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We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable
porous material in the presence of gravity effects. The modeling is performed using mixture theory
approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary
rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation
of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid
case. Numerical solutions are obtained using a method of lines approach. The graphical results are pre-
sented for important physical parameters, and comparison is presented with Newtonian fluid case.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Capillary rise is one of the most promising and vibrant illustra-
tions of capillarity. This phenomena has been explored in various
areas of science and engineering. Specially, it plays an important
role in the lab-on-a-chip technologies, actuators and sensors, and
fluid and thermal management devices to name a few [1,2]. The
pioneering study in this area goes back to the Washburn model
[3]. Washburn’s study serves as a basis for further experimental as
well as theoretical studies in rigid porous materials. In his experi-
ment, he discussed the capillary rise phenomena by considering
the porous material as a collection of cylindrical shape tubes. It
was shown that in the absence of gravity, the capillary rise hight into
rigid porous material in a time ‘‘t” is proportional to

ffiffi
t

p
. His model

has been used extensively to study capillary rise phenomena in rigid
porous material. Many other studies that have taken into account
the capillary rise phenomena into rigid porous material are [4–6].

The flow of liquid through deformable porous material has
many applications in science and engineering including biome-
chanics, magma mechanics, ground water hydrology and soil con-
solidation [7]. Later on, Chen and Servin [8] performed an analysis
to understand the flow in a deformable porous substrate. They
noted that the passage of the fluid through a deformable porous
material deforms the material which in turn influence the flow.
The deformation in the porous material is because of forces associ-
ated with the flow of liquid. This suggests the need for such models
that take into account both flow and deformation in porous mate-
rial. The modeling approach that takes into account both fluid flow
and liquid deformation is called the mixture theory. The main
underlying idea of continuum mixture theory is that each con-
stituent of the mixture is continuous and occupies every point in
the space at each instant of time. Some of the studies that use mix-
ture theory approach are [9–13]. More related work to our topic is
the unidirectional infiltration under liquid pressure in an initially
dry deformable porous medium by Sommer and Mortensen [14].
Their study showed a good agreement between the mathematical
model and experiments. Preziosi et al. [15] explained the infiltra-
tion of an incompressible liquid in an initially dry, deformable
sponge-like material where their theoretical predictions were
backed up by experiments with reasonable agreement. Following
the Preziosi work, Anderson [16] discussed a one-dimensional
mathematical model describing the imbibition of liquid into
deformable porous material. Later on, Siddique et al. [17] explained
the capillarity and drainage phenomena under the effects of grav-
ity of an incompressible fluid into a deformable porous material.
They have presented a reasonable comparison between the theory
and experiments describing the details linking with the classical
work of Washburn [3], Lagon and Araujo [4] and Lockington and
Parlange et al. [6].

The mechanism of magnetohydrodynamics is based upon the
action of magnetic field on electrically conducting fluids. The appli-
cations of magnetohydrodynamics are in the geosciences, engi-
neering, geophysics and medicine. In addition to these,
magnetohydrodynamics fluids play an important role in electro-
static fibres, MHD accelerators, fluid droplets, cooling reactors,
purification of crude oil and a lot many examples.

In this work we present a mathematical model for capillary rise
of MHD liquid into deformable porous material under the effect of
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gravity. The mathematical model developed here is an analogue of
the model taken by many authors [14–17] and helps in highlight-
ing many important features due to the capillary rise of MHD liq-
uid into deformable porous material. In the next section, we
present the formulation of our mathematical model. In Section ‘‘R
esults”, we discuss the results via graphs. Finally, we conclude our
discussion in the last section.
Modeling formulation

The magnetohydrodynamic flow of an incompressible fluid
from liquid into a spongelike material is illustrated in Fig. 1. The
surface of the material interacts with the liquid of an infinite
stream at z ¼ 0, and at time t ¼ 0.

