $+\mathrm{I}+\Gamma ;$ Myh2 $=\operatorname{TrN}+\Gamma)$. Figure 7 is the ML phylogram $(\operatorname{lnL}=-$ 35727.57) with bootstrap and pP values mapped onto the nodes. Under both likelihood and Bayesian criteria, the same topology was generated with high nodal support values. MP analysis produced 32 equally parsimonious trees (not shown; 6819 steps; CI=0.331, $\mathrm{RI}=0.778$), which were congruent with the ML and BI topologies. In addition to bootstrap and pP supports, Partitioned Bremer Support (PBS) values also were mapped onto the nodes (Figure 7 - cyt b/CoI/Fgb-17/En2/Myh2). The phylogenetic relationships estimated from the five-gene tree were most similar to the cyt b tree described above, but with better resolution among the basal and interior nodes of the tree.

Hypothesis testing:

A-priori hypotheses were tested using topology constraints and the ShimodaraHasegawa statistical test. A constraint resulting in a significantly worse tree score ($\mathrm{P} \leq 0.05$) was understood to depict an invalid relationship. Two topological constraints were tested: (1) the existing taxonomy, forcing the Liomys irroratus and L. salvini species groups to be sister clades and (2) monophyly of the species L. pictus. Both constraints resulted in significantly less likely trees; (1) $\mathrm{P}<0.0001$, (2) $\mathrm{P}<0.0001$.

Discussion

Phylogenetic analyses described herein support the findings of Vance (2006), Rogers and Vance (2005), and Hafner et al. 2007, all of whom documented paraphyly among members of the genus Liomys. Specifically, L. irroratus, L. pictus and L. spectabilis were more closely related to members of the genus Heteromys than to Liomys salvini (and by extension L. adspersus). Likewise, Rogers and Vance (2005) and Vance (2006) failed to recover Liomys pictus as a monophyletic group relative to L. spectabilis. Using three presumably unlinked markers and heavy sampling in the L. pictus-spectabilis complex, Vance (2006) hypothesized that six species-level taxa exist in this clade, rather than the two that are presently recognized. The current study uses sequence data from two additional genes and provides further evidence for these two instances of paraphyly within taxa currently assigned to the genus Liomys.

The three basal clades recovered in this study—(L. adspersus, L. salvini), ((L. pictus, L. spectabilis), L. irroratus), and (Heteromys)—also were recognized as monophyletic by Hafner et al. (2007) in their paper discussing phylogenetic relationships within the family Heteromyidae. As in previous studies based on sequence data (Rogers and Vance 2005; Vance 2006), Hafner et al. (2007) also recovered the genus Liomys as paraphyletic. To resolve this paraphyly, these authors suggested recognizing only a single genus within the subfamily Heteromyinae, with Heteromys having name priority. Hafner et al. (2007) further recommended that the morphological and ecological differentiation evident in heteromyines be reflected by a series of subgenera, although they did not propose any taxonomic changes.

In a paper that was largely overlooked for several decades, Von Lehmann and Schaefer (1979) recommended that L. salvini (and by extension L. adspersus) be assigned to a newly named subgenus Schaeferia. One justification for this change involved a detailed description of the sperm morphology possessed by L. salvini together with a summary of Genoways' (1973) drawings of sperm heads for all five Liomys species. Von Lehmann and Schaefer (1979) reiterated the observation by Genoways (1973) that L. adspersus and L. salvini possess blunt and rounded sperm heads compared to other species of Liomys (irroratus, pictus and spectabilis), which have elongate and tapered heads (Figure 57—Genoways 1973). Von Lehmann and Schaefer (1979) also remarked that L. adspersus and L. salvini possess similar karyotypes that together, differ from other species of heteromyines (Genoways 1973). Under their recommendations, the genus Liomys would encompass two subgenera: Liomys, which would include L. irroratus, L. pictus, and L. spectabilis, and Schaeferia, which would include L. adspersus and L. salvini (Von Lehmann and Schaefer 1979).

Taxonomic Recommendations

Given that the genus Liomys is paraphyletic, I agree with Hafner et al. (2007) that the existing taxonomy is unsatisfactory. As suggested by Anderson et al. (2006), a second option in dealing with this paraphyly would be to split Liomys into two genericlevel entities and then retain Heteromys as currently configured. The ((L. pictus, L. spectabilis), L. irroratus) clade has name priority for Liomys. Therefore, this approach would place L. adspersus and L. salvini in Schaeferia, which would be elevated to the generic level (Von Lehmann and Schaefer 1979).

I favor the latter approach for two reasons. First, this classification would convey greater genealogical information and more accurately reflect the biodiversity that exists in the heteromyine subfamily. Second, it would require fewer name changes and therefore would provide more nomenclatural stability. Table 2 summarizes my taxonomic recommendations.

Literature Cited

Alexander, L. F., and B. R. Riddle. 2005. Phylogenetics of the New World rodent family Heteromyidae. Journal of Mammalogy 86:366-379.

Allen, J. A., and F. M. Chapman. 1897. On mammals from Yucatan with descriptions of new species. Bulletin of the American Museum of Natural History 9:1-12.

Anderson, R. P. 1999. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modeling 162:211-232.

Anderson, R. P. 2003. Taxonomy, distribution, and natural history of the genus Heteromys (Rodentia: Heteromyidae) in western Venezuela, with the description of a dwarf species from the Peninsula de Paraguana. American Museum Novitates 3396:1-43.

Anderson, R. P., M. Weksler, and D. S. Rogers. 2006. Phylogenetic analyses of spiny pocket mice (Heteromyidae: Heteromyinae) based on allozymic and morphological data. Journal of Mammalogy 87:1218-1233.

Coates, A. G., J. B. C. Jackson, L. S. Collins, T. M. Cronin, H. J. Dowsett, L. M.Bybell, P. Jung, and J. A. Orbando. 1992. Closure of the Isthmus of Panama: the nearshore marine record of Costa Rica and western Panama. Geological Society of America Bulletin 104:814-828.

Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792-1797.

Engstrom, M. D., H. H. Genoways, and P. K. Tucker. 1987. Morphological variation, karyology, and systematic relationships of Heteromys gaumeri (Rodentia:

Heteromyidae). Pages 289-303 in Studies in Neotropical mammalogy: essays in
honor of Philip Hershkovitz. Fieldiana: Zoology, new series (B. D. Patterson, and R. M. Timm, eds.).

Felsenstein, J. 1985. Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Genoways, H. H. 1973. Systematics and evolutionary relationships of spiny pocket mice, genus Liomys. Special Publications of the Museum, Texas Tech University 5:1-368.

Goldman, E. A. 1911. Revision of the spiny pocket mice (genera Heteromys and Liomys). North American Fauna, 34:1-70.

González, M. 2005. Phylogenetic relationships of forest spiny pocket mice (Genus Heteromys) inferred from mitochondrial and nuclear markers with implications for species boundaries. M.S. thesis. Brigham Young University, Provo, Utah.

Gotoh, O. 1995. A weighting system and algorithm for aligning many phylogenetically related sequences. Computer Applications in the Biosciences 11:543-551.

Graham, A. 1992. Utilization of the isthmian land bridge during the Cenozoicpaleobotanical evidence for timing, and the selective influence of altitudes and climate. Review of Paleobotany and Palynology 72:119-128.

Gray, J. E. 1868. Synopsis of the species of Saccomyinae, or pouched mice in the collection of the British Museum. Proceedings of the Zoological Society of London 1868:199-206.

Guindon, S., and O. Gascuel. 2003. PhyML: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696704.

Hafner, J. C., and M. S. Hafner. 1983. Evolutionary relationships of heteromyid rodents. Great Basin Naturalist 7:3-29.

Hafner, J. C., J. E. Light, D. J. Hafner, M. S. Hafner, E. Reddington, D. S. Rogers, and B. R. Riddle. 2007. Basal clades and molecular systematics of Heteromyid rodents. Journal of Mammalogy 88:1129-1145.

Harris, W. P., Jr. 1932. Four new mammals from Costa Rica. Occasional Papers of the Museum of Zoology, University of Michigan 248:1-6.

Hershkovitz, P. 1972. Notes on New World monkeys. London: Zoological Society of London.

Hillis, D. M., and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42:182-192.

Homan, J. A., and H. H. Genoways. 1978. An analysis of hair structure and its phylogenetic implications among heteromyid rodents. Journal of Mammalogy 59:740-760.

Hooghiemstra, H. 1994. Pleistocene-Quaternary floral migration, evolution of northern Andean ecosystems and climatic change: implications from the closure of the Panamanian isthmus. Profile 7:413-425.

Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755.

Irwin, D. M., T. D. Kocher, and A. C. Wilson. 1991. Evolution of the cytochrome b gene in mammals. Journal of Molecular Evolution 32:128-134.

James, G. T. 1963. Paleontology and nonmarine stratigraphy of the Cuyama Valley Badlands, California. Part I. Geology, faunal interpretations, and systematic
descriptions of Chiroptera, Insectivora and Rodentia. University of California Publications in Geological Sciences 45:i-iv, 1-171.

Katoh, K., K. Kuma, H. Toh, and T. Miyata. 2005. MAFFT version 5: improvement in accuracy of multiply sequence alignment. Nucleic Acids Research 33:511-518. Kishino, H., J. L. Thorne, and W. J. Bruno. 2001. Performance of a divergence time estimation method under a probabilistic model of rate estimation. Molecular Biology and Evolution 18:352-361.

Light, J. E., and M. S. Hafner. 2008. Codivergence in heteromyid rodents (Rodentia: Heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: Anoplura). Systematic Biology 57:449-465.

Lyons, L. A., T. F. Laughlin, N. G. Copeland, N. A. Jenkins, J. E. Womack, and S. J. O'Brien. 1997. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nature Genetics 15.

Marshall, L. G., S. D. Webb, J. J. Sepkoski, Jr., and D. M. Raup. 1982. Mammalian evolution and the Great American Interchange. Science 215:1351-1357.

Merriam, C. H. 1902. Twenty new pocket mice (Heteromys and Liomys) from Mexico. Proceedings of the Biological Society of Washington 15:41:50.

Müller, K. 2005. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Applied Bioinformatics 4:65-69.

Notredame, C., D. G. Higgins, and J. Heringa. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302:205-217.

Nylander, J. A. A., F. Ronquist, J. P. Huelsenbeck, and J. L. Nieves-Aldrey. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology 53:47-67.

Palumbi, S. R. 1996. Nucleic acids I: The polymerase chain reaction. Pages 205-247 in Molecular systematics, $2^{\text {nd }}$ ed. (D. M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer, Sunderland, Massachusetts.

Patterson, B., and R. Pascual. 1968. The fossil fauna of South America. Quarterly Review of Biology 43:409-451.

Patton, J. L. 2005. Family Heteromyidae. Pages 477-485 in Mammal Species of the World: a taxonomic and geographic reference, $2^{\text {nd }}$ ed. (D. E. Wilson, and D. M. Reeder, eds.). Washington, DC: Smithsonian Institution Press.

Posada D., and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817-818.

Rambaut, A., and A. J. Drummond. 2007. Tracer v1.4: MCMC trace analysis tool. University of Edinburgh and University of Auckland. (http://tree.bio.ed.ac.uk/software/tracer/)

Rogers, D. S. 1990. Genic evolution, historical biogeography, and systematic relationships among spiny pocket mice (subfamily Heteromyinae). Journal of Mammalogy 71:668-685.

Rogers, D. S., and V. L. Vance. 2005. Phylgenetics of spiny pocket mice (genus Liomys): analysis of cytochrome b based on multiple heuristic approaches. Journal of Mammalogy 86:1085-1094.

Schmidly, D. J., K. T. Wilkens, and J. N. Derr. 1993. Biogeography. Pages 319-356 in Biology of the Heteromyidae. Special Publications, American Society of Mammalogists (H. H. Genoways, and J. H. Brown, eds.).

Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16:1114-1116.

Simmons, M. P., and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49:369-381.

Smith, M. F., and J. L. Patton. 1993. The diversification of South American muroid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnaean Society 50:149-177.

Sorensen, M. D., and E. A. Franzosa. 2007. TreeRot, version 3. Boston University, Boston, MA.

Spradling T. A., S. V. Brant, M. S. Hafner, and C. J. Dickerson. 2004. DNA data support a rapid radiation of pocket gopher genera (Rodentia: Geomyidae). Journal of Mammalian Evolution 11:105-125.

Stehli, F. G., and S. D. Webb. 1985. The Great American Biotic Interchange. Plenum Press, New York.

Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA.

Thomas, O. 1901. New South American Sciuri, Heteromys, Cavia, and Caluromys. Annals and Magazine of Natural History 7:192-196.

Thompson, J. W. 1815. Description of a new species of the genus Mus, belonging to the section of pouched rats. Transactions of the Linnaean Society, London 11:161163.

Thorne, J. L., and H. Kishino. 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology 51:689-702.

Vance, V. L. 2006. Delimiting species boundaries within the Liomys pictus-spectablis complex (Rodentia: Heteromyidae). M.S. thesis. Brigham Young University, Provo, Utah.

Von Lehmann, E., and H. E. Schaefer. 1979. Cytological-taxonomic studies on rodents from Honduras (sperm morphology and comparative cytochemics). Zeitschrift fur Zoologische Systemakik und Evolutionsforschung 17:226-236.

Wahlert, J. H. 1993. The fossil record. Pages 1-37 in Biology of the Heteromyidae. Special Publication, American Society of Mammalogists (H. H. Genoways, and J. H. Brown, eds.).

Wallace, A. R. 1876. The Geographic Distribution of Animals. Harper and Borthers, New York, Vol. 1.

Webb, S. D., and L. G. Marshall. 1982. Historical biogeography of recent South American land mammals. Pages 39-52 in Mammalian biology in South America. Special Publication Series, Pymatuning Laboratory of Ecology, University of Pittsburgh (M. A. Mares and H. H. Genoways, eds.).

Webb, S. D., and A. Rancy. 1996. Late Cenozoic evolution of the Neotropical mammal fauna. Pages 335-358 in Evolution and environment in tropical America. (B. C.

Jackson, A. F. Budd, and A. G. Coates, eds.). University of Chicago Press, Chicago, Illinois.

Whiting, A. S., A. M. Bauer, and J. W. Sites, Jr. 2003. Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Molecular Phylogenetics and Evolution 29:583-598.

Wickliffe, J. K., F. G. Hoffmann, D. S. Carroll, Y. V. Dunina-Barkovshaya, R. D. Bradley, and R. J. Baker. 2003. Intron 7 (FGB): a nuclear DNA phylogenetic marker for mammals. Occasional Papers, Museum Texas Tech University 219:16.

Williams, D. F., H. H. Genoways, and J. K. Braun. 1993. Taxonomy. Pages 38-196 in Biology of the Heteromyidae. Special Publications, American Society of Mammalogists (H. H. Genoways, and J. H. Brown, eds.).

Wood, A. E. 1935. Evolution and relationships of the heteromyid rodents with new forms from the Tertiary of western North America. Annals of Carnegie Museum 24:73-262.

Yang, Z. 1997. PAML: a program package for phylogenetics analysis by maximum likelihood. Computer Applications in the Biosciences 13:555-556.

Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin. www.bio.utexas.edu/faculty/antisense/garli/Garli.html

Table 1: PCR conditions used for cytochrome b (cyt b), cytochrome oxidase I (CoI), β-fibrinogen (Fgb-17), Engrailed protein II (En2), and Myosin heavy chain II (Myh2). Final volume $=25 \mu \mathrm{l} . \mathrm{MM}=$ Master Mix. See text for primer sources.

