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This dissertation describes a new methodology for multi-modal (2-D + 3-D) face

modeling and recognition. There are advantages in using each modality for face

recognition. For example, the problems of pose variation and illumination condition,

which cannot be resolved easily by using the 2-D data, can be handled by using the

3-D data. However, texture, which is provided by 2-D data, is an important cue

that cannot be ignored. Therefore, we use both the 2-D and 3-D modalities for face

recognition and fuse the results of face recognition by each modality to boost the

overall performance of the system.

In this dissertation, we consider two different cases for multi-modal face modeling

and recognition. In the first case, the 2-D and 3-D data are registered. In this case

we develop a unified graph model called Attributed Relational Graph (ARG) for face

modeling and recognition. Based on the ARG model, the 2-D and 3-D data are

included in a single model. The developed ARG model consists of nodes, edges, and

mutual relations. The nodes of the graph correspond to the landmark points that are

extracted by an improved Active Shape Model (ASM) technique. In order to extract

the facial landmarks robustly, we improve the Active Shape Model technique by using

the color information. Then, at each node of the graph, we calculate the response of

a set of log-Gabor filters applied to the facial image texture and shape information



(depth values); these features are used to model the local structure of the face at

each node of the graph. The edges of the graph are defined based on Delaunay

triangulation and a set of mutual relations between the sides of the triangles are

defined. The mutual relations boost the final performance of the system. The results

of face matching using the 2-D and 3-D attributes and the mutual relations are fused

at the score level.

In the second case, the 2-D and 3-D data are not registered. This lack of regis-

tration could be due to different reasons such as time lapse between the data acquisi-

tions. Therefore, the 2-D and 3-D modalities are modeled independently. For the 3-D

modality, we developed a fully automated system for 3-D face modeling and recog-

nition based on ridge images. The problem with shape matching approaches such as

Iterative Closest Points (ICP) or Hausdorff distance is the computational complexity.

We model the face by 3-D binary ridge images and use them for matching. In order

to match the ridge points (either using the ICP or the Hausdorff distance), we extract

three facial landmark points: namely, the two inner corners of the eyes and the tip

of the nose, on the face surface using the Gaussian curvature. These three points are

used for initial alignment of the constructed ridge images. As a result of using ridge

points, which are just a fraction of the total points on the surface of the face, the

computational complexity of the matching is reduced by two orders of magnitude.

For the 2-D modality, we model the face using an Attributed Relational Graph. The

results of the 2-D and 3-D matching are fused at the score level.

There are various techniques to fuse the 2-D and 3-D modalities. In this disser-

tation, we fuse the matching results at the score level to enhance the overall perfor-



mance of our face recognition system. We compare the Dempster-Shafer theory of

evidence and the weighted sum rule for fusion. We evaluate the performance of the

above techniques for multi-modal face recognition on various databases such as Gavab

range database, FRGC (Face Recognition Grand Challenge) V2.0, and the University

of Miami face database.
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Chapter 1

Introduction

Face is a particularly compelling biometric because it is used everyday by everyone as

the primary means for recognizing other humans. Face recognition is an important

capability of the human perception system. Automated face recognition has become

one of the most important applications of image analysis and computer vision in

recent years. This has attracted the attention of many groups in research institutes,

academia, industries and governmental agencies. This is obvious from the increased

number of face recognition contests such as FERET [135], XM2VTS [113], FRVT

2000 [26], FRVT 2002 [134], FRVT 2006 [10], and FRGC [133].

There two major reasons for this enormous interest on face recognition technology.

The first reason is the existence of a large number of forensic, security, and commer-

cial applications. These applications include video camera surveillance, access control,

mug shot identification (e.g., for issuing passport), design of human computer inter-

actions (HCI), multimedia communication, and content-based image retrieval. The

second reason is the availability of technologies developed by researchers in the field of

1
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computer vision, pattern recognition, image processing, and computer graphics that

has motivated the use of the technology for this purpose.

1.1 Biometric System

Recognizing the identity and authenticity of the people is the fundamental process

for many activities and applications in our life. Biometric identification or biometrics

refers to identifying an individual based on his/her distinguishing characteristics. In

other words, biometrics is the science of identifying, or verifying the identity of a

person based on the behavioral or physiological characteristics.

1.1.1 History of Biometrics

Possibly the first known example of the use of biometrics in practice was the use of

a form of finger printing in China in the 14th century, as reported by explorer Joao de

Barros. He wrote that the Chinese merchants were stamping children’s palm prints

and footprints on paper with ink to distinguish the young children from one another.

This is one of the earliest known cases of biometrics in use and is still being used

today [55].

Elsewhere in the world up until the late 1800s, identification largely relied upon

“photographic memory.” In the 1890s, an anthropologist and police desk clerk in

Paris named Alphonse Bertillon sought to fix the problem of identifying convicted

criminals and turned biometrics into a distinct field of study. He developed a method

of multiple body measurements which got named after him (Bertillonage). His system
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was used by police authorities throughout the world, until it quickly faded when

it was discovered that some people shared the same measurements and based on

the measurements alone, two people could get treated as one. After the failure of

Bertillonage, the police started using finger printing, which was developed by Richard

Edward Henry of Scotland Yard, essentially reverting to the same methods used by

the Chinese for years [55].

1.1.2 Types of Biometrics

In recent years biometrics moved from simple fingerprinting to many different

methods that use various physical and behavioral measures. The characteristics used

in each category are as follows:

• Physiological

– Iris

– Fingerprint (including nail)

– Hand (including knuckle, palm, vascular)

– Face

– Retina

– DNA

– Vein

– Ear

– Even Odor, Sweat pore, Lips
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• Behavioral

– Signature

– Keystroke

– Voice

– Gait

Among the biometric features/identifiers, Fingerprint, Face, Hand geometry, Iris,

Signature, and Voice are the most commonly used in today’s automated authentica-

tion systems. These biometrics received more attentions than the others by researches

in the filed of computer science.

1.1.3 Motivation and Overview

Biometric technologies are becoming the foundation of an extensive array of

highly secure identification and personal verification solutions. As the level of security

breaches and transaction fraud increases, the need for highly secure identification

and personal verification technologies is becoming apparent. The uses of biometrics

have also increased from just identification to verification as used in security systems

and more. Biometric-based solutions are able to provide for confidential financial

transactions and personal data privacy. The need for biometrics can be found in

federal, state and local governments, in the military, and in commercial applications.

Enterprise-wide network security infrastructures, government IDs, secure electronic

banking, investing and other financial transactions, retail sales, law enforcement, and

health and social services are already benefiting from these technologies.
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1.1.4 Biometric Authentication System

A biometric authentication system can be considered as a pattern recognition

system with three modules consisting of: biometric sensor(s) to collect the data from

the biometric identifier, feature extractor, and matcher. For example, in case of face

recognition, the sensor is a camera and the biometric identifier is a facial image. The

task of biometric authentication mainly is divided into two categories:

• Identification is a closed-universe (one-to-many) comparing process for a bio-

metric sample from a given probe against all the known biometric reference

templates in the database. In other words, this is the answer to the question

“Who am I?” If the acquired sample matches a stored template within an ac-

ceptable margin of error, then the identity of the probe is matched to that of

the previously stored reference. During the matching process, a set of sim-

ilarity matching scores are obtained for the probe sample (i.e., one-to-many

comparison process). These similarity scores are numerically ranked such that

the highest similarity score is first and the smallest similarity score is ranked n,

where n is the number of the subjects enrolled in the database. In an ideal case,

the highest similarity score is the comparison of the claimed person’s biometric

with the same person’s biometric that was previously stored in the database.

The percentage of time that the highest similarity score is the correct match for

all individuals, is referred to as the identification rate.

In order to evaluate the performance of identification, the percentage of time

when one of the top-r matches is correct is considered and called as “Cumula-
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tive Match score”. In other words, the “Cumulative Match Score” curve is the

percentage of correct identification versus the rank r. Usually the percentage

of the correct identification for the rank-one is reported as the performance of

a biometric system.

• Verification is an open-universe (one-to-one) process of comparing a submitted

biometric sample against single biometric reference of a single enrollee whose

identity or role is being claimed. In other words, this is the answer to the

question, “Am I who I claim I am?” The result of the verification is to confirm

that the identity is matched or not matched. During the process of matching,

a similarity score is computed by the biometric matcher; if the similarity score

is higher than a preset threshold T , then the submitted biometric sample is

approved to be the same as the biometric reference claimed. If the similarity

match score is less than the preset threshold T , then the claimed identity for

the submitted biometric is rejected.

In order to evaluate the verification performance, two kinds of errors can be

made by the system: False Match (FM) and False Non-Match (FNM). FM is

the error made by deciding that a (claimed) identity is a legitimate one while

in reality it is an imposter and FNM is the error made by deciding that a

(claimed) identity is not a legitimate while in reality the person is genuine. The

frequency rate at which FM occurs is called False Match Rate (FMR), and the

frequency rate at which FNM occurs is called False Non-Match Rate (FNMR).

The error rates can be evaluated for any threshold T . Therefore, the functions
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FMR(T ) and FNMR(T ) give the error rates when the match decision is made

at threshold T . The error rates can be plotted against each other as a two-

dimensional curve, (FMR(T), FNMR(T)).

This two-dimensional curve is called Receiver Operating Characteristic (ROC)

curve. The ROC curve precisely defines the complete specification of a biometric

matcher and shows the trade-off between the FMR and FNMR errors over a

wide range of threshold. The biometric matcher can operate using any threshold

T which defines a point on the ROC curve. In addition, the ROC can be used

to compare the performance of two biometric matchers against each other.

1.1.5 Biometric Market

The research service from the Auto ID & Security business and financial services

group highlights growth sectors of notable interest and also provides a comprehensive

financial analysis of the biometrics market. The spotlight on security has intensified

considerably in the wake of global terror attacks and increasing threats to safety,

driving governments across the world to tighten security measures. The demand for

sophisticated security solutions is greater now than ever before. Figure 1.1 shows the

annual biometric industry revenues for the years 2007-2012 in $m US. As the Figure

shows, the annual revenues in the biometric market are growing up with a rate of

more than 15% every year. This is due to the huge demand for the applications of

biometric technology in different fields. Figure 1.2 shows the percentage share of the

different biometrics in the market in 2006. As the Figure shows, after Fingerprint
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Figure 1.1: Annual biometric industry revenues for the years 2007-2012 [8].

(43.6%), great attention is paid to face recognition (19.0%) in the biometric market.

Advanced face recognition biometrics are ideally positioned to address the demand

for security solutions and are set to witness a compound annual growth rate (CAGR)

of 27.5 percent from $186 million in 2005 to $1021.1 million in 2012 [53].

Enhanced credibility of this technology combined with its rapidly growing aware-

ness is also likely to provide a strong impetus to growth of the face recognition bio-

metrics market throughout the forecast period. Concrete evidence in the form of

successful deployments has also helped contribute to continued market growth.

North America is clearly leading the way in the uptake of face recognition biomet-

rics, and this trend is likely to continue throughout the forecast period. “However,

Europe, the Middle East, and Africa (EMEA) are likely to catch up very soon, with

Western Europe expected to significantly contribute to revenue growth in this region,”

says the analyst of this research service. Asia Pacific is also set to emerge as a key

region for the implementation of face recognition biometrics technologies.
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Figure 1.2: The percent of biometric market by technology in 2006 [8].

1.2 Face Recognition

Face recognition has a number of advantages over some of the other biometrics.

Firstly, it is non-intrusive, whereas many biometrics require the subject’s cooperation

and awareness in order to perform an identification or verification, such as looking into

an eye scanner or placing a finger on a fingerprint reader, while face recognition could

be performed even without the subject’s knowledge. Secondly, the biometric data used

to perform face recognition is in a format that is readable and understood by humans.

This means that a potential face recognition system can always be backed up and

verified by a human instantly, unlike iris scan or finger prints. Besides the biometric

application of face recognition, there are other applications for this technology. In

the following subsection we review the applications of face recognition.



10

Category Area Applications

Face ID Voter registration, Driver licenses, national ID, immigration

Access Control Building/room access, computer access

Security Terrorist alert, secure flight boarding system

Surveillance Advanced video surveillance, nuclear plants surveillance, neighbor-

hood watch, power grid surveillance, portal control

Smart Cards stored valued security, user authentication

Law Enforcement Crime stopping and suspect alert, shoplifter recognition, suspect

background check, post event analysis

Face-based database Face-based search and retrieval

Multimedia management Indexing, segmentation, classification, or event detection

Human computer interaction Interactive gaming, animation

Table 1.1: Typical applications of face.

1.2.1 Applications of Face Recognition

Table 1.1 lists typical applications for face recognition in nine categories. These

categories are neither exclusive nor exhaustive. For each category, some example

applications are also listed and briefly discussed in this section. In all categories, the

input to the system is a facial image either from still camera, video camera, or 3-D

scanner.

Face ID

Face recognition systems identify people by their faces. This process is approached

in one of two ways: Face recognition (identification) and Face verification (authenti-

cation). In general, there are three ways to identify an individual: The person knows

something (a PIN, a password, etc.), the person possess something (an ID card, a

drivers license, etc.), or by measuring something about the person’s body or activ-

ity. The later encompasses biometric identification, and face recognition falls in this

category. The system establishes the presence of an authorized person rather then



11

checking for a valid ID card or password PIN number. The security advantage of using

such a system eliminates the misuse of lost or stolen cards. In 2000, the commercial

product, FaceIt [3], was used to eliminate duplicates in a nationwide voter registration

when the same person was assigned more than one identification number. The face

recognition system compares the face image of the voters to differentiate from one

from the other. When the top two matched faces are very similar to the query face

image, manual inspection is required to make sure that they are for different persons

in order to eliminate the duplicates. In the future, targeted face ID applications will

include large scale applications such as e-commerce, student ID, and national ID.

Access Control

Face recognition is being used in access controls such as in accessing computers or

buildings. A commercial system by FaceGate [6] was used along with an entry code

control that acts as a specific label for a stored face of an individual in the database.

An entry code and a face image are captured by the system at the door. The system

simultaneously checks the person’s entry code and verifies if the face image matches

that corresponding to the entered key. Access is denied to anyone whose face does

not match the stored key. Recently, multi-modal systems are available [2], which

integrate more than one biometrics, such as finger prints, speech, and face to reduce

the recognition error rate.
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Security

Recently, security has become a primary concern at airports, stadiums, and big

cities. Face recognition technology have been implemented at many airports around

the globe. A Viisage system [7] was installed at Fresno Yosemite International air-

port in California to alert public safety officers whenever an individual matching the

appearance of a known terrorist suspect enters the airport’s security check point.

Anyone recognized by the system would undergo further investigative procedures by

the safety officer. Viisage’s faceFinder was also used to scan the stadium audience at

games events in Tampa Florida in search of criminals. Everyone entering the stadium

was scanned by video cameras installed at the entrance. The cameras were tied to

security command center that Compare the face images against a list of images of

known criminals.

Surveillance

Similar to security applications, surveillance by face recognition was first used in

1998 with 300 cameras in areas of London. The city council claims that the technology

has helped achieve 34% reduction in crime rate. Virginia Beach, Virginia is the second

U.S city to install FaceIt system on its public streets to scan pedestrian’s faces to look

for 2500 missing persons or runaways.

Smart Card

Smart cards are used mainly in face verification scenarios. In this case the char-

acteristics of a face are stored in the card. The user to be verified first scans his card
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and has his image captured by the system. Comparison is achieved by measuring

the similarity between the live captured image and the facial characteristics stored in

the card. This technology was also integrated with fingerprint recognition as in the

system by Maximus [5].

Law Enforcement

Face recognition empowers the law enforcement agencies with the ability to search

and identify suspects using face recognition and retrieval programs. The system by

Imagis [4] provides Huntington Beach, California’s police officers and detectives with

current arrest information and photographs, readily available via internet protocol

and secured wireless laptops. The Imagis system includes biometric facial recognition

and image database management, which provides investigators with invaluable tools

to accomplish their work.

Multimedia Management of Face Databases

Because of the emergence of large image databases, content-based image retrieval

was developed to index and retrieve images by their own visual contents such as

texture, color, and/or edges [12, 13]. However these general techniques have their own

limitations. Recently, researchers have combined traditional retrieval methods with

face detection and recognition in order to improve the retrieval accuracy. Applications

of such methods have been used not only in a face-only database but also in a face

and non-faces databases such as photo albums [86].
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Multimedia Management

Human faces are frequently seen in sports, news, videos, and other multime-

dia contents. Indexing this multimedia content by face detection, recognition, and

face change detection is important to generate segments of video contents for video

browsing, skimming, or summarization. Together with other image or speech process-

ing techniques, face recognition becomes a powerful tool for indexing and retrieval

of growing multimedia contents. One difficulty of directly using face recognition in

multimedia applications is that usually the gallery set is not available. Houghton

[62] developed a method to index and retrieve faces form the web. A gallery for his

method is created by searching the web pages associated with broadcast television

stations using three text processing methods and names in images using optical char-

acter recognition (OCR). The names are then linked to faces, detected using FaceIt,

in the images. The “face-naming” method compares unknown faces with the gallery

and returns the identities.

Human Computer Interaction

Human-computer interaction (HCI) is the study of interaction between people

(users) and computers. To achieve efficient and user-friendly interaction, the human

body part (e.g., the face) could be considered as a natural input device. For instance

the movements of the face can be used in human tracking system. We recently devel-

oped an efficient tracking system of people based on their facial skin and body (cloth)

colors using a single video camera [100]. Also, the tracked faces can be used as first



15

step to localize the location of faces, in video images, for face recognition. Facial

expression recognition is the ability of computers to understand human emotions.

Cohen et al. [43] reported on several Advances they have made in building a system

for classifying facial expression from continuous video input. They used Bayesian

network classifiers for classifying expressions from video. Another application of HCI

is realistic synthesis and animation of faces which are widely used in the video and

motion picture industries as well as the video game industry. Hong et al. [125] de-

signed a system that provides functionalities for 3-D face modeling and animation

with the help of user interactions. Text and speech streams can be used to drive the

face animation which is used in computer aided education.

1.2.2 Face Recognition Challenges

In spite of the large amount of work on automatic face recognition, it still remains

a very challenging task and it is not robust for large scale applications. This is not

only because the techniques used for face recognition need to be improved, but also

because the presence of many conflicting factors which alter the facial appearance

and make the task difficult. The variations in facial appearance can be categorized

into two types: intrinsic and extrinsic sources of variations.

• Intrinsic variations are independent of any external sources and are due to the

physical nature of the human face.

• Extrinsic variations are caused by the sources that do not depend on the human

face and are due to factors such as illumination and viewing geometry.
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Variation in

appearance

Source Effect/possible task

Extrinsic Viewing

geometry,

Illumination,

Imaging pro-

cess Other

objects

Head Pose light variations, shadow, self shadow Resolution, scale,

focus, sampling Occlusion, shadowing, indirect illumination, hair,

make-up, surgery

Intrinsic Identity,

Facial expres-

sion, Age,

Sex, Speech

Identification, known-unknown Inference of emotion or intension

Estimating age Decide if male or female Lip reading

Table 1.2: Variations in facial appearance Inter-person and intra-person variations.

Table 1.2 summarizes these two types of variations and their effects on face recogni-

tion. Among these effects, illumination, variations in pose, aging, and facial expres-

sions are the most challenging for face recognition.

• Illumination: Changes in lighting conditions, e.g., indoor or outdoor, under

which the facial images are captured, affect the accuracy of face recognition.

Variations in illumination could be caused either by variations in the light source

or by variations in physical parameters of the cameras and the capturing devices.

A solution for this problem is by utilizing the 3-D surface information of the

face. So, by having the 3-D model of the face surface, the problem reduces to

matching the surface geometry of two faces which are invariant under the effect

of illumination.

• Head Pose: Pose variation is another challenging problem in face recognition.

The variations in pose could be because of the changes in viewing angle of the

camera which causes pose variation in the 2-D or 3-D captured face image.
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Because face is a 3-D object, 2-D face recognition under the effect of pose vari-

ations is difficult, while having the 3-D face data, the problem of pose variation

can be handled either in 3-D versus 3-D face recognition or 2-D versus 3-D.

• Facial Expressions: The development of robust face recognition algorithm

insensitive to facial expression is one of the biggest challenges of current research

in this field. The change in the face appearance due to its non-rigid structure

makes modeling and analyzing the facial expressions difficult. In addition, facial

expressions vary from person to person, which makes the task of modeling the

facial expressions more difficult.

• Aging Effect: Aging is the inherent problem of face recognition because face

is an identifier that changes with age and the aging effect cannot be controlled

or ignored. The facial aging effects are manifested in different forms in different

ages. It is manifested as changes in the shape of the cranium from infancy

to teenage while during the adulthood it is demonstrated as changes in the

skin texture. Thus, because facial aging has different sources, having a unified

solution for this problem is difficult.

