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In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced
vibration systems. The first-order approximation is only considered in order to avoid complexicity. The
formulations and the determination of the solution procedure are very easy and straightforward. The
classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give
desire result for the strongly damped forced vibration systems with strong damping effects. The main
aim of this paper is to remove these limitations. Two examples are considered to illustrate the effective-
ness and convenience of the present procedure. The approximate external frequencies and the corre-
sponding approximate solutions are determined by the present method. The results give good
coincidence with corresponding numerical solution (considered to be exact) and also provide better
result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative
error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude
A ¼ 1:5, while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong non-
linearities with strong damping effect, the absolute relative error found in this article is only 0.02%,
whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only
valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear sys-
tems with both small and strong damping effect.
� 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Krylov-Bogoliubov-Mitropolskii (KBM) [1,2] method, Struble’s
technique [3], multiple time scale method [4] have been widely
used to determine periodic solution of a second order weakly non-
linear systems for free vibration with small damping effect. Popov
[5] extended KBMmethod to a similar systemwith strong damping
effect. Bojadziev [6] utilized Popov’s technique to a damped forced
vibration systems. Latter, Bojadziev [7] extended the two-time-
scale method to the second order differential systems with strong
damping effect. Shamsul [8] presented a unified KBM method for
solving damped oscillation systems and it has been shown that
the results are identical to that obtained by [1]. Shamsul et al. [9]
also generalized the general Struble’s technique to such differential
systems. Nagy and Balachandran [10] used perturbation method to
investigate jump phenomenon of weakly nonlinear systems with
small damping effect. Hassan [11] shown that KBM method [1,2]
is equivalent to the MST method [4,12] for a small damping effect.
Recently, Azad et al. [13] developed a general multiple-time-scale
method for free vibrations to obtain n-th order weakly nonlinear
systems and also indicated that the solutions are identical to those
obtained by [9]. Pakdemirli et al. [14] used multiple scales
Lindstedt-Poincare (MSLP) to obtain approximate solution for
strongly nonlinear damped forced vibration systems for small
damping effects. The classical MS method results for weak nonlin-
earities are almost same that the results obtained by MSLP method
[14]. He [15] developed homotopy perturbation method to solve
strongly un-damped nonlinear systems. The solution obtained in
[14] is valid for strong nonlinear problem with small damping
effect. In general, homotopy perturbation method is invalid when
the damping and external forces act. Li et al. [16–20] have studied
the free vibration system. Another author, Xiang [21] has studied
damped oscillatory system without forced vibrations. Recently,
Akbari et al. [22] have been investigated nonlinear vibration
system.

Some analytical methods such as perturbation method, homo-
topy perturbation method, MS, MSLP method do not cover in all
cases. It has been already mentioned that the perturbation method
and MS method are valid only for weak nonlinearities, but these
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Nomenclature

x0 Natural frequency
k Linear damping coefficient
m The external frequency
a Amplitude
E An external force

U Periodic function
e A large or small parameter
u Phase variable
w Phase variable chosen in our method
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methods are invalid for strong nonlinearities. On the other hand,
the MSLP method is invalid for strong damping effect.

In the present study, a modified MTS method [13] has been
used to investigate nonlinear forced vibration systems. The main
advantage of the present method is that it covers all the cases:
weak nonlinearities with small damping effect, weak nonlineari-
ties with strong damping effect, and strong nonlinearities with
strong damping effect. The method is very simple and also pro-
vides better result than other existing result.
The method

Let us consider a second order time dependent nonlinear non-
autonomous differential system

€xþ 2k _xþx2
0x ¼ ef ðx; _xÞ þ eEUðmtÞ; ð1Þ

where over dot denotes the derivatives with respect to t, x0 P 0, k,
m are constants, e denotes either small or large parameter, x0 is a
natural frequency, f ðx; _xÞ is a nonlinear function such that
f ð�x;� _xÞ ¼ �f ðx; _xÞ, E is an external force and UðmtÞ is a periodic
function.

A first approximate solution of Eq. (1) is chosen in the form [13]

xðt; eÞ ¼ a1ðtÞ þ a2ðtÞ þ eu1ða1; a2Þ þ � � � : ð2Þ
Herein, a1 and a2, represent rather than the amplitude and phase,
variables. The variables a1 and a2 depend on the several time
t0; t1; t2; . . ., where t ¼ t0 þ et1 þ e2t2 þ . . ..

For unperturbed cases i.e., when e ¼ 0, Eq. (1) has two eigen-

values k1 ¼ �kþ ix, k2 ¼ �k� ix, where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � k2
q

, k < x.