Gene	PCR conditions	Primer	Primer sequence
cyt b	$\begin{aligned} & 94^{\circ} / 3 \min \mid 39 \text { cycles: } 94^{\circ} / 1 \mathrm{~min} ; 50^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \mid \\ & 72^{\circ} / 3 \mathrm{~min} \\ & 24 \mu \mathrm{MM}+1 \mu \mathrm{DNA} \end{aligned}$	$\begin{aligned} & \text { L14724 } \\ & \text { H15915 } \\ & \text { CB3H } \\ & \text { MVZ16 } \\ & \text { H15149 } \\ & \text { F1 } \end{aligned}$	5’-CGA AGC TTG ATA TGA AAA ACC ATC GTT G-3' 5^{\prime}-AAC TGC AGT CAT CTC GGG TTT ACA AGA C- 3^{\prime} 5^{\prime}-GGC AAA TAG GAA RTA TCA TTC-3' 5'-TAG GAA RTA TCA YTC TGG TTT RAT-3' 5^{5}-AAA CTG CAG CCC CTC AGA ATG ATA TTT GTC CTC A-3' 5^{\prime} '-TGA GGA CAR ATA TCH TTY TGR GG-3'
CoI	$94^{\circ} / 2 \mathrm{~min} \mid 4$ cycles: $94^{\circ} / 1 \mathrm{~min} ; 47^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min}$ \| 34 cycles: $94^{\circ} / 1 \mathrm{~min} ; 54^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \mid 72^{\circ} / 10 \mathrm{~min}$ $24 \mu \mathrm{l}$ MM $+1 \mu \mathrm{l}$ DNA	CoI-5285F CoI-6929R MCo-173F MCo-1345R MCo-1480R CoI-R1 CoI-F3	5^{\prime}--CCY CTG TNY TTA GAT TTA CAG TCT A-3' 5^{\prime}-ACA ARG TTA TGT AAT DDT TTT ACT A-3' 5’-TAT TAG GNG AYG AYC ARA T-3' 5'-TGT TGW GGG AAR AAD GTT A-3' 5'-GCT TCT CAR ATT ATR WAR ATT AT-3' 5^{\prime} '-ATG TAR ACT TCA GGG TGA C-3' 5'-GAT CWT TMT TAA TTA CTG CTG-3'
$\begin{aligned} & \text { Fgb- } \\ & 17 \end{aligned}$	$\begin{aligned} & 85^{\circ} \text { Hot Start }\left\|94^{\circ} / 10 \min \right\| 32 \text { cycles: } 94^{\circ} / 1 \mathrm{~min} ; \\ & 65^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \\ & 19.36 \mu \mathrm{l} \text { MM }+3 \mu \mathrm{l} \text { DNA }+2.64 \mu \mathrm{l} \text { dNTP Mix } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B17 } \\ \text { Fgb-571F } \end{array}$	5’-ACC CCA GTA GTA TCT GCC GTT TGG AT-3’ 5’-CGT AGC CTT GTG CTT GCA ATA G-3'
En2	$\begin{aligned} & 94^{\circ} / 10 \mathrm{~min} \mid 32 \text { cycles: } 94^{\circ} / 1 \min ; 57^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \text { min } \\ & 12.5 \mu \mathrm{l} \text { MM }+12.5 \mu \text { DNA }^{(1: 10)} \end{aligned}$	$\begin{array}{\|l} \hline \text { EN2-F } \\ \text { EN2-R } \end{array}$	5'-CCC GAA AAC CAA AGA AGA AG-3' 5^{\prime}-GTT CTG GAA CCA AAT CTT GAT C- 3 '
Myh2	$\begin{aligned} & \hline 85^{\circ} \text { Hot Start }\left\|94^{\circ} / 10 \min \right\| 32 \text { cycles: } 94^{\circ} / 1 \mathrm{~min} ; \\ & 62^{\circ} / 1 \mathrm{~min}, 72^{\circ} / 1 \mathrm{~min} \\ & 9.85 \mu \mathrm{l} \mathrm{MM}+12.5 \mu \mathrm{l} \text { DNA }(1: 10)+2.64 \mu \mathrm{l} \text { dNTP Mix } \end{aligned}$	$\begin{array}{\|l} \hline \text { MYH2-F } \\ \text { MYH2-R } \end{array}$	5'-GAA CAC CAG CCT CAT CAA CC-3' 5’-TGG TGT ССТ GCT ССТ TCT TC-3’

Table 2: Taxonomic arrangements among members of the subfamily Heteromyinae by Hall (1981) and this study. Given paraphyly within Liomys, Hafner et al. (2007) proposed that all heteromyines be recognized under the name Heteromys. See text for additional information.

Hall 1981	This study
Subfamily Heteromyinae	Subfamily Heteromyinae
Genus Heteromys	Genus Heteromys
Subgenus Heteromys	Subgenus Heteromys
H. anomalus group	H. anomalus group
H. anomalus	H. anomalus (H. a. anomalus \& H. a. oasicus)
H. australis	H. australis
H. desmarestianus group	H. catopterius*
H. desmarestianus	H. teleus
H. gaumeri	H. desmarestianus group
H. oldmani	H. desmarestianus
H. lepturus	H. goldmani
Subgenus Xylomys	H. nubicolens
H. nelsoni	H. oresterus
H. oresterus	Candidate species A, B, C, D, E
	H. gaumeri group
	H. gaumeri
	Subgenus Xylomys
H. nelsoni	
Genus Liomys	Genus Liomys
L. pictus group	L. irroratus
Lirroratus	L. pictus**
L. pictus	L. spectabilis
L. spectabilis	Genus Schaeferia
L. salvini group	S. adspersus***
L. adspersus	S. salvini
L. salvini	

*No sequence data were available for H. catopterius; placement is tentative pending future phylogenetic investigations. **Rogers and Vance (2005) and Vance (2006) proposed several candidate species within L. pictus. ${ }^{* * * N o ~ n u c l e a r ~ s e q u e n c e ~ d a t a ~ w e r e ~ a v a i l a b l e ~ f o r ~ S . ~ a d s p e r s u s ~ i n ~ t h i s ~ s t u d y, ~ b u t ~ b a s e d ~ o n ~}$ mitochondrial sequence data (this study) and morphological evidence (Anderson et al. 2006), S. adspersus is sister to S. salvini.

Figure 1: Map of Mexico and Central America with an insert of northern South America. Dots indicate collecting sites of Heteromys; triangles represent collecting localities of Liomys. Collecting sites of H. teleus (locality 60), a single H. australis from Ecuador (locality 85), and outgroup taxa are not shown. Numbers correspond to localities as listed in the Appendix.

Figure 2: Phylogram ($\operatorname{lnL=}=-15564.98$) generated from ML analysis of the cyt b data set with 170 samples (redundant haplotypes omitted from this analysis) representing the subfamily Heteromyinae as well as outgroup taxa Chaetodipus pencillatus, Dipodomys ordii, and Perognathus apache. ML bootstrap support (Bp) values (based on 1000 iterations) and BI posterior probabilities (pP) values (based on 50\% majority rule for the consensus tree) have been mapped onto the major nodes (Bp values ≥ 70 are above branches; pP values ≥ 0.95 are represented by a dot).

Figure 3: Phylogram ($\operatorname{lnL}=-15877.24$) generated from $M L$ analysis of the CoI data set with 97 taxa representing the subfamily Heteromyinae as well as these outgroup taxa Chaetodipus pencillatus, and Dipodomys ordii. ML and BI support values are depicted as in Fig. 2.

Figure 4: Phylogram ($\operatorname{lnL}=-3818.82$) generated from ML analysis of the $7^{\text {th }}$ intron of the β-fibrinogen (Fgb-17) data set with 97 samples representing the subfamily Heteromyinae as well as outgroup taxa as listed in Fig. 3. Clades labeled A-E correspond
to the five H. desmarestianus lineages, as denoted in Figs. 2 and 3. ML and BI support values are depicted as in Fig. 2.