Another challenge for face recognition is the need for an evaluation standard for

measuring recognition performance under different environments and conditions. As

a result of this necessity, an independent government evaluation standard was born,

which is called, Face Recognition Vendor Tests (FRVT). FRVT was developed to pro-

vide evaluations of commercially available and prototype face recognition technolo-

gies. These evaluations are designed to provide U.S. government and law enforcement
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agencies with information to assist them in determining where and how facial recogni-

tion technology can best be deployed. In addition, FRVT results help identify future

research directions for the face recognition community. In the past, many factors

have been evaluated in FRVT 2002 [134]. For example, in a verification test with

reasonably controlled lighting, when the gallery consisted of 37,437 individuals with

one image per person and the probe set of 74,854 probes with two images per person,

the best three systems averaged a verification rate of 90% at false accept rate of 1%,

80% at false accept rate of 0.1%, and 70% at false accept rate of 0.01%. This level

of accuracy may be suitable for access control with a small database of hundreds of

people but not for a security system at airports where the number of passengers is

much larger. When evaluating the performance with respect to pose changes with a

database of 87 individuals, the best system achieved an identification rate of 42% for

faces within ±45 degrees of panning and 53% within ±45 degrees of tilting. Lighting

changes between outdoor probe images and indoor gallery images degrade the best

systems from a verification rate of 90% to 60% at a false accept rate of 1%.

1.3 Proposed Face Modeling and Recognition Sys-
tem

In Face Recognition Grand Challenge (FRGC) contest, three contenders for im-

proving face recognition algorithms were considered: high resolution images, three-

dimensional (3-D) face recognition, and multiple still images. With the 3-D data, the

two main challenges of face recognition, pose variation and illumination, are handled

more readily. This is due to the fact that the 3-D shape of a person’s face is not
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affected by changes in head orientation and lighting. Hence, 3-D face recognition has

the potential of improving the recognition performance under these conditions [31].

Nevertheless, a pure 3-D face recognition system has its own following limitations.

• Capturing the 3-D face data either by a range scanner or by a stereo-based

system is slow and expensive with the current technologies.

• Capturing the 3-D data is intrusive.

• Extraction of facial landmarks in 3-D is a very challenging task.

• Shape matching techniques are complex and time consuming.

• 3-D range data lacks texture cue.

Based on the above discussion, a multi-modal system would benefit from both

modalities. For example, the pose variations and changing in illumination can be

handled by 3-D data while extracting facial features are much easier in 2-D (texture)

data. In particular, texture provides more discriminative information for face recog-

nition. In a multi-modal scheme, the 2-d and 3-D face recognition can be fused at

different levels; e.g., feature level, decision level, score level fusion. Beside resolving

the above issues, the overall performance of the system would be increased by fusing

the 2-D and 3-D modalities.

In this dissertation, our aim is to develop a multi-modal system for face mod-

eling and recognition. We consider two different scenarios for the multi-modal face

recognition. In the first scenario, where the 3-D (shape) and 2-D (texture) data are

registered, i.e., each point in 2-D has a corresponding point in 3-D, we develop a
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Figure 1.3: The general block diagram of our system for multi-modal face recognition
based on 3-D ARG models.

technique for multi-modal face modeling and recognition based on 3-D ARG models.

In fact, by using the 3-D ARG framework, the modeling of the 2-D and 3-D data is

approached in a unified manner. More precisely, the 2-D and 3-D features are repre-

sented in one integrated geometric graph model. Figure 1.3 shows the general block

diagram of our system for multi-modal face recognition based on 3-D ARG models.

In the second case, the 2-D and the 3-D data are not registered. The lack of regis-

tration could be due to the time laps in capturing the 2-D and 3-D data or the nature

of the imaging system (e.g., scanning a face with a laser scanner with current tech-

nologies takes few seconds.) Therefore, we cannot directly establish correspondence

between the facial landmark points in the 2-D and 3-D images. In this case, the 2-D

and 3-D modeling and recognition are carried independently and then the results are

fused at the score level. For the 3-D modeling, we develop an approach based on ridge

images. This approach is discussed in Chapter 3. For the 2-D face recognition, we

develop a technique based on Attributed Relational Graphs (ARG). Figure 1.4 shows
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Figure 1.4: The general block diagram of our system for multi-modal face recognition
based on ridge images and 2-D ARG models.

the general block diagram of our system for multi-modal face recognition based on

ridge images (3-D) and ARG models (2-D). As shown in the figure, the modeling of

the 2-D and 3-D are independent of each other and the results of the 2-D and 3-D

are fused to obtain the final result (i.e., multi-modal face recognition.)

1.3.1 3-D Face Recognition

There are mainly three categories of approaches for 3-D face recognition: 1)

Principal Component Analysis (PCA) based approaches [133, 126], 2) feature based

approaches [130, 44, 69], and 3) surface matching approaches [145, 37, 109]. In the

first category, similar to the 2-D Eigenface recognition algorithm, PCA analysis is

applied to range data to reduce the dimension and then the recognition is performed

by matching a probe image with gallery images in a lower dimension space. These

approaches are simple, fast and straightforward, but they have low performance rate
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compared to approaches in the other two categories. In the second category, the

response of the range image or its representation at certain landmark points to a set

of filters is calculated and considered as a set of features. Then, recognition is done

based on the similarity of these features. Generally, these approaches are fast and

have high performance rate compared to approaches in the other two categories, but

localization of the landmarks is very important. For example in [69] the 2-D texture

images were used for landmark localization which means that the approach is not a

pure 3-D algorithm. In the third category, the researchers mainly utilize the Iterative

Closest Points (ICP) or Hausdorff distance to match the 3-D surface points of a probe

face to those of the face images in the gallery and then perform the recognition based

on the Mean Square Error (MSE) distance between the matched points of the two

faces. As mentioned in [31], the main problem with the approaches that rely on ICP

or Hausdorff distance for matching is speed and computational complexity, but these

approaches have high performance rate. Figure 1.5 illustrates the above comparison

(i.e., performance versus computational complexity.)

3-D Face Recognition Using 3-D Ridge Images

In this dissertation, we present a novel method for 3-D face recognition (shape

matching) based on ridge lines extracted from the 3-D range facial images. Compared

to other shape matching based approaches for 3-D face recognition, such as [108, 145,

37, 109], our approach is faster and requires less computations. This reduction in

computations is due to the fact that we only use the points around the important

facial regions on the face (i.e., the eyes, the nose, and the mouth) and ignore other
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Figure 1.5: Comparison between the three categories of algorithms for 3-D face recog-
nition, performance of the system versus complexity.

surface patches on the face during the matching process. These points correspond

to the extreme ridge points on the considered surface. An extreme ridge point is a

point where the principal curvature kmax, has large positive value. There are different

approaches to locate the ridges, here we threshold the kmax values to find these points.

Figure 1.6 shows few examples of the ridge images obtained by thresholding the kmax

values. These are 3-D binary images that show the location of the ridge lines on the

surface of the face. In this work, the number of the points in a ridge image of the

face is 12% ± 2% of the total number of points that cover the face. For matching

the ridge images (probe image versus gallery image), either the Hausdorrf Distance

or the ICP method can be used.
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Figure 1.6: Samples of extracted ridge images.

1.3.2 A Unified Approach for 2-D/3-D Face Recognition

Graph representation has shown to be successful [163, 29] in 2-D face modeling and

recognition. The idea is to use a graph to model the face such that the nodes of the

graph represent the facial landmarks and a set of features are extracted and assigned

to each node of the graph. However, the graph models that are in the literature

have some limitations. For example, there is no justification for defining the edges of

the graph. Also, no relations are defined between the nodes/edges of the graph. In

this dissertation, we develop a technique for face modeling and recognition based on

Attributed Relational Graphs (ARG).

The ARG is used to model the 2-D or 2-D/3-D face data. In the case where the

2-D and 3-D data are registered, a 3-D ARG model is built to represent both the

texture and shape by a single graph model. If the 3-D data is available and is not

registered with the 2-D data, the 3-D faces are modeled using ridge images. The

results of recognition of the 2-D and 3-D modalities are fused at the score level.

In this dissertation, we use the ARG to represent the local as well as the global

geometric structures of the face. The ARG consists of nodes and edges such that

the nodes of the graph correspond to the landmark points that are extracted by an
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improved Active Shape Model (ASM) technique. The edges of the graph represent

the mutual relations between the nodes. For each node of the graph, we calculate the

response of both the shape and the texture of the face, at the corresponding landmark,

using log-Gabor filters. These are feature vectors that model the local structure of

the face at each node. Moreover, we define a set of mutual relations features between

the nodes of the Graph (i.e., edges of the graph). As our experiments indicate, these

mutual relations increase the performance of the face recognition using the graph.

Unlike the work presented by Park et al. [129], where the nodes of the ARG do not

have correspondences and rely on stochastic analysis to find the feature correspon-

dences, in our work, the nodes of the ARG have direct one-to-one correspondences

with facial features. In addition, based on the availability of the shape information,

the constructed ARG is a graph that combines both the 2-D and the 3-D information

in a single graph. Compared to [163], the nodes of the graph in our work correspond

to landmarks that are extracted by ASM, and our graph contains the mutual relation

between the edges of the graph and these increase the accuracy of the face recognition.

1.4 Dissertation Contributions

The major contributions of this dissertation are as follows:

• Improving the Active Shape Model for 2-D facial features extraction from color

image. We present solutions for some of the limitations of Active Shape Model

(ASM) to extract facial feature extraction in color images.
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• Developing an algorithm for 3-D facial feature extraction from range data. Ex-

tracting 3-D facial features from 3-D range images is more difficult compared

to 2-D facial feature extraction, because of the lack of texture in range images.

In this dissertation, we develop an algorithm for extracting three facial feature

points (i.e., the inner corners of the two eyes and the tip of the nose) from facial

range images. These points are used to initially align the ridge images during

the matching process.

• Developing an algorithm for 3-D face modeling and recognition based on ridge

images. The ridge lines in the range image carry the most important distin-

guishing information of the 3-D face and have high potential for face recognition.

We develop a system for 3-D face recognition based on ridge lines. For matching

the ridge images of two faces (probe and gallery), the Hausdorff and Iterative

Closest Points are utilized.

• Developing a novel algorithm for 3-D face recognition based on Attributed Re-

lational Graphs (ARG). The nodes of the graph represent the facial landmark

points. A set of attributes are extracted using Gabor filters and assigned to

each node of the graph. Also, a set of features that defines the mutual rela-

tions between the edges of the graph are extracted and used to increase the

performance of the graph model for face recognition.

• Developing a multi-modal technique based on the Dempster-Shafer theory of

evidence and the weighted sum rule for fusion at the score level.
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1.5 Dissertation Outline

This dissertation is organized as follows: In Chapter two, we present related work

for facial features extraction, two dimensional (2-D), three dimensional (3-D), and

multi-modal (2-D + 3-D) face recognition. Chapter three explains our algorithm for

2-D facial feature extraction from frontal face images (i.e., Improved ASM) and our

algorithm for 3-D facial feature extraction (i.e., the extraction of the three feature

points) along with the experimental results. Chapter four presents our approach for

3-D face modeling and recognition based on ridge images. Chapter five describes our

multi-modal face modeling and recognition (2-D/3-D) based on attributed relational

graphs along with the experiments. In addition, we present two fusion techniques for

combining the 2-D and 3-D modalities in this chapter. Finally in Chapter six, we

present the conclusion and the future research directions.



Chapter 2

Related Work

In this chapter we present an overview of the previous related works. We start by

reviewing the literature for facial features extraction from frontal 2-D images and 3-D

range images. Afterwards, we review the literature for 2-D and 3-D face recognition.

Finally we review the algorithms for multi-modal (2-D + 3-D) face recognition.

2.1 Facial Features Extraction

In both 2-D and 3-D face recognition systems, alignment (registration) between

the query and the template images or models is necessary [146]. This is the main step

before recognition in a typical face recognition system. This step is usually based on

extracted facial features (i.e., fiducial points). Figure 2.1 shows a sample of labeled

facial features on both frontal and profile face images. Beside the applications of

facial features extraction for face recognition, other applications such as tracking,

expression analysis, and animation rely on facial features extraction. Automatic

28
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facial feature

Profile viewFrontal view

Figure 2.1: Labeled facial features in frontal and profile images.

extraction of facial features has been one of the important and challenging tasks and

many approaches and algorithms have been developed and presented for facial features

extraction. Many of these methods are cited and reviewed in face detection and face

recognition surveys [179, 38, 171]. In this Section, we review the most important

algorithms and methods for 2-D and 3-D facial features extraction.

2.1.1 2-D Facial Features Extraction From Frontal Images

Facial features extraction is defined as the process of locating specific region, points,

landmarks, or curves/contours in a given 2-D image or a 3-D range image [84, 120,

121, 94, 172, 149, 166, 82]. Although many facial feature extraction algorithms have

been proposed so far, facial feature extraction is difficult to the applications due to its

high complexity. The computational cost of facial features extraction is dominated

by the localization of the face region and the searching for the feature points. Generic

methods extract features from images without relying on extensive knowledge about
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the object of interest. They have the advantage of being typically fast and simple.

However, these approaches can become unreliable when the quality of the image is

poor or the face in the image has a cluttered background. The algorithms for facial

feature extraction can be divided into four types:

1. Generic methods based on edges, lines, and curves.

2. Template-based methods that are used to detect facial features such as the eyes.

3. Structural matching methods that take into consideration the geometrical con-

straints on the features (i.e. everyone has two eyes above the mouth).

4. Hybrid methods which combine some of the above previous methods.

Table 2.1 reviews some of the important published methods for 2-D facial features

extraction from frontal images.

Kobayashi et al. [84] described an automated algorithm for face detection and

facial features extraction from video images. The extracted features are points around

the eyes, mouth, nose and facial contours. The authors used spatiotemporal difference

images to extract these feature points. For example blinking is used for detecting the

eyes. The method proposed by De Natalie et al. [120] aimed at identifying the position

of characteristic facial elements (eyes, nose and mouth). The proposed detection

strategy is based on the identification of the face symmetry axis, and the successive

detection of eyes, mouth and other relevant facial features using correlation.

Nikolaidis et al. [121] described a method for extracting facial features with the

goal of using them in defining a sufficient set of distances between them so that a
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Author Face detec-
tion

Approach Number of feature
points

Video/Still

S. Kobayashi et
al. 1995 [84]

Included Using spatiotemporal
difference image to
extract the feature
points

Representing eyes,
eyebrows, bound-
ary, mouth and face
boundary by contours

Video -
Frontal

T.F. Cootes et
al. 1996 [45, 92]

- Using active shape
models

Flexible in term of
number of features

Still - Frontal

F.G.B. De Natalie
1997 [120]

Included Identification of the
face symmetry axis
and then feature points
using correlation

Location of eyes, and
mouth

Still - Frontal

A. Nikoladis 1997
[121]

Included Using adaptive Hough
transform, template
matching and active
contour models

Eyes, eyebrows, mouth,
nostrils, cheeks and
chin

Still - Frontal

K. Lam and Y. Li et
al. 1998 [90]

- Eye corner detection
and template matching

Eyes Still - frontal

Y. Yagi 2000 [168] Included - Pupil, and contours Still - Frontal
C.M. Lau et
al. 2001 [94]

Included Using energy function
to extract facial fea-
tures

Face region, iris, eye-
brows, nose, mouth,
eye corners, face-hair

Still - Frontal

G. Yen and N.
Nithianandan 2002
[172]

Included Using the edge density
distribution of the im-
age and genetic algo-
rithm

Face region, eyes, nose,
mouth

Still - Frontal

K. Seo et al. 2002
[149]

Included Using active contour
model and color infor-
mation

Face region, eyes, nose,
mouth

Still - Frontal

D. Xi and S.W. Lee
et al. 2003 [166]

Included Using Support Vector
Machines and Multi
wavelet decomposition

Face region, eyes, nose,
mouth

Still - Frontal

Z. Xue et al. 2002
[167]

- Using Bayesian shape
model

A mesh model of facial
features

Still - Frontal

R. Hsu et al. 2002
[63]

Included Using color information
for face detection

Face boundary, eyes,
mouth

Still - Frontal
with pose

Y. Hu et al. 2003
[66]

- Using linear combina-
tion model

Eyes, eyebrows, nose,
mouth

Still - Frontal

A. Gundaz and H.
Krim 2003 [60]

- Using topological oper-
ators

Eye corners and mouth
center

Still - Frontal

K. Kim et al. 2004
[82]

- Using PCA and
Wavelet multi resolu-
tion images

Eyes, eyebrows, nose,
mouth

Still - Frontal

K. Nagao 2004
[119]

- Using Bayesian ap-
proach with nonlinear
kernels

Eye centers Still - Frontal
with pose

Table 2.1: Facial features extraction techniques.

unique description of the structure of a face is obtained. Eyebrows, eyes, nostrils,

mouth, cheeks and chin are considered as interesting features. Candidates for eyes,

nostrils and mouth are determined by searching for minima and maxima in the x

and y projections of the gray level pixels in the image. Candidates for cheeks and

chin are determined by performing adaptive hough transform on a sub-image defined



32

according to the position of the eyes, mouth, and the ellipse containing the main

connected component of the image. In order to acquire a more accurate model of

the face, a deforming technique is also applied to the ellipse representing the main

face region. Candidates for eyebrows are determined by adapting a proper gray level

template to an area restricted by the position of the eyes.

Lam et al. [90] devised an efficient approach for detecting and locating the eyes

in frontal images. Possible eye candidates in an image are identified by means of the

valley features and corners of the eyes. Two possible eye candidates are considered

to belong to the eyes of a human face if their respective local properties are similar;

an eye window is then formed. Each eye region candidate is then further verified

by comparison with a standard eye template, and by measuring its symmetry. Yagi

[168] presented a system that integrates a library of 32 functions for automatic fa-

cial contour extraction. The 32 functions can be classified into five groups such as

face detection, pupil detection, facial parts detection, facial parts contour extraction,

and face contour extraction. The system is not only useful for automatic 3-D facial

model fitting, but also for range facial image processing applications such as personal

authentication and facial expression analysis. Lau et al. [94] proposed an energy

function which is the sum of seven weighted terms for facial features extraction. By

allocating different values for the weighting factors, the function can extract different

fiducial points.

Yen et al. [172] presented a method for facial features extraction that uses the edge

density distribution of the image. In the preprocessing stage, a face is approximated

by an ellipse, and a genetic algorithm is applied to search for the best matching region.
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In the feature extraction stage, a genetic algorithm is applied to extract the facial

features, such as the eyes, nose and mouth, in the predefined sub regions. The au-

thors validated their method by experimenting on various video images under natural

lighting environments and in the presence of noise and different face orientations.

Seo et al. [149] presented an active contour model based upon color information

for extracting facial features. Their algorithm is composed of three main parts: the

face region estimation part, the detection part and the facial features extraction part.

In the face region estimation part, images are segmented based on human skin color.

In the face detection part, a template matching method is used, and in the facial

features extraction part, an algorithm called “color snake” is applied to extract facial

feature points within the estimated face region.

Xi et al. [166] developed an algorithm for detecting human face and extracting

facial features based on several support vector machines. A face model for both de-

tection and extraction was designed based on multi-resolution wavelet decomposition

(MWD). The MWD and a small number of feature points were applied to roughly

detect the face. More accurate results were achieved by a series of support vector

machines. Xue et al. [167] presented a novel application of the Bayesian Shape Model

(BSM) for facial features extraction. First, a full-face model is designed to describe

the shape of a face, and the PCA is used to estimate the shape variance of the face

model. Then, the BSM is applied to match and extract the face patch from input face

images. Finally, using the face model, the extracted face patches are easily warped

or normalized to a standard view.



34

Hsu et al. [63] proposed a face detection algorithm from color images in the pres-

ence of varying lighting conditions as well as complex backgrounds. Based on a novel

lighting compensation technique and a nonlinear color transformation, this method

detects skin regions over the entire image and then generates face candidates based on

the spatial arrangement of these skin patches. The algorithm constructs eye, mouth,

and boundary maps for verifying each face candidate. Hu et al. [66] proposed a facial

feature extraction method based on a linear combination model. The model uses the

knowledge of prototype faces, which are manually labeled, to interpret novel faces.

Generally, the construction of the linear combination model depends on pixel-wise

alignments of prototypes, and the alignments are computed by an optical flow al-

gorithm or bootstrapping algorithm which is a full-scale optimization and without

including local information such as facial feature points. To combine local facial fea-

tures with the linear combination model, an optical flow algorithm is proposed to

compute the pixel-wise alignments.

