
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2010

Choosing between remote I/O versus staging in
distributed environments
Ibrahim Hakki Suslu
Louisiana State University and Agricultural and Mechanical College, ihsuslu@cct.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Suslu, Ibrahim Hakki, "Choosing between remote I/O versus staging in distributed environments" (2010). LSU Doctoral Dissertations.
2525.
https://digitalcommons.lsu.edu/gradschool_dissertations/2525

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2525&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/2525?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2525&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

CHOOSING BETWEEN REMOTE I/O VERSUS STAGING
IN DISTRIBUTED ENVIRONMENTS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Ibrahim H. Suslu

B.S., Marmara University, Istanbul, 1993
M.S., Marmara University, Istanbul, 1995

M.S., Southern University, Baton Rouge, 2001
August, 2010

Acknowledgments

The following dissertation, while an individual work, benefited from the insights and direction of

several people. First, my dissertation chair, Dr. Tevfik Kosar, exemplifies the high quality scholarship

to which I aspire. In addition, Dr. Kosar provided timely and instructive comments and evaluation

at every stage of the dissertation process, allowing me to complete this dissertation on schedule. I

would like to thank all my advisory committee members, Dr. Jim Van Scotter (Minor Professor), Dr.

Gabriel Allen, Dr. Bijaya B. Karki, and Dr. Sherif Ishak (Dean Representative).

Next, this dissertation would not be possible without several contributions. It is a pleasure to

thank my current colleagues at the Distributed Systems Laboratory (DSL) and CCT (Center for

Computation & Technology) for providing me with a pleasant working environment and friendship.

I also would like to thank all my collaborators from LONI, TeraGrid, Gilda, and CCTOOLS project

team.

In addition to the technical and instrumental assistance above, I received equally important as-

sistance from family and friends. My wife, Dilek Suslu, provided on-going support throughout the

dissertation process, as well as technical assistance critical for completing the dissertation in a timely

manner.

This project is in part sponsored by the National Science Foundation (NSF) under award numbers

CNS-0846052 (CAREER), CNS-0619843 (PetaShare), OCI-0926701 (Stork) and EPS-0701491 (Cy-

berTools), by the U.S. Department of Energy under Award Number DE-FG02-04ER46136 (UCoMS),

and by the Board of Regents, State of Louisiana, under Contract Numbers DOE/LEQSF (2004-07)

and NSF/LEQSF (2007-10)-CyberRII-01.

ii

Table of Contents

Acknowledgments . ii

List of Tables . vi

List of Figures . viii

Abstract . xi

Chapter 1: Introduction . 1
1.1 Overview . 2
1.2 Major Contributions . 2
1.3 Thesis Outline . 3

Chapter 2: Background and Basic Concepts . 4
2.1 Data Staging . 4

2.1.1 Staging Techniques . 4
2.2 Remote I/O . 5

2.2.1 Remote I/O Techniques . 5
2.3 How Researchers Choose . 7

2.3.1 Reasons to Favor Remote I/O . 7
2.3.2 Reasons to Favor Staging . 8
2.3.3 Remark . 9

Chapter 3: Related Work . 10
3.1 Comparison of Data Staging and Remote I/O . 10
3.2 Modeling the Grid Environment and the Other Modeling Techniques 11
3.3 Performance Modeling Tools . 14

3.3.1 Fully Grid Enabled Performance Tools . 14
3.3.2 Partially Grid Enabled Performance Tools . 16

Chapter 4: Methodology . 18

Chapter 5: Experiment Design . 20
5.1 Experiment Systems . 20

5.1.1 DSL Lab Testbed . 20
5.1.2 Loni Testbed . 20
5.1.3 TeraGrid Testbed . 21
5.1.4 Gilda Testbed . 22

5.2 Benchmarks . 22
5.2.1 IOzone . 22
5.2.2 GridFTP . 23
5.2.3 CCTools . 23

5.3 Experiment Setup . 24

iii

5.3.1 Parameters . 26
5.4 Synthetic Programs . 27

5.4.1 Data Generation Program . 27
5.4.2 Sequential . 27
5.4.3 Jump . 28
5.4.4 Random . 28

Chapter 6: Results and Analysis . 29
6.1 Parrot/gsiftp Results . 29

6.1.1 Local Area Network (LAN) . 30
6.1.2 Campus Area Network (CAN) . 33
6.1.3 Metropolitan Area Network (MAN) . 34
6.1.4 Wide Area Network 1 (WAN1) . 36
6.1.5 Wide Area Network 2 (WAN2) . 37
6.1.6 Wide Area Network 3 (WAN3) . 37
6.1.7 Wide Area Network 4 (WAN4) . 39
6.1.8 Wide Area Network 5 (WAN5) . 40
6.1.9 Wide Area Network 6 (WAN6) . 41
6.1.10 Wide Area Network 7 (WAN7) . 42
6.1.11 Comparison Between Network Architectures on the parrot/gsiftp Combination 43

6.2 Comparison Between parrot/gsiftp and parrot/chirp Combination 45
6.2.1 Remote I/O Results . 45
6.2.2 Staging Results . 45

Chapter 7: Cache Impact . 47
7.1 Caching . 47
7.2 Cache Experiment Setup . 47
7.3 Cache Experiment Results . 48

Chapter 8: Model . 49
8.1 Initial Model . 49
8.2 Regression Models . 51

8.2.1 Regression Model for Data Staging . 51
8.2.2 Regression Model for Remote I/O . 60
8.2.3 Alternative Regression Model for Data Staging 68
8.2.4 Alternative Regression Model for Remote I/O 72

Chapter 9: Model Validation . 75
9.1 Real-Life Applications . 75

9.1.1 Data Archive for Coastal Science . 75
9.1.2 Blast . 77

9.2 Synthetic Applications . 79
9.2.1 Synthetic Application with Full Ratio . 79
9.2.2 Synthetic Application with Eighth Ratio . 81

9.3 Extreme Cases . 82
9.3.1 Full Ratio Input, 1/100 Ratio Output . 82
9.3.2 1/100 Ratio Input, 1/100 Ratio Output . 88

iv

Chapter 10:Conclusions . 94

References . 96

Vita . 102

v

List of Tables

6.1 Staging Results in LAN Network Architecture . 31

6.2 Remote I/O Results in LAN Network Architecture 32

8.1 Staging Skewness and Kurtosis Table . 53

8.2 Staging Correlation Table (N=595) . 56

8.3 Staging Descriptive Statistics . 57

8.4 Staging Model Summary . 57

8.5 Staging ANOVA . 57

8.6 Coefficients for Staging Model Variables . 58

8.7 Clarify Program for Staging . 59

8.8 Skewness and Kurtosis Table for Remote I/O Model 61

8.9 Descriptive Statistics for Remote I/O . 65

8.10 Correlations for Remote I/O (N=593) . 65

8.11 Remote I/O Model Summary . 66

8.12 ANOVA . 66

8.13 Coefficients for Remote I/O Model Variables . 67

8.14 Clarify Program for Remote I/O . 67

8.15 Alternative Staging Descriptive Statistics . 69

8.16 Alternative Staging Model Summary . 70

8.17 Alternative Staging ANOVA . 70

8.18 Alternative Coefficients for Staging Model Variables 71

8.19 Alternative Staging Descriptive Statistics for Remote I/O 73

vi

8.20 Alternative Remote I/O Model Summary . 73

8.21 Alternative Remote I/O ANOVA . 73

8.22 Alternative Coefficients for Remote I/O Model Variables 74

vii

List of Figures

6.1 Full Seq vs Full Random for All Network Architectures with Staging 30

6.2 Full Seq vs Full Random for All Network Architectures with Remote I/O 31

6.3 LAN Total results for Staging and Remote I/O . 32

6.4 LAN Quarter Data Size on Staging and Remote I/O Figures 33

6.5 CAN Total for Staging and Remote I/O . 33

6.6 CAN Quarter Data Size on Staging and Remote I/O Figures 34

6.7 Man Total for Staging and Remote I/O . 35

6.8 MAN Quarter Data Size on Staging and Remote I/O Figures 35

6.9 WAN1 Total for Staging and Remote I/O . 36

6.10 WAN1 Quarter Data Size on Staging and Remote I/O Figures 36

6.11 WAN2 Total for Staging and Remote I/O . 37

6.12 WAN2 Quarter Data Size on Staging and Remote I/O Figures 38

6.13 WAN3 Total for Staging and Remote I/O . 38

6.14 WAN3 Quarter Data Size on Staging and Remote I/O Figures 39

6.15 WAN4 Total for Staging and Remote I/O . 39

6.16 WAN4 Quarter Data Size on Staging and Remote I/O Figures 40

6.17 WAN5 Total for Staging and Remote I/O . 40

6.18 WAN5 Quarter Data Size on Staging and Remote I/O Figures 41

6.19 WAN6 Total for Staging and Remote I/O . 41

6.20 WAN6 Quarter Data Size on Staging and Remote I/O Figures 42

6.21 WAN7 Total for Staging and Remote I/O . 42

viii

6.22 WAN7 Quarter Data Size on Staging and Remote I/O Figures 43

6.23 All Network Architectures Data Access Techniques Performance on Staging and Re-
mote I/O . 44

6.24 Remote I/O Performances with Chirp Protocol . 45

6.25 Staging Performances with Chirp Protocol . 46

7.1 Cache Impact . 48

8.1 Staging Data Distribution Before the Transformation 53

8.2 Staging Histogram After the Transformations . 54

8.3 Normal P-P Plot of Regression Standardized Residual Dependent Variable PS After
the Transformations . 54

8.4 Staging Regression Standardized Predicted Values After the Transformations 55

8.5 Remote I/O Histogram Before the Transformations 60

8.6 Remote I/O Histogram After the Transformations . 61

8.7 Standardized Residuals for Remote I/O Before Transformation 62

8.8 Standardized Residuals for Remote I/O After Transformation 62

8.9 Normal PP Plots for Remote I/O Before Transformation 63

8.10 Normal PP Plots for Remote I/O After Transformation 63

8.11 Scatterplot Before Transformation . 64

8.12 Scatterplot After Transformation . 64

8.13 Alternative Normal PP Plots for Staging After Transformation 68

8.14 Alternative Staging Scotterplot After the Transformations 68

8.15 Alternative Normal PP Plots for Remote I/O After Transformation 72

8.16 Alternative Remote I/O Scatterplot After the Transformations 72

9.1 Simulated Hurricane Database Results . 76

9.2 Blast Results . 78

ix

9.3 Synthetic Application Results with Full Ratio . 79

9.4 Synthetic Application Results with Eighth Ratio . 81

9.5 Extreme Case Synthetic Application Results with Full Input 1/100 Output Sequential 83

9.6 Extreme Case Synthetic Application Results with Full Input 1/100 Output Random 84

9.7 Extreme Case Synthetic Application Results with 1/100 Input 1/100 Output Sequen-
tial . 88

9.8 Extreme Case Synthetic Application Results with 1/100 Input 1/100 Output Random 90

x

Abstract

Today, scientific applications and experiments have become increasingly complex and more demand-

ing in terms of their computational and data requirements. The amount of data generated and used

has grown at a very rapid rate. As tens or hundreds of terabytes of data for a single application is

very common today; petabytes and even exabytes of data will be very common in a few years. One

of the major challenges in distributed computing environments is how to access these large datasets

remotely over the network.

Data staging and remote I/O are the most widely used data access methods for distributed ap-

plications. Application developers generally chose one over the other intuitively without making any

scientific comparison specific to their applications since there is no generic model available that they

can use.

In this thesis, we develop generic models and set guidelines for the application developers which

would help them to choose the most appropriate data access method for their application. We define

the parameters that potentially affect the end-to-end performance of the distributed applications

which need to access remote data.

To achieve our goal, we implement a series of synthetic benchmark applications to simulate differ-

ent data access patterns. We run these benchmark applications on different distributed computing

settings with different parameters, such as network bandwidth, server and client capabilities, and

data access ratio. We also use different remote I/O protocols to show the importance of the protocol

in making a decision. We use regression analysis to develop applicable generic models for comparing

different data access methods, and test our models in a real life application.

The main contribution of our thesis is generic models that can be applied to most data-intensive

distributed applications to decide the best data access technique for those applications. Our models

provide the scientists and application developers an opportunity to choose the best data access

method before actually running the application.

xi

Chapter 1
Introduction

Distributed resources and collaboration between multiple institutions have been inevitable with the

increased computational and data requirements of scientific applications. This has led to computer

and data resources being shared over widely distributed systems. Usually, data is no longer locally

available to the distributed application, and the application developers need to find efficient ways to

access distributed and remote data resources.

Data-aware distributed applications usually take place in two phases: data generation/collection

and data analysis. In the data generation/collection phase, large amounts of data are generated

by applications running on distributed resources or collected from remote instruments. In the data

analysis phase, collected data is analyzed and a bigger amount of data may be generated. So, these

require reliable and efficient data access mechanisms that can keep up with the volumes of data

involved.

There are mainly four different data access techniques for distributed computing environments.

These are: (i) remote I/O, (ii) moving application close to data, (iii) moving data close to the ap-

plication (staging), and (iv) moving both data and application to an intermediate location (hybrid

model). Each data access technique has advantages and disadvantages based on the characteristics

of the environment and applications. Therefore, based on application needs and distributed environ-

ments, an appropriate data access technique should be used.

In most cases, the datasets required by the application are either transferred to a temporary space

close to the computation site (staged-in) or accessed remotely over the network (remote I/O). Due

to the nature of applications and the interconnects between distributed components, there are many

factors affecting end-to-end performance such as I/O access pattern of the application, size of dataset

needed, and network characteristics.

In data staging, the input data for the application is transferred as streams or files from the

remote storage to a location close to the computation node. This process is called the ”stage-in”

1

step. After the computation is finished successfully, the results are generally transferred back to a

remote storage site, which is called the ”stage-out” step. Separating the stage-in and stage-out steps

from the computation allows all data access during the computation to be performed on the local

disk.

On the other hand, some distributed applications prefer using remote I/O to directly access (read

and write) data on the remote storage. Remote I/O does not require extra steps for staging the data

in and out, but it slows down the actual computation step since the computation now has to use a

remote resource for I/O instead of using the local disk.

Although both data access techniques are widely used in data intensive distributed applications, the

application developers generally choose one over the other intuitively without making any scientific

comparison specific to their application since there is no generic model available that they can use.

To the best of our knowledge, there has not been an extensive study comparing both data access

techniques and providing clear guidelines of which method to use in which particular case.

1.1 Overview

In this thesis, the goal is to develop models and set guidelines for the application developers which help

them to choose the most appropriate data access method for their application. In this work, we define

the parameters that potentially affect the end-to-end performance of the distributed applications

which need to access remote data. We have developed some synthetic applications to simulate the

defined parameters. We have run the applications on different distributed environments and collected

the data for the models. We have used regression analysis for modeling, and analyzed the defined

variables. After the regression analysis, we came up with one regression model for each remote data

access technique.

We have also used different remote I/O protocols to show how important it is to use the appropriate

remote I/O protocol. We have tested our model in a real world application.

1.2 Major Contributions

This thesis contributes to the distributed systems community in several ways.

2

The main contribution of our thesis is: ”development of generic models that can be applied to most

data-intensive distributed applications to decide the best data access technique for those applications.”

Since data-aware distributed applications spend most of the time accessing the data before and after

the computation, choosing the best way to access the remote data is imperative. Our models provide

an opportunity to choose the data access method before running the application. Application design-

ers can use our models to develop their application when they decide which data access technique is

right for them.

The current approach to find the best data access method is based on active learning. First,

the application needs to be run in the same environment with all possible combinations. Once the

combination that is the best fit for that environment is discovered, the correct data access technique

can be found. Our models, however, provide best data access technique before running the application.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we present an overview of background

and basic concepts about remote data access techniques. In Chapter 3, we present an overview of

related works. Our overall methodology is described in Chapter 4. Experiment design is presented in

detail in Chapter 5. We present our experiment results with the analysis in Chapter 6. Our models

are presented in Chapter 7. We have included the implementation results in Chapter 8. We apply

our models to a real-life application in Chapter 9, and conclude our work in Chapter 10.

3

Chapter 2
Background and Basic Concepts

2.1 Data Staging

Staging the data means moving the data closer to the application before the actual processing starts.

Staging makes the remotely placed data available to the computation node for processing. This

involves placing the input data sets either into the local disks of the computation node or to a

location close to the computational node. Generated output is moved back to remote storage after

the actual processing finishes.

Application developers use different tools and techniques for data staging. The following subsection

will cover the data staging tools.

2.1.1 Staging Techniques

GridFTP [27] is a widely used transport protocol on distributed environments. It is an extension

of the default FTP [68] protocol and provides features of security, reliability and efficiency for

the distributed computing environments. It also allows changing the sizes of the TCP buffers and

congestion windows to improve transfer performance. FTP divides the process of data transfer into

two channels which are: i) the control channel used for sending commands and replies between a

client and a server ii) the data channel through which the actual transfer takes place.

The Reliable File Transfer (RFT) [59] tool from the Globus [78] project uses GridFTP protocol to

stage in or out multiple files simultaneously. RFT provides features like failure detection and restart of

file transfer. The Lightweight Data Replicator (LDR) [19] can replicate data sets to the member sites

of a Virtual Organization or DataGrid. It was primarily developed for replicating LIGO data, and it

makes use of Globus tools to transfer data. Its goal is to use the minimum collection of components

necessary for fast and secure replication of data.

The Internet Back Plane protocol (IBP) [66] allows applications to optimize data transfer and

storage operations with a store-and-forward protocol to move data around the network. Kangaroo

[80] is another data movement protocol which manages data movement as a background process so

4

that failures do not affect the application but are handled transparently by the underlying monitoring

system.

Stork [53] is a specialized scheduling tool which aims to make all data movement related tasks

(including data staging) first-class entities in a distributed environment. Stork can schedule, manage,

and monitor data movement. It supports multiple protocols, storage and network reservations before

data transfers.

PBS [49] transfers files between user accounts. As in all staging techniques, the user should specify

the files to be transferred, and transfer files back when the computation is done. Meanwhile, Legion

[92] supports on-demand transfer. Also, Punch virtual file system (PVFS) [44] supports on-demand

file transfer without requiring dynamically-linked libraries. GASS [35], a data movement and access

service for wide area computing systems, transfers an entire file when it is needed. NeST [33] is a

Grid enabled storage appliance. NeST supports for restricted subset of NFS protocols and supports

for anonymous accesses is the differences among others. Unlike the other file systems, SFS [60], a

secure file system that avoids internal key management, needs key management to a map file.