Figure 5: Phylogram (lnL= -462.37) generated from ML analysis of the En2 data set with 97 taxa representing the subfamily Heteromyinae as well as outgroup taxa as listed in Fig. 3. Clades labeled A-E correspond to the five H. desmarestianus lineages, as denoted in Figs. 2 and 3. ML and BI support values are depicted as in Fig. 2.

Figure 6: Phylogram ($\operatorname{lnL}=-824.34$) generated from ML analysis of the Myh2 data set with 97 taxa representing the subfamily Heteromyinae as well as outgroup taxa as listed in Fig. 3. Clades labeled A-E correspond to the five H. desmarestianus lineages, as denoted in Figs. 2 and 3. ML and BI support values are depicted as in Fig. 2.

Figure 7: Phylogram ($\operatorname{lnL}=-35727.57$) generated from ML analysis of the combined (5gene) data set with 97 taxa representing the subfamily Heteromyinae as well as outgroup taxa as listed in Fig. 3. ML and BI support values are depicted as in Fig. 2. Additionally, partitioned Bremmer support (PBS) values are below each node (cyt b/CoI/Fgb17/En2/Myh2). Boxes mapped onto the nodes represent indels in the Myh2 sequence alignment. One additional indel (not mapped) was a one-bp deletion in two of the Candidate D samples.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

- 50 changes

Appendix: List of Heteromyinae and outgroup taxa included in this study with locality number, collecting location (Country: Province: locality), and specimen identification numbers. Geographic abbreviations are as follows: $\mathrm{BE}=\mathrm{Belize}$; $\mathrm{CR}=$ Costa Rica; EC = Ecuador; ES = El Salvador; GU = Guatemala; MX = Mexico; NI = Nicaragua; PN = Panama; VZ = Venezuela. Locality numbers 1-58 are congruent with those of González and Rogers (manuscript in preparation-their locality \#51 is not represented in this study), and localities 59-97 are new to this study. Museum abbreviations are as follows: AMNH = American Museum of Natural History; ASNHC = Angelo State Natural History Collections; BYU = Brigham Young University; CM = Carnegie Museum of Natural History; CMC = Collecion de Mamiferos CEAMISH (Centro de Educación Ambiental e Investigación Sierra de Huautla),
Universidad Autónoma del Estado de Morelos; EBRG = Estación Biológica Rancho Grande; KU = Museum of Natural History, University of Kansas; LACM = Natural History Museum of Los Angeles County; LSUMZ = Louisiana State University Museum of Zoology; MVZ = Museum of Vertebrate Zoology; ROM = Royal Ontario Museum; TCWC = Texas Cooperative Wildlife Collection, Texas A\&M University; USNM = National Museum of Natural History.

Locality No.	Current Name	Sampling Locality	Collector No.	Museum Voucher No.	Karyotype, Field, or Tissue No.
1	H. anomalus	VZ: Sucre: 40 km NW Caripito, 250 m, Andres Eloy Blanco VZ: Miranda: 25 km N Altagracia de Oricuto, 500 m , Acevedo VZ: Miranda: 40 km N Altagracia de Oricuto, 500 m, Acevedo PN: Darién: Cerro Pirre, Parque Nacional Darien	MDE 1999	M 78166	AK 3411
			$\text { MDE } 2033$	CM 78167	$\text { AK } 3436$
			MDE 2034	CM 78168	AK 3437
			MDE 2062	CM 78169	AK 3449
2 a	H. anomalus		MDE 2087	CM 78170	AK 3468
			MDE 2091	TCWC 37494	AK 3472
			MDE 2130	CM 78172	AK 3483
2b	"		MDE 2129	TCWC 39720	AK 3482
3	H. australis			ROM 104356	F 38215
				ROM 104357	F 38216

$\stackrel{\rightharpoonup}{\sim}$

4	H. australis
5	Candidate species B
6a	Candidate species B
6b	Candidate species B
6c	Candidate species B
7	Candidate species B
8	H. desmarestianus
9 a	H. desmarestianus
9b	"
10a	H. desmarestianus
10b	"
11a	H. desmarestianus
11b	H. desmarestianus
11c	H. desmarestianus
11d	H. desmarestianus
12a	H. desmarestianus
12b	H. desmarestianus
13	H. desmarestianus

PN: Darién: abt. 6 km NW Cana, E slope Cerro Pirre, 1200 m
MX: Oaxaca: 23 mi . SSW (by road) Tuxtepec, 250 ft
MX: Veracruz: Ojo de Agua, 1400 ft
MX: Veracruz: Ojo de Agua, 600 m
MX: Veracruz: Ojo de Agua
MX: Veracruz: 1 mi. NW Motzorongo, 700 ft
MX: Veracruz: near Los Tuxtlas
MX: Oaxaca: Vista Hermosa, 1000 m
MX: Oaxaca: Vista Hermosa, Distrito Ixtlán, 1000 m
MX: Chiapas: 12 km N (by road) Berriozábal
"
MX: Chiapas, Pozo de Petroleo, 7 mi. N (by road) Berriozábal
MX: Chiapas: 12.5 km S Palenque
MX: Chiapas: 1.2 km E Ruinas de Palenque
MX: Chiapas: 9 km S Palenque
MX: Chiapas: 6.6 km S Palenque
MX: Chiapas: 6 km E Rayon
MX: Chiapas: 9 km SE Rayon
"
MX: Campeche: 25 km N Xpujil

MSH 1187	LSUMZ 25452	TK 22565
DSR 936	AMNH 254697	AK 3110
DSR 921	AMNH 254693	AK 3098
EA 823	BYU 16042	
EA 836	BYU 16043	
MDE 1010	AMNH 254694	
DSR 922	CM 79532	AK 3099
DSR 923	CM 79533	AK 3100
HD1	-99	
DSR 934	CM 79530	AK 3108
DSR 1685	MVZ 161229	
ASK 660	ASNHC 1424	
ASK 689	ASNHC 1425	
MDE 5003	ASNHC 3515	LAF 1689
DSR 1686	MVZ 161230	
	ROM 96096	FN 29887
	ROM 96105	FN 29896
ASK 29	ASNHC 1440	
ASK 31	ASNHC 1441	
ASK 49	ASNHC 5826	
ASK 51	ASNHC 1426	
	ROM 97542	FN 33018
ASK 589	ASNHC 1431	
ASK 591	ASNHC 1432	
	ROM 96089	FN 29880