Gundaz et al. [60] presented a method for facial features extraction by consider-

ing the face image as a surface. Topological properties of the facial surface, such as

principal curvatures are used to extract the eyes and mouth, which form deep valleys

on the surface. The basic idea of the proposed method is to model the facial features

as ravines on the facial surface. Ravines are points on the surface where the max-

imum curvature is a local maximum in the corresponding principal direction. Kim

et al. [82] proposed an algorithm for extracting facial feature fields (eyebrow, eye,

nose, and mouth) from gray scale face images. The foundation of this method is that

eigenfeatures, derived from the eigenvalues and eigenvectors of the gray scale data set
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constructed from the feature fields, are very useful to locate these fields efficiently. In

addition, multi-resolution images, derived from a 2-D DWT (Discrete Wavelet Trans-

form), are used to reduce the search time for the facial features. Nagao [119] described

a method for finding the positions of features in facial images. A large class of image

variations, including those resulting from object rotation in 3-D space and scaling

(i.e., translation in depth), are handled. A MAP (Maximum a Posteriori) estimation

technique using Gaussian distribution is exploited to model the relationship between

images and feature positions.

Deformable models used for non-rigid object segmentation, received attention in

recent years. These models have proven to be efficient in many applications such as

object segmentation, appearance interpretation, motion tracking etc. A deformable

model can be characterized as a model, which under an implicit or explicit optimiza-

tion criterion deforms to match the shape of a known object in a given image. For a

general review of the most commonly used models, we refer the readers to [111, 73].

In this dissertation, we improve the Active Shape Model (ASM) for facial features

extraction. The original ASM developed by Cootes et al. [45] suffers from factors such

as, poor model initialization, intensity modeling of the local structure of the facial

features, and alignment of the shape model to a new instant of the object in a given

image using simple similarity transformation. The core of our enhancement relies on

three improvements (a) initializing the ASM model using a given set of points (e.g.,

the centers of the mouth and eyes, which are located using color information), (b)

incorporating color information to represent the local structure of the feature points,

and (c) applying 2-D affine transformation in aligning the facial features that are
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perturbed by head pose variations, which effectively aligns the matched facial features

to the shape model and compensates for the effect of the head pose variations. The

details of our improved Active Shape Model (ASM) for facial features extraction are

presented in Chapter 3.

2.1.2 3-D Facial Features Extraction

The previous works that utilized 3-D features for face recognition can be categorized

into four groups:

1. Curvature-based methods.

2. Direct spatial surface matching.

3. Shape representation-based methods.

4. Multi-modal based methods that combines information from 2-D intensity im-

ages with 3-D range images.

Most of the early studies concentrate on curvature analysis. In [59], the surface re-

gions from range images are classified as convex, concave, and saddle by calculating

the minimum and maximum principal curvature. Then locations of facial features

are determined, which are used for template comparison. Lee et al. [95] detects

corresponding regions in two range images by graph matching based on Extended

Gaussian Image (EGI). Tanaka et al. [156] also use EGI. For each face, two EGIs

are constructed from maximum principal direction and minimum principal direction.
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The EGI similarity is measured by Fisher’s spherical correlation. In spatial match-

ing approaches, recognition is achieved via matching facial surfaces directly in 3-D

Euclidean space [23, 127]. In shape representation methods, the 3-D facial shape or

surface is converted to another shape representation such as point signature (PS) [42],

spin image (SP) [76], shape distribution [124], or Local Shape Map (LSM) [164]. LSM

is based on point signature approach and spin images. Thus the recognition task can

be achieved in the representation domain.

Johnson et al. [76] compute a spin image which describes the shape of the surface.

It is created by projecting a surface 3-D point P onto 2-D coordinates via a spin map

function S using oriented point on the surface. The oriented point is the coordinate

location on the surface with the normal, i.e., (x, y, n). An image is created by applying

S to all points on the surface. This image can be used in object recognition or 3-

D surface registration. Point signature encodes a surface point p in a predefined

periphery to a tangential plane, P passing through p [42]. Neighbors of point p are

found by intersecting the original surface with a sphere. P is formed by fitting a

plane to the neighboring points, and by translating it to the original point p. Signed

distances are sampled by Δθ degree intervals, thus forming a 1D parametric curve,

d(θ). In the recognition phase, each point signature extracted from the test image

is compared with each image’s point signatures, for the database images and a total

similarity between the database and the probe image is computed according to the

sum of individual point signature distances.

The facial structure can also be described with the aid of 2-D or 3-D data sources.

Assisted by a statistical feature location model, Lu et al. [107] automatically combine
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3-D features shape index response, derived from the range map, with 2-D intensity

corner-ness response to determine the correct positions of the corners of the eyes

and the mouth. A feature extractor based on the directional maximum is presented

to estimate the tip of the nose and the pose angle simultaneously. In other words,

the nose tip has the largest depth value if projected onto the corrected pose direc-

tion. The limitation of the nose extraction approach is due to not making full use

of the entire 3-D directional rotations (rotation about the z and x) and only yaw

pose variation (rotation about the y-axis) is assumed. Similarly, Wang et al. [162]

showed that by combining 2-D Gabor wavelet-based image intensity features with

point signature-based 3-D shape features they obtained a superior performance than

using each modality alone.

In Chapter 3, we present an algorithm based on Gaussian curvature to extract

three feature points which are utilized in face alignment during the recognition pro-

cess. The extracted feature points are the two inner corners of the eyes and the tip

of the nose. Before extracting the facial features from 3-D range data, we locate the

face in the range image and only keep the face areas and exclude the background,

hair, and neck in the image. Therefore, we developed a method for localizing faces in

range data using template matching.

2.2 Face Recognition

A man-machine facial recognition system dates way back to 1965 [35]. The

authors showed that a computer program provided with facial features extracted
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manually could perform recognition with satisfactory performance. In the past few

years, face recognition has received great attention. A recent literature survey of

face recognition is given in [179], where most of the paper surveys 2-D algorithms. In

addition, the work and survey by Bowyer et al. [30] in 2004 gives a comparison among

face recognition techniques based on 2-D data, 3-D data, and 2-D + 3-D data fusion.

They reported that 3-D face recognition approaches outperform 2-D approaches and

the fusion of 2-D + 3-D data produces slightly better results than 3-D alone. A very

recent survey by Bowyer et al. [31] in 2006 cited some approaches that some 2-D

recognition approaches outperform 3-D approaches. There is a belief that it is still

premature to make this judgment at this time because current approaches did not

yet make full use of 3-D data either in the recognition algorithms or the rigorous

experimental methodology.

2.2.1 2-D face Recognition

Many algorithms for face recognition have been proposed during the past three

decades. The literature on face recognition is vast and diverse. Zhao et al. [179]

presented a literature survey of 2-D face recognition. We refer the readers to this

paper for a complete survey of the state of the art in the area of 2-D face recognition.

In this Section, we review the important approaches for 2-D face recognition.

The algorithms for 2-D face recognition are divided into three categories in [179].

This is a clear and high-level categorization based on a guideline suggested by the

psychological study of how humans use holistic and local features [179].
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1. Holistic matching methods : These methods use the whole face region as the

raw input to a recognition system. One of the most widely used representations

of the face region is eigenfaces [159], which are based on principal component

analysis.

2. Feature-based (structural) matching methods : Typically, in these methods, local

features such as the eyes, nose, and mouth are first extracted and their locations

and local statistics (geometric and/or appearance) are fed into a structural

classifier.

3. Hybrid methods : Just as the human perception system uses both local features

and the whole face region to recognize a face, a machine recognition system

should use both. One can argue that these methods could potentially offer the

best of the two types of methods.

Table 2.2 classifies each category into sub-classes. In the following subsections, we

review in details the most important methods in each class.

2.2.2 Holistic-based Approaches

Principal Component Analysis

Successful low-dimensional representation of faces using Kullback-Leibler (KL)

or Principal Component Analysis (PCA) projections starts from the works by Kirby

and Sirovich in 1987 [153] and 1990 [83]. Eigenpictures have been one of the major

driving forces behind face representation, detection, and recognition. It is well known
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Approach Works

Holistic methods

Principal component analysis (PCA)

Eigenfaces Direct application of PCA [83, 159]

Bayesian Two-class problem with probability measure [16]

Fisherfaces/LDA FLD on eigenspcace [19, 177, 155]

ICA ICA-based feature analysis [18]

Other representations Neural Network based method [102]

Feature-based methods

Pure geometry methods Earlier works [80, 81]

Dynamic link architecture Elastic Graph Matching [122, 163, 29]

Hidden Markov model HMM methods[147, 148]

Hybrid methods

Modular eigenfaces Eigenfaces and egienmodules [132]

Hybrid LFA Local feature method [131]

Shape Normalized Flexible appearance models [91]

Table 2.2: Classification of 2-D face recognition techniques [179].

that there exist significant statistical redundancies in natural images [142]. For a

limited class of objects such as face images that are normalized with respect to scale,

translation, and rotation, the redundancy is even greater [131, 176]. One of the best

global compact representations is KL/PCA, which decorrelates the outputs. More

specifically, sample vectors x can be expressed as linear combinations of the orthogonal

basis Φi:

x =
∑n

i=1 aiΦi ≈
∑m

i=1 aiΦi
(2.1)

where typically m � n. The basis Φi are calculated by solving the eigenproblem:

CΦ = ΦΛ (2.2)

where C is the covariance matrix for input x.
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Figure 2.2: Example of eigenfaces.

Such representation is less sensitive to noise that may be due to small occlusions, as

long as the topological structure does not change.

Turk and Pentland [159] made a very successful demonstration of machine recog-

nition on faces using eigenpictures (known as eigenfaces) for face detection and iden-

tification. Figure 2.2 shows an example of eigenfaces. Given the eigenfaces, every face

in the database can be represented as a vector of weights; the weights are obtained by

projecting the image into eigenface components by a simple inner product operation.

When a new test image whose identification is required is given, the new image is

also represented by its vector of weights. The identification of a face image is done

by locating the image in the database whose weights are the closest to the weights of

the test image.

Moghaddam and Pentland [16] extended the standard eigenface approach to a

Bayesian approach. They used a probabilistic measure of similarity, instead of the
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simple Euclidean distance used with eigenfaces in [159]. The major drawback of a

Bayesian method is the need to estimate probability distributions in a high-dimensional

space from a very limited number of training samples per class. To avoid this prob-

lem, a much simpler two-class problem was created from the multi-class problem.

Two mutually exclusive classes were defined: ΩI , representing intra-personal varia-

tions between multiple images of the same individual, and ΩE, representing extra-

personal variations due to differences in identity. Assuming that both classes are

Gaussian-distributed, likelihood functions P (Δ|ΩI) and P (Δ|ΩE) were estimated for

a given intensity difference Δ = I1 − I2. Given these likelihood functions and using

the MAP rule, two face images are determined to belong to the same individual if

P (Δ|I) > P (Δ|E). A large performance improvement of this probabilistic matching

technique over standard nearest-neighbor eigenspace matching was reported using

large face data sets including the FERET database [135].

Successful face recognition systems using Linear Discriminant Analysis/Fisher

Linear Discriminant (LDA/FLD) were reported by [19, 50, 155, 177, 178]. LDA

training is carried out via scatter matrix analysis [54]. For an M−class problem, the

within- and between-class scatter matrices Sw, Sb are computed as follows:

Sw =
∑M

i=1 Pr(ωi)Ci,

Sb =
∑M

i=1 Pr(ωi)(mi − m0)(mi − m0)
t,

(2.3)

where Pr(ωi) is the prior class probability, and is usually replaced by 1/M in practice

with the assumption of equal priors. Here Sw is the within-class scatter matrix,

showing the average scatter Ci of the sample vectors x of different classes ωi around
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their respective means mi:

Ci = E[(x(ω) − mi)(x(ω) − mi)
t|ω = ωi]. (2.4)

Similarly, Sb is the Between-class Scatter Matrix, representing the scatter of the condi-

tional mean vectors mi around the overall mean vector m0. A commonly used measure

for quantifying discriminatory power is the ratio of the determinant of the between-

class scatter matrix of the projected samples to the determinant of the within-class

scatter matrix:

J (T ) = |T tSbT |/|T tSwT |. (2.5)

The optimal projection matrix W which maximizes J (T ) can be obtained by solving

a generalized eigenvalue problem:

SbW = SwWΛW . (2.6)

It is helpful to make comparisons among the so-called (linear) projection algorithms.

Here we illustrate the comparison between eigenfaces and Fisherfaces. Similar com-

parisons can be made for other methods, for example, ICA projection methods. In

all these projection algorithms, classification is performed by (1) projecting the input

x into a subspace via a projection/basis matrix Proj:

z = Projx (2.7)
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(2) comparing the projection coefficient vector z of the input to all the pre-stored

projection vectors of labeled classes to determine the input class label. The vector

comparison varies in different implementations and can influence the system’s per-

formance dramatically [114]. For example, PCA algorithms can use either the angle

or the Euclidean distance (weighted or unweighted) between two projection vectors.

For LDA algorithms, the distance can be unweighted or weighted.

A comparative performance analysis was carried out by Belhumeur et al. [19].

They compared four methods: (1) a correlation-based method, (2) a variant of the

linear subspace method suggested in [151], (3) an eigenface method by Turk and

Pentland [159], and (4) a Fisherface method which uses subspace projection prior to

LDA projection to avoid the possible singularity in Sw as in [155]. Experiments were

performed on a database of 500 images created by [61] and a database of 176 images

created at Yale [1]. The results of the experiments showed that the Fisherface method

performed significantly better than the other three methods. However, no claim was

made about the relative performance of these algorithms on larger databases.

Bartlett et al. [18] presented an argument that for tasks such as face recognition,

much of the important information is contained in high-order statistics. So, they

proposed to use independent component analysis (ICA) to extract features for face

recognition. ICA is a generalization of principal component analysis, which decorre-

lates the high-order moments of the input in addition to the second-order moments.
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Neural Network-based Approaches

A fully automatic face detection/recognition system based on a neural network

is reported in [102]. The proposed system is based on a probabilistic decision-based

neural network (PDBNN, an extended (DBNN) [87]) which consists of three modules:

a face detector, an eye localizer, and a face recognizer. Unlike most methods, the facial

regions contain the eyebrows, eyes, and nose, but not the mouth. The rationale of

using only the upper face is to build a robust system that excludes the influence

of facial variations due to expressions that cause motion around the mouth. To

improve robustness, the segmented facial region images are first processed to produce

two features at a reduced resolution of 1410: normalized intensity features and edge

features, both in the range (0, 1). These features are fed into two PDBNNs and the

final recognition result is the fusion of the outputs of these two PDBNNs.

Compared to most multi-class recognition systems that use a discrimination func-

tion between any two classes, PDBNN has a lower false acceptance/rejection rate

because it uses the full density description for each class. In addition, this architec-

ture is suitable for hardware implementation such as distributed computing. However,

it is not clear how to accurately estimate the full density functions for the classes when

there are only limited numbers of samples. Further, the system could have problems

when the number of classes grows exponentially.
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2.2.3 Geometric-based Approaches

Many methods in the geometric matching category have been proposed, including

early methods based on geometry of local features [80, 81] as well as 1D [147] and

pseudo-2-D [148] HMM methods. One of the most successful of these systems is the

Elastic Bunch Graph Matching (EBGM) system [122, 163], which is based on Dy-

namic Link Architecture (DLA) [34, 88]. Gabor wavelets play a building block role

for facial representation in these graph matching methods. A typical local feature

representation consists of wavelet coefficients for different scales and rotations based

on fixed wavelet bases (called jets in [122]). These locally estimated wavelet coeffi-

cients are robust to illumination change, translation, distortion, rotation, and scaling.

The basic 2-D Gabor function and its Fourier transform are

g(x, y : u0, v0) = exp(−[x2/2σ2
x + y2/2σ2

y ] + 2πi[u0x + v0y]),

G(u, v) = exp(−2π2(σ2
x(u − u0)

2 + σ2
y(v − v0)

2)),

(2.8)

where σx and σy represent the spatial widths of the Gaussian and (u0, v0) is the

frequency of the complex sinusoid.

The DLA architecture was recently extended to Elastic Bunch Graph Matching

[163] (Figure 2.3.) This is similar to the EGBM method described above, but instead

of attaching only a single jet to each node, the authors attached a set of jets (called the

bunch graph representation, Figure 2.3(b)), each derived from a different face image.

To handle the pose variation problem, the pose of the face is first determined [85],

and the “jet” transformations under pose variations are learned [110]. Systems based
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(a) (b)

Figure 2.3: The graph representation of faces used in elastic bunch graph matching
[163].(a)Elastic graph representation. (b)Bunch graph.

on the EBGM approach have been applied to face detection and extraction, pose

estimation, gender classification, sketch-image-based recognition, and general object

recognition. The success of the EBGM approach may be due to its resemblance to

the human visual system [25].

Hybrid Approaches

Hybrid approaches use both holistic and local features. For example, the presented

modular eigenfaces approach by Pentland et al. in [132] uses both global eigenfaces

and local eigenfeatures. They extended the capabilities of the earlier system [159]

in several directions. In mugshot applications, usually a frontal and a side view

of a person are available; in some other applications, more than two views may be

appropriate. The first approach pools all the images and constructs a set of eigenfaces

that represent all the images from all the views. The other approach uses separate

eigenspaces for different views, so that images taken from each view have their own

eigenspace. The second approach, known as view-based eigenspaces, performs better.
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It has been argued that practical systems should use a hybrid of PCA and LFA.

Such view has been long held in the psychology community [33]. It seems to be

better to estimate eigenmodes/eigenfaces that have large eigenvalues (and so are more

robust against noise), while for estimating higher-order eigenmodes it is better to use

LFA. To support this point, it was argued in [131] that the leading eigenpictures are

global, integrating, or smoothing filters that are efficient in suppressing noise, while

the higher-order modes are ripply or differentiating filters that are likely to amplify

noise.

A flexible appearance model-based method for automatic face recognition was

presented in [91]. To identify a face, both shape and gray-level information are

modeled and used. The shape model is an ASM; these are statistical models of the

shapes of objects which iteratively deform to fit to an example of the shape in a

new image. The statistical shape model is trained on example images using PCA,

where the variables are the coordinates of the shape model points. For the purpose

of classification, the shape variations due to interclass variations are separated from

those due to within-class variations (such as small variations in 3-D orientation and

facial expression) using discriminant analysis. Based on the average shape of the shape

model, a global shape-free gray level model can be constructed, again using PCA. To

further enhance the robustness of the system against changes in local appearance

such as occlusions, local gray-level models are also built on the shape model points.

Simple local profiles perpendicular to the shape boundary are used. Finally, for an

input image, all three types of information, including extracted shape parameters,

shape-free image parameters, and local profiles, are used to compute a Mahalanobis
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distance for classification. Based on 10 images for training and 13 images for testing

for each of 30 individuals, the classification rate was 92% for the 10 normal testing

images and 48% for the three difficult images with considerable changes in facial

expressions, head pose or lighting condition.

2.2.4 3-D Face Recognition

3-D-based approaches provide a better solution to deal with variations in pose and

illumination [31]. Work on 3-D face recognition based on range image started in late

80’s and has grown significantly in the last few years. It is difficult to describe all the

approaches reported in the literature [15, 37, 126, 130, 145, 105, 72, 109, 56, 42, 32,

64, 96, 180, 98, 171, 79], so we focus only on the most important works.

Chang et al. [37] describe a “multi-region” approach to 3-D face recognition from

range data. It is a type of classifier ensemble approach in which multiple overlap-

ping sub-regions around the nose are independently matched using (Iterative Closest

Points) ICP, and the results of the multiple 3-D matches are fused. Their experimen-

tal evaluation is based on the Face Recognition Grand Challenge (FRGC) version 2

data set, representing over 4,000 images from over 400 persons. With one neutral-

expression image enrolled as the gallery for each person and all subsequent images (of

varied facial expressions) used as probes, performance of 92% rank-one recognition is

reported.

Lee et al. [97] propose an approach to 3-D face recognition based on the curvature

values at eight feature points of the face. Using a support vector machine for classifi-
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cation, they report a rank-one recognition rate of 96% for a data set representing 100

persons. They use a Cyberware sensor to acquire the enrollment images and a Genex

sensor to acquire the probe images. The recognition results are called “simulation”

results, apparently because the feature points are manually located.

Russ et al. [145] developed an approach using Hausdorff distance matching on the

range image representation of the 3-D face. An iterative registration procedure similar

to that in ICP is used to align probe data to gallery data. Various means of reducing

space and time complexity of the matching process are explored. Experimental results

are presented on a part of the FRGC version 1 data set, using one probe per person

rather than all available probes. Performance as high as 98.5% rank-one recognition,

or 93.5% verification at a false accept rate of 0.1%, is achieved.

Medioni and Waupotitsch [112] performed 3-D face recognition using an iterative

closest point (ICP) approach to match face surfaces. They used 3-D shapes acquired

by a passive stereo sensor. Experiments with seven images each from a set of 100

subjects were reported, with the seven images sampling different poses. An EER of

”better than“ 2% was reported.