The liquid’s upper surface is assumed to be open to the atmo-
spheric pressure pA. As time increases ðt > 0Þ, the liquid rises into
the small pores of the material because of capillary suction under
the assumption that the capillary pressure pc < 0. This results in
the deformation of the solid material. We denote the upper inter-
face of the porous material by h‘ðtÞ and lower interface by hsðtÞ.
The other assumption is that the pressure in the fluid bath us
hydrostatic i.e. p ¼ pA � q‘ghs at z ¼ hsðtÞ along with the uniform
initial solid volume fraction /0. Thus we are interested in the
unknown variables in the deformed material under consideration
and boundary positions hs and h‘, i.e., the velocity component of
solid phase in the vertical direction ws, the velocity component
of liquid phase in the vertical direction w‘, stress r ðr ¼ rIÞ in
the solid, pressure of the liquid p and solid volume fraction /. A
decent review of the literature [9,10,18] suggest the use of the mix-
ture theory to model the problem of deformable porous media. The
equation representing the conservation of mass for liquid con-
stituents is given as

@/
@t

� @

@z
1� /ð Þw‘½ � ¼ 0; ð1Þ

where w‘ is velocity of liquid and 1� / is liquid volume fraction.
The equation representing the conservation of mass for solid phase
is given as

@/
@t

þ @

@z
ð/wsÞ ¼ 0; ð2Þ

where ws is velocity of solid and / is solid volume fraction. The
mathematical manipulation of momentum equations for liquid
Fig. 1. Schemat
solid phases results into modified Darcy’s law for imbibition of
MHD liquid through deformable porous media

w‘ �ws ¼ � K /ð Þ
1� /ð Þl

@p
@z

þ qlg
� �

þ K /ð Þr0B
2
0

1� /ð Þ2l
ws; ð3Þ

where Kð/Þ is permeability of deformable porous material, l is the
dynamic viscosity, r0 is the electrical conductivity, B0 denotes the
uniform magnetic flux, g is the gravity and qs and q‘ are actual
intrinsic density of the solid and liquid, respectively. In the presence
of gravity, the stress in the solid plus gravity and exertion of pres-
sure due to liquid balance each other. In other words, neglecting
inertial and body forces in both the solid and liquid phase, stress
equilibrium states that

@p
@z

¼ @r
@z

� g qs/þ ql 1� /ð Þ½ �: ð4Þ

here r, is component of stress tensor, p is the pressure, and z is the
coordinate axis. Combining the two continuity equations yields,
/ws þ 1� /ð Þw‘ ¼ cðtÞ, where cðtÞ is constant of integration. This
relationship along with modified Darcy’s law yields the following
equations for solid and liquid velocities

ws ¼ 1� /ð Þ
1� /þ a

cðtÞ þ K /ð Þ
l

r0 /ð Þ @/
@z

� g qs � qlð Þ/
� �� �

; ð5Þ
w‘ ¼ cðtÞ
1�/

1� / 1�/ð Þ
1�/þa

� �
� /
1�/þa

K /ð Þ
l

r0 /ð Þ@/
@z

�g qs�qlð Þ/
� �

;

ð6Þ

where a ¼ K /ð Þr0B
2
0

l . Keeping in mind that a contains permeability

Kð/Þ, which will be replaced by its particular choice at the appropri-
ate place. A simple mathematical manipulation of Eqs. (2), (4) and
(5) result into a single partial differential equation for solid volume
fraction / in the wet region hsðtÞ 6 z 6 h‘ðtÞ

@/
@t

þ cðtÞ @

@z
/ 1� /ð Þ
1� /þ a

� �

¼ � @

@z
/ 1� /ð Þ
1� /þ a

K /ð Þ
l

r0 /ð Þ @/
@z

� g qs � qlð Þ/
� �� �

: ð7Þ

A similar form of Eq. (7) is obtained by many authors [15–17]
discussing their particular scenarios i.e. in the absence and pres-
ence of gravity effects. In our particular situation, we impose the
ic diagram.
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following kinematics, hydrostatic pressure assumption in the liq-
uid phase and zero stress boundary conditions at solid boundary
z ¼ hsðtÞ

ws hþ
s ; t

	 
 ¼ @hs

@t
; ð8Þ

p hþ
s ; t

	 
 ¼ pA � qlghsðtÞ; ð9Þ

r hþ
s ; t

	 
 ¼ 0; ð10Þ
where atmospheric pressure is represented by pA. On similar lines,
the kinematic and capillary pressure conditions at wet material-
dry material interface z ¼ h‘ðtÞ are

w‘ h�
l ; t

	 
 ¼ @hl

@t
; ð11Þ

p h�
l ; t

	 
 ¼ pA þ pc; ð12Þ
denoting capillary pressure by pc . The determination of constant of
integration cðtÞ is performed following [15]

cðtÞ ¼ / 1� /0ð Þ 1� /ð Þ
a /� /0ð Þ � /0 1� /ð Þ2

K /ð Þ
l

r0 @/
@z

� g/ qs � qlð Þ
� �

: ð13Þ

One can combine Eqs. (5) and (6) with Eqs. (8) and (11) to get

@hs

@t
¼ cðtÞ 1�/ð Þ

1�/þa
þK /ð Þ

l
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h�l

:

