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A Josephson junction is a device made of two superconducting electrodes separated by a very thin layer of
isolator or normal metal. This relatively simple device has found a variety of technical applications in the
form of Superconducting Quantum Interference Devices (SQUIDs) and Single Electron Transistors (SETs).
One can expect that in the near future the Josephson junction will find applications in digital electronics
technology RSFQ (Rapid Single Flux Quantum) and in the more distant future in construction of quantum
computers. Here we concentrate on the relation of the curvature of the Josephson junction with its induc-
tance. We apply a simple Capacitively Shunted Junction (CSJ) model in order to find condition which
guarantees consistency of this model with prediction based on the Maxwell and London equations with
Landau-Ginzburg current of Cooper pairs. This condition can find direct experimental verification.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

A Josephson junction is a device that usually is made of two
superconducting electrodes separated by very thin layer of non-
superconducting material. The barrier which separates the elec-
trodes must be very thin. If the layer is made of isolator (S-I-S
junction) then its thickness is of order of several Angstroms. In case
of nonsuperconducting metal (S-N-S junction) this thickness can
be on the level of several microns. The junction can also be made
as a constriction that weakens the superconductivity at the point
of contact (S-s-S junction). Until a critical current is reached, a cur-
rent of electron pairs can flow across the barrier without any resis-
tance. First time, theoretical prediction that Cooper pairs can
tunnel from one electrode to another was given by Brian Josephson
in 1962 [1]. In his paper Josephson predicted relationships for the
current and voltage across the weak link. This prediction was con-
firmed by Philip Anderson and John Rowell [2].

Depending on the number of dimensions the Josephson device
can be considered as a two (large area Josephson junction), one
(long Josephson junction) and even zero dimensional system (point
Josephson junction). In particular, the junction can be considered
as the long Josephson junction if its transverse dimension is smal-
ler than the Josephson length. Josephson effect, similarly like
superconductivity, is an example of a macroscopic quantum
phenomenon. The leading dynamical variable that describes
behavior of this system is a scalar field /. This variable is a gauge
invariant difference of phases of the macroscopic wave functions
that describe superconducting electrodes. The behavior of this
dynamical variable is determined by the sine-Gordon model. The
solutions of this nonlinear model are studied for years [3,4].

The effective equation that describes dynamical processes in
the junction can be obtained in many ways [5,6]. In one of simpli-
fied approaches the point junction is replaced by a circuit that con-
tains the supercurrent (Josephson current) and some capacitive
element (see Fig. 1). This model is described as Capacitively
Shunted Junction – CSJ. The CSJ model presumes that the quasipar-
ticle current in the junction is so small that can be neglected. The
currents in the direction normal to the isolator layer are Josephson
current of Cooper pairs and additionally displacement current due
to capacitive effects.

The present paper aims in application of the CSJ model to
description of the curvature effects in the long Josephson junction.
We would like to indicate the condition which allows to recover
the result obtained for the same system on the background of
the Maxwell and London’s equations with Landau-Ginzburg
current.

Finally, let us underline that one of the promising areas of appli-
cations of the Josephson junction is the RSFQ (Rapid Single Flux
Quantum) electronics [7]. The digital information in these instru-
ments is carried by magnetic flux quanta identified with the kink
solutions of the sine-Gordon model. An interesting role in this area
can be played by the curved Josephson junctions. On the base of
the modified sine-Gordon equation several geometries were
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Fig. 1. In the CSJ model the point Josephson junction (left side of the figure) is
equivalent to the circuit located on the right side of the picture. Here IJ and IC
denotes the Josephson and capacitive currents.

Fig. 2. The Josephson junction consists of the two superconducting electrodes (top
and bottom). The electrodes are separated by the dielectric layer of thickness a. RB is
a radius of the circle located in the bottom electrode. This circle is parameterized by
the parameter x. RT is a radius of the the circle located in the top electrode. This arch
is parameterized by the parameter y. R denotes the curvature radius of the central
curve of the isolator which is parameterized by the parameter s. We consider long
Josephson junction and therefore the transverse direction can be neglected.
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identified which can be used as electronic elements in RSFQ elec-
tronic devices [8].