Pan et al. [126] mapped the range data to a circular range image and then applied

the PCA technique for matching. Mapping of the range data was achieved by finding

the tip of the nose as a center point and an axis of symmetry for alignment. Exper-

imental results are reported using the FRGC version 1 data set with 95% rank-one

recognition rate or 2.8% EER in a verification scenario.

Chowdhury and Chellappa [41] obtain 3-D range data of the face from a 3-D ac-

quisition system which contains a digital camera and a light projector that projects
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parallel stripes of light on the face, i.e., structured light method. The camera cap-

tures the image with light stripes deformed on the surface of the face. They use

the deformation of the stripes along with their location on the image to estimate

depth. As reported by the authors, this method can lead to inaccurate results near

the mouth and the eyes regions. Once the 3-D geometry and the facial texture are

available, images can be generated for that face from almost any pose and under any

illumination using computer-graphics methods [27]. For example, in [27], morphable

models are utilized to map one view of the face to another. Given a face view, 3-D

shape and texture from the 3-D morphable model are generated to match that image

and then using graphic approaches, it generates the other views for recognition.

Lengagne et al. [99] proposed a 3-D face reconstruction scheme using a pair of

stereo images for modeling and recognition. However, they did not implement the

recognition module. Atick et al. [72] proposed a reconstruction method of 3-D face

surfaces based on the Karhonen-Loeve (KL) transform and shape from shading. They

discussed the possibility of using eigenhead surfaces in face recognition applications.

Yan et al. [170] proposed a 3-D reconstruction method to improve the performance

of face recognition by making Atick et al. ’s reconstruction method rotation-invariant.

BenŋArie et al. [21] proposed a volumetric frequency representation (VFR) for pose

invariant face recognition.

Zhao et al. [180] proposed a method to adapt a 3-D model from a generic range

map to the shape obtained from shading for enhancing face recognition performance in

different lighting and viewing conditions. Georghiades et al. [56] modeled variations

in illumination and pose using illumination cone models. Zhang et al. [175, 174]
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utilized a 3-D generic head model to estimate the head pose in face images, and then

made use of Euclidean distance transform to compute feature curves extracted in the

image with those in the projected head model. Their algorithm depends on manual

selection of certain feature points in the face image.

Chowdhury and Chellappa [41] built the 3-D model of the face from monocular

video sequences using structure from motion. The accuracy of this method depends

on the quality of the video sequences. Analysis-by-synthesis was used for building

3-D face models from a single image of the face [27, 28], with excellent results. The

method in [28] uses 200 pre-scanned face models to build an eigenvector space so

that an image of a face can be represented as a projection of a linear combination of

the eigenmodels. This method requires labeling seven to eight facial features points

manually for images used in building the database and for probe images. This method

takes a personal computer several minutes to obtain the morphing parameters of the

face from an image. In [175] a method for building 3-D models by morphing a generic

model based on different views of a face was presented. In this method manual

intervention is needed to select a point on each facial feature component such as the

eye, brow, nose, and chin. Also, their use of texture synthesis would not work for

different lighting conditions.

2.2.5 Multi-modal Face Recognition

In biometrics, the classical definition of “multi-modal” refers to the use more than

one modality or multiple sensors, in order to increase the accuracy and robustness
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of the biometric recognition system. The goal is to counterbalance the imperfection

of one modality by the remaining ones. The fusion of modalities can take place at

different levels, namely the input sensor level, the feature level, and/or the decision

level. An example of fusion at the feature level is when features such as those of

the face and hands are combined and represented in one feature vector. One of

the most applicable strategies is the fusion at the decision level. Each algorithm

for a single biometric modality is regarded as a single classifier that represents the

decision or matching score of the algorithm. The fusion is primarily based on the

distributions of the classifiers’ outputs. As long as the features from the different

modalities are statistically independent, the fusion of the classifiers’ outputs seems to

be a promising approach. An example for independent biometric modalities might be

face and fingerprint, where it cannot be assumed that the structure of the fingerprint

contains information about the face and vice versa. However, in the fusion of 2-D

and 3-D face recognition, the situation is different as both modalities are likely to

be dependent to a certain degree. For instance, the relative positions of the eyes,

nose, and mouth will be the same in both the 2-D and 3-D representation of the face.

Even more, there may occur effects during acquisition like pose or occlusions that will

affect both modalities. The disadvantage of this dependency is that the fusion at the

level of the classifiers outputs will be less beneficial than in the case of completely

independent classifiers’ outputs. However, the great benefit of the dependency is that

it enables additional levels of fusion during the enrollment, where the information

from one modality might support the other. For example, if both texture and shape

information of each face are acquired using 3-D scanners, the image from the texture
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modality is automatically registered to the shape modality. Thus it is sufficient to

find landmarks in one of the two modalities where certain landmarks might be easier

to find with higher accuracy than from the other modality.

Lao et al. [93] proposed a framework for 3-D face recognition. A sparse depth

map is constructed from three stereo images using Iso-luminance lines for the stereo

matching. A 3-D model is constructed from 3-D geometrical features representing arcs

and line edges which are extracted from the 3-D data. By searching for arcs whose

radii are of certain ranges, they first locate the irises and the mouth and then use this

information to estimate the pose. 3-D Recognition is performed by calculating the

mean differences in depth between corresponding data points in the test 3-D model

and all the models in the database. Using a dataset of 10 persons, they reported

87-96% recognition rate. One drawback of this approach is that only depth is used

for recognition. This approach is multi-modal in a specific limited sense (using 2-D

stereo images for building the 3-D model.)

Bueumier and Acheroy [24] used the fusion of 3-D facial surfaces obtained from

structured light method and grey level in 2-D images. For detail explanations on

structured light method, we refer the readers to [41]. The 2-D and 3-D data of the

face are each represented with a central profile and a lateral profile. Therefore, they

have a total of four classifiers, and an overall decision is made using a weighted sum

of 3-D and 2-D similarity measures. For experiments on a subset of the data of 100

persons, using a 27-person gallery and a 29-person probe set, they reported an EER

as low as 1.4% for recognition that merges multiple probe images per subject.
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Wang et al. [162] presented a feature-based face recognition system based on both

3-D range data as well as 2-D gray scale facial images. Feature points are extracted

and described by Gabor filter responses in the 2-D domain and Point Signatures in

the 3-D domain. The corresponding normalized shape and texture weight vectors

are then integrated to form an augmented vector which is used to represent each

facial image. For a given test facial image, the best match is identified according to

a similarity function. Experimental results involving 50 persons, with six images per

person, demonstrated a recognition rate of 90%.

Bronstein et al. [32] used range images with texture and presented a 3-D face

recognition approach based on geometric invariants, which maps 2-D facial texture

images into special images that incorporate the 3-D geometry of the face. Although

they never reported any quantitative performance, they claimed that their system

provides high recognition and can cope with variations caused by facial expressions.

Tsalakanidou et al. [158] evaluated three different approaches, color, depth, and

fusion of color and depth for face recognition. Experimental results, on a dataset of

40 persons, are reported for color images alone, 3-D alone, and 3-D plus color. Using

the Principal Component Analysis approach (PCA), recognition rate is as high as

99% for the multi-modal part which is found to be higher than either 2-D or 3-D data

alone. Similarly, using a PCA-based recognition approach, Chang et al. [36] performed

experiments with 3-D and 2-D images for 200 subjects and reported approximately

99% rank-one recognition for multi-modal fusion of 3-D with 2-D, 94% for 3-D alone,

and 89% for 2-D alone. The multi-modal results are obtained using a weighted sum

of the distances from individual 3-D and 2-D faces.
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Godil et al. [58] considered fusion at image level and score level using shape from

range images and texture map information of 200 subjects from CAESAR anthropo-

metric database. The image level fusion is created by concatenating of 3-D shape and

color map information. The score level fusion combines scores using min, max, mean,

and product rule. They also used PCA for matching both the 2-D and the 3-D data.

Using the multiple score level, the reported performance is as high as 82%.

Papatheodorou et al. [128] used a commercial stereo camera system for 3-D data

acquisition. The stereo system is made up of three video cameras and a speckled

pattern projector. The projector projects a random light pattern of dots on the surface

of the face, used to establish correspondences between two of the three cameras,

allowing the reconstruction of depth information. The third camera captures the

texture information and uses a filter to eliminate the speckled pattern projected onto

the face. Their approach combines modality at the sensor stage in 4D space as in

(x, y, z, intensity). Recognition experiments, for 62 persons, based on Iterative Closest

Point (ICP), show 98-100% recognition rate from the frontal view probes, 73-94% for

probes with varying poses, and 69-89% for probes with smiling expressions.

In a multi-modal recognition approach integrating intensity and 3-D range data,

Tsalakanidou et al. [157] used embedded hidden Markov model technique applied to

depth map. Their experimental data set represents a small number of different per-

sons, but each has 12 images representing various facial poses and expressions. They

reported a higher EER for 3-D than for 2-D in matching frontal neutral-expression

probes to frontal neutral-expression gallery. They also report that depth data mainly

suffers from pose variations.
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Lu and Jain [106, 104] reported better performance with 3-D matching alone than

with 2-D matching alone. They also reported 98% rank-one recognition for 3-D +

2-D recognition on neutral face expressions and 91% on the larger set of neutral and

smiling expressions. In their algorithm, they use ICP style matching of 3-D shape

[165] and a linear discriminant analysis approach for the 2-D matching component.

Their experimental data set consists of multiple scans of each of 100 persons. Five

scans with a Minolta Vivid 910 system are taken in order to create a more accurate

3-D face model for enrolling a person. Enrollment is done with neutral expression.

An individual probe for testing uses six scans for each person; three with neutral

expression and three with smiling expression.

Maurer et al. [109] described the approach used by Geometrix, which is based on

multi-modal (3-D + 2-D) face recognition. The 3-D matching builds on the approach

described by Medioni and Waupotitsch [112], whereas the 2-D matching uses the

approach of Neven Vision [9]. A weighted sum rule is used to fuse the two results,

with the exception that, when the shape score (3-D) is very high, the texture score

(2-D) is ignored [109]. Experimental results on the FRGC V2.0 data set (all versus all

matching of the 4,007 images) show 87% verification at 0.01 FAR. They also reported

that the performance of 3-D+2-D outperforms that of 3-D alone by a noticeable

amount, and that the verification rates for 2-D alone are below those for 3-D alone.

Husken et al. [69] described the Viisage approach for multi-modal recognition.

The 3-D matching follows the style of hierarchical graph matching already used in

Viisage’s 2-D face recognition technology. This approach is fast in matching compared

with techniques based on ICP or similar iterative techniques. Fusion of the results
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from the two modalities is done at the score level. Multi-modal performance on

the FRGC version 2 data is reported as 93% verification at 0.01 FAR. In addition,

it is reported that the performance of 2-D alone is only slightly less than that for

multi-modal performance, and that performance of 3-D alone is substantially less

than that of 2-D alone. In this context, it is interesting to note that results from

the Geometrix group, that originally focused on 3-D face recognition, show that 3-D

alone outperforms 2-D alone, whereas results from the Viisage group that originally

focused on 2-D alone, show that 2-D alone outperforms 3-D alone.

A-Ansari [11] provided a methodology for building 3-D mesh models of faces, for

3-D to 3-D and 2-D to 2-D face recognition applications. In particular, he devel-

oped two algorithms for face modeling from either stereo or range images and one

algorithm based on 3-D model face image synthesis. The first algorithm produces

a deformed 3-D model using stereo images from two parallel frontal views and one

orthogonal profile view of the face, while the second algorithm produces a deformed

3-D model from one range image of the face. Both algorithms obtain 3-D models

which are applied in 3-D face recognition. Also, the stereo-image-based algorithm is

capable of synthesizing multiple views 2-D facial images which are applied in 2-D face

recognition. He combines 3-D information of depth from stereo with 2-D extracted

labels for facial feature points. He then used a generic mesh model which establishes

direct feature vertices correspondences between all subjects, resulting in a faster face

recognition comparison. He tested the performance of his system for 3-D face recog-

nition on a face database of 112 subjects captured at the University of Miami. He

achieved 96.4% rank-one identification by using a mesh model with 6080 vertices.



Chapter 3

Facial Features Extraction

In this chapter we present our techniques for 3-D and 2-D facial features extraction.

For 3-D range images, we develop an algorithm to extract three feature points (i.e.,

the two inner corners of the eyes and the tip of the nose) based on Gaussian curvature.

In addition, we improve the ASM technique for 2-D facial features extraction which

is a statistical based shape modeling approach. The 2-D extracted facial features will

be used in building the ARG model in Chapter five.

3.1 3-D Facial Features Extraction

As we reviewed in Chapter two, the location of the facial features are determined by

calculating the minimum and maximum principal curvature. The extracted location

of the features (e.g., landmark points) may be utilized for initial alignment of a probe

facial image to the gallery image. Moreover, the extracted feature points can be

used as signature for shape matching. In this Section, we present an algorithm for

60
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extraction of three feature points in range images. The feature points (i.e., landmark

points), are the two inner corners of the eyes and the tip of the nose. These features

are utilized for initial alignment of the probe ridge image to the gallery ridge image.

Before extracting the facial features, the range images needs to be preprocessed

and filtered to remove the noise and artifacts of range images. In order to remove

sharp spikes that occur during scanning of the face, we apply median filtering with a

window size of 3 × 3. Afterwards, we use interpolation (nearest neighbor points) to

fill the gaps on the face region and finally we use a low pass filter (disk with radius 3

pixels) to slightly smooth the surface of the face that suffers from rapid changes due

to facial hair or any other artifacts.

After preprocessing, the area of the face in the range data is localized and the

neck, hair and the background areas of the range image are discarded. Then, the inner

corners of the eyes and the tip of the nose are detected. In the following subsections,

we explain in detail the process of face localization using template matching and the

labeling of the three feature points using Gaussian curvature.

3.1.1 Face Localization Using Template Matching

Generally, face detection is one of the first preliminary steps for any face iden-

tification or processing system. In the case of 2-D textured facial images, there are

different methods for face detection [160, 141, 63]. For range data, we need to find

the location of the face in the range image, keep the face area, and exclude the back-

ground, hair, and neck in the image. Therefore, we developed a method for localizing
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faces in range data using template matching. We adopt an algorithm similar to the

normalized cross correlation (Equation 3.1) to match a facial template range image

to the range images:

C(s, θ) =
∑

x,y [f(x,y)−f̄ ][Hs,θ(τ(x,y))−τ̄ ]

{∑x,y[f(x,y)−f̄ ]2
∑

x,y[Hs,θ(τ(x,y))−τ̄ ]2}0.5
(3.1)

where f(x, y) and τ(x, y) are the image and the template respectively. f̄ is the mean

value of the portion of the image underneath the template and τ̄ is the mean value

of the template. The Hs,θ is similarity transformation matrix with parameters s and

θ for scale and rotation, respectively.

For template matching, at first we roughly detect the location of the nose tip.

Then, we translate the template face such that the detected tip of the nose is placed on

the location of the nose tip of the range image under test. Afterwards, we iteratively

apply a 3-D similarity transformation (only scale and rotation is considered) to the

template image and calculate the normalized cross correlation, i.e. C(s, θ), to obtain

the optimum scale and pose orientation of the template that results in the maximum

correlation between the template and the range image.

Figure 3.1 shows the template image as well as the result of the template matching

to one of the facial range images in the database. This approach is robust for cropping

the face region in the range data.
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Figure 3.1: Template matching: (a) Template range image (b) A sample filtered facial
range image (c) Detected area of the face in the sample range image.
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Figure 3.2: The relations between surface types and their mean (H) and Gaussian
(K) curvatures.

3.1.2 Labeling Feature Points Using Gaussian Curvature

In order to extract three feature points that is utilized in face alignment during the

recognition process, we use Gaussian curvature. The extracted feature points are the

two inner corners of the eyes and the tip of the nose. For a given surface z = f(x, y),

the mean curvature H, the Gaussian curvature K, and the principal curvatures kmax,

kmin, are defined as:

K =
fxxfyy−f2

xy

(1+f2
x+f2

y )2

H =
fxx+fyy+fxxf2

y +fyyf2
x−2fxfyfxy

2(1+f2
x+f2

y )1.5

kmax = H +
√

(H2 − K)

kmin = H − √
(H2 − K)

(3.2)

Because, the calculation of Gaussian curvature involves the second derivative of

the surface function, the noise and the artifacts affect the final result and applying

a low-pass filter to smooth the data is required. Figure 3.2 shows the representation

of different shapes and their corresponding mean and Gaussian curvatures. As the
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Figure shows, the surface that either has a peak or a pit shape has a positive Gaussian

curvature value (K > 0). Each of the two inner corners of the eyes has a pit surface

type, and the tip of the nose has a peak surface type that are detectable based on the

Gaussian curvature. These points have the highest positive Gaussian curvature values

locally, among the points on the face surface. Figure 3.3 shows the result of calculating

Gaussian curvature for one of the sample range images in the gallery. The highest

points in Figure 3.3.(a) correspond to the points with pit/peak shape. We threshold

the Gaussian curvature to find the areas that have positive Gaussian curvature values

greater than a threshold, producing a binary image (Fig. 3.3.b). This threshold is

calculated based on a small training data set different from the images used in the

recognition experiments. The three regions with the largest average value of Gaussian

curvature are the candidate regions that include the feature points. The locations of

the points with maximum Gaussian curvature in these regions are labeled as feature

points. Figure 3.3.(c) shows a final result of feature points labeling.

3.1.3 Experiments and Results

We evaluated our algorithm for locating the face and 3-D features extraction using

the 3-D Gavab database [115]. The Gavab database contains 549 range images for

61 individuals (45 males and 16 females). For each person, there are nine different

images, two neutral frontal images, two neutral images with pose (looking down and

up), two profile images, and three frontal images in which the subject presents differ-

ent and accentuated facial expressions. The digitizer is a Minolta VI-700 digitizer, a
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Figure 3.3: Three feature points labeling: (a) Gaussian curvature on a patch around
the nose and eyes (b) Result of thresholding the Gaussian curvature image(c) Final
result of feature points labeling
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             1st Capture                2nd Capture         3rd Capture 

              4th Capture       5th Capture          6th Capture

            7th Capture               8th Capture       9th Capture  

Figure 3.4: 2-D and 3-D range views of an individual: 2-D gray scale images, 3-D
range images at 1/4 of the original resolution (both from scanner’s point of view) and
a rotated version of 3-D range image [115].

laser sensor which captures in less than a second a range image of the scene as well as

a color image. The faces were at a distance of 1.5 ± 0.5 m from the scanner. Figure

3.4 shows the range images for one of the subjects in the database along with the

textured images [115]. The texture images for each person are not released and only

the range images are available for public access.

In our experiments, we used the two neutral frontal images (the 1st and the 2nd

captures), the two neutral looking up and down images (the 5th and the 6th captures),

the frontal images with smile expression (the 7th capture), the frontal images with

laughing expression (the 8th capture), and a frontal image with random gesture (the

9th capture) (In this case, occlusions of the face by the hand or by the tongue are

permitted.)
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                 (a)        (b)       (c)   
  

Figure 3.5: Samples of range images in the gallery and the results of preprocessing
(a) Original range images, (b) Noise removal and interpolation, (c) Face localization
and three feature points labeling.

Figure 3.5 shows three samples of the original images in the Gavab database, re-

sults of noise removal and interpolation, face localization, and feature points labeling.

The process of labeling three feature points is successful but fails for few subjects

(15% of the images in the database), where the noise and the disturbance in the im-

age around the eyes, (i.e., eyelash) are high. Also, for few cases (10% of the images

in the database), where the face has pose (looking up or down), the initial detection

of the nose is difficult and the nose is mistaken with the chin or forehead. For images

where our algorithm for labeling the three feature points failed, we manually labeled

the locations of the feature points to be utilized in the matching process.
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3.2 2-D Facial Features Extraction

In Chapter two we reviewed the techniques for facial features extraction. We

mentioned that extracted facial features can be used for either alignment (registration)

between the query and the template images or the models. In addition, extracted

facial features can be used for constructing a face model where the labeled feature

points play important role in building the model. In this dissertation, the aim is to

label fiducial points in a given 2-D color facial image and use them for representation

of the given face by an Attributed Relational Graph (ARG), where the nodes of

the graph correspond to the landmark points that are extracted by the presented

algorithm in this chapter.