2.2 Remote I/O

Remote I/O allows accessing data directly on the site where it is located without moving the complete

data sets. Remote file access can be divided into four categories: i) distributed file systems, ii) parallel

file systems, iii) remote execution systems, iv) remote I/O.

2.2.1 Remote I/O Techniques

Some distributed file systems such as NFS [72], and AFS [62] as well as parallel file systems such

as GPFS [63], Lustre [15] and Vesta[42] provide mounted file system solutions for remote file access.

They allow a process to access remote files over a network as easily as if the files were on its local

disks. All of these central-server models have limited scalability in wide area because the number

of clients is limited by the aggregate bandwidth provided by the central server. Distributed file

systems have performance and administrative problems which often render them inappropriate for

distributed computing applications [45]. Distributed file systems mount the source directory, and

it is often undesirable for all file systems to be cross mounted on all machines, or even impossible

5

to cross mount specialized file systems such as tape archives. Even when disks are cross mounted,

performance may be poor when using conventional I/O techniques [45].

There are also web-based distributed file systems such as WebFS [89], and UFO [25], which have

improved implementation and lowered administration costs, but they have problems with performance

[45]. The network disk servers such as DPSS (Distributed Parallel Storage Systems) [85] and MARS

(Massively-parallel and Real-time storage) [39] provide high-speed streaming access to distributed

data, but they do not provide support for access from parallel programs.

Parallel file systems such as GPFS (Galley Parallel File systems) [63] and Vesta parallel file systems

[42] are designed to provide parallel file access to application programs running on multiple computers

with parallel I/O subsystems.

Remote execution systems redirect Unix file system calls to a home file system. It enables a remote

computer to execute a task and access the remote data. Condor [58] and WebOS [89] are examples

of these kind of systems. WebOS, however, does not support parallel I/O interfaces to access the

parallel file systems [45].

Specialized remote I/O systems provide high-performance I/O libraries and a unique environment

for distributed computing environment. One of the remote I/O implementation is RIO [52]. RIO

uses client server architecture and ADIO (Abstract Device I/O) [82] for portability in ROMIO [83]

which is a popular implementation of the MPI-IO specification in the MPI-2 standard, so it hides

different file system implementation details. RIO requires a certain processor configuration that can

cause inefficiency and relies on a legacy communication protocol [57].

RFS (Remote File System) [56] is another implementation of remote I/O which uses dedicated

forwarder nodes for message aggregation and asynchronous I/O. There are also some I/O libraries

such as Jovian [32], MPI-IO [41] which solve the performance issues by optimizing collective I/O

operations, but they are not designed for wide area network or distributed computing environment.

Parrot is a tool that enables remote I/O operations on the selected data set [81]. It supports a

variety of storage systems and acts as an interposition agent between the data consumer and the

storage server. One of the storage systems Parrot supports is Chirp. Chirp enables the users to create

distributed file systems without requiring special privileges [79]. Although it causes performance

6

degradations, Parrot is described as a very convenient remote I/O client especially for the Chirp file

system.

Information Power Grid (IPG) [48] has been working to build a fully distributed computing and

data aware management environment by NASA [20]. It includes a network-aware MPI that sup-

ports remote I/O, grid communication libraries. A run time library SRB-OL [74] provides various

optimizations for HPSS [5], tertiary storage access, such as collective I/O, data sieving remote I/O

optimizations. Simultaneously PASSION [40], PANDA [73] also provide collective I/O and data siev-

ing on top of parallel file systems for many popular access patterns. But, these systems cannot scale

well when the application size increases.

xFS [28] and Coda [16] are other distributed file systems that provide easy access to distributed

resources. When high performance parallel data access is required by parallel applications, they have

performance problems. MAPFS [65], a flexible multi-agent parallel file system for clusters, allows

applications to access remote data in a flexible and efficient way with flexible I/O architecture.

BLUNT [71], like DataCutter [36], and DPSS uses replication to improve I/O performance and

reliability.

2.3 How Researchers Choose

Application developers generally choose one of these data access techniques for their applications

intuitively, based on their past experiences or their expectations.

2.3.1 Reasons to Favor Remote I/O

In [52], Kohr et al. say that remote I/O allows programmers to execute at remote sites without

programmer management of data transfer, and remote I/O can improve performance relative to

staging by overlapping computation and data transfer or by reducing communication requirements.

According to them, remote I/O simplifies matters (Check-point/Restart) when computation may

be moved between computers, and it has the advantage of making intermediate results available

before execution is complete. Kohr et al. also say that staging is clumsy, prevents overlapping of

communication and computation, and can result in excessive data transfer in situations where a

program accesses only part of a file.

7

Bent et al. claim in [34] that remote I/O can improve turnaround time relative to staging. They

also say that when using remote I/O, only needed data is transported across the network which

minimizes the network traffic and improves throughput. According to Bent et al., another advantage

of Remote I/O is that the throughput of a data-intensive workload will be drastically reduced.

In [38], Blanchet et al. claim that remote I/O does not have to worry about the free local space

when dealing with large data sets. Blanchet et al. also claim that remote I/O does not need to know

about non-declared input and output files.

Lee [57] et al. claim that supporting remote I/O via MPI-IO enables many applications to perform

remote I/O transparently without code changes. Lee et al. say that staging can cause consistency

problems, and excessive data transfer for partial file access. According to them, staging is often done

manually and this is not convenient.

According to Blanchet [38] et al., there must be enough free space on the local storage area of the

computing node for input data, and generated output data when doing staging. Blanchet et al. also

claim that the agent has to identify which program will be launched, and to transfer the non-declared

files. That means to bring knowledge about the program within the agent.

2.3.2 Reasons to Favor Staging

In [66], Plank et al. say that locality is important for reducing data access overhead. They also claim

that staging data near where it is used improves application performance.

Wang et al. claim in [90] that when managing I/O in a client-server model where the data is written

to/read from that are located on a remote site, parallel access to remote datasets can be extremely

expensive and will hurt the overall performance of the user applications.

Thain et al. say in [80] that due to the large number of users, the size of the data, and the distance

involved, remote I/O is not universally applicable and suffers from a scalability problem. Network

and storage capacities limit both the number of replicas that may be made as well as the number of

jobs that may use each replica.

In [26], Ali et al. claim that even on a high-bandwidth wide area network, local data access is

at least an order of magnitude faster than remote I/O which would make advanced staging of data

advantageous.

8

2.3.3 Remark

Some of these claims may be true, and some may not. In any case, most of them are based on

experience and intuitions, not scientific reasoning and analysis. In this work, we develop scientific

models which can be applied to most data intensive distributed applications to decide the best data

access model for them.

9

Chapter 3
Related Work

In this chapter, we provide the related work which compares staging and remote I/O. Then, we

highlight the studies on the modeling staging and remote I/O to point out similarities and differences.

In the end, we list some performance modeling tools which can be used in a distributed environment

to analyze different data access techniques.

3.1 Comparison of Data Staging and Remote I/O

According to Stockinger [76], the entire resource selection problem requires detailed cost models

with respect to data transfer. A cost model for data-intensive applications is discussed in [77] where

theoretical models for data intensive job scheduling are presented. In this study, a cost model is

created that can determine if it is more efficient to transfer the data to a job or vice versa. The

metric for measuring efficiency is the effective time seen by the client application. The model includes

all important factors in a distributed Data Grid and takes various storage and access latencies into

account to determine optimal data access.

More general performance engineering approaches are discussed in [55]. In this work, they analyze

a typical Grid system and point out performance analysis aspects in order to improve the overall job

execution time of the system. They give a detailed look at the following two domains: data access

and networking.

Data staging and remote I/O have been compared by different studies from different aspects.

For instance, GridFTP as a staging technique and RFIO as a remote I/O technique have been

compared by Kalmady and Tierney [50] on wide area networks. According to Kalmady and Tierney,

the performance of RFIO is better than gsiftp for one stream. gsiftp performs better on multiple

streams. With tuning, RFIO becomes pretty close to gsiftp which means that proper tuning can

make the difference. They came up with the following observations: i) setting the TCP buffer size a

proper value is the most important factor for a good performance; ii) 2-3 parallel streams will gain an

additional 25% performance over a single tuned stream; iii) a mechanism of dynamically varying the

10

buffer sizes during data transfer is needed, because of sensitivity of the variation in network traffic;

iv) the same throughput can be gained with tuned buffers using untuned TCP buffers with enough

parallel streams;

White et. al [91] compared some Legion data access techniques Legion, Legion basic IO, and

Legion nfs with Globus. The Legion provides remote data access capability, and work has showed

that Legion has around 60 percent better write, and 85 percent better read performance over FTP. On

the other hand, for transfer sizes less then one MB, Legion performance suffers. GASS stages remote

file to a locally-accessible place. According to the study, Legion basic I/O interface outperforms again

GASS. The Legion I/O model offers an opportunity for files to gain specific file access patterns. This

could be done by attribute value tags, such as read-only or single-writer. This property improves the

performance significantly.

Thain and Livny compared performance of parrot/chirp with other staging and remote I/O tech-

niques on the study [81] with Andrew-like benchmark. According to the authors, separating computa-

tion from storage makes I/O cost high. Copying data gets slower over the network, but the slowdown

in the network makes staging acceptable because of increased throughput via remote parallelization.

Also, authors point out that the differences in the performance between Chirp, ftp, and NeST are

because of the cost of the metadata lookups.

3.2 Modeling the Grid Environment and the Other

Modeling Techniques

A Grid environment has two major challenges for modeling. The first challenge is the very com-

plex infrastructure that the Grid environments have: Grid resources are heterogeneous, and may be

distributed over a wide area; Grid applications may have strict service requirements; and the Grid

network infrastructure supports different traffic protocols. Therefore, the Grid environment is very

difficult to model and analyze. The second challenge is that the modeling tools have limitations for

distributed performance analysis.

Realistically, widely distributed Grid cannot be analyzed with a single performance modeling tool.

Tools like GridSim [70] may be appropriate for some Grid components, however, they are hard to

scale to the number of events that a wide area Grid will generate, even if parallel or distributed

11

extensions are used [46]. Simulating a single job submitted to wide area Grid may produce thousands

of events. Also, analytical techniques such as queuing theory [88] and Markov processes may be

appropriate for modeling some Grid components at an abstract level, but cannot model a dynamic

and multi-component Grid in great detail. Clearly, new modeling methods and techniques are required

to analyze the Grid environments.

Modeling the data access techniques in a distributed Grid environment is not a well-studied area.

Staging the data before it is needed can be very complicated because of the dynamic nature of

the distributed Grid environment such as real-time network traffic and congestion. Limitations of

bandwidth, storage space at certain sites, and data specifications can affect the staging of the data.

A mathematical model for a basic data staging problem is studied by Theys et al. [84]. All pa-

rameter values for the network and data request a stay fix in the scheduling process. However, the

parameter values for the model are changed temporarily to reflect the dynamic nature of the dis-

tributed environment. The parameters can be categorized by the node storage capacity and node

number, the link availability starting and ending time, bandwidth, latency, source node, and desti-

nation node. Also, every request has data size, list of sources, and list of destinations. Elwasif et al.

[43] developed a model for farming applications with and without server side staging to analyze the

effect of staging, and verify the model with experiments and simulations.

A remote I/O performance model [75] can estimate remote I/O cost before performing the applica-

tion, so the application can be evaluated better. The paper also presented the design of a remote I/O

performance predictor that gives the user a concept how much remote I/O costs for the application, so

the appropriate parameters can be chosen for the application. A practical remote data access model

is presented in [29] which describes a tightly coupled, a data oriented infrastructure approach with

building a leading edge technology to provide very high-speed, and widespread access to large data

storage. Antoniu et al. [30] provide a transparent data access model which enables users to access

data via global identifiers. This model manages data persistence dynamically and transparently in

distributed environment using two approaches which are distributed shared memory and peer to peer

systems.

12

Shivam et al. [31] present the Non-Invasive Modeling for Optimization (NIMO) system which auto-

matically learns cost models for predicting the execution time of computational science applications

on distributed environments. NIMO first generates training samples for distributed applications, then

by using these samples learns cost models with statistical learning techniques. NIMO is an active

system, so it deploys and monitors the sampled application under different conditions. NIMO is also

non-invasive so it collects training data from passive streams without effecting not only the operating

system or the application, but also the application source, or library.

On the other hand, there are some challenges that arise based on NIMO. According to Shivam et

al. [31], sampling acquisition may have high overhead. Also, the number of samples needed, given

the level of accuracy, increases exponentially. The training sample set may not represent the entire

operating range of the system.

Although our approach and NIMO can suggest which data access method to use, there are signif-

icant differences between them. Researchers can use our approach before the design phase, so they

can design the application based on the best data access technique. NIMO does not only evaluate

the data access methods, but also the active system elements such as CPU, cache, and I/O system

behaviors. Sometimes, NIMO can prefer a data access technique which is worse than others in terms

of overall throughput, but preferable in terms of other active elements such as CPU, cache, and I/O.

Performance Prophet [67]is a performance modeling and prediction tool for parallel and distributed

environments. The main advantage of this methodology is reducing the time needed to evaluate the

model by model simplification and the combination of mathematical modeling with discrete event

simulation. The performance model is generated based on the UML (Universal Model Language) [10]

model.

Performance Prophet mainly contains two components: i)Teuta Estimator, ii) Performance Es-

timator. Teuta is a UML-based modeling platform independent tool for distributed jobs. Teuta is

developed with Java programming language based on the Model-View-Controller (MVC) paradigm

[54]. The main specification of the MVC is to separate the user interface and the rest of the ap-

plication. Teuta mainly consists of model checking component and a model traversing component.

The model checking component checks the correction of the model. The model traversing compo-

13

nent provides a way to walk through the model and access the model properties. The Performance

Estimator evaluates the performance of the distributed program on the running system. A set of

C++ classes is needed to be developed to model basic program and machine components. Teuta and

the Performance Estimator communicate via Data Repository. Data Repository is implemented on

PostgreSQL [7] open-source relational database system.

3.3 Performance Modeling Tools

Distributed Grid environments need advanced measurement tools and techniques. Each environment

has its own structure and requirements, so it is getting harder to develop a unique performance tool

that is essential for end-users, developers, administrators, and researchers.

Distributed environment measurement tools can be categorized into two categories: i) fully Grid

enabled tools, ii) partially Grid enabled tools. In the next two subsections; we evaluate some of these

tools.

3.3.1 Fully Grid Enabled Performance Tools

Performance tools in this category are specially designed and developed for distributed Grid environ-

ments. Most of them have started for a particular need of a particular project, and this makes most

of them not suitable for general use. For instance, some measurement tools do not require security

measurement, but in some distributed applications security may be a very important issue.

NetLogger [86] (Networked Application Logger) is a package that contains a set of tools that can be

used to monitor the behavior of all aspects of the applications, operating system, host, and network.

For example, it contains a tool that generates time-stamped event logs. These logs can be used to find

out the application end-to-end performance. It also has tools to visualize the logged data with a real

time stamp. Netlogger can be applied to different types of distributed system environments and is

independent of any particular architecture. However, Netlogger has been used only in loosely-coupled

architectures so far.

NetLogger has two phases: i) event logging and ii) log manipulation. In the first phase, NetLog-

ger logs as much raw information as possible about the state of the system. In the second phase,

NetLogger has tools to generate and manipulate the logs. NetLogger event logs have high-resolution,

14

synchronized timestamps. Logs need to be taken before and after each interested event which may

be application, operating system activity, network related activity, or network condition.

NetLogger generates a very huge amount of logging data, so all logs should be in a common logging

format. NetLogger follows the IETF draft standard Universal Logger Message format (ULM) [9]. A

sample NetLogger ULM event:

ts=2008-11-22T20:14:15.507306Z event=doit.start level=INFO index=0

This indicates that event named ”doit” started on a particular time.

Logging events on different systems need to be synchronized. All systems that are involved in

the event are synchronized by the Network Time Protocol (NTP) [61]. After a log is generated,

NetLogger’s Toolkits can be used to analyze it. Toolkits can be categorized into three tool sets: i) a

library to simplify logging (C, C++, and Java), ii) a set of operating system, managing, and filtering

utilities, and iii) a set to visualize and analyze the log tools. A library has been developed for the

supported languages, which are C, C++, and Java. Each library contains some routines such as open,

write, and close the log file. Events can be written to the system log, separate file, or TCP port.

NetLogger has modified netstat and vmstat unix utilities to get contents of various network-related

data structures and reports statistics on virtual memory, disk, and CPU activities. Also, NetLogger

uses a broker which is a special type of agent that collects system state information, and filters them

for clients.

NetLogger also has a graphical representation toolkit, nlv (NetLogger Visualization), for interac-

tively viewing NetLogger event files. Nlv can be run on log files after application is finished, or it can

be run in real-time to analyze live applications. NetLogger also has script tools which are written in

perl for analyzing. It also can create a script that can be used with Gnuplot for graphics generation.

Zentrino [69] is an experiment management environment for performance analysis, software testing,

and parameter studies. Zenturio can be used on cluster, and Grid environments as well. Zenturio is

based on ZEN language which is a novel directive-based language, and user portal to simplify complex

programming. ZEN enables to substitute strings for performance information. Zenturio has three main

Grid services: i) a register service that registers the location of the Grid services, ii) an experiment

15

generator that parses files with ZEN for performance analysis, and iii) an experiment manager which

compiles and manages execution on remote systems.

A graphical user portal can be used to manage, monitor, and visualize the programs and output

data across multiple systems. Zentrino has been implemented by Java/Jini and support cluster jobs

through PBS and grid jobs via Globus scheduler.

ZEN provides for the programmer to invoke jobs for arbitrary value range of any parameter,

such as file names, compiler options, machine sizes, target systems, program variables, scheduling

information. ZEN can be used to request performance metrics, such as execution, communication,

load balance, cache, and time synchronization information even for specific needs, such as procedures,

loops, statements, and the entire program.