The paper is organized as follows. For the sake of completeness,
in the next Section we present Feynman approach for two-piece
quantum system in order to obtain time changes of the phases of
the macroscopic wave functions which describe behavior of the
superconducting electrodes. Section ‘‘Curved junction in the CSJ
model” contains construction of the field equation, in a curved sys-
tem, on the base of the CSJ model. The last Section contains
remarks.

Josephson relation

In the Feynman approach the Josephson junction can be viewed
as quantum system that consists of two subsystems (supercon-
ducting electrodes) described by the many particle wave functions
wT and wB. The indices T;B correspond to top and bottom electrode.
The system of this type is described by the Schrödinger equation

ı�h
@

@t
jwi ¼ bHjwi; ð1Þ

where the quantum state and the matrix elements of the hamilto-
nian are the following:

jwi ¼ wT

wB

� �
;

hwT jbHjwTi; hwT jbHjwBi
hwBjbHjwBi; hwBjbHjwTi

" #
¼ ET ; K

K; EB

� �
: ð2Þ

The Schrödinger Eq. (1) can be transformed to the system of
coupled equations

ı�h
@wT

@t
¼ ETwT þ KwB; ı�h

@wB

@t
¼ EBwB þ KwT ; ð3Þ

where K describes interaction of the quantum subsystems. One can
see that for K ¼ 0 the subsystems are independent and are
described by two independent Schrödinger equations. Next, we sep-
arate the modulus and the phase of the wave functions that
describe the electrodes

wT ¼ jwT jeıuT ; wB ¼ jwBjeıuB : ð4Þ
The real parts of Eq. (3) can be written in the form

� �hjwT j
@uT

@t
¼ ET jwT j þ KjwBj cos/;

� �hjwBj
@uB

@t
¼ EBjwBj þ KjwT j cos/: ð5Þ

where we denoted the phase difference as follows / ¼ uT �uB. If
we assume that modules of the wave functions are identical i.e. that
the density of the Cooper pairs q in both electrodes are equal

wTj j2 ¼ wBj j2 ¼ q;

and also denote

ET ¼ qVT ; EB ¼ qVB;
then Eq. (5) can be transformed as follows

@ui

@t
¼ � q

�h
Vi � K

�h
cos/: ð6Þ

In the above equation the index i denotes top and bottom elec-
trode i 2 fT;Bg.

Curved junction in the CSJ model

In the literature the junction is studied in many ways [5]. In the
analysis presented here we adopt the approach presented in
papers [6]. The central part of the curved Josephson junction is
depicted in Fig. 2. We consider the junction that has a form of a cir-
cle. The arc in the bottom electrode we parameterize by the param-
eter x. The arc in the top electrode is parameterized by the
parameter y. The central curve of the isolator layer is parameter-
ized by the parameter s. In the junction we chose the closed curve
(with the corners A, B, C, D) and then add the phase differences
between points AB, BC, CD and DA. Due to requirement of unique-
ness of the wave function of the whole system, the sum of the
phase differences in the considered loop is equal to multiplicity
of 2p

uTðy; tÞ �uTðyþ Dy; tÞ½ � þ uTðyþ Dy; tÞ �uBðxþ Dx; tÞ½ �
þ uBðxþ Dx; tÞ �uBðx; tÞ½ � þ uBðx; tÞ �uTðy; tÞ½ � ¼ 2pn: ð7Þ
Next, we introduce a new dynamical variable. Nontriviality of

this variable follows from the fact that, from mathematical point
of view, the system is not simply connected. Moreover, for appro-
priate choice of the electromagnetic vector potential the proposed
variable coincides with the gauge invariant phase difference of the
manyparticle wave functions of the superconducting electrodes.
This variable is defined as the phase difference of the phases of
the wave functions that describe the superconducting electrodes

/ðs; tÞ � uTðy; tÞ �uBðx; tÞ: ð8Þ
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In the neighboring cross section we have similar expression

/ðsþ Ds; tÞ ¼ uTðyþ Dy; tÞ �uBðxþ Dx; tÞ: ð9Þ
Eqs. (8) and (9) help us to transform the loop rule (7) to the

form

/ðs; tÞ � /ðsþ Ds; tÞ ¼ � uTðyþ Dy; tÞ �uTðy; tÞ½ �
þ uBðxþ Dx; tÞ �uBðx; tÞ½ � þ 2pn: ð10Þ