In order to extract facial feature points, we improve the Active Shape Model

(ASM) [45] with respect to three factors: model initialization, modeling of the local

structure of the facial features, and alignment of the shape model to a new instant

of the object in a given image. The core of our contributions relies on three improve-

ments: (a) initializing the ASM model using the centers of the mouth and eyes, which

are located using color information; (b) incorporating color information to represent

the local structure of the feature points; (c) applying 2-D affine transformation in

aligning the facial features that are perturbed by head pose variations, thus effec-

tively aligning the matched facial features to the shape model and compensating for

the effect of the head pose variations.
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3.2.1 Active Shape Model and Its Limitations

Active Shape Model (ASM) is a statistical approach for shape modeling and feature

extraction. It represents a target structure by a parameterized statistical shape model

obtained from training. This method was introduced by Cootes et al. [45, 92] and

improved by other researchers over the past few years. In the original version of the

ASM, the initial locations of the feature points are obtained from the mean shape,

which is derived from training data, and its accuracy depends on the size of the

training set. In addition, the local structure of the feature points is represented by

the change in intensity values of the pixels along a profile line (i.e., edge location)

that goes through the feature points. This is based on the assumption that usually

the facial features are located on strong edges. But, finding the correct locations of

the feature points on the edges is not always possible and this affects the robustness

of the ASM technique for feature extraction.

Ginneken et al. [57] proposed to use a non-linear gray level appearance instead of

the first derivative profile to model the local structure of the features. In [161], Wei

Wang et al. had some improvements on the ASM for face alignment. Other authors

[173, 74, 65] used the wavelet transform to model the local structure of features and

improve the face alignment. Unfortunately, their approaches using wavelet transform

are computationally expensive.

The most important limitations of the ASM for facial feature extraction can be

summarized as follows:
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• Representation of complex multi-part objects by a single shape model. Although

a single shape model may preserve the general shape of the whole object, its

constraint may fail in extracting some of its parts.

• Representing the local structure of each point by independent models. This

drawback may lead to a final shape far from the actual shape model.

• The need for a large training set to cover shape variations. The shape model

may fail in characterizing the shape variations if instances of the shape are not

incorporated in the training set.

• The initialization of the shape model. This is a major drawback of ASM. If the

shape is initialized far from the object of interest, the searching process may

either fail or become very slow.

• The choice of modeling the local structure of the points. Many variations of

ASM model the local structure by edges or statistical models of gray level

variations.

• Alignment of the shape model to a new instant of the object. Alignment has the

same effect as initialization. Successful alignment leads to faster and accurate

model fitting to the object of interest in the image.

• Search for the best candidate feature points. Most existing algorithms rely on

Euclidean or Mahalanobis distance between the candidate feature points and

the trained model of the local structure of the feature points.
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Some of the above are inherent limitations in ASM and some of them depend on

the method used to handle them. For example, the representation of complex multi-

part objects by a single shape model is an inherent problem of ASM; while modeling

the local structure of the feature points and alignment of the shape model to a new

instant of the object are not. In this dissertation, we deal with model initialization,

modeling the local structure of feature points, and shape model alignment to a new

instant of the object.

For initial alignment we use the color information to initially detect few salient

facial features such as the centers of the mouth, and the eyes. These points are

employed to initialize the ASM. However, these three feature points are not the only

feature points that can be used for initial alignment. Sometimes, an expert user

manually labels a set of feature points for the purpose of initial alignment. For

example, four labeled feature points (two outer corner of the eyes, the tip of the nose,

and a point on cheek) were extracted manually and released with the FRGC face

database which is used in this work.

We also use the color information to improve the model that characterizes the

local structure of the feature points. A weighted sum of three multivariate Gaussian

models for the three components (i.e. Hue, Saturation, and Value) is used to represent

the normalized first derivative of pixel values along a profile line. Furthermore, for

the lips, we use the color information to detect their boundary. This enhances the

localization of geometric features that represent the external boundary of the lips in

face images. In addition, we use 2-D affine transformation to align the extracted facial

features to the shape model. The 2-D affine transformation compensates the effect
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of head pose variations and the projection of 3-D data to 2-D. In fact, ASM needs

a large training set to cover the variations caused by head pose. For frontal images,

the similarity transformation is a suitable transformation to align the extracted facial

features to the shape model, but for large variations in the head pose, it is not suitable.

The use of the color information for modeling the local structure of the feature

points and the use of the 2-D affine transformation are general improvements to the

ASM approach. On the other hand, the initialization of the ASM using the centers

of the mouth and the eyes, and localizing the feature points around the lips are

specific for facial feature extraction. Our experimental results show that the proposed

approach outperforms the standard ASM technique for facial feature extraction. The

details of our improvement for Active Shape Model is presented in Appendix A.

3.2.2 Experiments and Results

In this Section, we validate our algorithm for 2-D facial features extraction. We

compare between performance of the standard ASM algorithm and our improved

ASM approach. In our comparison, we use a subset of the University of Miami (UM)

face database which includes 70 different subjects with a total of 140 near frontal

color images [11]. For each subject, we captured three near frontal images. One

image is used as a probe and another image is used for database storage. The third

image is used for manual feature extraction, labeled by an expert person, for ground

truth comparison. We use a trained shape model for 75 facial feature points which

is provided from a completely different source of images and other public databases.
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Figure 3.6 shows few samples of the facial images in UM database and the extracted

facial features by both our method and the original ASM method. The visual in-

spection shows that our approach is more successful in extracting the locations of

the facial feature points, especially around the lips and the corner of the eyes and

the eyebrows. From these few examples, it is clear that our method leads to more

accurate localization of the facial features as we further show next.

Performance Evaluation

To evaluate the performance of our method, we manually labeled 75 feature

points in each of the images in the database. For each subject image, the 75 facial

feature points were extracted using the original ASM and our improved approach.

The performance was evaluated using the average mean square error (MSE) in pixel

unit over all the images. The error is defined as the distance between the manually

labeled feature points and the corresponding feature points obtained from both the

original and our improved version of the ASM approach. This is defined as follows:

AverageMSE = 1
N

∑N
i=1(

1
n

∑n
j=1 ||Pij − P ′

ij||2) (3.3)

where N is the total number of probe images, n is the number of the landmark points

in the shape model, Pij is the jth landmark point in the manually labeled shape of

the ith test image, P ′
ij is the jth landmark point in the resulting shape of ASM for the

ith test image, and ||.|| denotes the Euclidean distance.
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Figure 3.6: Extracted facial features sample images from UM database, where our
method outperforms the standard method, (o) Improved ASM, (*) Standard ASM.
The MSE (pixels) of the enhanced to standard ASM for the images are (a) [28.85,
39.98], (b) [32.74, 33.54], (c) [20.50, 38.85], and (d) [39.29, 110.87].
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Method Ave.MSE Ave. MSE % of cases
for 49 subjects for 21 subjects which have

out of 70 out of 70 minimum error
Standard

ASM 70.3 (pixels) 23.3 (pixels) 30.0%
Enhanced

ASM 40.0 (pixels) 31.9 (pixels) 70.0%

Table 3.1: Performance Comparison Between the Two Methods and the Manually
Labeled Features Based on the Average MSE (pixels) Over All 70 Subjects.

As given in Table 3.1, we categorize our results in two sets based on the average

MSE. In one set, 49 subjects out of the 70 subjects, the average MSE between the

manually labeled feature points and the feature points extracted by our improved

ASM are lower than the average MSE between the manually labeled feature points

and the feature points extracted by the original ASM method. For the second set,

the remaining 21 subjects, the original ASM has lower average MSE. Our method

has a 70% improvement (minimum error) over the entire database compared to 30%

given by the original ASM.

Figure 3.6 shows sample images along with the MSE errors in which our method

outperforms the standard ASM approach with minimum error. Similarly, Figure 3.7

gives sample cases where the standard ASM performs better than our method. In

these sample examples, the figure visually shows comparable performance between

the two methods. Based on the MSE, the standard ASM attains lower error in 30%

of the cases.
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(a)   

(b)

Figure 3.7: Extracted facial features sample images from UM database, where stan-
dard method outperforms our method, (o) Improved ASM, (*) Standard ASM. The
MSE (pixels) of the enhanced to standard ASM for the images are (a) [34.64, 24.87]
and (b) [14.02, 9.55].

3.3 Summary

For 3-D range data, we have developed a method based on template matching to

find the area of the face in the range data. The goal is to localize the face area and

discard the neck, hair and the background areas of the range image. Moreover, we

have presented an algorithm based on Gaussian curvature for detecting three feature

points, the inner corners of the two eyes and the tip of the nose. For 2-D images, we

have improved the Active Shape Model approach for facial features extraction. We

have used the color information to localize the centers of the mouth and the eyes to

improve the initialization step in the standard ASM. In addition, we have modeled

the local structure of the feature points in the HSV color space and we used a 2-D

affine transformation to align the facial features that are perturbed by head pose.
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Experimental results have showed that our improved version of the ASM is accurate

and outperforms the standard ASM. The extracted feature points either in 2-D or

3-D are utilized in the next chapters.



Chapter 4

3-D Face Recognition Based on Ridge

Images

In this chapter, we present a method for 3-D face recognition from frontal/near-frontal

range images based on the ridge lines on the surface of the face. As we discussed in

chapter one, the surface matching techniques suffer from computational complexity.

In our approach, a subset of points on the surface of the face are selected using the

principal curvature, kmax. These points show the locations of the ridge points around

the important facial regions on the face, i.e., the eyes, the nose, and the mouth.

Instead of matching all the points on the surface of the face, the ridge points are used

for matching which leads to huge reduction of the computational complexity while

keeping the performance of the system for face recognition promising. We compare

the robust Hausdorff distance versus the Iterative Closest Points (ICP) for matching

the ridge image of a given probe image to the ridge images of the facial images in the

gallery.

79
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4.1 3-D Face Matching Based on Ridge Images

Figure 4.1 shows the block diagram of our method. In the first step, because of

noise and artifacts in the range images, we use median filtering and low-pass filtering

to remove sharp spikes and smooth the images and then we use interpolation to fill

the gaps in the image. In the next step, we roughly find the tip of the nose which is

the closest point to the scanner. Because the facial range images in the databases that

we work on are frontal/near-frontal, the claim that the tip of the nose is the closest

point to the scanner is valid. Then, we apply template matching to localize the face

region in the filtered range data. Afterward, we use Gaussian curvature to label three

feature points, i.e., the inner corners of the two eyes and the accurate position of the

nose tip. We represent the range images by the points on the 3-D surface of the face

which have maximum principal curvature, kmax, greater than a threshold. Therefore,

each range image is represented by ridge lines on the 3-D surface of the face using

a 3-D binary image, called ridge image. The details of the preprocessing techniques

and 3-D facial features labeling were presented in Chapter three.

Noise removal 
and 

Interpolation

Face localization 
using  

Template-Matching 

Captured 
Range 
Image

Database 

3 Points 
Labeling 

Ridge 
Image 

Hausdorff Distance 
or 

Iterative Closest Points

Matching Process 

Figure 4.1: Block diagram of our system for 3-D face recognition from range data.
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For recognition, we use two different techniques for ridge image matching: the

robust Hausdorff distance and the Iterative Closest Points (ICP). First, we apply

similarity transformation (scale, rotation and translation) to find the best pose that

matches the probe image with the gallery image. The three labeled feature points

plus an auxiliary point in the middle of the triangle formed by the three labeled points

are used to find the initial transformation that aligns the probe ridge image to the

test ridge image. The x and y values of the auxiliary point are the average value of

the x and y values of the other three points and z value comes from the range image.

After initial alignment, for matching based on robust Hausdorff distance, an iterative

algorithm is applied to find the optimum pose that results in the minimum Hausdorff

distance. For matching based on ICP, we utilized a fast variation of ICP to find the

best geometric alignment between a 3-D ridge probe image and a given 3-D ridge

gallery image and compute the Mean Square Error (MSE) distance between the ridge

points.

4.2 Ridge Image

Our goal is to extract and use the points lying on ridge lines as the feature

points. These points correspond to the extreme ridge points of the surface. In the

literature [14], the ridges are defined as the umbilic points at which the kmax attains a

local positive maximum. An umbilic point is a point on a surface where the principal

curvatures are equal and are non-zero (in the case of zero curvature, the point is called

a flat point.) Intuitively, ridges are the points that form the drainage patterns and are
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Figure 4.2: Sample of ridge image extracted for different subjects.

called valleys when the ridges are looked from the opposite side. There are different

approaches to locate the ridges [103] of a 3-D surface. One of the main approaches

applies thresholding the kmax values which is used in this work. We threshold the

kmax values to find these points. The suitable threshold is obtained based on a small

training set that is different from the images in the gallery. The suitable threshold is

selected such that the highest recognition rate for that small training set is achieved.

Then, in our experiments the suitable threshold (a fixed value) is used for creating

the ridge images for all the facial images in the databases under evaluation.

Figure 4.2 shows few examples of the ridge images obtained by thresholding the

kmax values. These are 3-D binary images that show the locations of the ridge lines

on the surface of the face. The lines on the boundary of the face are filtered out and

are not considered as feature points for recognition. To filter out the points on the

boundary of the face, we ignore the points on the boundary of the matched template

within a margin. In other words, after localizing the face by template matching, the

points that are within a certain distance (for example 15 pixels) from the boundary

of the matched face template are excluded from the process of ridge creation.
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4.2.1 Ridge Matching Using Robust Hausdorff Distance

Huttenlocher et al. originally proposed Hausdorff distance (HD) [70] as a measure

for object matching in computer vision. Unlike other shape matching methods, HD

can be calculated without knowing the exact correspondences of the points in different

sets. Modifications to the Hausdorff distance raise its capability to handle not only

noisy points, but also missing data from occlusion and outliers [71].

Given two sets of points A = {a1, a2, ..., aNA} and B = {b1, b2, ..., bNB} of size NA

and NB, respectively, the partial Hausdorff distance between the two sets of points,

A and B, is defined as:

H(A,B) = max(hK(A,B), hK(B,A)) (4.1)

where hK(A,B) and hK(B,A) represent the directed distance between the two sets

A and B. The directed distances of the partial HD are defined as:

hK(A,B) = Kth
aεAdB(a), hK(B,A) = Kth

bεBdA(b) (4.2)

where dB(a) represents the minimum distance (e.g. Euclidean distance) value at point

a to the point set B, dA(b) represents the minimum distance (e.g. Euclidean distance)

value at point b to the point set A, Kth
aεA denotes the Kth ranked value of dB(a), and

Kth
bεB denotes the Kth ranked value of dA(b).

After Huttenlocher et al.’s original work, researchers have proposed many dif-

ferent definitions and methods to realize directed HD. Dubbisson and Jain revised
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the original HD and investigated the performance of 24 different Hausdorrf distance

measures based on their behavior in the presence of noise [48]. They proposed the

modified Haussdorff distance MHD. Sim et al. applied the robust statistic techniques

of regression analysis to the computation of the HD measures for object matching, re-

sulting in two robust HD measures: M-HD based on M-estimation and least trimmed

square-HD (LTS-HD) based on LTS [152]. Based on the experimental matching per-

formance of these different HD measures, robust LTS-HD based on the least trimmed

square (LTS) measure [152] is adopted in our work. In the proposed LTS-HD [152],

the directed distance hLTS(A,B) is defined by a linear combination of order statistics:

hLTS = 1
H

∑H
i=1 dB(a)(i)

(4.3)

where H denotes h × NA ( 0 ≤ h ≤ 1) as in the partial HD case, and dB(x)(i)

represents the ith distance value in the sorted sequence dB(x)(1) ≤ dB(x)(2) ≤ · · · ≤

dB(x)(NA). The measure hLTS(A,B) is calculated by eliminating the large distance

values and only keeping the h fraction of the minimum distances. In our experiments,

the value of h that resulted in the best recognition rate was 0.8.

In our case, the calculation of LTS-HD is between the two point sets of two 3-D

binary images, one is the ridge image of the test face image and the other is the ridge

image of a gallery face image. The process of finding the best pose between a probe

ridge image and a gallery ridge image can be formulated as follows:

arg minα,β,γ,tx,ty,tz ,s hLTS(Tr(A),B) (4.4)
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(1) Set ĥLTS := +∞, and t := 0
(2) Initially align the 3-D ridge image of the test image P , i.e. translate, rotate
and scale, to the gallery image P ′, by using the three labeled feature points and
the auxiliary point. This similarity transformation is calculated by procrustes
analysis [68].
(3) Set Success := 0
(4) Place the aligned probe ridge image, T (P ), over the gallery ridge image. For
all the points in the aligned probe image, find the distance to the closest point
in the gallery image, P ′, using:

DP ′(x) = miny∈P ′ ||x − y|| (4.5)

where the ||.|| denotes the L2 norm.
(5) Sort the minimum calculated distances and then calculate the robust Haus-
dorff distance, hLTS, using Eq. 4.3.
(6) If (hLTS <= ĥLTS), set the following items:
ĥLTS := hLTS

t := t + 1
Success := 1
(7) Change the parameters i.e., translation, rotation, and scale, of the similarity
transformation based on the optimization technique. For example, direct search
in the simplex method.
(8) If Success = 1 AND (t < Max_Iterations) goto 3.
(9) Return hLTS.

Table 4.1: Iterative algorithm to find the optimum pose in Hausdorff distance match-
ing.

where Tr =

⎡
⎢⎣

sR T

0t 1

⎤
⎥⎦ is a 3-D similarity transformation, s is a scale factor,

T = [tx ty tz]
′ is the 3-D translation, and R is a 3-D rotation matrix with α, β, and γ

as roll, pith, and yaw rotation angels.

The process of finding the optimum pose between a probe ridge image and a

gallery ridge image is achieved by an iterative approach as shown in table 4.1. We

used the Matlab optimization toolbox, i.e., fminsearch Matlab function, to solve this

problem. The fminsearch uses the simplex search method of [89]. This is a direct
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search method that does not use numerical or analytic gradients. This procedure is

repeated to find the matching distance between a probe image and all the images in

the gallery. The gallery face image that results in the minimum matching distance,

is considered the best match.

4.2.2 Ridge Matching Using Iterative Closest Points

The ICP algorithm is widely used for geometric alignment of 3-D models when

an initial estimate of the relative pose is known. Many variants of ICP have been

proposed, where the differences are in the phases of selecting, matching the feature

points, and/or the minimization strategy. In this work, we use a fast ICP variant

[143]. Instead of using random sampling of the feature points as in [143], we use all

the feature points in the 3-D ridge image in the matching process. Although random

sampling of the points speeds up the matching process, it has an adverse effect on

the accuracy of the final results. The details of the ICP algorithm is presented in

Appendix B. For the initial alignment of a probe 3-D binary ridge image to the 3-D

ridge images in gallery, the three labeled feature points, i.e., the two inner corners of

the eyes and the tip of the nose and an auxiliary point are utilized. Procrustes analysis

[68] is then used to estimate the parameters of the similarity transformation (scale,

rotation, and translation.) After the initial alignment, we use the aforementioned

ICP algorithm to finely align a 3-D ridge probe image with a given 3-D ridge gallery

image and compute the Mean Square Error (MSE) between the points. The smaller

the MSE the closer the probe image to the gallery image.
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4.2.3 Computational Complexity of Ridge Matching

Compared to other 3-D matching approaches for face recognition such as [108, 145,

37], i.e., the second category in our classification, our approach is faster and requires

less computations. This reduction in computations is due to the fact that we only

deal with the ridge lines around the important facial regions on the face, i.e., the

eyes, the nose, and the mouth and ignore the surface patches on the face during the

matching process. In other words, instead of matching the entire surface of two faces

(a probe image and a gallery image), we only match the ridge lines on the face that

are detected based on the principal curvature. In this work, the number of the points

in the ridge images that represent the lines around the facial regions are 14% ± 2%

of the total number of points that cover the face. The computational complexity for

both the Hausdorff distance ICP in finding the closest point is O(PQ) with Euclidean

distance calculations as the elementary operations, where P and Q are the number

of the points in the probe and the gallery, respectively. Also, by employing the K-

D tree for searching the closest points, the computational complexity is reduced to

O(Qlog(P )). By using the ridge lines, only a fraction of the points on the surface of

the face are used for face recognition. If we assume that the ridge points are only a

fraction, i.e., ρ < 1, of the entire points on face surface (e.g., 14%± 2% in our work),

then the computational complexity reduces to ρ2O(PQ) for the regular scheme and

to ρO(Qlog(ρP )) for the accelerated scheme.
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4.3 Experiments and Results

We use the Gavab database [115] and the FRGC V2.0 [133] 3-D face databases

for our experiments. In the following subsections we review these two databases and

present our experiments and results.

4.3.1 Experiments on Gavab Database

As described in Section 3.4, the Gavab database contains range images of 61

subjects. In our experiments, we used the two neutral frontal images (the 1st and

the 2nd captures), the two neutral looking up and down images (the 5th and the

6th captures), the frontal images with smile expression (the 7th capture), the frontal

images with laughing expression (the 8th capture), and a frontal image with random

gesture (the 9th capture). The images in the 2nd capture are used as gallery images

and the images in the 1st, 3rd, 4th, and 7 − 9th captures are used as the probe images

for recognition.

Figure 4.3 shows three samples of the original images in the Gavab database,

results of noise removal and interpolation, face localization, feature points labeling,

and ridge images.