Zentrino receives directives via ZEN files, such as the application source file, input files, output

files, comments, and host name. Zentrino runs ZEN files through ZTS (ZEN Transformation System)

which parses ZEN files and generates a set of ZEN file instances. Thereafter, it transfers, compiles,

and runs the jobs on the target system. Staging the data is optional, and the application can use

remote I/O to access remote data. After the job has completed, the output data can be staged out

from target systems. A GUI-based portal system enables the process to be managed, monitored and

visualized remotely.

3.3.2 Partially Grid Enabled Performance Tools

Unix environment provides some benchmarking tools for the Grid users to monitor and tune their

applications. These tools can be divided into two categories: i) synthetic benchmarking tools, and

ii)application benchmarking tools.

3.3.2.1 Synthetic Benchmarking Tools

Synthetic benchmarking tests are simple tests to measure a certain aspect of the performance. Such

as ttcp [21]: measures the point-to-point bandwidth over a network connection, and hdparm [14]:

set and view hard disk hardware parameters. ”-t” and ”-T” options can be used to measure disk-to-

memory (disk reads) transfer rates. Synthetic benchmarking tools used in distributed environments:

i)UnixBench [2] is a fundamental high-level Linux benchmark suite. Unixbench integrates CPU and

file I/O tests, as well as system behavior under various user loads; ii) AIM9 [12] (Independent Resource

16

Benchmark) can test and measure each component of a UNIX computer system independently. The

AIM9 benchmark uses some subtests to generate absolute processing rates, I/O transfers, function

calls, and UNIX system calls; iii) Netperf [6] is a sophisticated and well known network and filesystem

benchmarking tool; iv) IOzone [18] is useful for performing a broad filesystem analysis. The IOzone

benchmarks file I/O performance operations, such as read, write, re-read, re-write, and random read.

More information can be found in Chapter 5.

3.3.2.2 Application Benchmarking Tools

Application benchmark tests are sophisticated tests to measure all aspects of the performance. Appli-

cation benchmarking tools are used in distributed environments: i) High Performance Group (HPG)

[8] set of benchmarking tools created for high-performance computers by The Standard Performance

Evaluation Corporation (SPEC). These tools use industry standard parallel application program-

ming interfaces (APIs), OpenMP and MPI. They also support shared-memory and message passing

programming paradigms. HPG benchmarking suites contain MPI Benchmark Suite which measures

performance of compute intensive applications using the Message-Passing Interface (MPI) across

a wide range of cluster and SMP hardware, and OMP Benchmark Suite which evaluates the per-

formance of OpenMP applications and shared-memory systems; ii) The NAS Parallel Benchmarks

(NPB) [20] are a set of benchmarks targeting performance evaluation of highly parallel supercomput-

ers. They are developed and maintained by the NASA Advanced Supercomputing (NAS) Division

based at the NASA Ames Research Center; iii) OProfile [4] OProfile is a system-wide profiler for

Linux systems. OProfile can profile all running code at low overhead. Many CPUs provide hardware

registers that can count events; such as, cache misses, or CPU cycles. OProfile provides profiles of

code based on the number of these occurring events.

17

Chapter 4
Methodology

Performance analysis of the distributed systems can be divided into three stages: i) observation and

experimental results ii) performance framework and analytical simulation model, and iii) a more

realistic model and theory.

For the first stage, we have created synthetic programs to simulate the effects of different parameters

that will be described later in this chapter. We define the parameters that can potentially affect the

performance of the distributed data intensive applications. The application specific values for these

parameters should be provided by the user. Our model will evaluate these parameters not only

individually, but also as a combination of related ones to find out which technique is the best for the

application.

The parameters of interest are listed below:

• Data size of the application. This can be both input data needed as well as the output data

generated by the application. Four different data sizes are categorized by our models which are

full, half, quarter, and eighth.

• Proportion of data needed by the application versus the size of the entire dataset.

• Disk Speed shows how fast local vs remote disk is. It is related to both input and output data

characteristics.

• Total turnaround time is the elapsed time between the submissions of the first task until the

last task is completed.

• Data access pattern is the way of accessing the data by the application. We use three different

types of data access patterns which are sequential, jump, and random.

• Network architecture is the design of a communication network where the application and the

data take place. We have used ten different types of network architecture on the model.

18

• Bandwidth is the network data transmission rate.

After we collect the parameter results, we develop two analytical simulation models for each data

access technique. We use statistical techniques to capture application performance with data access

methods accurately.

The model we design suggests the best data access strategy in different scenarios for the application,

data and the resources being used. To keep it simple, we are assuming that we know the resources

that are being used. We might initially know the proportion of read and write, and their size involved

from previous simulations, but the access patterns of the application and the requirements of the

actual data needed for the computation versus the input data set being used are not easily known in

advance. However, the details of the data access characteristics of an application and required subset

of the data from an entire dataset are important for making any kind of suggestion by the model.

The model would rely on the following functions and strategies:

• Analyzing the application characteristics, data characteristics (input, intermediate and output),

and resource characteristics (actual hardware resources available or selected and their capacity

and performance estimates).

• Listing out the sequence of elementary events related to data access and writes during the

initial application run, timely availability of the data that can be staged out.

For the last stage, we test the models with real world application.

19

Chapter 5
Experiment Design

This chapter presents the overall experiment design. Network architectures, the systems, benchmark-

ing tools, and the synthetic programs are described in detail.

5.1 Experiment Systems

Louisiana Optical Network Initiative (LONI) [11] is the main networking infrastructure used in these

experiments. LONI provides connections between Louisiana and Mississippi universities with a 10

Gbps optical network. LONI also includes a statewide 40 Gbps fiberoptic network linking four major

systems (QueenBee, Eric, Poseidon, Painter). For the wide-area high-bandwidth tests, TeraGrid [23]

is used. Grid Infn Laboratory for Dissemination Activities (GILDA) [13] is a high-speed network

infrastructure on the Italian Istituto Nazionale di Fisica Nucleare (INFN) carried on in the context

of the some Eurupian Grid enabled projects such as eela, EGEE, BioinfoGRID, etc. GILDA is used

for overseas wide-area tests.

Also, two local systems in DSL Lab are used to demonstrate the performance in the local area.

The details of each testbed system are given in the following subsections.

5.1.1 DSL Lab Testbed

Two of DSL Lab workstations are used to demonstrate performance with staging and remote I/O

without high-speed network connectivity. These workstations are in the same local area network

(LAN) with 100 Mbps network connection. The used workstations are:

• Dsl-stork: HP workstation with AMD 32-bit processor Fedora core 11 operating system and

1GB RAM.

• Dsl-tie: HP workstation with 2.8 GHz Core Duo Intel 32-bit processor Fedora core 7 operating

system and 1GB RAM.

5.1.2 Loni Testbed

The following Loni systems are used in these experiments.

20

• Queen Bee: A 50.7 TFlops Peak Performance, 680 node, 2 Quad-Core processor Red Hat

Enterprise Linux (RHEL) v4 cluster from Dell with 2.33 GHz Intel Xeon 64bit processors and

8 GB RAM per node. Housed at ISB. According to the June, 2007 Top500 listing, Queen Bee

ranks the 23rd fastest supercomputer in the world.

• Eric: A 4.772 TFlops Peak Performance, 128 node, 2 Dual-Core processor Red Hat Enterprise

Linux (RHEL) v4 cluster from Dell with 2.33 GHz Intel Xeon 64bit processors and 4 GB RAM

per node. Housed at LSU.

• Poseidon: A 4.772 TFlops Peak Performance, 128 node, 2 Dual-Core processor Red Hat Enter-

prise Linux (RHEL) v4 cluster from Dell with 2.33 GHz Intel Xeon 64bit processors and 4 GB

RAM per node. Housed at UNO.

• Painter: A 4.772 TFlops Peak Performance, 128 node, 2 Dual-Core processor Red Hat Enterprise

Linux (RHEL) v4 cluster from Dell with 2.33 GHz Intel Xeon 64bit processors and 4 GB RAM

per node. Housed at LaTech.

• Spider: 4 Dual-Core processor Red Hat Enterprise Linux (RHEL) cluster with 2.6 GHz AMD

2218 Model 64bit processors and 16 GB RAM. Housed at LSU.

• Oliver: A 4.772 TFlops Peak Performance, 128 node, 2 Dual-Core processor Red Hat Enterprise

Linux (RHEL) v4 cluster from Dell with 2.33 GHz Intel Xeon 64bit processors and 4 GB RAM

per node. Housed at ULL.

• Louie: A 4.772 TFlops Peak Performance, 128 node, 2 Dual-Core processor Red Hat Enterprise

Linux (RHEL) v4 cluster from Dell with 2.33 GHz Intel Xeon 64bit processors and 4 GB RAM

per node. Housed at Tulane.

5.1.3 TeraGrid Testbed

Two TeraGrid systems are used in these experiments:

• Lonestar: Dell PowerEdge Linux Cluster is configured with 5,840 compute-node cores, 11.6 TB

of total memory and 106TB of local disk space. The peak performance rated is 62 TFLOPS. The

21

system supports a 70TB globally accessible, Lustre parallel file system. Nodes are interconnected

with InfiniBand technology in a fat-tree topology with a 1GB/sec point-to-point bandwidth.

Also, a 2.8 petabyte archive system and a 5TB SAN are available through the login/development

nodes.

• Steele: 812 node Dell PowerEdge 1950 cluster running the Red Hat Enterprise Linux 4 operating

system. Each node contains two Quad Core Intel Xeon 2.33GHz 64-bit processors and 16-32

GB of memory. The cluster is interconnected primarily with Gigabit Ethernet and has 180 TB

of NFS storage provided by BlueArc NAS systems.

5.1.4 Gilda Testbed

One system is used for overseas tests:

• gGlite-tutor: 4 Dual-Core processor Red Hat Enterprise Linux (RHEL) cluster with 1.8 GHz

AMD 265 Model 64bit processors and 4 GB RAM. Housed at Italy.

Spider is used as an execution node and the other systems are used as a data server. The only

exception is the LAN tests. The LAN tests are done by DSL Lab systems.

5.2 Benchmarks

Some benchmarking tools are used to evaluate data access techniques on distributed environments.

This section gives a brief description of the benchmarking tools.

5.2.1 IOzone

IOzone [18] is a file system benchmarking tool, which generates and measures a variety of file oper-

ations. The benchmark tests file I/O performance for the read and random read from local disk to

memory, write and random write from memory to local disk, read and random read from remote disk

to local memory, and write and random write from local memory to remote disk operations.

The following IOzone command is used to test staging disk performance:

iozone -r 16 -s 558m -p -i 0 -i 1 -i 2

• -r 16 used to specify the record size, in Kbytes, to test

• -s # used to specify the size, in MBytes, of the file to test

22

• -p purges the processor cache before each file operation

• -i 0 -i 1 -i2 Used to specify which tests to run. 0=write/rewrite, 1=read/re-read, 2=random-

read/write

The following IOzone command is used to test remote disk performance:

iozone -r 16 -s 558m -p -f /chirp/poseidon1.loni.org/iozone.tmp -i 0 -i 1 -i 2

the only difference is -f which is used to specify the filename for the temporary file under test for

remote file location.

5.2.2 GridFTP

GridFTP [27] uses Grid Security Infrastructure, which is known as gsiFTP. It provides authentication

and encryption to file transfers with user specified levels of confidentiality and data integrity. Gridftp

is used for staging in/out data in our experiments.

5.2.3 CCTools

The Cooperative Computing Tools (cctools) [17] are software collections which help to share resources

and get along with each other in a complex, heterogeneous, unreliable computing environment for any

type of users. Cctools provide reliable services without requiring kernel changes or special privileges

for the user.

Some of the cctools utilities are used to implement remote I/O for the grid applications. Par-

rot/Chirp and Parrot/gsiftp are two combinations that are used to differentiate remote access pro-

tocols.

Parrot is a tool for attaching existing programs to remote I/O systems through the file system

interface. It can be used to access remote storage devices with different protocols. Parrot can commu-

nicate with http, ftp, Gridftp, iRODS, srb, hdfs, rfio, dcap, and Chirp protocols. It traps the program

system calls through the ptrace debugging interface, and replaces them with remote I/O operations.

Parrot can be installed and operated by any user without any kernel-level changes.

Chirp is a personal file system and remote I/O protocol. Any user can run the program to start

Chirp server on the system. It supports different type of security methods like Globus authentication,

kerberos, etc. Since it is developed with cctools, it works preferably with Parrot and allows users to

23

have custom distributed file systems on a Grid environment. Chirp protocol provides easy of use,

transparency, and easy of deployment of file system.

Cctools package was installed at all the data server systems we have used. Parrot bash shell is

run to access remote data using chirp data server on the execution side. It mounts the remote chirp

directory as a local directory on local system.

Parrot supports gsiftp protocol to access remote data as long as there is gridftp server running and

there is valid globus certificates. In these experiments, parrot/gsiftp combination is used for remote

I/O implementation and gridftp is used for staging implementation.

5.3 Experiment Setup

We have created synthetic programs to simulate the effects of different parameters such as input and

output data size, data access pattern, and data access ratio on the performance of staging vs remote

I/O. These programs can simulate three different data access patterns:

• read and write the blocks sequentially (seq)

• read and write every other block in the dataset sequentially (jump)

• read and write all of the dataset in random blocks (random)

with four different data access ratios which are:

• read all blocks, process it, and write all blocks to a new file (full)

• read half of the blocks, process it, and write the processed half to a new file (half)

• read quarter of the blocks, process it, and write the processed quarter blocks to a new file

(quarter)

• read eighth of the blocks, process it, and write the processed eighth blocks to a new file (eighth)

Also, all the tests are run for two different data access techniques:

• Staging

24

• Remote I/O

Each experiment is run in ten different network topologies which are listed as increasing size in

distance:

• Local area network (LAN) (Dsl-tie & Dsl-stork)

• Campus area networks (CAN) (Spider & Eric)

• Metropolitan Area network (MAN) (Spider & Queen Bee)

• Wide area networks (WAN1) (Spider & Oliver)

• Wide area networks (WAN2) (Spider & Louie)

• Wide area networks (WAN3) (Spider & Poseidon)

• Wide area networks (WAN4) (Spider & Painter)

• Wide area networks (WAN5) (Spider & Lonestar)

• Wide area networks (WAN6) (Spider & Steele)

• Wide area networks (WAN7) (Spider & Gilda)

First, the data is staged in from the remote data server to local directory with globus-url-copy.

After the execution, the data is staged out back to data server with globus-url-copy. To measure how

long it takes to transfer data from local hard disk to memory, IOzone is used to transfer the same

amount of data from local hard disk to local memory. Also, IOzone is used to measure how long it

will take to transfer data from the remote hard disk to remote memory. The real data and the data

that IOzone creates and uses for tests have similar characteristics like amount and record size.

For remote I/O, two different access protocols are used with the parrot, which are chirp and

gsiftp. Mainly gsiftp is used to create consistency with the staging tests. Chirp is used to show how

the performance changes with a different protocol. The data is stored on data server side where

the GridFTP server is running. The execution node runs the simulation code to access data using

parrot/gsiftp combination.

25

Chirp server is run on a data server to mount the remote data directory to local directory structure

with parrot on parrot/chirp tests, so, the simulation program can access the remote data as if accessing

the local data with some system.

For standardization and to minimization of the network effects, all the tests are repeated five times

at a different time and the average is taken.

A Perl script which is written to run all simulations and measure the time in seconds is given in

Appendix A.

5.3.1 Parameters

The parameters we measure are:

• Staging

– Rrin: Time to read from remote hard drive to remote memory.

– Nsin: Time to transfer from remote host to local host over network.

– Wlin: Time to write from local memory to local hard drive.

– Rlin: Time to read from local hard drive to local memory for execution.

– Execution: Time to execute the program.

– Wlout: Time to write the generated data from local memory to local hard drive after

execution.

– Rlout: Time to read the generated data from local hard drive to local memory for transfer.

– Nsout: Time to transfer the data from local host to remote host over network.

– Wrout: Time to write the generated data from remote memory to remote hard drive after

transfer.

– Ps: Total time passed for all staging processes.

Remote I/O

– Rrin: Time to read from the remote hard drive to remote memory.

26

– Execution: Time to execute the program.

– Wrout: Time to write the generated data from remote memory to remote hard drive after

transfer.

– Nr: Time to transfer the data between local host and remote host over network.

– Pr: Total time passed for all remote I/O processes.

5.4 Synthetic Programs

We have developed four different applications for this project. The first one is data generation appli-

cation. This application generates the preprocessed data randomly. We use this data for our synthetic

applications. The second one, reads and writes the blocks sequentially (seq). The third one reads and

writes every other block in the dataset sequentially (jump). The last one, reads and writes all the

dataset in random blocks (random). Last three applications have four different versions based on the

data ratio used which are, full, half, quarter, and eighth.

The application reads and writes all the data in full-mode. We have made small changes to the

program in order to read and write half of the data in half-mode, a quarter of the data in quarter-

mode, and an eighth of the data in eighth-mode. Also, we have made small changes to source code

to access data remotely in remote mode for all data ratios.

5.4.1 Data Generation Program

We have developed a data generation application to generate data. We need to produce data with

defined transaction size and data size. Then, the program uses these inputs to generate our data file.

The items in each transaction are sorted and duplicates are eliminated.

5.4.2 Sequential

We have developed a synthetic application that reads all the data sequentially, then manipulates

the data, and writes the results as a separate file sequentially. We outline the key features of the

implementation details in the following lines. We also describe how the program works:

1. Read all the data from file into memory sequentially. The data file named ”transacs.dat” has

the item codes sorted within each transaction.

27

2. Count the frequency for each item.

3. Build a tree from the data on memory.

4. Write all the data from memory to a separate file.

5.4.3 Jump

Our second developed synthetic application (jump) reads and writes every other block in the dataset

sequentially. We outline the key features of the implementation details in the following lines.

1. Read every other blocks from file into memory. The data file named ”transacs.dat” has the

item codes sorted within each transaction.

2. Count the frequency for each item.

3. Build a tree from the data on memory.

4. Write all the data from memory to a separate file.

5.4.4 Random

Our third developed synthetic program reads and writes data in random blocks in the dataset which

we called random, processes the data, and writes the results as a separate file randomly.

1. Read all the dataset in random blocks from file into memory. The data file ”transacs.dat” has

the item codes sorted within each transaction.