We differentiate the last formula with respect to time

@t/ðs; tÞ � @t/ðsþ Ds; tÞ ¼ � @tuTðyþ Dy; tÞ � @tuTðy; tÞ½ �
þ @tuBðxþ Dx; tÞ � @tuBðx; tÞ½ �: ð11Þ

If we use the formula (6) then the time derivatives of the phases
in Eq. (11) can be replaced by potentials

@t/ðs; tÞ � @t/ðsþ Ds; tÞ ¼ 2p
U0

VTðyþ Dy; tÞ � VTðy; tÞð Þ½
� VBðxþ Dx; tÞ � VBðx; tÞð Þ�; ð12Þ

where we introduced the flux quantumU0 i.e. q�h ¼ 2p
U0
. Next, we intro-

duce a voltage which is the difference of electric potentials between
points of each superconducting electrode

UT ¼ VTðyþ Dy; tÞ � VTðy; tÞ;
UB ¼ VBðxþ Dx; tÞ � VBðx; tÞ:

The formula (12) now simplifies as follows:

@t/ðs; tÞ � @t/ðsþ Ds; tÞ ¼ 2p
U0

UT � UBð Þ: ð13Þ

The long Josephson junction in the framework of the CSJ model
looks (see Fig. 3) like a net of inductors, capacitors and Josephson
elements. For example, in ideal superconductors currents flow
without ohmic resistance and capacitive effects and therefore
along the superconducting electrodes we have only inductive
effects hence

UT ¼ LT
dITðy; tÞ

dt
; UB ¼ LB

dIBðx; tÞ
dt

:

Fig. 3. In perfect superconductor the current along the superconductor has purely
inductive nature. The inductances of the electrodes are denoted by LT and LB. The
current in the normal direction to the isolator has in part capacitive character and in
part it is supercurrent of Cooper pairs (Josephson current).
Now, Eq. (13) can be written as

@t/ðs; tÞ � @t/ðsþ Ds; tÞ ¼ 2p
U0

LT
dITðy; tÞ

dt
� LB

dIBðx; tÞ
dt

� �
: ð14Þ

Let us notice that the time derivatives from the last equation
can be easy eliminated by integration with respect to time

/ðs; tÞ � /ðsþ Ds; tÞ ¼ 2p
U0

LTITðy; tÞ � LBIBðx; tÞ½ �; ð15Þ

where for simplicity we presumed zero integration constant. More-
over, the similar equation is satisfied also in the node shifted by Da

/ðs� Ds; tÞ � /ðs; tÞ ¼ 2p
U0

LTITðy� Dy; tÞ � LBIBðx� Dx; tÞ½ �: ð16Þ

Subsequently, from Eq. (15) we subtract Eq. (16) yielding

�/ðs� Ds; tÞ þ 2/ðs; tÞ � /ðsþ Ds; tÞ

¼ 2p
U0

LT ITðy; tÞ � ITðy� Dy; tÞð Þ � LB IBðx; tÞ � IBðx� Dx; tÞð Þ½ �:
ð17Þ

Kirchhoff’s first law for node A has the form

ITðy� Dy; tÞ ¼ ITðy; tÞ þ IJðs; tÞ þ ICðs; tÞ;

similarly for node D, we have (see Figs. 2and 3)

IBðx� Dx; tÞ ¼ IBðx; tÞ � IJðs; tÞ � ICðs; tÞ:
The Kirchhoff’s current rule allows for conversion of the cur-

rents parallel to the superconducting electrodes to the currents
perpendicular to it. The Kirchhoff’s current rule allows for the fol-
lowing transformation of the Eq. (17)

�/ðs� Ds; tÞ þ 2/ðs; tÞ � /ðsþ Ds; tÞ

¼ �2p
U0

LT IJðs; tÞ þ ICðs; tÞ
� �þ LB IJðs; tÞ þ ICðs; tÞ

� �� 	
: ð18Þ

In the next step we expand the gauge invariant phase difference
/ around a point s, with accuracy to the second order