For recognition, we compared between the robust Hausdorff distance and the ICP

techniques. Table 4.2 presents the results of the experiments. For neutral frontal

images, only four subjects out of 61 subjects were not identified by both algorithms

(93.5% rank-one identification rate). In another experiment, we projected the frontal

ridge images to 2-D (ignoring the 3rd dimension) and the recognition process was
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Figure 4.3: Samples of range images in the gallery and the results of preprocessing
(a) Original range images, (b) Noise removal and interpolation, (c) Face localization
and three feature points labeling, (d) Ridge images

tested. By ignoring the 3rd dimension, we obtained rank-one identification rate of

82.0% and 86.9% using robust Hausdorff distance and ICP, respectively. This result

supports the opinion that 3-D data has more potential for face recognition than 2-D

data.

For faces with expressions, we considered only the upper part of the face, i.e., the

3-D ridge lines around the eyes and the nose, for recognition and excluded the lower

part of the face, i.e., the mouth, which is affected by the expression. We achieved

a recognition rate of 83.6% using the ICP technique and 82.0% using the robust

Hausdorff distance for the smiling expression.

Furthermore, we evaluated the performance of our approach for recognition of

facial images with pose (looking up/down) based on both the ICP and the robust

Hausdorff distance techniques. The recognition rates for the facial images with the
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Facial Expression 1st Rank Recognition (%)
Robust H.D. ICP

Neutral (3-D) 93.5 95.0
Smiling (3-D) 82.0 83.6

Laughing (3-D) 73.8 68.9
Random Gesture (3-D) 63.4 63.4

Looking Up (3-D) 75.4 88.6
Looking Down (3-D) 70.5 85.3

Table 4.2: Results of first-ranked recognition rate on the Gavab face database using
range data.

looking up (down) pose are 88.6% (85.3%) and 75.4% (70.5%) using the ICP tech-

nique and the robust Hausdorff distance, respectively. Figure 4.4 and 4.5 show the

performance of the system in term of Cumulative Match Characteristic (CMC) curve

and Receiver Operating Characteristic (ROC), respectively, for the neutral versus

neutral frontal facial images using the ICP and the robust Hausdorff distance match-

ing techniques. Our experiments show that the performance of the ICP is better than

the robust Hausdorff distance for matching (except for the laughing expression.)

We compared our algorithm with three different approaches for 3-D face recog-

nition that were presented by Moreno et al. in [118, 117, 116] based on the Gavab

dataset. In [118], they segmented the range images into isolated subregions using

the mean and the Gaussian curvatures. Then, they extracted 86 descriptors such as

the areas, the distances, the angles, and the average curvatures of the subregions.

They selected 35 best features and utilized them for face recognition based on the

minimum Euclidean distance classifier. They achieved a first ranked recognition rate

of 78.0% for neutral frontal images and 62% for images with smile expression (only

60 subjects out of 61 from the database were utilized). In [117], they selected a set of
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Figure 4.4: CMC curves for frontal neutral images in Gavab database based on ridge
images matched using the ICP and Hausdorff distance techniques.
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Figure 4.5: ROC curves for frontal neutral images in Gavab database based on ridge
images matched using the ICP and Hausdorff distance techniques.
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30 features out the 86 features and obtained recognition rates of 82.0% and 90.16%,

when the images are frontal views with neutral expression using Principal Component

Analysis (PCA) and Support Vector Machines (SVM), respectively. The recognition

rates decreased to 76.2% and 77.9%, using PCA and SVM matching schemes, respec-

tively, when using probe images with expressions and slight face rotation. In [116],

the authors represented the face using 3-D voxels. Experiments were performed on

both images with neutral expression and images with either pose variations or facial

expressions. The best recognition rate that they achieved was 90.16% for the images

with neutral expression and 77.9% for the images with pose and facial expressions. In

addition Ansari [11] applied a 3-D mesh modeling technique to represent the data in

Gavab database and used Euclidean distance and voting for comparing 3-D meshes.

As a result he achieved 90.16% Table 4.3 summaries their results as well as ours.

As the results show, our method based on ridge images and the ICP technique for

matching has a better recognition performance for images with neutral expression,

with expressions, and with pose variations.

4.3.2 Experiments on FRGC V2.0 Face Database

The FRGC V2.0 database [133] consists of 50,000 recordings divided into training

and validation partitions. The training partition is designed for training algorithms

and the validation partition is for assessing the performance of a system in a labo-

ratory setting. FRGC V2.0 consists of six experiments, where the third experiment

measures the performance of 3-D face recognition. In the third experiment, the gallery
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Approach Neutral-
Neutral%

Neutral-
Pose/Expr.
%

Technique

Moreno et al. [118] 78.0 62.0 35 features(e.g., areas of subregions)
Moreno et al. [117]

82.0 76.2 30 features and PCA
90.16 77.9 30 features and SVM

Moreno et al. [116] 90.16 77.9 3-D volxels
Ansari [11] 90.16 - 3-D Mesh
Our results 93.5 75.4/82.0 Robust Hausdorff distance

95.0 88.6/83.6 Iterative Closest Points

Table 4.3: Comparing the results by Moreno et al. [118, 117, 116] and Ansari [11] on
Gavab database and our work.

and probe data sets consist of both range and texture images for each subject. The

3-D images were acquired by a Minolta Vivid 900/910 series sensor. There are 4007

pairs of images (range and texture) for 466 subjects in the validation set. The set

contains images from 1 to 22 sessions per subject, including images with neutral ex-

pression and images with other expressions. 370 subjects have at least two images

with neutral expression and 432 subjects have at least one neutral image. Figure 4.6

shows few samples of range images along with the range data for different subjects in

the FRGC V2.0 database.

We investigated the performance of our algorithm on the neutral 3-D face images

of the FRGC V2.0 database. First, we compared the performance of the robust

Hausdorff distance and the ICP technique for matching the ridge images. There are

370 subjects that have at least two neutral images captured in different sessions. For

some of the subjects, there are more than two captured neutral images with a time

laps of one week between them. We chose the two farthest captured images for each
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Figure 4.6: Samples of facial images in the FRGC V2.0 database (texture, range, and
extracted ridge images.)
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Figure 4.7: CMC curve for 370 subjects in the FRGC V2.0 database based on ridge
images matched with the ICP and Hausdorff techniques.

subject and considered the oldest one as the gallery and the most recent captured as

the probe. The result of rank-one identification using the robust Hausdorff distance

on this selected dataset is 41.62% while the result of the ICP technique for matching

is 91.8%. This means that the ICP based matching approach not only gives the best

performance, but also it is robust with the increase in the size of the database. To

remind the readers, for a small size database such as Gavab, the performance of the

Hausdorff matching and the ICP matching were comparable (ICP was slightly better.)

This conclusion made by Yan and Bowyer in [169], where they compared ICP and

Hausdorff for ear surface matching: The ICP outperforms the Hausdorff distance for

shape matching.
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Database Ridge Points Random Points Complete Surface
Gavab (61 subjects) 95.0 67.2 95.0

FRGC V2.0 (370 subjects) 91.8 10.0 93.7

Table 4.4: Comparison between the ridge points, random points selection, and en-
tire surface based on the ICP matching technique; Results are in term of rank-one
identification rate (%).

4.3.3 Recognition Using the Ridge Points, Random set of Points,
and Entire Face Surface

In order to justify that the ridge points are the important points on the face for 3-D

face matching, we experimented with 3-D face recognition using a random selection

of points from the entire surface of the face and used the ICP method for matching.

Here the x and y coordinates are randomly selected from a uniform distribution and

the z value of each point is taken from the existing depth values of the probe and the

gallery image. The number of the random points is equal to the average number of

the ridge points in the ridge image. Then, these random points are used for matching

based on the ICP technique. In addition we have used all the points on the face

surface for matching based on the ICP technique. The results of these experiments

are summarized in table 4.4 for the data GavabDB and FRGC V2.0.

The result of our experiment shows that the ridge points are robust for 3-D face

recognition versus random point selection for matching. Specially, when the size

of the database is large enough (370 subjects in FRGC V2.0), the performance of

matching based on random points selection is very low (10% for the FRGC V2.0

dataset.) Compared to the matching scheme using all the surface points, as long as

the size of the database is small, the ridge points and the entire points on the surface
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of the face have the same performance. With the increase in the size of the database,

the recognition rate does not drop significantly (91.8% compared to 93.7% on the

FRGC2.0 dataset.) In conclusion, there is a tradeoff between the performance and

computational complexity in shape matching, our experiments show that ridge points

are very promising in surface matching. More precisely, the use of ridge points result

in negligible performance deterioration while reducing the computational complexity

of matching two orders of magnitude.

4.3.4 More Results on FRGC V2.0

In another experiment, we evaluated the capability of the ridge images for face

verification on FRGC V2.0 face database. Since ICP has a better performance than

robust HD technique for matching, only the ICP technique is used in the rest of our

experiments. Figure 4.8 shows the result of the verification experiment for the neutral

facial images (total of 2365 facial images for 432 individual subjects). The results are

presented using an ROC curve. As the ROC curve shows the performance of 3-D

face recognition based on ridge images and the ICP technique for matching is 88.5%

verification at 0.1% False Acceptance Rate (FAR). Table 4.5 breaks down the results

of the 3-D for verification at 0.1% FAR in terms of three different ROCs. In ROC

I all the data are within the semesters (Fall 2003 and Spring 2004), in ROC II the

data are within the year, and in ROC III the images are between the semesters (see

Figure 4.9). This means that the experiment that produced ROC III is the toughest

experiment in term of time laps between the images. The table represents the results
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Figure 4.8: ROC curve for the neutral faces versus neutral in FRGC2.0 database
(total of 2365 facial images for 432 individual subjects); ICP technique is used for
matching the ridge images.

Neutral 3-D (%) FRGC Baseline (%)
ROC I 90.69 90.00
ROC II 88.5 86.01
ROC III 85.75 81.58

Table 4.5: Verification rates (%) at 0.1% FAR for the ROC I, II, and III of the neutral
v.s. neutral images.

of verification for neutral v.s. neutral images in FRGC V2.0 dataset (2365 images of

432 subjects). The last column of the table shows the results of the FRGC baseline

for the three ROCs. The baseline algorithm for the 3-D scans in FRGC consists

of applying PCA on the shape and texture channels separately and then fusing the

results. Compared to the FRGC baseline, our approach has a better performance.

Furthermore, comparison between our results in the three ROCs, shows that the

performance of our system does not drop significantly under the effect of aging and

time laps between the capturing sessions. This validates our claim that the ridge lines

have great potential for face recognition under the effect of aging.
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Figure 4.9: ROC I: the data are within the semesters. ROC II: the data are within
the year. ROC III: the images are between the semesters.

4.4 Summary

In this chapter, we have presented an approach for 3-D face recognition from

frontal range data based on the ridge lines on the face surface. We have used the

principal curvature, kmax, to represent the face image as a 3-D binary image called

ridge image. The ridge image shows the locations of the ridge points around the

important facial regions on the face, i.e., the eyes, the nose, and the mouth. We

have utilized the robust Hausdorff distance and the Iterative Closest Points (ICP)

for matching the ridge image of a given probe image to the ridge images of the

facial images in the gallery. To test the performance of our approach for 3-D face

recognition, we have performed experiments on GavabDB face database (a small size

database) and Face Recognition Grand Challenge V2.0 (a large size database). The

results of the experiments have shown that the ridge lines have great capability for 3-D
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face recognition. In addition, we have found that as long as the size of the database is

small, the performance of the ICP based matching and the robust Hausdorff matching

are comparable. But, when the size of the database increases, ICP based matching

outperforms the robust Hausdorff matching technique.



Chapter 5

Multi-modal Face Recognition

In biometrics, the classical definition of “multi-modal” refers to the use of more than

one modality or multiple sensors in order to increase the accuracy and robustness

of the biometric recognition system. In this chapter, our goal is to develop a multi-

modal algorithm for face recognition. The two modalities are the 3-D shape and the

2-D texture of the face.

When the 2-D and 3-D face data are registered and thus correspondences can be

established between the points in 2-D and 3-D data, we develop a multi-modal scheme

for face recognition based on Attributed Relational Graphs (ARG). In this technique,

the shape and texture are integrated in one graph model. When the 2-D and 3-D face

data are not registered, e.g., due to time lapse between the data acquisition processes

such as in case of FRGC data, we model the 2-D and 3-D face data separately; ridge

images for shape and ARG model for texture. We then fuse the match results at

the score level. In other words, the process of face recognition in each modality is

accomplished separately.

The ARG is a geometric graph with nodes and edges, where the nodes represent

the facial landmarks on the face and the edges connect the nodes based on the Delau-

101
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nay triangulation. At each node of the graph, a set of attributes are extracted from

both the shape and the texture based upon log-Gabor filters. Besides, we define a

set of mutual relations between the sides of the triangles in the graph. The results

of face recognition using the 2-D attributes, 3-D attributes, and the mutual relations

are fused together in the score level using various techniques such as the weighted

sum rule and the Dempster-Shafer (DS) theory of evidence.

5.1 A Graph Approach For 2-D and 3-D Face
Recognition

Figure 5.1 shows the general block diagram of our system for 2-D and 3-D face

recognition based on the ARG model. We assume that the shape and texture images

for each individual subject in the database are registered. This means that if we

extract the facial landmarks from 2-D images, they match also to the facial landmarks

on the 3-D data. The ARG model represents both the 2-D and the 3-D information

within a geometric graph model.

Based on the availability of data from each modality, i.e., 2-D and 3-D, the recog-

nition based on only one modality or fusing data from the two modalities can be

handled easily. More importantly, the proposed 3-D ARG model provide a unified

framework to approach various face recognition such as 2-D versus 3-D, 3-D versus

3-D, and multi-modal. Furthermore, this multi-modal approach has the potential of

minimizing the problems of pose variations. Specifically, the pose variation problems

can be handled effectively by 3-D information.
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Figure 5.1: General block diagram of our system for face modeling and recognition
based on Attributed Relational Graph.
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5.2 Graph Modeling

Elastic Bunch Graph Matching (EBGM) has shown to be successful in representing

complex objects [163, 29]. Wiskott et al. [163] modeled 2-D facial images, with pose

variations and intensity changes, for recognition using the EBGM technique. They

represented a facial image by a labeled graph called bunch graph; edges are labeled

with distance information and nodes are labeled with Gabor filter responses, called

jets. In addition, bunch graphs are treated as combinatorial entities in which, for each

fiducial point, a set of jets from different sample faces are combined, thus creating a

highly adaptable model. This model is matched to new facial images to reliably find

the fiducial points in the image.

There are pros and cons with the EBGM technique. This graph representation

has shown to be successful in face recognition with good performance rate. But,

it is computationally expensive in extracting the facial features of a new given face

image. The edge representation of the graph in EBGM (i.e., which is simply the

distance between the nodes) is considered only in face detection process. Further-

more, the constructed graph is ad-hoc and requires manual intervention to establish

correspondences between the nodes.

In mathematics, a geometric graph is one where the vertices or edges are associated

with geometric objects or configurations [17, 136]. A geometric graph, where the

vertices are embedded as points in the Euclidean plane and the edges are embedded

as non-crossing line segments, is called a planar straight line graph. A triangulation

is a planar straight line graph to which no more edges can be added. A special case
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is the Delaunay triangulation, a graph defined from a set of points, P , in the plane

by defining triangles such that no point in P is inside the circumscribed circle of any

triangle. The Delaunay triangulation has some useful properties:

• It maximize the minimum angle of all the angles of the triangles in the trian-

gulation.

• The triangulations process is invariant under similarity transformation.

• Local perturbing in the node positions does not affect the entire configuration

of the graph (This property is useful when representing non-rigid objects like

the face by a graph model.)

In particular, the first property guarantees that the triangles are fat triangles with

maximum area. The second property guarantees pose variation would not change the

constructed graph model. Compared to the EBGM, the ARG model has some advan-

tages. First, the edges of the graph are defined based on the Delaunay triangulation.

Second, a set of features are extracted and represented using the edge information.

Third, unlike the EBGM, we use an enhanced version of Active Shape Model tech-

nique to find the facial landmarks in the face, which are used as the nodes of the graph.

In the following sections, we present in detail our algorithm for face recognition based

on the ARG model.

5.2.1 Building the Attributed Graph

The ARG plays an important role in characterizing the content of an object [129].

It consists of a set of nodes, edges, and mutual relations between them. Let us denote



106

the ARG by G = (V , E ,R), where V = {v1, v2, . . . , vN} is the set of nodes of the

graph and E = {e1, e2, . . . , eN} is the set of edges. In this dissertation, nodes of the

graph represent the extracted facial features on the face, and R is a set of mutual

relations between the three edges of each triangle in the Delaunay triangulation.

Mathematically, we write R = {rijk|ei, ej, ek ∈ Dt}, where Dt is a set of triangles in

Delaunay triangulation. Recall that a Delaunay triangulation, Dt(p), for a set P of

points is one where no point in P is inside the circumcircle of any triangle in Dt(P ).

Geometric graphs that are created by Delaunay triangulation are invariant to

scale, in-plane rotation, and translation. In other words, if an object contains a set of

vertices and a set of edges are defined between the vertices (i.e., edges of the graph)

using Delaunay triangulation, then under the similarity transformation the set of

edges that compose the graph will be the same.

Unlike the work presented by Park et al. [129], where the nodes of the ARG do not

have labels and they rely on stochastic analysis to find the feature correspondences,

the nodes of the ARGs have direct one-to-one correspondences in our study.

Shape and Texture Attributes

Gabor filters represent a popular choice for obtaining localized frequency infor-

mation. Gabor filters have similar shapes as the receptive fields of simple cells in the

visual cortex of vertebrate animals [137, 77, 46] and can be statistically derived from

the images of natural scenes, at least qualitatively [123] [20].

Gabor filters have two main limitations. They are not optimal if one is seeking

broad spectral information with maximal spatial localization and the maximum band-
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width is limited to approximately one octave and Gabor filters. An alternative to the

Gabor function is the Log-Gabor function proposed by Field [52]. Log-Gabor filters

can be constructed with arbitrary bandwidth and the bandwidth can be optimized to

produce a filter with minimal spatial extent. It is worth noting that a Log-Gabor fil-

ter with a three-octave bandwidth has the same spatial width as a one-octave Gabor

filter, demonstrating the ability of the filter to capture broad spectral information

with a compact spatial filter. In order to cover the frequency spectrum effectively,

a range of both scales and orientations must be considered. The overall aim is to

provide an even coverage of the frequency components of interest while maintaining a

minimum overlap between filters so as to achieve a measure of independence between

the extracted coefficients. The Filter is defined by

G(w) = e
− (log(w/w0))2

2∗(log(σ/w0))2 (5.1)

where w0 is the filter’s center frequency and σ is a scaling factor of the bandwidth.

To obtain constant shape ratio filters, the term σ/w0 must be held constant for

varying w0. For example choosing σ/w0 = .74 will result in a filter bandwidth of

approximately one octave, .55 corresponds to two octaves, and .41 will produce three

octaves. Figure 5.2 shows a set of 1-D log-Gabor filters seen in logarithmic and linear

frequency scales.

There are two important characteristics to note. First, log-Gabor functions, by

definition, always have no DC component, and secondly, the transfer function of the

log-Gabor function has an extended tail at the high frequency end. Field’s studies of
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Figure 5.2: A set of 1-D log-Gabor filters seen in logarithmic and linear frequency
scales.

the statistics of natural images indicate that natural images have amplitude spectra

that fall off at approximately 1/w. To encode images having such spectral charac-

teristics one should use filters with similar spectra. Field suggests that log-Gabor

functions, having extended tails, should be able to encode natural images more ef-

ficiently than, say, ordinary Gabor functions, which would over-represent the low

frequency components and under-represent the high frequency components in any

encoding. Another point in support of the log-Gabor function is that it is consistent

with the measurements on mammalian visual systems where the cell responses are

symmetric on the log frequency scale.

Unfortunately, due to the singularity of the log function at the origin, one cannot

construct an analytic expression for the shape of the log-Gabor function in the spatial

domain. Instead, one designs the filters in the frequency domain and then perform

a numerical inverse Fourier Transform. Their general appearance is similar to the
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Figure 5.3: Two pairs of log-Gabor wavelets, odd-symmetric and even-symmetric (all
tuned to the same frequency, w0 = 1, but having bandwidths of 1 and 3 octaves
respectively.)

Gabor functions though their shape becomes much ‘sharper’ as the bandwidth is

increased. The shapes of log-Gabor and Gabor functions are almost identical for

bandwidths less than one octave. Figure 5.3 shows two log-Gabor wavelets of one

and two octaves bandwidths all tuned to the same center frequency.

The 2-D log-Gabor filters are constructed in terms of two components, the radial

and angular components control the frequency band and orientation that the filter

responds to, respectively. The two components are multiplied together to construct

the overall filter. The radial component is defined in Equation 5.1. The angular

component controlling the orientation selectivity of the filter is simply a Gaussian

with respect to the polar angle around the center frequency. Figure 5.4 shows a

sample angular component and Figure 5.5 shows an example of the even-symmetric

component and odd-symmetric component of 2-D log-Gabor filters in spatial domain.
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In our experiments, we use log-Gabor filters with 12 orientations and four scales. We

set σ/w0 = 0.41, which results in filters with three octaves bandwidth.