2. Count the frequency for each item.

3. Build a tree from the data on memory.

4. Write all the data from memory to a separate file.

28

Chapter 6
Results and Analysis

We have used parrot/gsiftp results to develop our models. Therefore, parrot/gsiftp results will be

evaluated in details. Experiment results can be divided into two main categories based on which

remote I/O protocol is used. Since GridFTP/gsiftp combination is used for staging data transfer

protocol, parrot/gsiftp combination is chosen as a main remote I/O implementation combination.

Parrot is used to mount the data on the GridFTP server with gsiftp protocol. Parrot/chirp results

are used to compare the performance with the parrot/gsiftp to show how important it is to choose

the right remote I/O protocol.

6.1 Parrot/gsiftp Results

Quarter data size is chosen to represent four data sizes’ characteristics on both remote data access

techniques. The size of the data and the performance are inversely proportional, due to the fact

that four data sizes have the similar performance characteristics. Because of the gap between the

minimum and the maximum values, logarithmic scale is used for y scale on figures.

Spider is the execution node on all tests. The data server node is changed based on the network

architecture is used. The node list can be seen in Chapter 5. There is an exception on LAN tests that

DSL-Lab systems are used for both execution and server node.

Data move in from the server node to the execution node and after execution the results are moved

out from server node to the execution node on data staging. Running simulation on execution node,

accesses the remote data on the running node by using the parrot/gsiftp protocol using the remote

I/O.

Staging figures show the stage in (Rrin, Nsin, Wlin) values, the execution (Rlin, Run, Wlout), the

stage out (Rlout, Nsout, Wrout) values, and the total (Ps). Also, Remote I/O figures show the remote

read performance (Rin), the execution (Run), remote write performance (Wrout), remote network

performance (Nr), and the total (Pr) value.

29

Sequential data access usually has the best performance in total, and jump data access follows it.

Usually random has the worst performance comparing the other data access techniques.

FIGURE 6.1: Full Seq vs Full Random for All Network Architectures with Staging

Figure 6.1 indicates that full sequential always performs better then full random on all network

architectures. It also shows that high-speed networks improves the performance dramatically. Figure

6.2 explains that why random remote I/O performs worse. Random on remote I/O is not benefitting

from high-speed network architectures.

6.1.1 Local Area Network (LAN)

Dsl-Lab workstations are used for Local Area Network (LAN) tests. Dsl-tie is the execution node

and dsl-stork is the data server node for both LAN tests.

Table 6.1 shows an example staging average results of LAN tests. Table 6.2 also shown remote I/O

results in the LAN architecture. Tables indicates that remote I/O is better on sequential and staging

but worse on random.

Figure 6.3 shows the total numbers for both data access methods with all type of data sizes and

data access techniques. Remote I/O performs better then staging in all of the sequential and jump

data access patterns. Staging performs better than remote I/O in random data access technique with

all data sizes. The differences on sequential and jump is less than the differences on random. So,

30

FIGURE 6.2: Full Seq vs Full Random for All Network Architectures with Remote I/O

TABLE 6.1: Staging Results in LAN Network Architecture

Method Rrin Nsin Wlin Gridftp-in Rlin Run Wlout Rlout Nsout Wrout Gridftp-out Total

Full Seq 5.41 127.95 12.63 145.99 16.66 111.95 12.63 16.66 143.95 4.22 164.84 452.06

Full Jump 5.41 129.96 12.63 148.00 16.66 122.83 12.63 16.66 142.22 4.22 163.10 463.22

Full Random 5.41 129.22 12.63 147.26 16.66 894.20 12.63 16.66 139.53 4.22 160.41 1231.16
Half Seq 5.41 129.77 12.63 147.81 8.33 44.21 6.31 8.33 77.55 2.11 87.99 294.65

Half Jump 5.41 128.27 12.63 146.31 8.33 71.75 6.31 8.33 76.79 2.11 87.23 319.93
Half Random 5.41 128.21 12.63 146.25 8.33 164.73 6.31 8.33 73.48 2.11 83.92 409.55
Quarter Seq 5.41 130.38 12.63 148.42 4.16 24.87 3.16 4.16 42.81 1.06 48.03 228.64

Quarter Jump 5.41 129.74 12.63 147.78 4.16 40.98 3.16 4.16 42.52 1.06 47.74 243.83
Quarter Random 5.41 129.59 12.63 147.63 4.16 108.95 3.16 4.16 41.27 1.06 46.49 310.39

Eighth Seq 5.41 131.79 12.63 149.83 2.08 19.13 1.58 2.08 26.09 0.53 28.70 201.33

Eighth Jump 5.41 130.11 12.63 148.15 2.08 34.12 1.58 2.08 26.65 0.53 29.26 215.19
Eighth Random 5.41 127.48 12.63 145.52 2.08 65.58 1.58 2.08 24.36 0.53 26.97 241.73

31

TABLE 6.2: Remote I/O Results in LAN Network Architecture

Method Rrin Execution Wrout Nr Total
Full Seq 12.31 272.13 11.38 160.19 295.82
Full Jump 12.31 281.80 11.38 158.98 305.49
Full Random 12.31 5326.63 11.38 4468.33 5386.22
Half Seq 5.70 139.23 4.79 95.03 149.72
Half Jump 5.70 157.27 4.79 85.52 167.76
Half Random 5.70 2418.19 4.79 2295.93 2471.15
Quarter Seq 1.23 75.44 2.36 50.58 79.04
Quarter Jump 1.23 94.06 2.36 53.07 97.65
Quarter Random 1.23 1238.16 2.36 1131.87 1244.41
Eighth Seq 0.85 45.92 1.33 26.78 48.09
Eighth Jump 0.85 64.70 1.33 30.58 66.88
Eighth Random 0.85 592.00 1.33 525.67 593.43

researcher should be more careful when remote I/O was chosen. SInce all data should be staged in

before the execution, decreasing the data ratio improves the remote I/O performance.

FIGURE 6.3: LAN Total results for Staging and Remote I/O

Figure 6.4 (a) shows performance with quarter data size and all types of data access techniques.Stage

in and stage out take the most of the time, because LAN doesn’t have high speed network architecture.

Execution also takes a lot of time, because DSL Lab workstations are not super-computers.

32

FIGURE 6.4: LAN Quarter Data Size on Staging and Remote I/O Figures

Figure 6.4 (b) shows the performance with quarter data size and all type of data access techniques

on remote data access. Nr is taking most of the time, because of slow network.

6.1.2 Campus Area Network (CAN)

Loni systems are used for Campus Area Network (CAN) tests. Both systems are located in the LSU

campus.

The Figure 6.5 shows the total numbers for both data access methods with all types of data size

and data access techniques. Remote I/O performs better then staging in sequential and jump data

access patterns. Staging performs better than remote I/O on random data access technique with all

data sizes.

FIGURE 6.5: CAN Total for Staging and Remote I/O

33

FIGURE 6.6: CAN Quarter Data Size on Staging and Remote I/O Figures

According to the Figure 6.6 (a) full random run performance is worse than the other data ac-

cess techniques. The differences between remote and the staging getting worser on random data

access. Each time random data access needs to access remote data, network overhead decreases the

performance.

Figure 6.6 (b) shows the performance with quarter data size and all type of data access techniques

on remote data access. It also shown that how network affects the performance in remote I/O.

Network overhead plays important role on random remote I/O. If the application can use advanced

programming techniques to handle network overhead, remote random performance can be improved.

6.1.3 Metropolitan Area Network (MAN)

Loni systems are used for Metropolitan Area Network (MAN) tests. Both systems are located in

Baton Rouge.

Figure 6.7 shows that remote I/O performs better than staging in sequential and jump data access

patterns. Staging performs better than remote I/O on random data access technique with all data

sizes.

According to Figure 6.8 (a) has similar performance characteristics with CAN. Nsin jump has the

best performance that is unusual because of network.

Figure 6.8 (b) shows performance figure with quarter data size and all type of data access techniques

on remote data access.

34

FIGURE 6.7: Man Total for Staging and Remote I/O

FIGURE 6.8: MAN Quarter Data Size on Staging and Remote I/O Figures

35

6.1.4 Wide Area Network 1 (WAN1)

Loni systems are used for Wide Area Network 1 (WAN1) tests. Execution node is located in Baton

Rouge and data storage node is located in Lafayette.

Figure 6.9 shows total numbers for both data access method. Remote I/O performs better than

staging in sequential and jump data access patterns. Staging performs better than remote I/O in

random data access technique with all data sizes.

FIGURE 6.9: WAN1 Total for Staging and Remote I/O

According to Figure 6.10 (a) Nsin unusually has the worst performance because of network perfor-

mance.

FIGURE 6.10: WAN1 Quarter Data Size on Staging and Remote I/O Figures

36

Figure 6.10 (b) shows the performance with quarter data size and all type of data access techniques

on remote data access. It also shown that how network affects the performance in remote I/O.

6.1.5 Wide Area Network 2 (WAN2)

Loni systems are used for Wide Area Network 2 (WAN2) tests. Execution node is located in Baton

Rouge and data storage node is located in New Orleans (Tulane).

Figure 6.11 shows remote I/O performs better than staging all sequential and jump data access

patterns. Staging performs better than remote I/O in random data access technique with all data

sizes.

FIGURE 6.11: WAN2 Total for Staging and Remote I/O

According to Figure 6.12 (a) Nsin jump unusually has the best performance because of network.

Other three data sizes have almost the same performance characteristics. Full random run perfor-

mance is worse than the other data access techniques.

Figure 6.12 (b) shows the performance with quarter data size and all type of data access techniques

on remote data access.

6.1.6 Wide Area Network 3 (WAN3)

Loni systems are used for Wide Area Network 3 (WAN3) tests. Execution node is located in Baton

Rouge and data storage node is located in New Orleans (UNO).

37

FIGURE 6.12: WAN2 Quarter Data Size on Staging and Remote I/O Figures

The figure 6.13 shows total for both data access methods with all type of data size and data access

techniques. Remote I/O performs better then staging all sequential and jump data access patterns.

Staging performs better than remote I/O on random data access technique with all data sizes.

FIGURE 6.13: WAN3 Total for Staging and Remote I/O

Figure 6.14 (a) shows performance figure with quarter data size and all type of data access tech-

niques. Sequential data access has the best performance in total, then jump data access has the

second performance. Finally, random data access has the worst performance. These differences come

from Run performance. Because of network, Nsin jump has the best performance.

Figure 6.14 (b) shows performance figure with quarter data size and all type of data access tech-

niques on remote data access.

38

FIGURE 6.14: WAN3 Quarter Data Size on Staging and Remote I/O Figures

6.1.7 Wide Area Network 4 (WAN4)

Loni systems are used for Wide Area Network 4 (WAN4) tests. Execution node is located in Baton

Rouge and data storage node is located in Ruston.

Figure 6.15 shows that remote I/O performs better than staging all sequential and jump data

access patterns. Staging performs better than remote I/O in random data access technique with all

data sizes. The differences on sequential and jump are decrease because of the distance involved.

FIGURE 6.15: WAN4 Total for Staging and Remote I/O

Figure 6.16 (a) shows performance figure with quarter data size and all type of data access tech-

niques. Because of network performances, Nsout jump has the worst performance.

Figure 6.16 (b) shows performance figure with quarter data size and all type of data access tech-

niques on remote data access.

39

FIGURE 6.16: WAN4 Quarter Data Size on Staging and Remote I/O Figures

6.1.8 Wide Area Network 5 (WAN5)

Loni systems are used for Wide Area Network 5 (WAN5) tests. Execution node is located in Baton

Rouge and data storage node is located in Austin, TX.

Figure 6.17 indicates total numbers for both data access methods with all types of data size and

data access techniques.

FIGURE 6.17: WAN5 Total for Staging and Remote I/O

Figure 6.18 (a) shows that because of network performances, Nsout jump has the worst perfor-

mance.

According to Figure 6.18 (b) shows performance figure with quarter data size and all type of data

access techniques on remote data access.

40

FIGURE 6.18: WAN5 Quarter Data Size on Staging and Remote I/O Figures

6.1.9 Wide Area Network 6 (WAN6)

Loni systems are used for Wide Area Network 6 (WAN6) tests. Execution node is located in Baton

Rouge and data storage node is located in West Lafayette, IN.

Figure 6.19 shows that remote I/O performs better than staging in sequential and jump data access

patterns. Staging performs better than remote I/O in random data access technique with all data

sizes. We have same pattern here, increasing the distance decrease the the gab between sequential

and jump performance.

FIGURE 6.19: WAN6 Total for Staging and Remote I/O

Figure 6.20 (b) shows performance figure with quarter data size and all type of data access tech-

niques on remote data access.

41

FIGURE 6.20: WAN6 Quarter Data Size on Staging and Remote I/O Figures

6.1.10 Wide Area Network 7 (WAN7)

Loni systems are used for Wide Area Network 7 (WAN7) tests. Execution node is located in Baton

Rouge and data storage node is located in Italy.

According to Figure 6.21 WAN7 has different characteristics because of the distance between the

execution node and the data server node. Staging is better in full random and half random tests,

but is worse on quarter random and eighth random tests. Data ratio also plays a big role in this

architecture. Less data ratio performs better in random. Without high-speed network, it decrease the

gap between remote I/O and staging on all data access techniques. On the other hand, it increases

the gap on smaller data ratios.

FIGURE 6.21: WAN7 Total for Staging and Remote I/O

42

FIGURE 6.22: WAN7 Quarter Data Size on Staging and Remote I/O Figures

Figure 6.22 (a) shows the differences come from Run performance.

6.1.11 Comparison Between Network Architectures on the
parrot/gsiftp Combination

All network architectures are discussed in this section. We would like to show the bigger picture

on staging and remote I/O. Because of the gap between the minimum and the maximum values,

logarithmic scale is used for y scale on the figures. The network architectures are listed from shortest

distance to longest distance like LAN, CAN, MAN, WAN1 .. WAN7 on all figures.

Figure 6.23 shows the big picture of parrot/gsiftp experiments. Figure 6.23 (a), (c), and (e) indicates

staging with sequential, full, and jump access techniques. The rest shows remote I/O performances

with all data access techniques. WAN7, which is the longest in distance, has the worst performance

among the all network architectures. On the other hand, LAN has shortest in distance, but the second

worst performance because of network speed. LAN has the slowest network architecture among the

rest. Eighth has the best performance among other techniques, then quarter, half follows it. Full has

the worst performance among the rest. LAN has worst performance on random data access. It is

worser than WAN7.

Figure 6.23 also indicates that high-speed network performances are close to each other and they

have better performance than LAN and WAN7. In remote I/O random performance, all results are

close to each other because of the distance.

43

FIGURE 6.23: All Network Architectures Data Access Techniques Performance on Staging and Re-
mote I/O

44

FIGURE 6.24: Remote I/O Performances with Chirp Protocol

6.2 Comparison Between parrot/gsiftp and parrot/chirp

Combination

Choosing proper remote I/O protocol is crucial decision for the application performance. To show

the performance differences, we setup the same experiment design with the parrot/chirp remote I/O

protocol. We present some sample figures to give the big picture.

6.2.1 Remote I/O Results

Figure 6.24 shows the the comparison results between parrot/gsiftp and parrot/chirp performance

on remote I/O. It can be seen that gsiftp performs better than chirp in all the network architecture,

data sizes, and data access patterns.

6.2.2 Staging Results

Figure 6.25 shows the the comparison results between parrot/gsiftp and parrot/chirp performance

on staging. It can be seen that staging performs almost equal on both remote I/O techniques. Small

differences comes from the network performance.

45

FIGURE 6.25: Staging Performances with Chirp Protocol

46

Chapter 7
Cache Impact

7.1 Caching

Cache improves performance by storing data for future requests, so data can be served faster. The

data that is stored within a cache might be values that have been computed earlier or duplicates of

original values that are stored elsewhere. Some caches such as CPU, HDD, etc. are generally managed

entirely by hardware, a variety of software manages other caches. The page cache in main memory,

which is an example of disk cache, is managed by the operating system kernel. Linux kernels 2.6.16

and newer provide a mechanism to have the kernel drop the page cache and/or inode and dentry

caches on command.

To show how much the cache has affect on our tests, we have set up a new experiment.

7.2 Cache Experiment Setup

LAN network architecture is used for cache tests, because disabling cache requires root privileges.

We setup an experiment between dsl-tie and dsl-stork with all possible cache combinations which are

cache on both, no cache on both, cache on dsl-tie, and cache on dsl-stork. We have used dsl-tie as

an execution node and dsl-stork as a data server node. Since we have used parrot/gsiftp as a main

remote I/O protocol, we used the parrot/gsiftp combination to run remote I/O tests on cache too.

We have created a bash script as a root user with the following commands:

1 #! / bin / sh

2 sync

3 echo 3 > / proc / sys /vm/ drop caches

This script saves the cache to local disk and frees pagecache, dentries, and inodes. We also created

a cron job to run this script every 2 minutes as a root.

47

FIGURE 7.1: Cache Impact

7.3 Cache Experiment Results

Figure 7.1 shows the caching results for all data ratios and data access techniques combinations. The

figure shows that cache on both has slightly better performance than the rest as it is expected. Then,

cache on dsl-tie follows it. Because dsl-tie is the execution node, it is a normal result as well. No

cache on both has worst result. Also, sequential data access technique with all data sizes have slightly

better performance than jump data access technique. Since network performance plays an important

role on random tests, random results are not balanced.

48

Chapter 8
Model

8.1 Initial Model

We would like to start with a limited set of parameters for simplicity and then extend the upon this.

The parameters we use initially are:

• Rl: time to read from local disk to local memory

• Rr: time to read from remote disk to remote memory

• Wl: time to write from local memory to local disk

• Wr: time to write from remote memory to remote disk

• Ns: time to send data over network via a staging protocol

• Nr: time to send data over network via a remote I/O protocol

• E: time spent for computation

• P : total time spent for the application

The total time spent for the application via staging would be:

Ps = Pin + E + Pout (8.1)

where

Pin = Rrin + Nsin + Wlin + Rlin (8.2)

and

Pout = Wlout + Rlout + Nsout + Wrout (8.3)

49

On the other hand, the total time spent for the application via remote I/O would be:

Pr = Rrin + Nrin + E + Nrout + Wrout (8.4)

The actual computation time for both methods would be the same. The time difference in to-

tal (end-to-end) application time comes from network and disk I/O operations. For simplicity, we

compare Input and Output operations separately.