When e – 0, Eq. (1) can be rewrite as

ðD� k1ÞðD� k2Þx ¼ ef ðx; _xÞ þ eEUðmtÞ ð3Þ
Now, we denote some notations and a relation [13] as

D ¼ D0 þ eD1 þ e2D2 þ � � � ; DkðÞ ¼ dðÞ
dtk

; k ¼ 0;1;2; . . . ;

D0a1 ¼ k1a1; D0a2 ¼ k2a2:

Substituting Eq. (2) into Eq. (3) and equating the coefficient of e,
we obtain

ðD0 � k2ÞðD1a1Þ þ ðD0 � k1ÞðD1a2Þ þ ðD0 � k1ÞðD0 � k2Þðu1Þ
þ � � � ¼ f þ EUðmtÞ: ð4Þ

Herein, the nonlinear function f can be expanded in a Fourier series
as f ¼ P1; 1

m1¼0; m2¼0Fm1 ;m2e
ðm1k1þm2k2Þt and the unknown functions u1

can be found in terms of the variables a1, a2 and t, under the restric-
tion that u1 excludes the terms Fm1 ;m2e

ðm1k1þm2k2Þt of f where,
m1 �m2 – � 1. On the other hand, D1a1 and D1a2 respectively, con-
tain these terms where m1 �m2 ¼ 1 and m1 �m2 ¼ �1. This
assumption keeps u1 free from secular terms, i.e., t cos t; t sin t.
Again, the external force terms contain D1a1 and D1a2 respectively
but u1 excludes the external force term.
Now, equating the coefficient of e from Eq. (4) and then separat-
ing into three parts for D1a1, D1a2 and u1 as (see article [9])

ðD0�k2ÞðD1a1Þ¼
X1;1

m1¼0;m2¼0

Fm1 ;m2e
ðm1k1þm2k2ÞtþEeimt0=2; m1�m2¼1;

ð5Þ

ðD0�k1ÞðD1a2Þ¼
X1;1

m1¼0;m2¼0

Fm1 ;m2e
ðm1k1þm2k2ÞtþEe�imt0=2; m1�m2¼�1

ð6Þ

ðD0�k1ÞðD0�k2Þu1¼
X1;1

m1¼0;m2¼0

Fm1 ;m2e
ðm1k1þm2k2Þt ; m1�m2–�1:

ð7Þ
Transforming a1 ¼ aeiu=2; a2 ¼ ae�iu=2, Eqs. (5) and (6) are

transformed to amplitude and phase equations. On the other hand,
this transformation represents u1 in a usual form (i.e., amplitude
and phase form). Thus the determination of the first approximate
solution is clear.

Examples

Example 1

Let us consider the forced vibrations of the damped duffing
oscillator

€xþ 2k _xþx2
0x ¼ �ex3 þ eE cos mt; ð8Þ

where e be either small or large parameter, x0 is a natural fre-
quency, x0 P 0, k < x0.

When e ¼ 0, Eq. (8) has two eigen-values

k1 ¼ �kþ ix; k2 ¼ �k� ix and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � k2
q

.

When e – 0, then the first approximate solution of Eq. (8) is
found of the form

x ¼ a1ðtÞ þ a2ðtÞ þ eu1 þ � � � ð9Þ
and the function f ¼ �x3 can be expanded in the form

f ¼ �x3 ¼ �½a31 þ 3a21a2 þ 3a1a22 þ a32 þ 3eða1 þ a2Þ2u1 þ � � �� ð10Þ

Now, applying the separation rule (discussed in Section ‘‘The
method”) on the Eq. (A.1), we obtain the following equations for
D1a1, D1a2 and u1 as

ðD0 � k2ÞðD1a1Þ ¼ �3a21a2 þ Eeimt0=2; ð11Þ

ðD0 � k1ÞðD1a2Þ ¼ �3a1a22 þ Ee�imt0=2; ð12Þ

ðD0 � k1ÞðD0 � k2Þu1 ¼ �ða3
1 þ a32Þ: ð13Þ

First, we consider that the particular solution without external
term ðEeimt0=2Þ of Eq. (11) be D1a1 ¼ l1a2

1a2. Since D0a1 ¼ k1a1 and
D0a2 ¼ k2a2, then from Eq. (11) with out external term, we obtain
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ðD0 � k2Þðl1a21a2Þ ¼ 2k1l1a21a2 ¼ �3a21a2: ð14Þ
From Eq. (14), we obtain

l1 ¼ �3=ð2k1Þ:
Now, solving Eq. (11) with external term, we obtain

D1a1 ¼ �3a21a2=ð2k1Þ þ Eeimt0=ð2ðim� k2ÞÞ: ð15Þ
The variational equations can be written as follows

_a1 ¼ Da1 ¼ ðD0 þ eD1 þ � � �Þa1 ¼ k1a1 þ eD1a1 þ Oðe2Þ: ð16Þ
Neglecting the second and higher order of e from Eq. (16) and

then also using Eq. (15), we obtain

_a1 ¼ ð�kþ ixÞa1 þ e½3ðkþ ixÞa21a2=ð2ðk2 þx2ÞÞ
þ Eðk� iðmþxÞÞeimt0=ð2ðk2 þ ðmþxÞ2Þ� ð17Þ