ð15Þ
It is important to note that Eq. (7) represents solid volume frac-

tion in the wet region and Eqs. (14) and (15) represent the interface
positions for liquid and solid phases. In other words, (7) provides
deformation in the solid locally and Eqs. (14) and (15) show defor-
mation globally. In the following section, we present the procedure
for non-dimemsionalization.

Non-dimensionalization and solution strategy

It is worth mentioning that Eq. (7) along with Eqs. (14) and (15)
formulate a problem on a moving domain hs 6 z 6 h‘. Solving a
problem on a moving domain is a bit of a challenge. The first step
that we initiate in this regard is to transform the problem to fixed
domain by using the following transformation.

z ¼ z� hsðtÞ
hlðtÞ � hsðtÞ ; t ¼ t

T
:

In addition to the transformations listed above, we introduce
the following choices of dimensionless quantities

hs ¼ hs

L
; h‘ ¼ h‘

L
; p ¼ p

m
; ð16Þ

which in turn yields the following scales for length L ¼ m
qlg

and time

T ¼ L2l
mK0

. The forms of permeability Kð/Þ and stress rð/Þ that we will

be using are K /ð Þ ¼ K0
/ ;K0 > 0 and r /ð Þ ¼ mð/r � /Þ;r0 ¼ �m.

These choices are physically consistent with the realistic trend
and are reasonable for a one dimensional case and need to be gen-
eralized for multidimensional cases. The above choice of stress is
zero when the solid fraction is at constant relaxed value /r . Upon
introducing the choices for dimensionless variables in Eq. (7), we
obtain the following partial differential equation for /,
@/

@t
þ z� 1

h‘ � hs

dhs

dt
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The next necessary ingredient for the above PDE are boundary
conditions which we derive from zero stress condition (10) and
stress equilibrium condition for solid volume fraction /

/ ¼ /r; at z ¼ 0 ð18Þ
and we obtain the second boundary condition by integrating Eq. (4)
and using the pressure boundary conditions (9) and (12)

/ ¼ /�
l � hl � hs

� �Z 1

0
q/þ 1ð Þdz� hs; at z ¼ 1; ð19Þ

where /�
l ¼ /r � pc

m. Finally, the dimensionless form of the constant
function is

cðtÞ ¼ � / 1� /0ð Þ 1� /ð Þ
M /� /0ð Þ � //0 1� /ð Þ2

1

hl � hs

@/
@z

þ q/
� �" #

z¼1

: ð20Þ

The dimensionless forms of solid and liquid interface position
upon introducing the dimensionless choices yields the following
ODEs

dhs

dt
¼ cðtÞ/ 1� /ð Þ

/� /2 þM
� 1� /ð Þ
/� /2 þM

1

hl � hs

@/
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þ q/
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; ð21Þ

dhl
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1�/ð Þ 1� /2 1�/ð Þ
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þq/
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z¼1

;

ð22Þ
along with the following initial conditions for these interface
positions

hl t ¼ 0
	 
 ¼ 0; hs t ¼ 0

	 
 ¼ 0: ð23Þ
The above system of Eqs. (17)–(23) is solved numerically using

the initial conditions /ð�z;�t ¼ tIÞ ¼ /s½ks þ �zðk‘ � ksÞ� for PDE and
�hsð�tIÞ ¼ 2ks

ffiffiffiffi
�tI

p
and �h‘ð�tIÞ ¼ 2k‘

ffiffiffiffi
�tI

p
for the interface positions (see

[17] for more details). The spatial derivatives are discretized using
a second order finite difference scheme along with Matlab’s ode15s
solver for integration in time. The section below contains the out-
come of these simulations.