14	H. desmarestianus	MX: Campeche: 10 km N El Refugio	ROM 97050	FN 30853
	"	"	ROM 97051	FN 30854
	"	"	ROM 97052	FN 30855
	"	"	ROM 97053	FN 30856
15	H. desmarestianus	MX: Quintana Roo: 1 km N Noh-Bec	ROM 97520	FN 30995
	"	"	ROM 97521	FN 30996
	"	"	ASNHC 7051	FN 32561
	"	"	ASNHC 7052	FN 32562
		BE: Stann Creek Dist: 7.7 km WNW Quam		
16a	H. desmarestianus	Bank, Cockscomb Basin	CM 91960	AK 7664
	"		CM 91951	AK 7665
16b		BE: Stann Creek Dist: 6.8 km WNW Quam Bank, Cockscomb Basin	CM 91980	AK 7688
	H. desmarestianus H. desmarestianus	BE: Stann Creek Dist: 3.4 km WNW Quam Bank, Cockscomb Basin	CM 91988	AK 7663
17a	H. desmarestianus	BE: Toledo Dist: 1 km NNE Salamanca, Forestry Camp, Columbio Forest Reserve	CM 91991	AK 7540
17b	H. desmarestianus	BE: Toledo Dist: 2.4 km NNW Salamanca, Forestry Camp, Columbio Forest Reserve	CM 91989	AK 7555
	H. desmarestianus	BE: Toledo Dist: 2.1 km NNE Salamanca, Forestry Camp, Columbio Forest Reserve	CM 91994	AK 7586
17c			CM 91993	AK 7588
		"	CM 91995	AK 7589
18	H. desmarestianus	GU: Baja Verapaz: 5 km E Puruhla	ROM 98405	FN 31394
		"	ROM 98406	FN 31395
	"	"	ROM 98407	FN 31396
	"	"	ROM 98408	FN 31397
	"	"	-99	FN 31402
19	H. desmarestianus	GU: El Peten: Tikal	ROM 99292	FN 31842

20	"			ROM 99293	FN 31843
		"		ROM 99294	FN 31844
	H. desmarestianus	GU: El Peten: Biotope Cerro Cahui, El Remate		ROM 99639	FN 32211
	"			ROM 99603	FN 32272
	"	"		ROM 99604	FN 32273
	"	"		ROM 99605	FN 32274
21		GU: El Peten: Campo los Guacamayos, 40 km N Biotopo Laguna del Tigre		ROM 99469	FN 32318
	H. desmarestianus			ROM 99504	FN 32353
22		GU: Sacatepequez: 5 km W San Miguel			
	H. desmarestianus	Duenas		ROM 98265	FN 31254
				ROM 98266	FN 31255
	"	"		ROM 98267	FN 31256
	"			ROM 98269	FN 31258
		ES: Santa Ana: Parque Nacional			
	H. desmarestianus	Montecristo, Bosque Nebuloso, 2,200 m		ROM 101369	F 35547
				ROM 101389	F 35567
	"			ROM 101390	F 35568
23		CR: Alajuela: 10 km E Sucre, Parque			
24	H. desmarestianus	Nacional, Juan Castro Blanco		ROM 113310	F 48617
				ROM 113311	F 48618
25	H. desmarestianus	CR: Cartago: Iztaru: Cerros de la Carpintera		ROM 113130	F 48436
	"			ROM 113131	F 48437
	"			ROM 113132	F 48438
		CR: Cartago: Catie: 4 km SE (by road)			
26	H. desmarestianus	Turrialba, 600 m	FAR 111	ROM 97324	
	"	"	FAR 112	ROM 97325	
	-	"	FAR 113	ROM 97326	

27	"	"	FAR 114	ROM 97327	F 48552
	H. desmarestianus	CR: Cartago: Río Reventazón, 5.6 km SE (by road) Turrialba, 450 m	DSR 2153	MVZ 164823	
	"	"	DSR 2154	MVZ 164824	
	"	"	DSR 2166	MVZ 164825	
	"	"	DSR 2167	MVZ 164826	
	"	"	DSR 2246	MVZ 164827	
28	H. desmarestianus	CR: Guanacaste: Volcán Santa Maria		ROM 113245	
29a		CR: Guanacaste: 5.0 km NE (by road)			
	H. desmarestianus	Tilarán, 650-675 m	DSR 2121	MVZ 164839	
	"	"	DSR 2122	MVZ 164840	
	"	"	DSR 2145	MVZ 164842	
	$"$	"	DSR 2235	MVZ 164843	
		CR: Guanacaste: 4.1 km NE (by road)			
29b	H. desmarestianus	Tilarán, 650 m	DSR 2123	MVZ 164828	
	"	"	DSR 2124	MVZ 164829	
	"	"	DSR 2125	MVZ 164830	
		"	DSR 2134	MVZ 164831	
			DSR 2138	MVZ 164832	
30	H. desmarestianus	CR: Puntarenas: 1 km N, 5 km W Palmar Norte	MSH 1260	LSUMZ 28354	M-1833
		CR: San José: Bajo de Iglesia, SW Volcán			
31	II	Irazu, Cascajal de Coronado	EA 21	BYU 15197	
			EA 22	BYU 15198	
		CR: San José: Parque Nacional Braulio			
32	H. desmarestianus	Carillo, Moravia Cerro Honduras	EA 78	BYU 15195	
			EA 79	BYU 15196	