/ðs� Ds; tÞ ¼ /ðs; tÞ � /sðs; tÞDsþ
1
2
/ssðs; tÞDs2 þ . . . :

Above expansion reduces the left side of the Eq. (18)

@2
s/ðs; tÞDs2 ¼ 2p

U0
LT þ LBð Þ IJðs; tÞ þ ICðs; tÞ

� 	
: ð19Þ

Now we introduce the total inductance L ¼ LT þ LB, and then
replace this quantity by inductance per unit length L ¼ lDs. In addi-
tion, the current flowing in the direction normal to the insulator
layer is replaced by the current density. Since we are dealing with
a long Josephson junction, the current density flowing through the
dielectric layer is not calculated per unit area but per unit length
i.e. IC ¼ Ds JC and IJ ¼ Ds JJ . We insert these current densities into
the Eq. (19)

@2
s/ðs; tÞ ¼

2p
U0

l JJðs; tÞ þ JCðs; tÞ
� 	

; ð20Þ

where the factor l ¼ lðRÞ is some function of the curvature radius R.
The dependence of the inductance per unit length on the geometry
of the junction can be extracted as follows l ¼ l0GðRÞ, where G is
some dimensionless function of curvature. Our aim is to write the
Eq. (20) as the equation for the / variable. In order to realize this
purpose, we use the first Josephson relation [1]

JJ ¼ J0 sin/: ð21Þ
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Moreover, we use the fact that for a capacitive element we have

IC ¼ C
dU
dt

or JC ¼ c
dU
dt

; ð22Þ

where c is a capacity per unit length of the junction. Additionally,
we insert the second Josephson relation [1]

U ¼ U0

2p
@t/; ð23Þ

to the formula (22) and we obtain

JC ¼ c
U0

2p
@2
t /: ð24Þ

Now we are ready to write the Eq. (20) in the form

@2
s/ðs; tÞ ¼

2p
U0

l0G J0 sin/þ c
U0

2p
@2
t /

� �
: ð25Þ

One can easy recognize that the dynamics of the gauge invari-
ant phase difference / is described by the sine-Gordon model

U0

2p
c
J0
@2
t /� U0

2p
1
l0J0

1
G @2

s/þ sin/ ¼ 0: ð26Þ

The standard form of this equation is obtained after rescaling
the time and space variables

t ! t0 ¼
ffiffiffiffiffiffiffiffiffiffi
2pJ0
U0c

s
t;

s ! s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl0J0
U0

s
s:

After this operation the Eq. (26) can be transformed to the form

@2
t0/� eF @2

s0/þ sin/ ¼ 0; ð27Þ
where the factor eF ¼ 1=GðRÞ describes curvature effects in the
junction.

Remarks

In the previous section we obtained, on the background of the
CSJ model, the Eq. (27) that describes the dynamics of the fluxon
in the curved junction with constant curvature. The curvature
effects in this equation are included in the inductance per unit
length. Let us notice that the form of this equation is in full analogy
with equation obtained (for constant curvatures) on the back-
ground of the Londons and Maxwell equations with Landau - Ginz-
burg current of Cooper pairs [9].

@2
t0/� F@2

s0/þ sin/ ¼ 0; ð28Þ
where

F ¼ 1
aK

ln
2þ aK
2� aK

� �
; ð29Þ

here K is curvature of the junction. The geometrical formalism that
is used in description of the system considered in this paper has
found applications in many branches of science [10]. The factor F
in the above equation affects the speed of the fluxon that propa-
gates along the junction [11]. In case of constant curvature the func-
tion F has the form

F ¼ R
a
ln

2þ a
R

2� a
R

� �
: ð30Þ

Let us notice that only if we identify functions eF ¼ F then both
approaches lead to the same result. On the other hand, if the CSJ
model is appropriate for description of curvature effects in the
Josephson junction then this identification provides the curvature
dependence of the inductance per unit length

l � l0
a
R
ln�1 2þ a

R

2� a
R

� �
: ð31Þ

The curvature dependence of this quantity, in the Josephson
junction, can find direct experimental verification and therefore
the applicability of the CSJ model to description of the curvature
effects in the Josephson junction can be directly verified.
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