Results

Fig. 2 shows the capillary rise dynamics �h‘ and solid deforma-
tion �hs interface positions for M ¼ 0 and M – 0 in the presence of
gravity effects. As we see from Fig. 2 that the capillary rise dynam-
ics for both M ¼ 0 and M – 0, initially start from the same point
because both of them have the same initial condition and
M ¼ 0:5, shows slower dynamics until t ¼ 0:4, shown by dashed
line and ultimately reaches the same equilibrium position as
M ¼ 0 fluid shown by solid line. In contrast to this, the deformation
in the solid material forM ¼ 0:5 is much faster, shown by, a dashed
line than M ¼ 0 case. In summary, capillary rise dynamics for MHD
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Fig. 2. The capillary rise dynamics h‘ and solid deformation hs for M ¼ 0 and M – 0
as a function of time. The other parameters value that we use are
/0 ¼ 0:33;/r ¼ 0:1;/‘ ¼ 0:20 and q ¼ 0:1.

Fig. 4. Solid volume fraction unsteady /ðz; tÞ and steady / as a function z for long
time associated with the Fig. 4.
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case reach equilibrium position whereas solid deformation dynam-
ics is much faster than Newtonian fluid case.

Fig. 3 shows the capillary rise and solid deformation dynamics
for the special choice of parameters when long time dynamics of
solid deformation tends to zero. Interestingly, the deformable por-
ous material shrinks initially which is represented by hsðtÞ > 0.
This is only possible if the liquid bath permanently remains in con-
tact with the deformable solid material. The said behavior is asso-
ciated with Newtonian liquid. Here we observe that the MHD fluid
reach to an equilibrium height faster than the Newtonian liquid.
For solid deformation for MHD liquid we observe that the solid
material keeps deforming and reaches an equilibrium position dif-
ferent than hs ¼ 0. The Newtonian case for similar dynamics was
also shown by Siddique et al. [17].

Fig. 4 shows the plot of solid volume fraction / as function of z
for unsteady Newtonian fluid shown by solid line and MHD liquid
shown by dashed line cases. The comparison with analytically
computed steady solution and numerically computed unsteady
solution shows an excellent agreement which is not shown here.
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Fig. 3. Capillary rise dynamics h‘ and solid deformation hs for
/0 ¼ 0:0995;/r ¼ 0:1;/‘ ¼ 0:20 and q ¼ 0:1.
These solutions are compared with constant solution /0, shown
by the dashed line in the graph. Here we have used the same value
of /0 so that hs ¼ 0. The two interesting phenomena that we
wanted to observe are relative compression / > /0, and relative
expansion / < /0. For positive values of q, the occurrence of local
expansion happens near the top and local compression near the
bottom. This process of local compression and expansion occurs
in both MHD and Newtonian liquid and shows local deformation
i.e. hs ¼ 0, which means zero net deformation.

This dynamics makes definite sense; when q > 0 the solid frac-
tion decreases when we increase the spatial vertical position for
MHD liquid. On the other hand, when q < 0, the opposite trend
is observed. For the case of q ¼ 0, we obtain / ¼ /r for both New-
tonian and MHD liquid. These observations are physically consis-
tent. As for the case qs > q‘, the solid material accumulation of
MHD liquid near the bottom is quicker than Newtonian liquid,
and when q‘ > qs, the liquid accumulation near the bottom is
quicker for MHD liquid as compared to Newtonian liquid.
Conclusion

In this his article we studied the capillary rise of MHD liquid
into deformable porous material. The new contribution in this
research is changing the Newtonian liquid to MHD liquid. Evi-
dently, the resulting system of equations are relatively difficult
and add on interesting physics in capillary rise phenomena.

For the MHD fluid case, the liquid interface position reached the
same steady state position whereas the solid interface for the MHD
liquid reached to the steady state position before Newtonian liquid
and is expected to get to the same interface position if we run the
numerical simulation for long enough time. On the similar lines,
for the special choice of parameters that yields hs ¼ 0, the solid
interface position keeps deforming and ultimately reaches a steady
state height. Similar dynamics is observed in Fig. 3, where
unsteady Newtonian and MHD fluid cases for t ! 1 are plotted
as a function of z. The accumulation of solid material for Newto-
nian and MHD liquid is seen for both qs > q‘ and q‘ > qs cases.

The MHD capillary rise dynamics for one dimensional deform-
able porous materials shows many interesting features that need
experimental justifications and further analysis of the model for
higher dimensions. Analysis of the full nonlinear moving boundary
value problem along with the inclusion of different permeability
functions are the topics of further research.
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