In such a setting, for remote I/O to be more efficient than staging, we should have:

Rrin + Nrin < Rrin + Nsin + Wlin + Rlin (8.5)

and

Nrout + Wrout < Wlout + Rlout + Nsout + Wrout (8.6)

From Equation 5, we would get:

Nrin −Nsin < Wlin + Rlin (8.7)

and similarly from Equation 6, we would get:

Nrout −Nsout < Wlout + Rlout (8.8)

which means the time difference coming from using a specialized data transfer protocol versus a

remote I/O protocol should be less than the overhead of extra read/write to the disk in staging. In

other words, if your remote I/O library performs good in data transfer over network, or your local

disk performance is slow, remote I/O might be advantageous over staging. Otherwise, staging method

would perform better.

According to authors knowledge, Nrin and Nrout can not be measured separately. Since, these

variables are plays important role in our initial mode, we would like to start with two separate

models for each data access technique using our measurements with regression analysis in the following

section.

50

8.2 Regression Models

In order to define the models for remote I/O and staging data access techniques in a distributed en-

vironment, a standard multiple regression analysis was performed using PASW Statistics 18, Release

Version 18.0.0 (SPSS, Inc., 2009, Chicago,IL) [24].

Multiple regression analysis is a useful technique for predicting a dependent variable from several

independent variables. Regressing y variable on several x variables is the main component of this

approach. Regression equation symbolizes the best linear combination of independent variables and

their associated weights to predict the dependent variable.

Y = a + b1X1 + b2X2 + + bnXn + e (8.9)

where;

• Y is the predicted values of dependent variable

• a is the intercept/constant that the value of the Y when all the X values are equal to zero

• Xs are the independent variables

• b is the regression coefficients for each independent variable

Regression analysis uses the least square criterion that is the sum of the squares of errors should

be minimum. Errors are described as the difference between observed and predicted values of the

dependent variable.

Regression analysis requires continuous dependent variable and allows nominal (dichotomous) and

continuous scale variables as independent variables [47]. Therefore, it is an appropriate method for

the current study as regression coefficients of the each independent variable will help to determine

the best models for staging and remote I/O techniques in distributed environments.

8.2.1 Regression Model for Data Staging

Performance of the application (Ps) is a dependent variable whereas Rrin, Nsin, Wlin, Rlin, Wlout,

Rlout, Nsout, Wrout , DS (data size), AT(Access Techniques), NA (Network Architectures) were the

51

independent variables for data staging technique model. Full, half, quarter, and eighth are grouped

as the data size (DS). NA variable indicates the network architectures such as LAN, CAN, MAN,

WAN1, WAN2, WAN3, WAN4, WAN5, WAN6, WAN7. AT variable which is data access techniques

(sequential, jump, and random) indicates categorical type of variable. Therefore, (j-1) approach of

regression, when including categorical variable in the model, applied [64]. It is also suggested by

Kleinbaum [51] et al. when including a nominal independent variable since it can help to index

categories of the nominal variable in regression analysis. This method is also called reference cell

coding and it is about using dummy variables for one less of the number of categories (j-1). In this

study, AT variable which has 3 categories is recoded into 2 dummy variables (ATj and ATr) that

have values of 0 or 1. ATj dummy variable is for jump access technique and Atr dummy variable

is for random access technique. The sequential access technique is not coded in a separate variable

since it is defined when both ATj and ATr variables equal to 0. The intercept of the regression model

will indicate the coefficient for the sequential category.

The initial investigation of the variables is showed that dependent variable Ps and other indepen-

dent variables are not normally distributed. In fact, as it can be seen in Figure 8.1 variables are

severely skewed in the positive direction and logarithmic transformation was applied to make the

variables normally distributed and meet the multiple regression assumptions. In multiple regression,

observations should be independent, variables should be normally distributed, dependent variable

and independent variables should be linearly correlated, and standard deviations of errors are equal

for all predicted dependent variable scores that is called homoscedasticity.

Logarithmic transformation was used for variables Ps, Nsin, Wlin, Rlin, Wlout, Rlout, Nsout, and

Wrout. Before logarithmic transformation, reflect method was applied for Rrin variable. Because of

its relatively negative skewness reflect method helped to transform the distribution into the positive

direction then logarithm applied. Table 8.1 shows that after the transformations all the skewness and

kurtosis levels approached to the normal distribution values. In fact in perfectly normal distributions

skewness and kurtosis levels are 0. Before the transformation skewness and kurtosis for the dependent

variable Ps were 2.845 and 7.046 respectively. After the logarithmic transformation skewness and

kurtosis values improved and became 1.488 and 1.310 respectively. This was evident for the other

52

FIGURE 8.1: Staging Data Distribution Before the Transformation

variables. PASW Explore procedure was used to check each variables whether or not they improved in

terms of normal distribution. Table 8.1 indicates the improvement of the data in terms of normality

assumptions.

TABLE 8.1: Staging Skewness and Kurtosis Table

Variables Skewness Before Kurtosis Before Skewness After Kurtosis After
Ps 2.845 7.046 1.488 1.31

Nsin 2.634 5.034 1.336 0.969
Wlin 2.609 4.972 2.108 3.684
Rlin 4.451 20.156 1.026 1.366

Wlout 3.987 17.819 0.185 0.473
Rlout 4.451 20.156 1.026 1.366
Nsout 4.197 17.966 1.192 0.939
Wrout 2.351 5.049 0.439 -0.608
Rrin -2.125 3.817 0.407 1.839

In addition to PASW Explore procedure, PASW Regression procedure was also used to check other

assumptions of multiple regression. As mentioned above normality, linearity and homoscesdaticity

are the assumptions of the standard regression procedure.

Kleinbaum et al. noted that normality and homoscedasticity was investigated by many researchers

using the errors or in other words, residuals. Tabashnick and Fidell [47] stated that examination of

residuals scatterplots provide information about assumptions of normality, linearity and homoscedas-

ticity. The residuals (errors) are the differences between obtained and predicted dependent variable

values. In fact, scatterplot between predicted dependent variable (DV) scores and error scores of

53

the prediction provides helpful information about these assumptions. Assumptions of the regression

analysis can be summarized also as residuals are normally distributed about the predicted dependent

variable scores, residuals have linear relationship with predicted dependent variable and variance of

the residuals is same for all predicted values.Therefore, residuals were investigated for the regression

assumptions. After transformation and removal of the outliers, residuals indicated normal distribution

as it can be seen in Figure 8.2.

FIGURE 8.2: Staging Histogram After the Transformations

FIGURE 8.3: Normal P-P Plot of Regression Standardized Residual Dependent Variable PS After the
Transformations

Figure 8.3 indicates that the residuals are normally distributed after the transformation.

Figure 8.4 shows the normality, linearity and homoscesdaticity assumptions. According to Tabash-

nick and Fidell [47], if scatterplot of residuals with standardized predicted dependent variable values

display the scores scattered around the zero line it indicates that the normality, linearity and ho-

54

moscesdaticty assumptions are met. As values of the residuals scattered along the 0 line the assump-

tions were assumed to be met. Moreover, Tate [87] stated that moderate violations of the normality

assumption may often be ignored with larger sample size as it does not affect the analysis negatively.

Kleinbaum et al. also stated if normality assumption is not badly violated, the results reached by

regression analysis will generally be reliable and accurate. In addition, Tabshnick and Fidell [47]

noted that violations of linearity and homoscedasticity do not invalidate the analysis. Regarding the

595 observations, the sample was large enough and it was concluded that assumptions of regression

analysis were met.

FIGURE 8.4: Staging Regression Standardized Predicted Values After the Transformations

8.2.1.1 Multivariate Outliers

By using Mahalanobis distance with p<.001, multivariate outliers were checked for a number of

variables in the model and no multivariate outliers are detected in the data. In fact, maximum

Mahalanobis distance were 31.366 and it was less than the X2 critical value. N= 595 and no missing

data observed.

8.2.1.2 Multicollinearity

Table 8.2 indicated multicollinearity (high correlation among independent variables) was an issue.

However, some of the independent variables were highly correlated each other: NsoutL and NsinL

(.832) and , RlinL and RloutL (1.), WloutL was highly correlated with RlinL (.912) and with RloutL

(.912).

55

TABLE 8.2: Staging Correlation Table (N=595)

Corelations Variables PsL RrinL NsinL WlinL RlinL WloutL RloutL NsoutL WroutL DS NA ATj ATr
Correlation PsL 1.000 -.663 .908 .363 .406 .464 .406 .933 .746 .298 .274 -.013 .093

RrinL -.663 1.000 -.589 -.101 -.093 -.166 -.093 -.695 -.358 .016 -.038 .002 -.004
NsinL .908 -.589 1.000 .426 .273 .286 .273 .832 .567 .003 .308 -.002 -.001
WlinL .363 -.101 .426 1.000 .681 .468 .681 .388 .195 -.016 -.350 .008 -.014
RlinL .406 -.093 .273 .681 1.000 .909 1.000 .367 .645 .602 -.380 .010 -.016

WloutL .464 -.166 .286 .468 .909 1.000 .909 .415 .728 .722 -.272 .010 -.015
RloutL .406 -.093 .273 .681 1.000 .909 1.000 .367 .645 .602 -.380 .010 -.016
NsoutL .933 -.695 .832 .388 .367 .415 .367 1.000 .602 .289 .284 .010 -.022
WroutL .746 -.358 .567 .195 .645 .728 .645 .602 1.000 .631 .039 .009 -.009

DS .298 .016 .003 -.016 .602 .722 .602 .289 .631 1.000 .006 .007 -.009
NA .274 -.038 .308 -.350 -.380 -.272 -.380 .284 .039 .006 1.000 -.001 .003
ATj -.013 .002 -.002 .008 .010 .010 .010 .010 .009 .007 -.001 1.000 -.499
ATr .093 -.004 -.001 -.014 -.016 -.015 -.016 -.022 -.009 -.009 .003 -.499 1.000

Sig. (1-tailed) PsL . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .380 .011
RrinL .000 . .000 .007 .012 .000 .012 .000 .000 .347 .178 .482 .463
NsinL .000 .000 . .000 .000 .000 .000 .000 .000 .472 .000 .483 .492
WlinL .000 .007 .000 . .000 .000 .000 .000 .000 .350 .000 .420 .366
RlinL .000 .012 .000 .000 . .000 .000 .000 .000 .000 .000 .400 .344

WloutL .000 .000 .000 .000 .000 . .000 .000 .000 .000 .000 .408 .359
RloutL .000 .012 .000 .000 .000 .000 . .000 .000 .000 .000 .400 .344
NsoutL .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000 .401 .296
WroutL .000 .000 .000 .000 .000 .000 .000 .000 . .000 .172 .413 .418

DS .000 .347 .472 .350 .000 .000 .000 .000 .000 . .440 .428 .417
NA .000 .178 .000 .000 .000 .000 .000 .000 .172 .440 . .492 .471
ATj .380 .482 .483 .420 .400 .408 .400 .401 .413 .428 .492 . .000
ATr .011 .463 .492 .366 .344 .359 .344 .296 .418 .417 .471 .000 .

When regression analysis was applied it was observed that Rlin variable is excluded from the

analysis by the statistical program due to perfect correlation with the Rlout variable. Since Rlout and

Rlin are identical in their relationship with the performance (dependent variable) no further solution

was attempted to include Rlin in the model. Moreover, including perfectly correlated independent

variables in the model causes greater standard errors and coefficients will be shown as not significant

in the model.

Other than the access technique jump, all the variables were significantly correlated with the

dependent variable so multiple regression can be reliably used for this study.

Figures 8.4 and Figure 8.5 indicate that an overall model of eleven predictors that significantly pre-

dict the performance in staging data technique access, R2 =.984 and adjusted R2= .983 F(11,583)=3197.962

p<.001. This model is accounted for 98 % of the variance in performance of staging data access tech-

nique. In other words, 98 % of the variance in the PsL was explained by Rrin, Wlin, Wlout, Nsout,

Wrout , DS, AT, and NA.

The coefficient of the intercept (constant) captures the coefficient of the sequential access technique.

It was not coded separately as dummy variable in the equation regarding the (j-1) dummy variable

approach. The coefficient of jump access technique(Atj) is the difference in means between jump and

sequential. Similarly, the coefficient of random access technique for the Atr is the difference in means

between random and sequential.

56

TABLE 8.3: Staging Descriptive Statistics

Variables Mean Std. Deviation N
PsL 1.955210 .5491335 595

RrinL .389748 .1883968 595
NsinL 1.250370 .7718463 595
WlinL .407076 .2414208 595
RlinL -.418420 .5205512 595

WloutL .059109 .3614962 595
RloutL -.418420 .5205512 595
NsoutL 1.047176 .7538912 595
WroutL -.280588 .5636430 595

DS 2.49 1.117 595
NA 5.52 2.868 595
ATj .33 .472 595
ATr .33 .471 595

TABLE 8.4: Staging Model Summary

R R2 Adjusted R2 Std. Error of the Estimate
.992 .984 .983 .0707732

TABLE 8.5: Staging ANOVA

Sum of Squares df Mean Square F Sig.
Regression 176.199 11 16.018 3197.962 .000
Residual 2.920 583 .005

Total 179.119 594

57

Table 8.22 displays, the unstandardized regression coefficients (B) and intercept (constant), t test

statistics and significance levels, tolerance, and VIF.

TABLE 8.6: Coefficients for Staging Model Variables

Variables B t p Tolerance VIF
(Constant) 1.12 38.207 0

RrinL -0.266 -8.717 0 0.256 3.906
NsinL 0.27 25.72 0 0.129 7.77
WlinL 0.281 7.082 0 0.092 10.919

WloutL -0.013 -0.529 0.597 0.106 9.469
RloutL -0.179 -7.132 0 0.05 20.131
NsoutL 0.258 20.928 0 0.098 10.231
WroutL 0.295 22.484 0 0.154 6.501

DS 0.057 8.284 0 0.143 6.997
NA 0.003 1.96 0.05 0.381 2.625
ATj 0.052 7.307 0 0.751 1.332
ATr 0.146 20.561 0 0.749 1.335

Since there was a perfect relationship (1.) between the RlinL and RloutL, RlinL was excluded

from the analysis by a statistical program due to the multicollinearity. High multicollinearity can be

detected from variance inflator factor (VIF) or Tolerance. Coefficients Table 8.22 provides information

about both VIF and Tolerance. VIF value higher like 10 indicates the possible multicollinearity

whereas values that are closer to 0 for the Tolerance indicates the collinearity. Coefficients table

display high multicollinearity for Rlout which was greater than 20. Since the synthetic application

creates the same amount of data, Rlout and Rlin operate the same amount of data. It is not surprising

that both variables have strong relationship. T test statistics results indicate that coefficients of the

all independent variables are significant except WloutL. This insignificant b(-0.013) for WloutL and

significant F (11,583)=3197 is a sign of multicolliniarity. However, since multicollaniarity is normal

with this type of data. It doesn’t affect the inclusion of this coefficient in the regression equation.

PsL is estimated by the following regression model.

58

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (8.10)

8.2.1.3 Clarify Program

Clarify program is developed by Gerry King et al. [3]. It is useful for predicting the dependent

variable using one of the independent variables while controlling for the effects of the all of the other

independent variables constant in the model. Table 8.7 shows the magnitude of the effect of the

independent variables: i) data size; ii) network architecture; iii) access technique on the dependent

variable (PsL) when all the other independent variables are kept constant at their mean scores.

Clarify program shows us that how each variable affects the PsL while keeping the other variables

constant on their mean scores.

TABLE 8.7: Clarify Program for Staging

Variables TsL Mean
DS Full 2.041586
DS Half 1.984506

DS Quarter 1.927427
DS Eighth 1.870347

LAN 1.8559
CAN 1.859095
MAN 1.862291
WAN1 1.865486
WAN2 1.868682
WAN3 1.871877
WAN4 1.875073
WAN5 1.878268
WAN6 1.881464
WAN7 1.884659

ATj 1.919147
ATr 2.017057
ATs 1.818865

59

8.2.2 Regression Model for Remote I/O

Performance of the application (Pr) was the dependent variable whereas Rrin, Nr, and Wrout,

DS(data size), AT(Access Techniques), NA (Network Architectures) were the independent variables

for remote data access techniques in distributed environments.

DS variable indicated transaction and data size including Full, half, quarter, and eighth (DS).

NA variable includes the network architectures such as LAN, CAN, MAN, WAN1, WAN2, WAN3,

WAN4, WAN5, WAN6, and WAN7. AT variable which were data access techniques (sequential, jump,

and random) indicated categorical type of variable. Therefore (j-1) approach of regression or in other

term reference cell coding, when including categorical variable in the model was applied in PASW.

The initial investigation of the variables showed that dependent variable Pr and other independent

variables were not normally distributed. In fact, most of the variables were positively skewed as shown

in the figure 8.5.

FIGURE 8.5: Remote I/O Histogram Before the Transformations

Several transformations were performed such as square root, inverse and logarithmic. Logarith-

mic transformation was the best among the others it was applied to make the variables closer to

normal distribution and meet the multiple regression assumptions which are the variables have nor-

mal distribution, the dependent and the independent variables are linearly related (linearity) and

homoscesdaticity (variance of errors for every values of independent variables is equal).

Logarithmic transformation was used for variables Pr, Rrin, Nr, and Wrout. After the transfor-

mations, all the skewness and kurtosis levels approached to the normal distribution values. Also,

60

FIGURE 8.6: Remote I/O Histogram After the Transformations

”L” is added to end of the variable name to indicate log(logarithmic) transformation. In perfectly

normal distribution, skewness and kurtosis levels are supposed to be 0. Before the transformations,

skewness and kurtosis for the dependent variable Pr were 2.845 and 7.046 respectively. After the

log transformation, skewness and kurtosis values improved and became .360 and -1.270 respectively.

PASW Explore procedure was used to check each variable whether or not they improved in terms

of normal distribution. The table 8.8 indicates the improvement of the data in terms of normality

assumptions.

TABLE 8.8: Skewness and Kurtosis Table for Remote I/O Model

Variables Skewness Before Kurtosis Before Skewness After Kurtosis After
Pr 2.570 7.903 .344 -1.280

RrinL 3.278 12.966 .679 -.127
NrL 2.335 6.020 .187 -1.509

WroutL 1.770 4.479 .165 -.827

Normality, linearity and homoscesdaticity assumptions of the multiple regression analysis procedure

were checked through residuals analysis. The residuals are the differences between obtained and

predicted dependent variable values. And they assumed to be normally distributed, have a linear

relationship with predicted dependent variable, and variances of the residuals are the same.