Mutual Relation

For the relation between the nodes, we define a set of mutual relations between

every three nodes that are described by the Delaunay triangulation. We define the

mutual relations based on the angle between the sides of the triangle and the ratio

of the side lengths. These relations are invariant to translations, rotations, and scale

changes [101], and have been shown to be powerful for face recognition by Park et

al. [129]. Specifically, referring to Figure 5.6, the mutual relations used in this work

are defined to be:

rijk(1) = α1

rijk(2) = α2

rijk(3) = α3)

rijk(4) = (L1 + L2)/(L1 + L2 + L3) (5.2)
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Figure 5.6: The mutual relation between the nodes.

Since the order of the nodes is important in calculating the mutual relations, a

predefined and fixed order of the nodes is used during the computation of the mutual

relations between the nodes.

5.2.2 Feature Selection

The number of the features (attributes) play an important role in the performance

of the graph representation for face modeling and recognition. In this work, we

initially extract 57 landmark points, (x, y) values using the improved ASM technique

presented in chapter three. We then use a standard template comprising 109 vertices

to include more landmark points at certain positions on the face, such as the cheek and

the points on the ridge of the nose. Extracting these points using the ASM technique

is difficult because of lack of texture in these regions. Since the graph is a 3-D graph,

the z values of the locations of the nodes are picked up from the 3-D shape data.

Figure 5.7 shows a sample face in the gallery along with the points for building the

ARG model. We designed an experiment based on the Sequential Floating Forward

Selection (SFFS) [139] that searches through the log-Gabor attributes, 109 vertices

× 4 scales × 12 orientations = 5232 attributes for each modality, to identifying a set
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Figure 5.7: Extracted landmark points. 57 landmark points (white color) are ex-
tracted by the ASM method and the 52 landmark points (blue color) are added by
aligning a standard template to the facial points.

of features which results in the highest performance of the system. The details of the

SFFS algorithm are given in Appendix C.

Figure 5.9 shows the results of the feature selection based on SFFS algorithm.

Based on this analysis, 316 and 999 Gabor attributes are selected for 2-D and 3-D

attributes, respectively. In addition, every node of the graph has at least one feature

which is selected for face recognition. Figure 5.8 shows how many 2-D and 3-D

attributes are selected from each node of the graph.
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Figure 5.8: Maps that show number of the selected (a) 2-D and (a) 3-D attributes at
each node of the ARG model.
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Figure 5.9: Results of feature selection for 3-D and 2-D attributes in the ARG model.

5.3 Recognition; Matching the ARG Models

Assume that the ARG models of two faces, G and Ǵ, are given. The similarity

between these two ARGs is defined based on the similarity between the assigned 2-D

and 3-D attributes, and the similarity (dissimilarity) between the mutual relations.

The similarity between two given set of attributes (either 2-D or 3-D) for the

graph G and Ǵ is defined as:

Sv(V, V́) =

∑N
j=1 aj áj√∑N

j=1 a2
j

∑N
j=1 á2

j

(5.3)

where aj is the magnitude of the set of complex coefficients of the log-Gabor attributes,

obtained at the jth node of the graph.
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Euclidean distance is used to measure the dissimilarity DR(.) between the two

sets of the mutual relation vectors R and Ŕ. Then, the dissimilarity is converted to

similarity by subtracting it from one:

SR = 1 − DR (5.4)

5.3.1 Pose Normalization

Prior to building the attributed relational graph, we normalize the orientation

of each deformed 3-D model in the database to be the same as a reference 3-D face

model. Figure 5.10 shows our reference 3-D model with zero degree in pitch, roll, and

yaw angles. We use the extracted facial landmarks by the ASM technique to estimate

the rigid facial pose. Any change in the pitch, yaw, and roll angles between the

captured 3-D model and the reference model can be accurately computed and used to

bring the deformed model’s pose to that of the reference model. Scale normalization

in 3-D is related to the distance of the object from the camera. The farther the

object is, the smaller it is in the captured image. We want to bring all the models to

comparable distance from the capturing camera, hence maintaining comparable scales

in the images. Therefore, we translate the pose normalized 3-D models in depth, such

that their depth centers would coincides with the mean depth (obtained from all the

deformed 3-D models in the database.) This insures that all 2-D facial images are

at comparable scales when projecting from the 3-D model. Figure 5.11 shows the

textured 3-D model of a subject in the UM database before and after normalization.
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Figure 5.10: Neutral 3-D model used to estimate and normalize the pose of a deformed
3-D model. The refernce model is at angles (pitch, yaw, roll) = (0,0,0).

5.4 Fusing the Information: the 2-D and 3-D
Attributes and the Mutual Relation

In a multi-modal biometric system, fusion is accomplished by utilizing the infor-

mation available from different modalities. Figure 5.12 shows various types of fusion

that can be used in the context of a biometric system. They can be categorized as

1) fusion prior to matching and 2) fusion after matching [140]. The fusion prior to

matching integrates information form multiple sources and can take place either at

the sensor level or at the feature level. In the sensor level fusion, the raw data from

the sensors are combined while in the feature level fusion, different extracted sets of

features from multiple sources are combined.

Schemes for integrating information after the classification/matching stage can be

divided into four categories: dynamic classifier selection, fusion at the decision level,
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Figure 5.11: 3-D textured model (a) before normalization and (b) after normalization.

Figure 5.12: Fusion can be accomplished at various levels in a biometric system [140].
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fusion at the rank level and fusion at the match score level. A dynamic classifier

selection scheme chooses the classifier which is most likely to give the correct decision

for the specific input pattern. Integration of information at the abstract or decision

level can take place when each biometric system independently makes a decision about

the identity of the user (in an identification system) or determines if the claimed

identity is true or not (in a verification system). When each biometric system or

modality generates a match score indicating the proximity of the input data to a

template, integration can be done at the match score level. This is also known as

fusion at the measurement level or confidence level. Next to the feature vectors,

the matching scores produced by biometric matchers contain the richest information

about the input pattern. Also, it is relatively easy to access and combine the scores

generated by the different matchers. Consequently, integration of information at the

matching score level is the most common approach in multi-biometric systems. When

the output of each biometric system is a subset of possible matches (i.e., identities)

sorted in decreasing order of confidence, the fusion can be done at the rank level.

5.4.1 Score Level Fusion

In this dissertation, our aim is to combine the two modalities, 2-D and 3-D at

the score level. At the score level, we have the flexibility to fuse the match scores

from various modalities upon their availability. We use two different approaches for

score fusion. The first technique is based on the Dempster-Shafer theory of evidence

and the second approach is the weighted sum. Both approaches are in the category
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of transform-based techniques (i.e., based on the classification presented in [140].) In

practical multi-biometric systems, a common fusion method is to directly combine the

match scores provided by different matchers without converting them into posteriori

probabilities. However, the combination of the match scores is meaningful only when

the scores of the individual matchers are comparable. Hence, a score normalization

is applied to transform the match scores obtained from the different matchers into

a common domain. This refers to changing the locations and scale parameters of

the match score distributions at the outputs of the individual matchers. Afterwards,

the normalized scores of different matchers can be fused using different rules such as

Dempster-Shafer theory of evidence, weighted sum of scores, maximum scores, and

minimum scores.

Fusion Techniques

One of the well known fusion techniques used in biometrics is the weighted sum

technique:

Sf =
R∑

j=1

wj ∗ sn
j (5.5)

where sj and wj are the score and weight of the jth modality, respectively, with the

condition
∑R

j=1 wj = 1. In our case, the weights wi, i = 1, 2, 3 are for the 3-D and

2-D, and mutual relations, respectively.

The weights can be assigned to each matcher by exhaustive search or based on their

individual performance [140]. The exhaustive search has shown to be not robust as

the second approach where the weights are derived based on individual performance
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of each matcher. In this scenario, we assign for each matcher a weight, which is

a function of the matcher’s performance derived using a set of training data. The

weights are calculated as follows:

wi =
1 − (FARi + FRRi)

3 − ∑3
j=1(FARj + FRRj)

(5.6)

where wi is the weight for matcher i, FARi and FRRi are the false acceptance and

the false rejection rates for matcher i, respectively, and i = 1, 2, 3. The values for

FARi, and FRRi are threshold dependent. Thus, when the threshold is changed, the

weights assigned to the individual matcher will be suitably modified.

Another fusion algorithm that is applied to combine the results of the 2-D and

3-D face recognition is based on Dempster-Shafer theory [150]. A brief overview of

DS theory is given in Appendix E.

In a verification problem (in contrast to identification), we have two possible focal

elements: ’accept’ and ’reject’. Therefore, the match score calculated by the face

recognition system in the verification mode after normalization is considered as the

mass assignment in DS theory. Let s1 and s2 be the mass assignment computed from

two face recognition algorithms. Then the final result based on the Dempster rule of

combination is obtained as:

Sf =
s1 s2

1 + 2 s1 s2 − s1 − s2

(5.7)

The above combination rule can be generalized by iteration to fuse more than two

match scores (see Appendix D.)
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Although the above technique works for data fusion, it is more realistic to add

uncertainty while making the decision. To use a biometric system in the verification

mode, usually we have a certain threshold (i.e., the operating point) and if the match

score is above that threshold, we accept the proposition otherwise we reject the propo-

sition. However, when the match scores are close to the operating point threshold

(e.g., within ±5% from the threshold) the decision might not be accurate. Therefore,

for match scores close to the operating point of the system, we impose uncertainty to

our decision (see Figure 5.13). In this case, we define two thresholds, Tlow and Thigh

around the operating point. If the match score is below the Tlow, then we reject the

proposition that the two given faces belong to the same identity. If the match score is

above the Thight, then when we accept the proposition that the two given faces belong

to the same identity. Otherwise, the match score is in the uncertainty margin and we

assign a value to the mass m(′accept′,′ reject′) based on the non-linear functions in

Figure 5.13. The amount of the uncertainty and hence the new mass assignments in

the BoE are calculated as follows.

m(′accept′,′ reject′) = a . |s − Topt| + b (5.8)

where a and b are the slope and y-intercept of the uncertainty function, respectively

in Figure 5.13. After assigning this uncertainty, we normalize the mass assignment

in the BoEs to ensure that the condition
∑

A∈2Θ m(A) = 1 is achieved.
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Figure 5.13: Dual threshold scenarios and uncertainty in a verification mode.

5.5 Experiments and Results

In this Section, we present the experimental results of our methods using the

University of Miami and the FRGC2.0 face databases.

5.5.1 Experiments on the University of Miami Face Database

The University of Miami (UM) face database consisting of 2-D and dense 3-D facial

images of 107 subjects (with neutral expression) were captured during academic years

2005-2007. A stereo-based system was designed and developed for 3-D face modeling

(3-D dense reconstruction). At least two sets of images with the 3-D models exist in

the UM database. The first set is used as the gallery and the second set is used as
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the probe. For the details of this database, see [11]. Figure 5.14 shows few subjects

in the UM database including the 2-D images and the 3-D textured models.

Results

We tested the performance of our system (ARG modeling) using the UM database.

The results of our experiments are reported in the form of the Cumulative Match

Characteristic (CMC) and Receiver Operating Characteristic curves (ROC) for iden-

tification and verification, respectively. Figure 5.15 shows the CMC curves for the

2-D and 3-D modalities along with the two fusion techniques based on the weighted

sum and DS theory. The weighting factors in the weighted sum technique are 0.35,

0.34, and 0.31 for the 2-D, 3-D, mutual relations, respectively calculated based on

Equation 5.6. The FAR and FRR in Equation 5.6 are selected at the Equal Error

Rate (EER) operating point. As Figure shows, the performance of the system is

boosted significantly by fusing the mutual relations with the 2-D and 3-D attributes.

In addition, the rank-one identification based on the DS combination rule and the

weighted sum of scores for fusion have the same performance, 99%. However, for the

verification experiments, the DS rule of combination outperforms the weighted sum

rule (90% verification at 0.1% FAR for the DS rule compared to 81% verification at

0.1% FAR for the weighted sum.) Figure 5.16 compares the results of rank-one iden-

tification with those in [11] which is based on 3-D mesh modeling. Our approach has

99% rank-one identification rate, compared to their best performance rate of 96.4%.

In addition, we applied our technique for ridge images to the UM face database (see

Chapter 4). Figure 5.16 shows the results of rank-one identification.
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(a)       (b) 

Figure 5.14: Examples of subjects in the UM database: (a) 2-D images and (b) 3-D
textured models.
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Figure 5.15: Cumulative Match Characteristic curves using the ARG modeling and
two different fusion techniques on the UM database.

94.39

85

95.2 95.2

99 99

96.4
94.39

97.2

91.49

75

80

85

90

95

100

3D
 (A

RG)

2D
 (A

RG)

3D
 M

ut
ua

l-R
ela

tio
n

2D
 +

 3
D (W

-S
um)

2D
 +

 3
D (D

S ru
le)

2D
 +

 3
D +

 M
R

(W
-S

um)

2D
 +

 3
D +

 M
R (D

S ru
le)

Nass
er

's 
W

or
k

3D
Ridg

es

2D
+3

D R
idg

es
 (D

S  r
ule

)

R
an

k-
o

n
e 

id
en

ti
fi

ca
ti

o
n

 (
%

)

Figure 5.16: Results of rank-one identification using the ARG modeling and two
different fusion techniques on the UM database and the results of other matching
techniques applied to the UM database.
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Figure 5.17: Receiver Operating Characteristic curves (ROC) using the ARG model-
ing and two different fusion techniques on the UM database.

Figure 5.17 shows the results of verification experiments on the UM database.

The best performance of our system, 91% at 0.1% False Acceptance Rate (FAR), is

achieved by the fusion of different modalities.

In another experiment, we test the improvement in the performance of our system

by adding uncertainty as described by Equation 5.8. At the operating point of our

system (e.g., the Equal Error Rate point) we define the uncertainty region as 5%

above and below this threshold. As a result of adding this uncertainty and applying

the Dempster’s combination rule to fuse the three match scores obtained from match-

ing the 2-D and 3-D attributes and the mutual relations, the Equal Error rate was

improved by 1.5%. More specifically as shown in Figure 5.18, the Equal Error rate

was 3.5% without uncertainty and decreased to 2.0% by imposing the uncertainty.
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Figure 5.18: Imposing uncertainty and then applying DS rule of combination to fuse
the three match scores resulted from ARG modeling (the UM face database), the
Equal Error Rate was improved by 1.5%.

5.5.2 Accuracy Analysis of the ARG Model For Face
Recognition

We recall that the nodes of the constructed graph in our system rely on the locations

of the feature points and their correspondences. Thus any error in the extraction of

landmark points, either by the ASM technique, pose estimation or alignment deteri-

orate the accuracy of the node location/representation, and consequently the system

performance. We have designed an experiment to analyze the effect of errors in the

location of the nodes on the system performance. We add Gaussian noise, N(0, σ2),

to the x and y coordinates of each node of the graph, which are extracted by the

improved ASM technique. We then measure the performance of the system for face

recognition based on the constructed ARG models from noisy data. The results of

rank-one identification reported for various values of σ are in Figure 5.19. As this

Figure shows, the 2-D attributes are more robust than the 3-D attributes and the
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Figure 5.19: Analyzing the robustness of the ARG model in face recognition with
respect to added noise in location of the nodes. Results of rank-one identification
are represented for 2-D attributes, 3-D attributes, mutual relations, and multi-modal
fusion with respect to various values of σ of the Gaussian noise.

mutual relations under the effect of noise and the performance of the face recognition

does not drop with even σ = 10 pixels. For the 3-D features, the performance drops

where added noise has a σ greater than three pixels. We also learn from this analysis

that the mutual relation features are very sensitive to the noise and the recognition

rate drops rapidly with the increase in σ.

5.5.3 Experiments on the FRGC V2.0 Face Database

We next analyze the results for the FRGC V2.0 face database (For a description of

the FRGC V2.0 face database, see Section 4.3.2). Because of the time lapse between
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acquisitions of the 3-D and 2-D data for each subjects, the 2-D and 3-D images

in this database are poorly registered. It is expected that, the extracted locations

of the landmark points in the 2-D images do not correspond to the locations of the

landmark points in 3-D range images. Therefore, instead of modeling the 3-D (shape)

data based on the ARG technique, we use the technique in chapter four for 3-D face

matching based on the ridge images. For the 2-D (texture) data, we model the face

based on 2-D ARG model (utilizing 2-D attributes and mutual relations.) Then, the

results are fused at the score level to obtain a multi-modal system.

As stated, the matching scores for the 3-D ridge images are not in the same

domain as the other matching scores, and thus need to be normalized. After score

normalization, the matching scores are fused based on the DS combination rule and

the weighted sum rule (see Section 5.4.1).

Score Normalization

Two normalization techniques of the matching score, known to have high efficiency

and robustness, are used in this work: the Z-Score and the Min-Max normalization

functions [140]. The z-score normalization is most commonly used, and is defined as

sn
j =

sj−μj

σj

(5.9)

where sj and sn
j are the scores before and after normalization, respectively. The

arithmetic mean μj and the standard deviation σj for the jth matcher are estimated

using a training set from the UM database.
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The Min-Max normalization is defined as

sn
j =

sj−min(sj)

max(sj)−min(sj)
(5.10)

For our system, the best performance is achieved by using the Min − Max normal-

ization technique.

Results

Figure 5.20.a shows the identification performance in term of CMC curves on

the FRGC V2.0 database (the details of the CMC curves are given in 5.20.b.) The

results are for the 3-D face recognition based on ridges images, 2-D ARG modeling,

and fusion using the DS combination rule and weighted sum rule. The results for

Rank-one identification are illustrated in Figure 5.21.

Figure 5.22 shows the results of the verification experiment for the neutral facial

images versus the neutral facial images. These are presented as Receiver Operat-

ing Curves (ROC) for the two modalities along with the fusion of the 2-D and 3-D

modalities by the weighted sum rule and the DS combination rule. As the ROC curve

shows, the 3-D modality has better performance than the 2-D modality (86.5% v.s.

74.50% verification at 0.1% FAR). In terms of fusion (3-D, 2-D, and Mutual relations),

the weighted sum rule has a comparable performance with the DS combination rule

(verification rates of 92.5% and 92.05% at 0.1% FAR, respectively.)

The result of face recognition using the mutual relations for the FRGC V2.0 is

not impressive because the 2-D (texture) images in the FRGC V2.0 (the dataset in
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Figure 5.20: CMC curves. (a)for 2-D, 3-D, Mutual relations features, and fusion
using DS rule and weighted sum rule for the neutral images versus neutral in FRGC
V2.0 data-set; (b) the details in (a).
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Figure 5.21: Results of rank-one identification using the 2-D ARG modeling, 3-D
ridge images, and two different fusion techniques on the FRGC database.



133

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

FAR

C
or

re
ct

 V
er

rif
ic

at
io

n 
%

2D (ARG)
3D (Ridge)
Mutual Relations
2D+3D+M.R. (DS Rule)
2D+3D+M.R. (W−sum Rule)

Figure 5.22: ROC curves for 2-D, 3-D, Mutual relations features, and fusion using
DS rule and weighted sum rule for the neutral images versus neutral in FRGC V2.0
data-set.

experiment three of the FRGC contest contains both 2-D and 3-D data) have poor

quality due to bad lighting condition, facial hair, closed eyes, and the occlusion of the

facial regions in these images (Figure 5.23 shows few samples of the 2-D images with

poor quality in the FRGC V2.0 database.) Therefore, locations of the extracted facial

features from these poor quality images are not accurate. We discussed in Section

5.5.2 that the ARG model and in particular the mutual relations are sensitive to the

errors in the facial features locations and thus the performance of face recognition

degrades significantly.

5.6 Summary

We have developed a technique called Attributed Relational Graph (ARG) for the

representation of the 2-D (texture) and 3-D (shape) modalities of the face. By using
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   (a)       (b) 

   (c)       (d) 

   (e)        (f) 

Figure 5.23: Samples of facial images in FRGC V2.0 database show various factors for
poor quality of the dataset: (a) closed eyes, (b) facial hair, (c) poor illumination, (d)
occluded facial regions (e) closed eyes and poor illumination and occlusion of facial
regions, (f) occluded facial regions.
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this technique, the shape and texture are integrated in one graph model. Here, a face is

modeled by a 3-D geometric graph with nodes and edges, where the nodes of the graph

are the locations of the facial landmarks on the face. A set of attributes are extracted

at the location of each facial landmark of the face image from both 2-D (texture)

and 3-D (shape) images and assigned to the nodes of the graph. These attributes

are extracted using a set of log-Gabor filters. In addition to these attributes, a set

of geometric features, i.e., mutual relations are extracted based upon the relations

between the three sides of the triangles constructed by the Delaunay triangulation.