33	H. desmarestianus	CR: Guanacaste, Area de Conservación Guanacaste, ca. 20 km NNE Liberia, Pailas, Sendro Palas near Rio Colorado, 800 m	MK 00-112	$\text { KU } 158615$	
34 35	H. desmarestianus H. goldmani	NI: Esteli MX: Chiapas: 15.5 mi SE (by road) Mapastepec, 150 ft	MDE 1224	ROM 112284 CM 79529	F 48170 AK 3150
36	H. desmarestianus H. goldmani	MX: Chiapas: El Triunfo, 10 km SSE Finca Prusia	LJB 3108 LJB 3109 MDE 5049	LACM 74200 LACM 74201 ASNHC 3523	LAF 1773 LAF 1774 LAF 1790
37	H. oresterus	CR: Cartago: Catie: 4 km (by road; Pan American Hwy) Villa Mills		ROM 102753	
38	H. oresterus	CR: San José: 2.2 km E (by road) La Trínidad de Dota, 2600 m	DSR 2092 DSR 2107 DSR 2244	MVZ 164861 MVZ 164863 MVZ 165786	
39	H. oresterus	CR: San José: Cerro la Muerte, San Gerardo de Dota "		ROM 113208 ROM 113229	$\begin{aligned} & \text { F } 48514 \\ & \text { F } 48535 \end{aligned}$
40	H. nubicolens	CR: Guanacaste: Monteverde, Campbell's Woods	DSR 1744 DSR 1745	MVZ 161224 MVZ 161225	
41	H. nubicolens	CR: Puntarenas, Monte Verde Biological Station, elevation 1,655 m		ROM 113257	F 48564
42	Candidate species A	CR: Limón: 4.6 km W (by road) Limón, 25 m	DSR 2150	MVZ 164844	
			DSR 2151	MVZ 164845	
	"	"	DSR 2155	MVZ 164846	
	"	"	DSR 2163	MVZ 164847	
	"		DSR 2165	MVZ 164849	

43	"	"	DSR 2245	MVZ 164851	
	Candidate species A	CR: Alajuela: 7 km NE (by road) Quesada, 2297 m	DJH 2469	LSUMZ 26357	M-607
		CR: Puntarenas: 1.1 km SE (by road)			
44	Candidate species C	Ciudad Nielly, 25 m	DSR 2193	MVZ 164852	
		"	DSR 2195	MVZ 164854	
	"	"	DSR 2222	MVZ 164865	
	$"$	"	DSR 2242	MVZ 164856	
		PN: Chiriqui: Ojo de Agua, 2 km N Santa			
45	Candidate species C	Clara		ROM 104296	F 38147
		"		ROM 104297	F 38148
	"	"		ROM 104307	F 38158
	"	"		ROM 104308	F 38159
	"	"		ROM 104324	F 38175
	"	"		ROM 104325	F 38176
	"	"		-99	F 38177
	"			ROM 104326	F 38178
		PN: Darién: abt. 6 km NW Cana, E slope	DJH 2427		
46	Candidate species D	Cerro Pirre, 1400 m		LSUMZ 25451	
47	H. gaumeri	MX: Quintana Roo: 7 km NE Xul-Ha		ASNHC 7127	FN 32575
				ASNHC 7128	FN 32576
48	H. gaumeri	MX: Campeche: 7 km N Escarcega		ASNHC 7118	FN 32736
49	H. gaumeri	MX: Quintana Roo: Puerto Morelos		ASNHC 7127	AJ 389536
50	H. nelsoni	MX: Chiapas: Cerro Mozotal, 2930 m	DSR 7181	CMC 391	
	"	"	DSR 7187	BYU 20643	
	"	"	DSR 7189	BYU 20644	
	"	"	DSR 7191	CMC 396	
	"	"	DSR 7212	CMC 398	

59c	H. anomalus	VZ: Falcón: Serranía de San Luis; Parque Nacional J. C. Falcón, Sector El Chorro, ca. 9 km N Cabure	JOG 4560	EBRG 25309
59d	"	"	JOG 4573	EBRG 25399 AMNH 276521
	"	"	JOG 4574	/ EBRG 25400
	"	"	JOG 4575	EBRG 25401
	"	"	JOG 4576	EBRG 25402 AMNH 276524
	"	"	JOG 4583	/ EBRG 25408
	H. anomalus	VZ: Falcón: Serranía de San Luis; Parque Nacional J. C. Falcón, Sector Cumbres de Uria, ca. 9 km N Cabure	JOG 4570	AMNH 276519 / EBRG 25310
	"	"	JOG 4571	EBRG 25397 AMNH 276520
	"	"	JOG 4572	/ EBRG 25398
	"	"	JOG 4578	EBRG 25404 AMNH 276574
	"	"	RPA 300	/ EBRG 25419
	"	"	RPA 301	EBRG 25312 AMNH 276575
	"	"	RPA 302	/ EBRG 25313
	"	"	RPA 303	no catalog \# AMNH 276583
	"	"	RPA 316	/ EBRG 25428
	"	"	RPA 317	EBRG 25314
	"	"	RPA 318	EBRG 25315
	"	"	RPA 319	EBRG 25429
	"	"	RPA 325	EBRG 25434
				AMNH 276587
	"	"	RPA 326	/ EBRG 25316
	"	"	RPA 327	EBRG 25317

	"	"	RPA 328	AMNH 276588 / EBRG 25318	
60	H. australis	EC: Esmeraldas: 2 km S Alto Tambo		ROM 105784	F 40077
61	H. australis	PN: Darién: Cana		ROM 116253	F 48794
	"	"		ROM 116302	F 48843
62	H. desmarestianus	ES: Santa Ana: Parque Nacional Montecristo, Los Planes		ROM 101505	F 35683
		"		ROM 101510	F 35688
63	H. desmarestianus	CR: Guanacaste: Volcán Santa Maria		ROM 113246	F 48553
64	H. desmarestianus	CR: Alajuela: 12.7 km NE Zarcero		ROM 113293	F 48600
		CR: Puntarenas: Sainta Elena, Monte			
65	H. nubicolens	Verde Station		ROM 114272	F 48710
66a	Candidate species D	PN: Darién: Mount Pirre		ROM 116257	F 48798
		"		ROM 116258	F 48799
	"	"		ROM 116259	F 48800
	"	"		ROM 116260	F 48801
	"	"		ROM 116261	F 48802
	"	"		ROM 116262	F 48803
	"	"		ROM 116263	F 48804
	"	"		ROM 116264	F 48805
	"	"		ROM 116265	F 48806
	"	"		ROM 116266	F 48807
	"	"		ROM 116267	F 48808
	"	"		ROM 116268	F 48809
	"	"		ROM 116269	F 48810
	"	"		ROM 116270	F 48811
	"	"		ROM 116271	F 48812
66b	H. desmarestianus	PN: Darién: Cerro Pirre		ROM 116273	F 48814