It can be seen from Figures 8.7 and Figure 8.8 that after the log transformation, histogram of

residuals indicated improved normal distribution.

61

FIGURE 8.7: Standardized Residuals for Remote I/O Before Transformation

FIGURE 8.8: Standardized Residuals for Remote I/O After Transformation

62

Moreover, Figures 8.9 and Figure 8.10 also display the improved normality after the log transforma-

tion. If the observations are located on the straight line, it indicates the perfect normal distribution.

FIGURE 8.9: Normal PP Plots for Remote I/O Before Transformation

FIGURE 8.10: Normal PP Plots for Remote I/O After Transformation

The scatterplots of the standardized residuals and standardized predicted values were improved

after the log transformation. In fact, scatterplots of residuals with predicted values are helpful in

checking the linearity, normality and homosesdaticity.

8.2.2.1 Multivariate Outliers

By using Mahalanobis distance value from the regression analysis with p<.001, multivariate outliers

were checked and no multivariate outliers are detected in the data.

63

FIGURE 8.11: Scatterplot Before Transformation

FIGURE 8.12: Scatterplot After Transformation

64

8.2.2.2 Multicollinearity

Correlations between dependent variable PrL and independent variables (RrinL, NrL, WroutL, DS,

NA, Atj, and Atr) were checked and it was observed that all the independent variables were signif-

icantly (p<0.05) correlated with the dependent variable (PrL) ranging from .111 to .966. However,

multicolliniearity also detected between RrinL and WroutL since both of these independent variables

were highly correlated (.907) and DS variable also were highly correlated with WroutL variable (.911).

However tolerance value and VIF indicated acceptable levels of Multicollinearity since the tolerance

values were not closer to 0 .All the variables remained in the model.

TABLE 8.9: Descriptive Statistics for Remote I/O

Variables Mean Std. Deviation N
TrL 2.118533 .7783999 593

RrinL .125295 .3420950 593
NrL 1.672715 1.1469137 593

WroutL .367521 .2912515 593
DS 2.49 1.120 593
NA 5.47 2.875 593
ATj .34 .474 593
ATr .33 .470 593

TABLE 8.10: Correlations for Remote I/O (N=593)

Correlation Variables PrL RrinL NrL WroutL DS NA ATj ATr
Correlation PrL 1.000 .357 .973 .358 .355 .115 -.340 .799

RrinL .357 1.000 .243 .909 .880 -.152 -.004 .009
NrL .973 .243 1.000 .213 .210 .112 -.374 .801

WroutL .358 .909 .213 1.000 .912 -.076 .001 .007
DS .355 .880 .210 .912 1.000 -.006 -.003 .012
NA .115 -.152 .112 -.076 -.006 1.000 .014 -.008
ATj -.340 -.004 -.374 .001 -.003 .014 1.000 -.503
ATr .799 .009 .801 .007 .012 -.008 -.503 1.000

Sig. (1-tailed) PrL . .000 .000 .000 .000 .003 .000 .000
RrinL .000 . .000 .000 .000 .000 .461 .412
NrL .000 .000 . .000 .000 .003 .000 .000

WroutL .000 .000 .000 . .000 .032 .487 .436
DS .000 .000 .000 .000 . .440 .475 .388
NA .003 .000 .003 .032 .440 . .363 .427
ATj .000 .461 .000 .487 .475 .363 . .000
ATr .000 .412 .000 .436 .388 .427 .000 .

65

TABLE 8.11: Remote I/O Model Summary

R R2 Adjusted R2 Std. Error of the Estimate
.991 .982 .981 .1062674

TABLE 8.12: ANOVA

Sum of Squares df Mean Square F Sig.
Regression 352.090 7 50.299 4454.058 .000
Residual 6.606 585 .011

Total 358.697 592

Regression results indicated an overall model of nine predictors that significantly predict the per-

formance in remote I/O data access technique, R 2=.975, F(7,592)= 3322.606, p<.001. This model

is accounted for nearly 98 % of the variance in performance of remote I/O data access technique.

The coefficient of the intercept (constant) captures the coefficient of the sequential access technique

as it was not included as a dummy variable in the equation because of the (j-1) dummy variable

approach. The coefficient of jump access technique(Atj) is the difference in means between jump and

sequential. Similarly, the coefficient of random access technique for the Atr is the difference in means

between random and sequential.

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(8.11)

Table 8.13 displays the unstandardized regression coefficients (B) and intercept (constant), the R2

and adjusted R2. R2 for regression significantly differ from zero =.975 F(7,592)= 3322.606 p<.001.

This indicates that the combination of the independent variables (the model) explained nearly 98 %

of the variation in the remote performance (Pr). In other words, R2 at .975 indicated that almost 98

% of the performance was predicted by Rrin, Nr, Wrout , DS, AT, and NA.

Pr for remote I/O data access technique is estimated by the following regression model. This model

helps to explain almost 98 % of the variance in the performance regarding remote I/O data access

technique.

66

TABLE 8.13: Coefficients for Remote I/O Model Variables

Variables B t p Tolerance VIF
(Constant) 0.73 35.926 0

RrinL -0.147 -4.258 0 0.136 7.36
NrL 0.553 76.052 0 0.274 3.65

WroutL 0.412 9.435 0 0.118 8.469
DS 0.068 6.633 0 0.145 6.915
NA 0.007 4.327 0 0.822 1.216
ATj 0.082 7.702 0 0.744 1.344
ATr 0.281 15.538 0 0.264 3.785

8.2.2.3 Clarify Program

Table 8.14 shows the affect of the following variables: i) data size; ii) network architecture; iii) access

technique over PrL when all the other independent variables are kept constant at their mean scores.

Clarify program shows us that how each variable affects the PrL while keeping the other variables

constant on their mean scores.

TABLE 8.14: Clarify Program for Remote I/O

Variables PrL
DS Full 2.221657
DS Half 2.153256

DS Quarter 2.084855
DS Eighth 2.016454

LAN 1.984251
CAN 1.99146
MAN 1.998669
WAN1 2.005878
WAN2 2.013087
WAN3 2.020296
WAN4 2.027504
WAN5 2.034713
WAN6 2.041922
WAN7 2.049131

ATj 2.166752
ATr 2.331526
ATs 1.863906

67

8.2.3 Alternative Regression Model for Data Staging

Alternatively, another regression analysis was run using the variables network architecture, data

size, and access method in a dummy coded format. When a variable dummy coded the number

of the dummy coded category should be (J-1) that is 1 less number of categories in the respective

variable. For instance, access method variable has 3 categories and 2 dummy coded variables generated

excluding the sequential method, data size (4 categories: full, half, quarter, and eighth) 3 dummy

coded variables were generated excluding the full category, and 9 dummy variables were generated

for the network architecture variable. After removing the outliers, the residuals showed the normal

distribution as it can be seen from Figure 8.13 histogram and P-P plot and Figure 8.14 .

FIGURE 8.13: Alternative Normal PP Plots for Staging After Transformation

FIGURE 8.14: Alternative Staging Scotterplot After the Transformations

68

TABLE 8.15: Alternative Staging Descriptive Statistics

Variables Mean Std. Deviation N
PsL 1.930786 .5220259 585

RrinL .397162 .1837848 585
NsinL 1.218786 .7381837 585
WlinL .407983 .2433845 585
RlinL -.415333 .5208294 585

WloutL .060068 .3622168 585
RloutL -.415333 .5208294 585
NsoutL 1.014974 .7218033 585
WroutL -.293726 .5549477 585
NaCan .10 .301 585
NaMan .10 .304 585
NaWan1 .10 .304 585
NaWan2 .10 .299 585
NaWan3 .10 .304 585
NaWan4 .10 .304 585
NaWan5 .10 .304 585
NaWan6 .10 .304 585
NaWan7 .09 .280 585

ATj .34 .475 585
ATr .32 .469 585
DSh .26 .437 585
DSq .26 .437 585
DSe .25 .431 585

69

All the variable except ATj were significantly correlated with the PsL (dependent variable) since

all the p values were less than 0.05.

The model summary Table 8.16 shows how much variation in the dependent variable was explained

by the model. R2 value of .992 indicates 99% of the variance in the PsL was explained by the

independent variables that are in the model.

TABLE 8.16: Alternative Staging Model Summary

R R2 Adjusted R2 Std. Error of the Estimate
.996 .992 .991 .0465396

TABLE 8.17: Alternative Staging ANOVA

Sum of Squares df Mean Square F Sig.
Regression 157.925 20 7.896 3645.659 .000
Residual 1.222 564 .002

Total 159.146 584

ANOVA Table 8.17 shows that this model is significant since p value is so low even it is less than

0.0001. F (20, 564)= 3645.659 and p<0.05. Since F test statistic is significant. It can be concluded

that this model is significantly predicting the PsL.

Ps = 1.306 + .014(RrinL) + .144(NsinL) + .819(WlinL) + .018(WloutL) + (−.090)RloutL +

.098(NsoutL) + .084(WroutL) + .124(NaCan) + (−.003)NaMan + .157(NaWan1) +

.092(NaWan2) + 0.92(NaWan3) + 0.33(NaWan4) + .029(NaWan6) + 1.038(NaWan7) +

.056(ATj) + .153(ATr) + (−.177)DSh + (−.295)DSq + (−.383)DSe (8.12)

The coefficients for dummy coded variables indicated the difference between the excluded category

and the respective dummy coded variable. RlinL and NaWan5 are excluded from the analysis due to

the multicollinearity.

70

TABLE 8.18: Alternative Coefficients for Staging Model Variables

Variables B t p
(Constant) 1.306 6.413 0

RrinL .014 .070 .944
NsinL .144 10.267 0
WlinL .819 6.392 0

WloutL .018 .960 .337
RloutL -.090 -2.968 .003
NsoutL .098 5.191 0
WroutL .084 5.828 0
NaCan .124 1.186 .236
NaMan -.003 -.040 .968
NaWan1 .157 1.387 .166
NaWan2 .092 1.021 .308
NaWan3 .092 1.052 .293
NaWan4 .033 .404 .686
NaWan6 .029 .372 .710
NaWan7 1.038 5.821 0

ATj .056 12.011 0
ATr .153 31.985 0
DSh -.177 -15.901 0
DSq -.295 -15.494 0
DSe -.383 -13.353 0

71

8.2.4 Alternative Regression Model for Remote I/O

Regression analysis was run using the variables network architecture, data size, and access method

in a dummy coded format. Access method variable has 3 categories and 2 dummy coded variables

generated excluding the sequential method, data size (4 categories: full, half, quarter, and eighth)

3 dummy coded variables were generated excluding the full category, and 9 dummy variables were

generated for the network architecture variable. After removing the outliers, the residuals showed the

normal distribution as it can be seen from Figure 8.15 histogram and P-P plot and Figure 8.16 .

FIGURE 8.15: Alternative Normal PP Plots for Remote I/O After Transformation

FIGURE 8.16: Alternative Remote I/O Scatterplot After the Transformations

Table 8.16 shown scatterplot of the standardized residuals with the standardized predicted value

allows us to check homoscesdaticity, linearity and normality. The regression assumptions are met

since the scatterplot does not show any pattern like a funnel.

72

TABLE 8.19: Alternative Staging Descriptive Statistics for Remote I/O

Variables Mean Std. Deviation N
PrL 2.1239 .78170 584

RrinL .1253 .34228 584
NrL 1.6900 1.13953 584

WroutL .3650 .29150 584
NaCAN .10 .302 584
NaMAN .10 .304 584
NaWAN .10 .302 584
NaWAN2 .10 .304 584
NaWAN3 .10 .302 584
NaWAN4 .10 .304 584
NaWAN5 .08 .275 584
NaWAN6 .10 .304 584
NaWAN7 .10 .302 584

ATj .34 .474 584
ATr .33 .471 584
Dsh .25 .433 584
Dsq .25 .433 584
Dse .25 .435 584

The model summary Table 8.20 shows how much variation in the dependent variable was explained

by the model. R2 value of .992 indicates 99% of the variance in the PrL was explained by the

independent variables that are in the model.

TABLE 8.20: Alternative Remote I/O Model Summary

R R2 Adjusted R2 Std. Error of the Estimate
.996 .992 .991 .07065

TABLE 8.21: Alternative Remote I/O ANOVA

Sum of Squares df Mean Square F Sig.
Regression 353.421 17 20.789 4164.793 .000
Residual 2.825 566 .005

Total 356.246 583

ANOVA Table 8.21 shows that this model is significant since p value is so low even it is less

than 0.0001. Since F test statistic is significant, it can be concluded that this model is significantly

predicting the PrL.

73

TABLE 8.22: Alternative Coefficients for Remote I/O Model Variables

Variables B t p
(Constant) 1.214 25.878 0

RrinL .075 2.335 .020
NrL .502 68.593 0

WroutL .113 2.423 .016
NaCAN .017 .840 .401
NaMAN -.019 -1.003 .316
NaWAN1 -.094 -3.798 0
NaWAN2 -.092 -5.304 0
NaWAN3 -.013 -.660 .509
NaWAN4 -.094 -5.149 0
NaWAN5 .112 5.566 0
NaWAN6 -.066 -3.842 0
NaWAN7 .200 9.988 0

ATj .083 11.602 0
ATr .390 24.199 0
DSh -.102 -6.685 0
DSq -.177 -6.713 0
DSe -.269 -7.467 0

Pr = 1.214 + .075(RrinL) + .502(NrL) + .113(WroutL) + .017(NaCan) + (−.019)NaMan +

(−.094)(NaWan1) + .092(NaWan2) + (−.013)(NaWan3) + (−.094)(NaWan4) +

.112(NaWan5) + (−.066)(NaWan6) + .200(NaWan7) + .083(ATj) + .390(ATr) +

(−.102)DSh + (−.177)DSq + (−.269)DSe (8.13)

RlinL and NaWan5 are excluded from the analysis due to the multicollinearity.

74

Chapter 9
Model Validation

Two real-life applications, Hurricane Data Archive and Blast, are used to test the validity of our

model. In addition to these real-life applications, we have also used modified versions of our synthetic

applications to test some extreme cases. The following sections provide the tests and their results.

9.1 Real-Life Applications
9.1.1 Data Archive for Coastal Science

Coastal/Hurricane research group on CCT has been developing a Simulated Hurricane Database [37]

hosted on Petashare[22] containing data produced from ADCIRC [1] application. Initially, archive

database is populated by ADCIRC runs for hurricanes and tropical storms that have occurred in the

Golf of Mexico over the past 50 years. Then, archive database provides information to additional

application for hypothetical storm events. Some applications are available to analyze the simulated

hurricane database We will use the application program to find out which remote data access tech-

nique is the best method.

9.1.1.1 Data Archive Experiment Design

The simulated hurricane database is around 38 GByte. Spider is used as an execution node, and eric

is used as a data server node. So, we have used CAN network architecture for this experiment. We

have staged in all the data files from eric to spider by globus-url-copy. After the execution, we have

staged out all the files from spider to eric back in staging tests. We have repeated the tests five times

to eliminate network affects. Application program has accessed the simulated hurricane database

which is on eric with parrot/gsiftp remote I/O protocol. This application accesses small portion of

the database, so we have used eighth data size. The application reads the database sequentialy.

9.1.1.2 Experiment Results

Figure 9.1 provides both staging and remote I/O results. Remote I/O has better performance than

staging.

75

FIGURE 9.1: Simulated Hurricane Database Results

9.1.1.3 Model Results

We applied our models as follows:

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.1)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.133 + (−.240)(350.85) + .268(358.02) + .254(180.29) + (−.009)(22.54) + (−.157)(7.84) +

(.269)(614.58) + .290(56.43) + (.051)(1) + .003(2) + .054(0) + .154(0)(9.2)

Ps = 239.126 (9.3)

76

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.4)

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735+(−.160)(89.99)+.527(103.22)+.474(108.91)+(.065)(1)+.011(2)+.080(0)+.322(0) (9.5)

Pr = 92.64 (9.6)

Our model also shows that remote I/O has better performance score. Real-life application confirms

the validity of our model.

9.1.2 Blast

Blast compares a sequence with those contained in nucleotide and protein databases by aligning the

sequence with previously characterized genes. It finds regions of sequence similarity, which will yield

functional and evolutionary clues about the structure and function of this sequence.

Blast is used for the second real-life application. Blast DNA database refseq rna is used, it is

around 1.3 GByte. Spider is used as an execution node and Queen Bee is used as a data server node

(MAN). This application accesses all database, so we have used full data size The application reads

the database sequentially.

9.1.2.1 Experiment Results

According to the Figure 9.2, remote I/O also performing better then staging in our second real-life

application.

9.1.2.2 Model Results

We applied our models as follows:

77

FIGURE 9.2: Blast Results

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.7)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.133 + (−.240)(11.23) + .268(30.55) + .254(5.62) + (−.009)(0.01) + (−.157)(0.001) +

(.269)(2.06) + .290(0.03) + (.051)(4) + .003(2) + .054(0) + .154(0) (9.8)

Ps = 8.83 (9.9)

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.10)

78

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735 + (−.160)(6) + .527(7.29) + .474(0.03) + (.065)(4) + .011(3) + .080(0) + .322(0) (9.11)

Pr = 5.84 (9.12)

Our model also shows that remote I/O has better performance score. Real-life application confirms

the validity of our model.

9.2 Synthetic Applications

We have used modified versions of our synthetic applications to test the validity of our models with

different use cases. We will report two use cases in this section: full ratio and eighth ratio.

9.2.1 Synthetic Application with Full Ratio

We have used our synthetic application and synthetic data. Spider is used as an execution node and

Painter is used as a data server node (WAN4). This application accesses all data, so we have used

full data size. The application reads the database randomly.

9.2.1.1 Experiment Results

FIGURE 9.3: Synthetic Application Results with Full Ratio

79

According to the Figure 9.3, staging is performing better then remote I/O in our first case synthetic

application.