These mutual relations are invariant under similarity transformation. Therefore, each

3-D ARG model of a face contains three sets of features: 2-D and 3-D attributes at

each node and mutual relations. In order to have a multi-modal system, we have

fused the matching results of the attributes and mutual relations at the score level.

We have utilized the DS theory of evidence and weight sum rule for fusion. We have

tested the performance of the technique using the University of Miami face database.

Our experiments show excellent results for face recognition based on the ARG model.

For the case where the 2-D (texture) and 3-D (shape) facial images are not registered,

we have modeled the 3-D face data using the ridge images (described in Chapter 4).

We have fused the results of the 2-D face recognition based on ARG models and 3-D

face recognition based on the ridge images. Our experiments show that the two fusion

techniques (weighted sum rule and DS combination rule) utilized in this study have

almost the same performance.



Chapter 6

Conclusion and Future Research
Direction

6.1 Summary and Contributions

In this dissertation, we have introduced a novel multi-modal scheme for face

modeling and recognition from 2-D texture and 3-D shape images. Recently, the

scanning or construction of a 3-D dense model of the face has become easy with the

advancements in computer vision and image acquisition technologies. One of the main

approaches to improve the face recognition technology is to use 3-D data. By using

the 3-D data, some of the known problems that affect the performance of 2-d face

recognition such as pose variations and illumination variations can be readily handled.

On the other hand, 2-D face recognition algorithms have been investigated for few

decades and is now in a mature stage. However, the 2-D and the 3-D data have their

own limitations and we believe that a multi-modal scheme can provide a very robust

solution for the problem of face recognition. In this regard, we have developed a multi-

modal system and addressed various issues in building such a system. In particular,

we have studied and provided solutions for the following problems: 2-D and 3-D
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facial landmark extraction, 3-D facial shape matching, 2-D and 3-D face modeling

and recognition, fusion at the score level and experiments on public databases (FRGC

V2.0, 3-D Gavab, and UM face databases.)

We have developed novel techniques for 2-D and 3-D face recognition. For 3-D

face recognition, we have developed a novel method based on ridge images extracted

from the facial range images. For multi-modal face recognition, we have introduced

a technique based on Attributed Relation Graph (ARG) that represent both the

3-D (shape) and 2-D (texture) data in a single model. The model is a geometric

graph model with nodes and vertices, where the nodes of the graph represent a set of

landmark points (extracted by an improved active shape model technique developed

in Chapter 3 and Appendix A) and the edges are defined by Delaunay triangulation.

A set of attributes are extracted from the shape and texture data using the log-Gabor

filters and assigned to each node of the graph. In addition, a set of geometric features

are extracted from the edges of the graph (mutual relations). The graph models

(i.e., the ARGs) are matched by calculating the similarity between the 2-D and 3-D

attributes as well as the mutual relations. The matching scores are fused using two

different techniques including the Dempster-Shafer theory of evidence and a weighted

sum rule. The ARG model has the capability of integrating both the 2-D and 3-D

data in a single model. However, in case where the 2-D and 3-D are not registered,

we cannot integrate the 3-D information in the same graph model. Therefore, we

have used the algorithm based on ridge images (Chapter 4) to address the 3-D face

recognition. We then fuse the results of 2-D face recognition based on ARGs and

the results of 3-D face recognition based on ridge images. We summarize the major
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contributions of this research as follows:

• We have improved the Active Shape Model approach for 2-D facial features

extraction from color images. We have presented solutions to solve some of the

limitations of the Active Shape Model approach.

• We have developed a method for 3-D facial features extraction from range data

(the inner corners of the eyes and tip of the nose.) Compared to 2-D facial

feature extraction, extracting facial features from 3-D range images is more

difficult due to the lack of texture. We have used the extracted facial features

for the initial alignment of the ridge images during the matching process.

• We have developed a technique for 3-D face modeling and recognition by uti-

lizing the ridge images. The ridge lines on the range image data carry the most

important distinguishing information of the 3-D face and have high potential for

face recognition. For matching the ridge images of two faces (probe and gallery),

the Hausdorff and the Iterative Closest Points methods have been utilized. By

using the ridge images for shape matching, the computational complexity of

3-D face matching have been reduced by two orders of magnitude.

• We have developed a technique for multi-modal (3-D and 2-D) face recogni-

tion based on the attributed relational graphs (ARG). The nodes of the graph

represent the locations of the facial landmark points. The edges of the graph

are defined based on Delaunay triangulations. A set of attributes are extracted

from the shape and the texture of the face using log-Gabor filters and are as-

signed to each node of the graph. Also, a set of mutual relations that define
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the geometric relations between the edges of the graph are extracted and used

in the representation to improve the performance rate of the face recognition.

The attributes and the mutual relations are fused at the score level.

• We have developed a fusion technique based on the Dempster-Shafer theory of

evidence for fusion at the score level.

• We have evaluated the performance of our developed algorithms and techniques

for multi-modal face recognition using various databases such the FRGC v2.0

face database, the 3-D Gavab face database, and the University of Miami (UM)

face database. As we have shown through the dissertation, we have achieved

promising results using the developed techniques.

6.2 Future Work

Face recognition is an important area of research that is continuously progressing.

Possible future developments, expansions, and improvements to our contributions are

as follows:

• Improving the extracting the 3-D facial features (the two inner corners of the

eyes and the tip of the nose.) Statistical modeling approaches have shown to

be successful in extracting facial features from 2-D textured images. Applying

a statistical approach such as the Active Shape Model to select the best facial

features from candidate points extracted by thresholding the Gaussian curvature

is a promising approach.
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• Expanding the current technique for 3-D facial landmark extraction or devel-

oping a new technique to extract more than three facial landmarks from the

3-D data (either range images or stereo-based reconstructed data.) Extracting

3-D facial landmarks is one of the most challenging problems that requires more

attention and research.

• Improving the Active Shape Model technique for facial landmark extraction

by utilizing nonlinear models such as Kernel PCA or manifold learning. This

makes the process of landmark points extraction under pose variations in 2-D

facial images more robust.

• Extending the ARG approach to recognize faces with expressions. In order to

handle facial expressions, a good approach can be sub-graph matching. In fact,

instead of using the whole graph for matching, the ARG graph can be matched

partially (e.g., the upper part of the face including the eyes, the eyebrows and

the nose).

• Improving the technique for extracting ridge images for recognition. For ex-

ample, by using preprocessing techniques, ridge images can be refined and as a

result a set of smooth ridges could be extracted and used for 3-D face matching.

• Besides the extracted ridge points in this dissertation, a set of ravine points can

be extracted using the kmin principal curvature. It will be interesting to use

these points either alone or with the ridge points (extracted by thresholding the

kmax principal curvature) for 3-D face recognition.



Appendix A

Enhancement of Active Shape Model
Using Color Information

The ASM approach represents a target structure by a parameterized statistical model.

By choosing the model parameters, different variations of a target shape can be

obtained. In this subsection, first we review the theoretical background of the ASM

and subsequently we will present our method for improving the technique.

In the ASM technique, the location of n landmark points (e.g. facial features in

our study), are annotated on a set of training images by a human expert. This set

of points is represented by a vector X = (x1, y1, . . . , xn, yn)T , where xi and yi are the

coordinates of the ith landmark. Then, a model that incorporates the variations in

shape over the training set is represented as follows:

X ≈ X̄ + P b (A.1)

The vector X̄ contains the mean values of the coordinates of the annotated data, P is

a matrix of the first t eigenvectors of the covariance matrix of the annotated data, and

b is a vector that defines the model parameters. The variance of the ith parameter,
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Pi, across the training set is given by the corresponding eigenvalue λi. By limiting

the parameter bi in the range of ±3
√

λi, we ensure that the generated shape is similar

to those in the original training set. To apply the created shape model to a given

target shape, we need to find a transformation to move from the model coordinate

system to the image coordinate system. Typically, this is achieved by a similarity

transformation defining the translation (Xt, Yt), rotation θ, and scale s. Therefore,

the position of the model points , X, in the image are given by:

X = TXt,Yt,θ,s(X̄ + P b) (A.2)

For a given new image, the ASM is performed to find where the target object lies

on the image. Therefore, we need to find the optimum parameters of the ASM that

best fit of the model to the target structure. Generally, this optimization problem is

solved iteratively [45]. At the first step, the model is initialized by the mean shape.

Afterwards, a region of the image around each feature point is examined to find the

best nearby match (e.g., searching along the profile line for the edge locations). In

the next step, the parameters Xt, Yt, s, θ, and b are updated to best fit the new found

points. Then, the constraint |bi| < 3
√

λi is applied to the parameters bi. These steps

are repeated until there is no significant change in the shape parameters.

A.1 Shape Model Initialization and Face Alignment

As we mentioned in subsection 3.2.1, the initialization of the ASM is very important.

With poor initialization, the search process may either fail or become slow. Therefore,
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a good initialization would help in finding the optimum solution in less iterations. We

use our algorithm in [63] to find the centers of the mouth and the two eyes. Figure

A.1 shows the extracted locations of the eyes and the mouth in a given color face

image using this method. We use these three points to obtain the affine parameters

in Equation A.3 to initialize the shape model for the image.

For a 3-D object like the face, since it may have some pose variations in the

captured images, a similarity transformation with 4 degrees of freedom is not effective

especially when there are large pose variations. When the head is rotated to the

left or right, this problem is more severe. To solve this problem, we use a 2-D

affine transformation with 6 degrees of freedom, given by Equation A.3, to align the

extracted feature points in the image coordinate system with the points represented

by the model coordinate system.

⎛
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x′

y′

1

⎞
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(A.3)

To find the parameters of the 2-D affine transformation, we need at least three cor-

responding points, which are not conlinear.

A.2 Improvement of The Local Structure Model

In the original ASM, the local structure of a feature point is modeled by assuming

that the normalized first derivative of the pixel intensity values along a profile line

satisfies a multivariate Gaussian distribution. This gives a statistical model for the
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Figure A.1: Detecting the center of the mouth and the eyes as the salient features for
initialization.

profile around the point. As shown in Figure A.2, a sampled profile, gs, is matched

to a reference model by searching along the profile line that goes through the point

and finding the best fit. This is achieved by calculating the Mahalanobis distance:

f(gs) = (gs − ḡ)T Σ−1(gs − ḡ) (A.4)

where ḡ is the mean value and Σ is the covariance matrix.

In this dissertation, we assumed that the normalized first derivative of three chan-

nel values (i.e., Hue, Saturation, and Value) along a profile line for each individual

channel satisfies a multivariate Gaussian distribution. Then, we use a weighted sum

of Mahalanobis distances for the three color channels to find the best match for the

feature points. Similar to Equation A.4, the best matching of a probe sample, ghsv,
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Figure A.2: Searching along a sampled profile to find the best fit.

in HSV color space to a reference model is carried out by:

f(ghsv) =
∑

i∈{h,s,v} wi.(gi − gi)
T Σ−1

i (gi − gi) (A.5)

where wi is the weighting factor for the ith component of the Gaussian model with

unit sum.

A.3 Enhancement of the Location of Features Around
the Lips

To accurately localize the feature points around the lips, we segment the lips

region from the facial skin region. This is achieved by classifying each pixel, I(h,s,v),

in HSV color space, either as facial skin or lips. This classification starts by applying
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the Fisher Discriminant Analysis (FDA) technique. FDA is a data analysis technique

that provides more class separability than Principal Component Analysis (PCA),

which provides better data representation. By applying FDA to each pixel of the

color image, I(h,s,v), we obtain a scalar function that can be used to discriminate

between the two classes: facial skin and lips. This function is calculated by using the

within-class scatter matrix and is defined as:

Fisher(I) = W.IT (A.6)

where I is a given pixel value. The projection vector W , is calculated by:

W = S−1
W (m1 − m2) (A.7)

The within class scatter matrix SW , is:

SW = S1 + S2
(A.8)

and

Si =
∑

(I − mi)(I − mi)
T (A.9)

The sample mean vector of each class, mi, is defined as:

mi = 1
ni

∑
IεDi

I (A.10)
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Where Di is the set of the pixels in ith class and ni is the number of the pixels in the

class.

To learn the projection matrix W , we obtain a color database of facial images and

manually extract patches of lips and facial skin regions. Then, the matrices Si and

mi are calculated for the two classes of facial skin and lips. For a given test image,

we apply the FDA function (Eq. A.6) and apply threshold to the result to segment

the lips from the facial skin. Figure A.3 shows the results of the different steps for

lips detection applied to a sample image in our database using FDA. Figure A.3(a)

is the original image, Figure A.3(b) shows the result of applying FDA, Figure A.3(c)

shows the result of thresholding. The value of the threshold is obtained by a small

training set different from the images used in the experiment Section. The result of

applying morphological operators to remove noise and fill holes is shown in A.3(d).

The following summaries our iterative approach for facial features extraction using

the enhanced active shape model:
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(a) (b)

(c) (d)

Figure A.3: Lips detection using FDA. (a) Original image.(b) Result of FDA classi-
fication. (c) Result of thresholding. (d) Result of applying morphological operators.

1. Extract the centers of the eyes and the mouth [63].

2. Initialize the shape model based on the extracted three points from step 1.

3. Calculate the shape parameters, b.

4. Examine a region of the image around each point, (xi, yi), to find the best
nearby match for that point using the color model.

5. Use lips detection to tune the feature points around the mouth.

6. Update the parameters of the affine transformation (a11, a12, a21, a22, tx, ty) to
best fit the new found locations of the instance, X, of the target model.

7. Apply the constraints to the parameters, b, to ensure reasonable shapes (i.e.
|bi| ≤ 3

√
λi).

8. Go to step 3 and repeat until convergence.



Appendix B

The Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) algorithm has become the dominant method for

aligning three-dimensional models based purely on the geometry, and sometimes color,

of the meshes. The algorithm is widely used for registering the outputs of 3D scanners,

which typically only scan an object from one direction at a time. ICP starts with two

meshes and an initial guess for their relative rigid-body transform, and iteratively

refines the transform by repeatedly generating pairs of corresponding points on the

meshes and minimizing an error metric. The general framework of the algorithm is

represented in Table B.1. Generating the initial alignment may be done by a variety

of methods, such as tracking scanner position, identification and indexing of surface

features [51, 154], “spin-image” surface signatures [75, 67], computing principal axes

of scans [47], exhaustive search for corresponding points [39], or user input.

Since the introduction of ICP by Chen and Medioni [40] and Besl and McKay [22],

many variants have been introduced on the basic ICP concept. According to [143],

these variants affect one of six stages of the algorithm:
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begin E ′ ← +∞;
(Rot,Trans) ← In Initialize-Alignment(Scene,Model);

repeat
E ← E ′;
Aligned-Scene ← Apply-Alignment(Scene,Rot,Trans);
Pairs ← Return-Closest-Pairs(Aligned-Scene,Model);
(Rot,Trans,E ′) ← Update-Alignment(Scene,Model,Pairs,Rot,Trans);

Until |E ′ − E| < Threshold
return (Rot,Trans);

end

Table B.1: The iterative closest point algorithm.

1. Selection of some set of points in one or both meshes.

2. Matching these points to samples in the other mesh.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs based on looking at each pair individually or considering

the entire set of pairs.

5. Assigning an error metric based on the point pairs.

6. Minimizing the error metric.

Rusinkiewicz [144] has constructed a high-speed ICP algorithm with considera-

tion of the accuracy of the final answer by combining some of the variants of the

algorithm. The implementation (C++ code) of this algorithm is available on the web

(http://www.cs.princeton.edu/gfx/proj/trimesh2/). We wrote a wrapper to use this

implementation of ICP in Matlab environment for 3D facial image registration.



Appendix C

Sequential Floating Forward Selection
Procedure

Feature selection (FS) constitutes an important component in building a pattern

recognition system. Basically, it is the process of choosing the input to the pattern

recognition system. Accordingly, the main goal of FS is to select a subset of d features

from the given set of D measurements, d < D, without significantly degrading (or

possibly even improving due to the “peaking phenomenon” [49]) the performance of

the recognition system. Assuming that a suitable criterion function has been chosen

to evaluate the effectiveness of feature subsets, FS is reduces to a search problem that

selects an optimal feature subset based on the criterion function.

The well-known Sequential Forward Selection (SFS) and Sequential Backward

Selection (SBS) are step-optimal only since the best (the worst) feature is always

added (discarded) in SFS and SBS, respectively. This results in nested feature subsets

without any chance to correct the decision in later steps., causing the performance to

be often far from optimal.

A definitive improvement can be obtained by combining SFS and SBS to avoid

the nesting effect. On of the efficient algorithm that combines the SFS and SBS is
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SFFS Algorithm

Input:
Y = {yj|j = 1, . . . , D} //available measurements//
Output:
Xk = {xj|j = 1 . . . k; xj ∈ Y }; k = 0, 1, . . . , D
Initialization:
X0 := ; k := 0
(in practice one can begin with k = 2 by applying SFFS twice)
Termination:
Stop when k equals the number of features required

Step 1 (Inclusion)
x+ := arg maxx∈Y −Xk

J(Xk + x) //the most significant feature with respect
to Xk

Xk+1 := Xk + x+; k := k + 1
Step 2 (Conditional Exclusion)
x− := arg maxx∈Xk

J(Xk − x) // the least significant feature in Xk

if J(Xk − {x−}) > J(Xk−1) then
Xk−1 := Xk − x−; k := k − 1
go to Step 2

else
go to Step 1

Table C.1: Sequential Floating Forward Selection algorithm for feature selection [139].

Sequential Floating Forward Selection (SFFS.) The SFFS consists of applying after

each forward step of adding a feature, a number of backward steps (removing fea-

tures) as long as the resulting subsets are better than the previously evaluated step

[139]. Consequently, there are no backward steps at all if the performance cannot be

improved. The SFFS method is described algorithmically as follows. The SFFS algo-

rithm allows a “self-controlled backtracking” so it can eventually find good solutions

by adjusting the trade-off between forward and backward steps dynamically.



Appendix D

Dempster-Shafer Theory of Evidence

We briefly review the Dempster-Shafer theory of evidence [78]. Let Θ = {θ1, θ2, ..., θn}

be a set of mutually exclusive and exhaustive propositions that a classifier may discern.

This is referred to as frame of discernment (FoD); it signifies the “scope” of expertise.

A proposition θi, referred to as a singleton, represents the lowest level of discernible

information. We use |Θ| and 2Θ to denote the cardinality and the power set of Θ,

respectively. Elements in 2Θ form all the propositions of interest in DS theory. We

use Ā to denote all singletons in Θ that are not included in A. The “support” for

proposition A is provided via a basic belief assignment (BBA) or mass assignment.

The mapping m : 2Θ 
−→ [0, 1] is a BBA for the FoD Θ such that: 1) m(∅) = 0

and 2)
∑

A∈2Θ m(A) = 1.

The mass assigned to a proposition is free to move into the individual singletons

that constitute the composite proposition thus generating the notion of ignorance.

The set of propositions F that possesses nonzero BBAs forms the focal elements of

Θ; the triple {Θ,F ,m} is the corresponding body of evidence (BoE). The quantity

m(A) measures the support assigned to proposition A only. The belief assigned to A

on the other hand takes into account the supports for all proper subsets of A as well.
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Given a BoE, {Θ,F , m}, and A ⊆ Θ, belief is defined as

Bl : 2Θ 
−→ [0, 1] where Bl(A) =
∑

B⊆A m(B) (D.1)

and plausibility is defined as

Pl : 2Θ 
−→ [0, 1] where P l(A) = 1 − Bl(Ā). (D.2)

In other words, in DS theory, Bl(A) represents the total support that can move into

A without any ambiguity; and Pl(A) accounts for all the observations that do not

rule out the proposition A. When each focal set contains only one element, i.e.,

m(A) = 0,∀|A| �= 1, belief functions become probability functions. Then, the BBA,

belief and plausibility all reduce to probability [138].

In DS theory, the Dempster’s evidence combination function allows one to com-

bines the evidence generated by several BoEs spanning the same FoD. Consider BoE1,

{Θ1,F1,m1}, and BoE2, {Θ2,F2,m2}, where Θ1 = Θ2 = Θ. Then, the Dempster’s

combination rule generates the BBA m(.) : 2Θ 
−→ [0, 1] for a new BoE as:

m(A) = m(B)
⊕

m(C) =
∑

B∩C=A m(B)Θ1
m(C)Θ2

1−∑
B∩C=∅ m(B)Θ1

m(C)Θ2
, ∀A, B, C ⊆ Θ. (D.3)

This combining rule can be generalized by iteration to fuse more than two source
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of information. For example, fusion of three evidences is defined as:

mfinal = m(B)
⊕

m(C)
⊕

m(D) (D.4)

where
⊕

is the DS combination rule in Eq. D.3.
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