67a	H. desmarestianus	BE: Orange Walk: 4 km S Las Milpas Camp, 12 m mark, Rio Bravo area		-99	FN 29952
67b	H. desmarestianus	BE: Orange Walk: 8 km S Las Milpas, Rio Bravo		-99	FN 29971
68	H. desmarestianus	GU: El Peten: 1.5 km S, 1 km W Poptun		ROM 99230	FN 31780
69	H. desmarestianus	GU: El Peten: 10 km N of Tikal		ROM 99409	FN 31859
				ROM 99410	FN 31960
70	H. desmarestianus	GU: El Peten: Campo los Guacamayos, Biotopo Laguna del Tigre, 40 km N El Naranjo		ROM 99529	FN 32378
	"			ROM 99538	FN 32387
71	H. desmarestianus	MX: Quintana Roo: 6 km S, 1.5 km W Tres Garantias		ASNHC 7053	FN 32683
	"			ASNHC 7059	FN 32686
72	H. desmarestianus	CR: Guanacaste: Liberia, $\sim 39 \mathrm{~km} \mathrm{~N}$ Pitilla, Sendero Orosilito	KM 99-091	KU 158510	
	"		KM 99-092	KU 158511	
	"		KM 99-093	KU 158512	
	"		KM 99-094	KU 158513	
	"		KM 99-102	KU 158514	
	"		KM 99-095	KU 158711	
73	Candidate species E	PN: Bocas Del Toro: Isla Popa, 1 km SE Deer Island Channel	J-501	USNM 464382	
			COH 14867	USNM 464383	
	"		COH 14887	USNM 464384	
	"		COH 14890	USNM 464385	
74	H. desmarestianus	GU: Quetzaltenango: 4 km SE Zunil, Finca la Chingada	WB 8425	USNM 569675	

مٌ	ป̋	\cdots Ј							১'											v
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Candidate species E				$=$	$=$				$=$	=	$=$	$=$		$=$	$=$	$=$			I 0 0 0 0 0 0 0 0 0 0 0 0 0
					$=$	$=$					$=$	=				=	=	=		
$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { مे } \end{aligned}$	71 N N N		$\begin{aligned} & \sum_{\infty} \\ & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \sum \\ & \infty \\ & 0 \\ & \sim \\ & \text { + } \end{aligned}$	$\begin{aligned} & \sum_{\infty} \\ & \text { on } \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \sum_{\infty} \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \sum_{\infty} \\ & \infty \\ & + \\ & \infty \end{aligned}$	\sum ∞ ∞ $\underset{V}{\infty}$											
$\begin{aligned} & \text { n } \\ & \text { ה̀ } \\ & \text { N} \\ & \text { O} \end{aligned}$	C $\substack{c \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ \omega \\ \hline \\ \hline}$				$\begin{aligned} & c \\ & \frac{9}{3} \\ & 9 \\ & 0 \\ & 0 \\ & \hline-1 \end{aligned}$				七ع00LS WNS	$\begin{aligned} & \text { © } \\ & \sum_{3} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$			C 0 3 0 0	C 0 3 0						$$
													$\stackrel{\text { 굿 }}{\stackrel{-}{*}} \stackrel{+}{\oplus}$	$\begin{aligned} & \text { 것 } \\ & \stackrel{-}{\oplus} \\ & \stackrel{\oplus}{\oplus} \\ & \omega \end{aligned}$	$\begin{aligned} & \text { 것 } \\ & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\rightharpoonup}{\ominus} \\ & \infty \end{aligned}$			$\begin{aligned} & \underset{\lambda}{\lambda} \\ & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	깃 $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{\ominus}$ $\stackrel{+}{\bullet}$	$\begin{aligned} & \text { 굿 } \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{N}{V} \end{aligned}$

	"	"	DSR 8547	CMC 2005	
	"	"	DSR 8548	CMC 2006	
	"	"	DSR 8549	CMC 2007	
	"	"	DSR 8550	CMC 2008	
	"	"	DSR 8551	CMC 2009	
	"	"	DSR 8552	CMC 2010	
	"	"	DSR 8553	CMC 2011	
		MX: Veracruz: 12.1 km NW (by road)			
80b	Candidate species B	Sontecomapán, 150 m	DSR 8561	CMC 2002	
	"		DSR 8562	CMC 2003	
		MX: Chiapas: 18.5 km S Frontera			
81	H. goldmani	Comalapa		ROM 97673	FN 33154
	"	"		ROM 97674	FN 33155
		CR: Puntarenas: Monteverde Biological			
82a	H. nubicolens	Station		ROM 113258	F 48565
	"	"		ROM 113259	F 48566
	"	"		ROM 113260	F 48567
	"	"		ROM 113261	F 48568
	"	"		ROM 113262	F 48569
	"	"		ROM 113263	F 48570
	"	"		ROM 113264	F 48571
	"	"		ROM 113265	F 48572
	"			ROM 113282	F 48589
82b	H. nubicolens	CR: Puntarenas: Monteverde, Cerro Amigos	TRM 3746	KU 142057	
82c	H. nubicolens	CR: Puntarenas: Monteverde, Cerro Amigos, Puntarenas-Guanacaste border	TRM 3869	KU 143455	
		CR: Puntarenas: Monteverde, Monteverde			
82d	H. nubicolens	Cloud Forest Reserve, investigator trail	RMT 4461	KU 159022	