9.2.1.2 Model Results

We applied our models as follows:

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.13)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.133 + (−.240)(5.03) + .268(13.00) + .254(2.6) + (−.009)(2.6) + (−.157)(0.9) +

(.269)(31.02) + .290(0.78) + (.051)(4) + .003(7) + .054(0) + .154(0) (9.14)

Ps = 12.70 (9.15)

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.16)

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735+(−.160)(4.00)+ .527(2687.60)+ .474(5.00)+(.065)(4)+ .011(7)+ .080(0)+ .322(0) (9.17)

Pr = 1419.17 (9.18)

Our model shows that staging has better performance score. Synthetic application confirms the

validity of our model.

80

9.2.2 Synthetic Application with Eighth Ratio

We have used our synthetic application and synthetic data. Spider is used as an execution node and

Painter is used as a data server node (WAN4). This application accesses eighth of the data, so we

have used eighth data size. The application reads the database randomly.

9.2.2.1 Experiment Results

FIGURE 9.4: Synthetic Application Results with Eighth Ratio

According to the Figure 9.4, staging is performing better then remote I/O in our second case

synthetic application.

9.2.2.2 Model Results

We applied our models as follows:

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.19)

When we replace the variables with their corresponding values, the equation becomes:

81

Ps = 1.133 + (−.240)(5.03) + .268(13.17) + .254(2.59) + (−.009)(0.53) + (−.157)(0.09) +

(.269)(5.3) + .290(0.09) + (.051)(1) + .003(7) + .054(0) + .154(0) (9.20)

Ps = 5.61 (9.21)

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.22)

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735+(−.160)(0.56)+ .527(309.84)+ .474(1.08)+(.065)(1)+ .011(7)+ .080(0)+ .322(0) (9.23)

Pr = 164.585 (9.24)

Our model also shows that staging has better performance score. Synthetic application confirms

the validity of our model.

9.3 Extreme Cases

We have used modified versions of our synthetic application to test some extreme use cases as well.

We will report two extreme use cases in this section. For each case, we run the simulation for two

different data access techniques (sequential and random). On the first case, our simulation reads all

data and produces 1/100 output data ratio. On the second case, our simulation reads 1/100 input

data ratio and produces the same amount of data.

9.3.1 Full Ratio Input, 1/100 Ratio Output

We have used our synthetic application and synthetic data. Spider is used as an execution node and

Quinbee is used as a data server node (MAN). This application accesses all data, so we have used

full data size.

82

9.3.1.1 Experiment Results with Sequential

FIGURE 9.5: Extreme Case Synthetic Application Results with Full Input 1/100 Output Sequential

According to the Figure 9.5, remote I/O is performing better then staging in our first extreme case

synthetic application.

9.3.1.2 Model Results

We applied our models as follows:

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.25)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.133 + (−.240)(5.05) + .268(9.56) + .254(2.53) + (−.009)(2.53) + (−.157)(0.86) +

(.269)(6.06) + .290(5.85) + (.051)(4) + .003(3) + .054(0) + .154(0) (9.26)

Ps = 6.50 (9.27)

83

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.28)

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735 + (−.160)(2.70) + .527(8.18) + .474(1.14) + (.065)(4) + .011(3) + .080(0) + .322(0) (9.29)

Pr = 5.45 (9.30)

Our model shows that remote I/O has better performance score. Synthetic application confirms

the validity of our model.

9.3.1.3 Experiment Results with Random

FIGURE 9.6: Extreme Case Synthetic Application Results with Full Input 1/100 Output Random

According to the Figure 9.6, staging is performing better then remote I/O in our first extreme case

synthetic application with random data access.

9.3.1.4 Model Results

We applied our models as follows:

84

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.31)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.133 + (−.240)(5.05) + .268(8.43) + .254(2.43) + (−.009)(2.53) + (−.157)(0.86) +

(.269)(4.58) + .290(5.85) + (.051)(4) + .003(3) + .054(0) + .154(0) (9.32)

Ps = 5.78 (9.33)

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.34)

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735+(−.160)(2.70)+ .527(2458.03)+ .474(1.14)+(.065)(4)+ .011(3)+ .080(0)+ .322(0) (9.35)

Pr = 1296.52 (9.36)

Our model shows that staging has better performance score. Synthetic application confirms the

validity of our model.

9.3.1.5 Alternative Model Results with Sequential

We applied our alternative models as follows:

85

Staging

Ps = 1.306 + .014(RrinL) + .144(NsinL) + .819(WlinL) + .018(WloutL) + (−.090)RloutL +

.098(NsoutL) + .084(WroutL) + .124(NaCan) + (−.003)NaMan + .157(NaWan1) +

.092(NaWan2) + 0.92(NaWan3) + 0.33(NaWan4) + .029(NaWan6) + 1.038(NaWan7) +

.056(ATj) + .153(ATr) + (−.177)DSh + (−.295)DSq + (−.383)DSe (9.37)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.306 + (.014)(5.05) + .133(9.56) + .819(2.53) + (.018)(2.53) + (−.090)(0.86) +

(.098)(6.06) + .084(5.85) + (−.003)(1) (9.38)

Ps = 5.73 (9.39)

Remote I/O

Pr = 1.214 + .075(RrinL) + .502(NrL) + .113(WroutL) + .017(NaCan) + (−.019)NaMan +

(−.094)(NaWan1) + .092(NaWan2) + (−.013)(NaWan3) + (−.094)(NaWan4) +

.112(NaWan5) + (−.066)(NaWan6) + .200(NaWan7) + .083(ATj) + .390(ATr) +

(−.102)DSh + (−.177)DSq + (−.269)DSe (9.40)

When we replace the variables with their corresponding values, the equation becomes:

Pr = 1.214 + (.075)(2.70) + .502(8.18) + .113(1.14) + (1.19)(1) + .390(1) + (−.269)(1) (9.41)

Pr = 4.54 (9.42)

Our model shows that remote I/O has better performance score. Synthetic application confirms

the validity of our model.

86

9.3.1.6 Alternative Model Results with Random

We applied our models as follows:

Staging

Ps = 1.306 + .014(RrinL) + .144(NsinL) + .819(WlinL) + .018(WloutL) + (−.090)RloutL +

.098(NsoutL) + .084(WroutL) + .124(NaCan) + (−.003)NaMan + .157(NaWan1) +

.092(NaWan2) + 0.92(NaWan3) + 0.33(NaWan4) + .029(NaWan6) + 1.038(NaWan7) +

.056(ATj) + .153(ATr) + (−.177)DSh + (−.295)DSq + (−.383)DSe (9.43)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.306 + .014(5.05) + .144(8.43) + .819(2.43) + .018(2.53) + (−.090)(0.86) +

(.098)(4.58) + .084(5.85) + (−.003)(1) (9.44)

Ps = 5.59 (9.45)

Remote I/O

Pr = 1.214 + .075(RrinL) + .502(NrL) + .113(WroutL) + .017(NaCan) + (−.019)NaMan +

(−.094)(NaWan1) + .092(NaWan2) + (−.013)(NaWan3) + (−.094)(NaWan4) +

.112(NaWan5) + (−.066)(NaWan6) + .200(NaWan7) + .083(ATj) + .390(ATr) +

(−.102)DSh + (−.177)DSq + (−.269)DSe (9.46)

When we replace the variables with their corresponding values, the equation becomes:

Pr = 1.214 + .075(2.70) + .502(2458.03) + .113(1.14) + (−.019)(1) + .390(1) + (−.269)(1) (9.47)

87

Pr = 1234.36 (9.48)

Our model shows that staging has better performance score. Synthetic application confirms the

validity of our model.

9.3.2 1/100 Ratio Input, 1/100 Ratio Output

We have used our synthetic application and synthetic data. Spider is used as an execution node and

Quinbee is used as a data server node (MAN). This application accesses 1/100 data, so we have used

eighth data size.

9.3.2.1 Experiment Results with Sequential

FIGURE 9.7: Extreme Case Synthetic Application Results with 1/100 Input 1/100 Output Sequential

According to the Figure 9.7, remote I/O is performing better then staging.

9.3.2.2 Model Results

We applied our models as follows:

88

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.49)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.133 + (−.240)(5.05) + .268(7.52) + .254(2.53) + (−.009)(0.56) + (−.157)(0.10) +

(.269)(3.19) + .290(0.09) + (.051)(1) + .003(3) + .054(0) + .154(0) (9.50)

Ps = 3.50 (9.51)

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.52)

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735 + (−.160)(0.56) + .527(2.36) + .474(1.11) + (.065)(1) + .011(3) + .080(0) + .322(0) (9.53)

Pr = 2.51 (9.54)

Our model shows that remote I/O has better performance score. Synthetic application confirms

the validity of our model.

9.3.2.3 Experiment Results with Random

According to the Figure 9.8, staging is performing better then remote I/O with random data access.

89

FIGURE 9.8: Extreme Case Synthetic Application Results with 1/100 Input 1/100 Output Random

9.3.2.4 Model Results

We applied our models as follows:

Staging

Ps = 1.133 + (−.240)(RrinL) + .268(NsinL) + .254(WlinL) + (−.009)(WloutL) +

(−.157)(RloutL) + (.269)(NsoutL) + .290(WroutL) + (.051)(DS) + .003(NA) +

.054(ATj) + .154(ATr) (9.55)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.133 + (−.240)(5.05) + .268(9.81) + .254(2.53) + (−.009)(0.56) + (−.157)(0.10) +

(.269)(3.26) + .290(0.09) + (.051)(1) + .003(3) + .054(0) + .154(0) (9.56)

Ps = 4.13 (9.57)

90

Remote I/O

Pr = .735+(−.160)(RrinL)+.527(NrL)+.474(WroutL)+(.065)(DS)+.011(NA)+.080(ATj)+.322(ATr)

(9.58)

When we replace the variables with their corresponding values, the equation becomes:

Pr = .735+(−.160)(0.56)+ .527(305.88)+ .474(1.11)+(.065)(1)+ .011(3)+ .080(0)+ .322(0) (9.59)

Pr = 162.50 (9.60)

Our model shows that staging has better performance score. Synthetic application confirms the

validity of our model.

9.3.2.5 Alternative Model Results with Sequential

We applied our alternative models as follows:

Staging

Ps = 1.306 + .014(RrinL) + .144(NsinL) + .819(WlinL) + .018(WloutL) + (−.090)RloutL +

.098(NsoutL) + .084(WroutL) + .124(NaCan) + (−.003)NaMan + .157(NaWan1) +

.092(NaWan2) + 0.92(NaWan3) + 0.33(NaWan4) + .029(NaWan6) + 1.038(NaWan7) +

.056(ATj) + .153(ATr) + (−.177)DSh + (−.295)DSq + (−.383)DSe (9.61)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.306 + (.014)(5.05) + .133(7.52) + .819(2.53) + (.018)(0.56) + (−.090)(0.10) +

(.098)(3.19) + .084(0.09) + (−.003)(1) + (−.383)(1) (9.62)

Ps = 4.40 (9.63)

91

Remote I/O

Pr = 1.214 + .075(RrinL) + .502(NrL) + .113(WroutL) + .017(NaCan) + (−.019)NaMan +

(−.094)(NaWan1) + .092(NaWan2) + (−.013)(NaWan3) + (−.094)(NaWan4) +

.112(NaWan5) + (−.066)(NaWan6) + .200(NaWan7) + .083(ATj) + .390(ATr) +

(−.102)DSh + (−.177)DSq + (−.269)DSe (9.64)

When we replace the variables with their corresponding values, the equation becomes:

Pr = 1.214 + (.075)(0.56) + .502(2.36) + .113(1.11) + (0.019)(1) + .390(1) + (−.269)(1) (9.65)

Pr = 1.45 (9.66)

Our model shows that remote I/O has better performance score. Synthetic application confirms

the validity of our model.

9.3.2.6 Alternative Model Results with Random

We applied our models as follows:

Staging

Ps = 1.306 + .014(RrinL) + .144(NsinL) + .819(WlinL) + .018(WloutL) + (−.090)RloutL +

.098(NsoutL) + .084(WroutL) + .124(NaCan) + (−.003)NaMan + .157(NaWan1) +

.092(NaWan2) + 0.92(NaWan3) + 0.33(NaWan4) + .029(NaWan6) + 1.038(NaWan7) +

.056(ATj) + .153(ATr) + (−.177)DSh + (−.295)DSq + (−.383)DSe (9.67)

When we replace the variables with their corresponding values, the equation becomes:

Ps = 1.306 + .014(5.05) + .144(9.81) + .819(2.53) + .018(0.56) + (−.090)(0.10) +

(.098)(3.26) + .084(0.09) + (−.003)(1) + .153(1) + (−.383)(1) (9.68)

92

Ps = 4.95 (9.69)

Remote I/O

Pr = 1.214 + .075(RrinL) + .502(NrL) + .113(WroutL) + .017(NaCan) + (−.019)NaMan +

(−.094)(NaWan1) + .092(NaWan2) + (−.013)(NaWan3) + (−.094)(NaWan4) +

.112(NaWan5) + (−.066)(NaWan6) + .200(NaWan7) + .083(ATj) + .390(ATr) +

(−.102)DSh + (−.177)DSq + (−.269)DSe (9.70)

When we replace the variables with their corresponding values, the equation becomes:

Pr = 1.214 + .075(0.56) + .502(305.88) + .113(1.11) + (−.019)(1) + .390(1) + (−.269)(1) (9.71)

Pr = 153.82 (9.72)

Our model shows that staging has better performance score. Synthetic application confirms the

validity of our model.

93

Chapter 10
Conclusions

Over the years, scientific applications and experiments have become increasingly complex and more

demanding in terms of the ir computational and data requirements, and the amount of data generated

and used has grown at a very rapid rate. One of the major challenges for these applications in

distributed computing setting has been how to access large datasets remotely over the network.

Data staging and remote I/O have been the most widely used data access methods for distributed

applications. Application developers generally chose one over the other intuitively without making

any scientific comparison specific to their applications since there is no generic model available that

they can use.

In this thesis, we have developed generic models and set guidelines for the application developers

which would help them to choose the most appropriate data access method for their application.

We defined the parameters that potentially affect the end-to-end performance of the distributed

applications which need to access remote data. We have implemented a series of synthetic benchmark

applications to simulate different data access patterns. We run these benchmark applications on

different distributed computing settings with different parameters, such as network bandwidth, server

and client capabilities, and data access ratio. We have also used different remote I/O protocols to

show the importance of the protocol in making a decision. We have used regression analysis to develop

applicable generic models for comparing different data access methods, and test our models in a real

life application.

The main contribution of our thesis is generic models that can be applied to most data-intensive

distributed applications to decide the best data access technique for those applications. Our models

provide the scientists and application developers an opportunity to choose the best data access

method before actually running the application. Since data-intensive distributed applications spend

most of the time accessing the data before and after the computation, choosing the best way to access

94

the remote data is imperative. Application designers can use our models to develop their application

when they decide which data access technique is right for them.

The existing approaches to find the best data access method has been based on active learning.

First, the application needs to be run in the same environment with all possible combinations. Once

the combination that is the best fit for that environment is discovered, the correct data access

technique can be found. Our models, however, provide best data access technique before running the

application.

Sequential and jump data access always performs better then random data access on all network

architectures. High-speed networks improve the data transfer ratio dramatically. Random data access

on remote I/O is not benefitting from high-speed network architectures, so the performance decreases

dramatically. The differences on sequential and jump is less than the differences on random. So,

researcher should be more careful when remote I/O was chosen. Since all data should be staged in

before the execution, decreasing the data ratio improves the remote I/O performance.

High performance computers not only increase the execution performance, but also the data trans-

fer performance. Network overhead plays important role on random remote I/O. If the application

can use advanced programming techniques to handle network overhead, remote random performance

can be improved.

Increasing the distance between execution node and data server node with high-speed network

decrease the the gap between sequential and jump performance. Without high-speed network, it

decreases the gap between remote I/O and staging on all data access techniques. On the other hand,

it increases the gap on smaller data ratios. Also, choosing proper remote I/O protocol is a crucial

decision for the end-to-end application performance.

95

References

[1] http://adcirc.org/.

[2] http://freshmeat.net/projects/unixbench.

[3] http://gking.harvard.edu/clarify/docs/clarify.html.

[4] http://oprofile.sourceforge.net/about/.

[5] http://www.hpss-collaboration.org/.

[6] http://www.netperf.org/netperf/.

[7] http://www.postgresql.org/.

[8] http://www.spec.org.

[9] ulm. ftp://ds.internic.net/internet-drafts/draft-abela-ulm-02.txt.

[10] http://foldoc.org/uml, 2002.

[11] http://www.loni.org/, 2009.

[12] http://aimbench.sourceforge.net/, 2010.

[13] https://gilda.ct.infn.it/, 2010.

[14] http://sourceforge.net/projects/hdparm/, 2010.

[15] http://wiki.lustre.org/index.php/, 2010.

[16] http://www.coda.cs.cmu.edu/, 2010.

[17] http://www.cse.nd.edu/ ccl/software/, 2010.

[18] http://www.iozone.org/, 2010.

[19] http://www.lsc-group.phys.uwm.edu/ldr/, 2010.

[20] http://www.nasa.gov/, 2010.

[21] http://www.pcausa.com/utilities/pcattcp.htm, 2010.

[22] http://www.petashare.org/, 2010.

[23] http://www.teragrid.org, 2010.

[24] www.spss.com, 2010.

[25] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Extending the operating system
at the user level: The ufo global file system. In In 1997 Annual Technical Conference on UNIX
and Advanced Computing Systems (USENIX’97), January 1997.

96

[26] N. Ali and M. Lauria. Improving the performance of remote i/o using asynchronous primitives.
In HPDC-15, Paris, June 2006.

[27] W. Allcock. Gridftp protocol specification. Global grid forum, 2003. GFD.20.

[28] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli,
and Randolph Y. Wang. Serverless network file systems. ACM Trans. Comput. Syst., 14(1):41–
79, 1996.

[29] P. M. Andrews, T. Sherwin, and B. Banister. A centralized data access model for grid computing.
In Proceedings on 20th IEEE/11th NASA Goddard Conference, 2003.

[30] L. G. Antoniu and M. Jan BougB. Juxmem: An adaptive supportive platform for data sharing
on the grid. In Scalable Computing: Practice and Ezperience, 2005.

[31] S. Babu, P. Shivam, and J. Chase. Active and accelerated learning of cost models for optimizing
scientific applications. In International Conferance on Very Large Data Bases (VLDB), 2006.

[32] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz. Jovian: A framework for optimizing
parallel i/o. In In Proceedings of the 1994 Scalable Parallel Libraries Conference, pages 10–20.
IEEE Computer Society Press, October 1994.

[33] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau, and M. Livny. Flexibility, manageability, and performance in a grid storage appliance.
In High Performance Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE
International Symposium on, pages 3–12, 2002.

[34] John Bent, Douglas Thain, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, and Miron Livny.
Explicit control in a batch aware distributed file system. In Proceedings of the First
USENIX/ACM Conference on Networked Systems Design and Implementation, San Francisco,
CA, March 2004.

[35] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven Tuecke. Gass: a data
movement and access service for wide area computing systems. In IOPADS ’99: Proceedings
of the sixth workshop on I/O in parallel and distributed systems, pages 78–88, New York, NY,
USA, 1999. ACM.

[36] M. D. Beynony, R. Ferreiray, T. Kurcy, A. Sussmany, and J. Saltzyz. Datacutter: Middleware
for filtering very large scientific datasets on archival storage systems. In In Proceedings of the
2000 Mass Storage Systems Conferance. IEEE Computer Society Press.

[37] Ram Sri Harsha Bhagawaty, Lei Jiang, Swathi Dubbaka, Kelin Hu, Sreekanth Pothanis, Gabrielle
Allen, Nathan Brener, Qin Chen, and Tevfik Kosar. Design, implementation and use of a
simulation data archive for coastel science. In CLADE, 2010.

[38] C. Blanchet, R. Mollon., D. Thain, and G. Deleage. Grid deployment of lagesy bioinformatics
applications with transparent data access. In IEEE Conference on Grid Computing, September
2006.

[39] M. Buddhikot, G. Parulkar, and J. Cox. Design of a large scale multimedia storage server. In
INET ’94, 1994.

97

[40] Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi Ponnusamy,
Tarvinder Singh, and Rajeev Thakur. Passion: Parallel and scalable software for input-output.
Technical report, 1994.

[41] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg, B. Traversat,
and P. Wong. Mpi-io: A parallel file i/o interface for mpi. Technical Report NAS-95-002, NAS,
NASA Ames Research Center, Mofiett Field, CA, January 1995. Version 0.3.

[42] P. Corbett, D. Feitelson, J.-P. Prost, and S. Baylor. Overview of the vesta parallel file system.
In In IPPS ’93 Workshop on Input/Output in Parallel Computer Systems, pages 1–16, 1993.

[43] W. Elwasif, J. Plank, and R. Wolski. Data staging effects in wide area task farming applications.
In Proceedings of the 1st International Symposium on Cluster Computing and the Grid, 2001.

[44] Renato Figueiredo, Nirav H. Kapadia, and Jose A. B. Fortes. The punch virtual file system:
Seamless access to decentralized storage services in a computational grid. In In Proceedings of
the Tenth IEEE International Symposium on High Performance Distributed Computing. IEEE
Computer. Society Press, 2001.

[45] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote i/o: Fast access to distant storage. In
Workshop on I/O in Parallel and Distributed Systems (IOPADS), pages 14–25, 1997.

[46] R. Fujimoto. Parallel and distributed simulation systems. Wiley Interscience, New York, 2000.

[47] Tabachnick Barbara G. and Fidell Linda S. Using multivariate statistics. Pearson Education
Inc., 2007.

[48] William E. Johnston, Dennis Gannon, and Bill Nitzberg. Grids as production computing en-
vironments: The engineering aspects of nasa’s information power grid. High-Performance Dis-
tributed Computing, International Symposium on, 0:34, 1999.

[49] Jones and James Patton. Pbs: portable batch system. pages 369–390, 2002.

[50] R. Kalmady and B. Tierney. A comparison of gsiftp and rfio on a wan. In Proceedings of
Computers in High Energy Physics, 2001.

[51] David G. Kleinbaum. Applied Regression Analysis and Other Multivariable Methods. Duxbury
Press, 1998.

[52] D. Kohr, R. Krishnaiyer, I. Foster, and J. Mogill. Remote i/o: Fast access to distant storage. In
Workshop on I/O in Parallel and Distributed Systems (IOPADS), pages 14–25, 1997.

[53] Tevfik Kosar and Miron Livny. Stork: Making data placement a first class citizen in the grid.
In In International Conference on Distributed Computing Systems, March 2004.

[54] G. Krasner and S. Pope. A cookbook for using model view controller interface paradigm. Journal
of Object Oriented Programming, 1988.

[55] Erwin Laure, Heinz Stockinger, and Kurt Stockinger. Performance engineering in data grids.
Journal of Concurrency and Computation: Practice and Experience, Wiley Press, 17(2-4), 2005.

[56] Jonghyun Lee, Xiaosong Ma, Robert Ross, Rajeev Thakur, and Marianne Winslett. Rfs: Efficient
and flexible remote file access for mpi-io. In In Proc. of the IEEE Int’l Conference on Cluster
Computing (Cluster 2004), September 2004.

98

[57] Jonghyun Lee, Robert Ross, Scott Atchley, Micah Beck, and Rajeev Thakur. Mpi-io/l: Efficient
remote i/o for mpi-io via logistical networking. In In Proc. of the 20th IEEE Int’l Parallel and
Distributed Processing Symposium (IPDPS 2006), April 2006.

[58] M. Litzkow, M. Livney, and M. Mutka. Condor – a hunter of idle workstations. In In Proc. 8th
Intl Conf. on Distributed Computing Systems, pages 104–111, 1988.

[59] Ravi K Madduri, Cynthia S. Hood, and William E. Allcock. Reliable file transfer in grid en-
vironments. In Proceedings of the 27th Annual IEEE Conference on Local Computer Networks
(LCN’02), 2002.

[60] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel. Separating key
management from file system security. SIGOPS Oper. Syst. Rev., 33(5):124–139, 1999.

[61] D. Mills. Simple network time protocol (ntp). RFC 1769, University of Delaware, March 1995.

[62] J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, and F. Smith. Andrew:
A distributed personal computing environment. Communications of the ACM, 29(3):184–201,
1986.

[63] Nils Nieuwejaar and David Kotz. The galley parallel file system. Parallel Computing, pages
23(4):447–476, June 1997.

[64] Marija J. Norusis. SPSS 16.0 Guide to Data Analysis. prentice hall Inc., 2008.

[65] Maŕıa S. Pérez, Jesús Carretero, Félix Garćıa, José M. Peña, and Vı́ctor Robles. Mapfs: A flexible
multiagent parallel file system for clusters. Future Generation Computer Systems, 22(5):620 –
632, 2006.

[66] J. Plank, M. Beck, W. R. Elwasif, and T. Moore. The internet backplane protocol: Storage in
the network. In In Proceedings of the 1999 Network Storage Symposium NetStore99, Seattle,
WA, USA, 1999.

[67] S. Pllana and T. Fahringer. Performance prophet: A performance modeling and prediction
tool for parallel and distributed programs. In The 2005 International Conference on Parallel
Processing (ICPP-05), 2005.

[68] J. Postel and J. Reynolds. File Transfer Protocol (ftp), 1985.

[69] Radu Prodan and Thomas Fahringer. Zenturio: An experiment management system
for cluster and grid computing. In In Proceedings of the 4th International Confer-
ence on Cluster Computing (CLUSTER 2002, pages 9–18. IEEE Computer Society Press.
http://www.par.univie.ac.at/project/zenturio, 2002.

[70] Buyya R. and M. Murshed. Gridsim: A toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. J. Concur, and Computation (CCPE),
2002.

[71] Manuel Rodŕıguez-Mart́ınez and Nick Roussopoulos. Mocha: a self-extensible database middle-
ware system for distributed data sources. SIGMOD Rec., 29(2):213–224, 2000.

[72] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of
the sun network file system. In In Proc. Summer USENIX, pages pages 119 – 130, June 1985.

99

[73] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective i/o
in panda. In Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference on Supercom-
puting (CDROM), page 57, New York, NY, USA, 1995. ACM.

[74] X. Shen, W. Liao, and A. Choudhary. Remote i/o optimization and evaluation for tertiary
storage systems through storage recource vroker. In In Proc. of IASTED Applied Informatics,
Innsbruck, Austria, 2001.

[75] Xiaohui Shen, Wei keng Liao, and Alok Choudhary. Remote i/o optimization and evaluation
for tertiary storage systems through storage resource broker. IASTED Applied Informatics,
Innsbruck, Austria, 2001.

[76] Heinz Stockinger. Data management in data grids - habilitation overview. Technical report,
Research Lab for Computational Technologies and Applications, May 2005.

[77] Heinz Stockinger, Kurt Stockinger, Erich Schikuta, and Ian Willers. Towards a cost model for
distributed and replicated data stores. In 9th Euromicro Workshop on Parallel and Distributed
Processing (PDP 2001), IEEE Computer Society Press, Mantova, Italy, February, 2001.

[78] N. T. B. Stone, D. Balog, B. Gill, B. Johanson, J. Marsteller, P. Nowoczynski, D. Porter, and
R. Reddy. Pdio: High-performance remote file i/o for portals enabled compute nodes. In In
Proceedings of the 2006 Conference on Parallel and Distributed Processing Techniques and Ap-
plications, Las Vegas, NV, June 2006.

[79] D. Thain. Chirp: An architecture for cooperative storage. Workshop on Adaptive Grid Middle-
ware, 2005.

[80] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Gathering at the
well: Creating communities for grid i/o. In International Conference for High Performance
Computing and Communications, 2001.

[81] D. Thain and M. Livny. Parrot: Transparent user-level middleware for data-intensive computing.
Univ. of Notre Dame, Computer Science and Engineering Dept., 2003.

[82] R. Thakur, W Gropp, and E. Lusk. An abstract-device interface for implementing portable
parallel-i/o intervaces. In In Proceeding of the Symposium on the Frontiers of Massively Parallel
Computation, 1996.

[83] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective i/o in romio. In In proceeding
of the Symposium on the Frontiers of Massively Parallel Computation, 1999.

[84] Mitchell D. Theys, Howard Jay Siegel, Noah B. Beck, Min Ta, and Michael Jurczyk. A math-
ematical model, heuristic, and simulation study for a basic data staging problem in a het-
erogeneous networking environment. In Proceedings of the Seventh Heterogeneous Computing
Workshop, 1998.

[85] B. Tierney, W. Johnston, L. Chen, H. Herzog, G. Hoo, G. Jin, and J. Lee. Distributed parallel
data storage systems: A scalable approach to high speed image servers. In ACM Multimedia 94.
ACM Press, 1994.

[86] Brian Tierney, William Johnston, Brian Cowley, Gary Hoo, Chris Brooks, and Dan Gunter. The
netlogger methodology for high performance distributed systems performance analysis. In In
Proc. 7th IEEE Symp. on High Performance Distributed Computing, pages 260–267, 1998.

100

[87] R. Tite. General linear model applications, 1996.

[88] R. L. Tweedie. Operator-Geometric Stationary Distributions for Markov Chains, with Applica-
tion to Queueing Models, volume 14-2. Applied Probability Trust, 1982.

[89] A. Vahdat, P. Eastham, and T. Anderson. Webfs: A global cache coherent flesystem. Technical
report, Department of Computer Science UC Berkeley, 1996.

[90] Y. Wang and D. Kaeli. Load balancing using grid-based peer-to-peer parallel i/o. In Proceedings
of the IEEE Cluster Computing Conference, September 2005.

[91] B. White, A. Grimshaw, and A. Nguyen-Tuong. Grid-based file access: The legion I/O model.
In Proceedings of the 9th IEEE Symposium on High Performance Distributed Systems, 2000.

[92] Brian S. White, Andrew S. Grimshaw, and Anh Nguyen-Tuong. Grid-based file access: The
legion i/o model. In HPDC ’00: Proceedings of the 9th IEEE International Symposium on High
Performance Distributed Computing, page 165, Washington, DC, USA, 2000. IEEE Computer
Society.

101

Vita

The author, Ibrahim H Suslu, was born in Trabzon, Turkey, in 1969. The author enrolled at Marmara

University, Technical Education Faculty, in 1988 and received a bachelor’s degree in computer and

control in 1993. During the college education, he had been honored with the scholarship from the

Istanbul Commerce Organization for two years. After the graduation, he has worked as a graduate

assistant at Marmara University, Technical Educational Faculty for 6 years.

He received his first master’s degree in 1995 in the field of computer technologies. His area of study

was Intel 80196 Micro Controller Simulation in Education. He had been in the Ph.D. program of the

same university until 1999 for three years. He fulfilled all the course requirements and was working

on his thesis. He had been employed as a teaching assistant between 1993 and 1999.

The author enrolled in the Science and Math Education (SMED) Ph.D. Program at Southern

University, Baton Rouge in January, 2000. Then he switched his program from the SMED to the

Computer Science Master program on 2001. He has worked as a graduate assistant at Southern

University, Baton Rouge, from January 2000 to fall 2001. He has worked for a joint data mining

project between Southern University (SUBR) and University of Louisiana of Lafayette (ULL) under

Dr. Miroslav Kubat. He has finished his master’s on fall 2001.

The author enrolled in the computer science doctoral program at Louisiana State University in

2002. While he was working for his PhD, he also worked at the Southern University computer science

department as a system manager for 5 years. To fulfill residency requirement, he resigned from his

system manager job and became a full time student and started to work as a graduate assistant at

CCT under Dr. Tevfik Kosar.

He has contributed to four research projects, participated in five different conferences and three

workshops. He has presented a paper at four different conferences.

His research is in distributed computing with emphasis on remote data access techniques. He is

also interesting in networks, operating systems and data mining.

His most significant publications are:

102

• Tevfik Kosar, Mehmet Balman, Ibrahim H Suslu, Esma Yildirim, and D. Yin. Data-Aware Dis-

tributed Computing, Submitted to the Journal of Parallel and Distributed Computing (JPDC),

2010.

• Tevfik Kosar, Mehmet Balman, Ibrahim H Suslu, Esma Yildirim, and D. Yin Data-Aware Dis-

tributed Computing with Stork Data Scheduler, In Proceedings of SEE-GRID-SCI’09, Istanbul,

Turkey, December 2009

• Ibrahim H Suslu, Wan Huang and Tevfik Kosar, Choosing Between Remote I/O versus Staging

in Large Scale Distributed Applications, Extended Abstract and Poster in Louisiana EPSCoR

RII Cybertools/Science Drivers Symposium, Baton Rouge, LA, USA, May, 2009

• Ibrahim H Suslu, Fatih Turkmen, Mehmet Balman, Tevfik Kosar Choosing Between Remote

I/O versus Staging in Large Scale Distributed Applications, in Parallel and Distributed Com-

puting and Communication Systems, New Orleans, LA, 2008.

• Esma Yildirim, Ibrahim H Suslu, Tevfik Kosar. Which Network Measurement Tool is Right for

You? A Multidimensional Comparison Study, in The 9th IEEE/ACM International Conference

on Grid Computing (Grid 2008), Tsukuba, Japan, 2008

• Ibrahim H Suslu, Ismail Akturk, Xingqi Wang and Tevfik Kosar. Distributed Data Management

in CyberTools, Poster in Louisiana Cyberinfrastructure and Science

• Mehmet Balman, Ibrahim Suslu, and Tevfik Kosar. Distributed Data Management with PetaShare,

Poster in the 15th Mardi Gras Conference, Baton Rouge, LA, USA, February, 2008

• Ibrahim H Suslu and Tevfik Kosar. Balancing the use of Remote I/O versus Staging in Dis-

tributed Environments In 9th International Conference on Enterprise Information System,

(ICEIS’07), Funchal, Madeira - Portugal, June, 2007

• Osman Kandara, Mehtap Kandara, and Ibrahim H Suslu. Association Rules to Predict the

Likelihood of Recoverability of an Attribute in a Database, In the 8th World Multiconference

on Systemics, Cybernetics and Informatics (SCI 2004), Orlando, USA, July, 2004

103

	Louisiana State University
	LSU Digital Commons
	2010

	Choosing between remote I/O versus staging in distributed environments
	Ibrahim Hakki Suslu
	Recommended Citation

	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Chapter Introduction
	Overview
	Major Contributions
	Thesis Outline

	Chapter Background and Basic Concepts
	Data Staging
	Staging Techniques

	Remote I/O
	Remote I/O Techniques

	How Researchers Choose
	Reasons to Favor Remote I/O
	Reasons to Favor Staging
	Remark

	Chapter Related Work
	Comparison of Data Staging and Remote I/O
	Modeling the Grid Environment and the Other Modeling Techniques
	Performance Modeling Tools
	Fully Grid Enabled Performance Tools
	Partially Grid Enabled Performance Tools

	Chapter Methodology
	Chapter Experiment Design
	Experiment Systems
	DSL Lab Testbed
	Loni Testbed
	TeraGrid Testbed
	Gilda Testbed

	Benchmarks
	IOzone
	GridFTP
	CCTools

	Experiment Setup
	Parameters

	Synthetic Programs
	Data Generation Program
	Sequential
	Jump
	Random

	Chapter Results and Analysis
	Parrot/gsiftp Results
	Local Area Network (LAN)
	Campus Area Network (CAN)
	Metropolitan Area Network (MAN)
	Wide Area Network 1 (WAN1)
	Wide Area Network 2 (WAN2)
	Wide Area Network 3 (WAN3)
	Wide Area Network 4 (WAN4)
	Wide Area Network 5 (WAN5)
	Wide Area Network 6 (WAN6)
	Wide Area Network 7 (WAN7)
	Comparison Between Network Architectures on the parrot/gsiftp Combination

	Comparison Between parrot/gsiftp and parrot/chirp Combination
	Remote I/O Results
	Staging Results

	Chapter Cache Impact
	Caching
	Cache Experiment Setup
	Cache Experiment Results

	Chapter Model
	Initial Model
	Regression Models
	Regression Model for Data Staging
	Regression Model for Remote I/O
	Alternative Regression Model for Data Staging
	Alternative Regression Model for Remote I/O

	Chapter Model Validation
	Real-Life Applications
	Data Archive for Coastal Science
	Blast

	Synthetic Applications
	Synthetic Application with Full Ratio
	Synthetic Application with Eighth Ratio

	Extreme Cases
	Full Ratio Input, 1/100 Ratio Output
	1/100 Ratio Input, 1/100 Ratio Output

	Chapter Conclusions
	References
	Vita