Separating the real and imaginary parts on both sides of Eq.
(A.2), we obtain

_a ¼ �kaþ 3ea3k=ð8ðk2 þx2ÞÞ þ eEðk cosw� ðmþxÞ
� sinwÞ=ðk2 þ ðmþxÞ2Þ; ð18Þ

a _u ¼ xaþ 3ea3x=ð8ðk2 þx2ÞÞ þ eEð�k sinw� ðmþxÞ
� coswÞ=ðk2 þ ðmþxÞ2Þ: ð19Þ

For the steady-state _a ¼ 0 and _u ¼ m, then Eqs. (18) and (19)
become

aðk�3ea2k=ð8ðk2þx2ÞÞÞ¼eEðkcosw�ðmþxÞsinwÞ=ðk2þðmþxÞ2Þ;
ð20Þ

aðm�x� 3ea2x=ð8ðk2 þx2ÞÞÞ
¼ eEð�k sinw� ðmþxÞ coswÞ=ðk2 þ ðmþxÞ2Þ: ð21Þ

Herein, Eqs. (20) and (21) represent the resonance curve in the
plane ðm; aÞ.

The particular solution of Eq. (13) is

u1 ¼ c1a31 þ c2a32; ð22Þ
where c1 ¼ �1

2k1ð3k1�k2Þ, c2 ¼ �1
2k2ð3k2�k1Þ.

Substituting a1 ¼ aeiu=2, a2 ¼ ae�iu=2, u ¼ wþ mt0 and elimi-
nating second and higher order terms of e from Eq. (9), we obtain
the first approximate solution of Eq. (8) as

xðtÞ ¼ a cosðmt0 þ wÞ þ eu1; ð23Þ
where u1 is given in Eq. (A.4).

Example 2

Let us consider the Van der Pol equation with linear damping
and an external force

€xþ 2k _xþx2
0x ¼ eð1� x2Þ _xþ eE sin mt; k < x0: ð24Þ

When e ¼ 0, Eq. (24) has two eigen-values k1 ¼ �kþ ix,

k2 ¼ �k� ix and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � k2
q

.

When e – 0, then the first approximate solution of Eq. (24) is
found of the form

x ¼ a1 þ a2 þ eu1 þ � � � ð25Þ
Now, applying the separation rule (discussed in Section ‘‘The

method”) on the Eq. (A.6), we obtain the following equations for
D1a1, D1a2 and u1 as

ðD0 � k2ÞðD1a1Þ ¼ k1a1 � ð2k1 þ k2Þa21a2 þ Eeimt0=ð2iÞ; ð26Þ
ðD0 � k1ÞðD1a2Þ ¼ k2a2 � ð2k2 þ k1Þa1a22 � Ee�imt0=ð2iÞ; ð27Þ

ðD0 � k1ÞðD0 � k2Þu1 ¼ �ðk1a31 þ k2a32Þ: ð28Þ
According to the Eq. (15), we have obtained the solution of Eq.

(26) as

D1a1 ¼ k1a1=ðk1 � k2Þ � ð2k1 þ k2Þa21a2=ð2k1Þ þ Eeimt0=ð2iðim� k2ÞÞ:
ð29Þ

According to the Eq. (16), the variational equations as

_a1 ¼ k1a1 þ eD1a1 þ � � � : ð30Þ
Neglecting the second and higher order of e from Eq. (30) and

then also using Eq. (29), we obtain

_a1 ¼ ð�2kxþ exþ iðekþ 2x2ÞÞ=ð2xÞÞa1 � eð3k2 þx2

þ 2ikxÞa21a2=ð2ðk2 þx2ÞÞ � ieEðk� iðmþxÞÞeimt0=
ð2ðk2 þ ðmþxÞ2Þ ð31Þ

Separating the real and imaginary parts on both sides of
Eq. (A.7), we obtain

_a ¼ ð�2kxþ exÞa=ð2xÞ � ea3ð3k2 þx2Þ=ð8ðk2 þx2ÞÞ
� eEððmþxÞ coswþ k sinwÞ=ðk2 þ ðmþxÞ2Þ; ð32Þ

a _u ¼ ð2x2 þ ekÞa=ð2xÞ � 2ea3kx=ð8ðk2 þx2ÞÞ
� eEðk cosw� ðmþxÞ sinwÞ=ðk2 þ ðmþxÞ2Þ; ð33Þ

where w ¼ u� mt0.
The particular solution of Eq. (28) is

u1 ¼ d1a31 þ d2a32; ð34Þ
where d1 ¼ �1

2ð3k1�k2Þ, d2 ¼ �1
2ð3k2�k1Þ.

Substituting a1 ¼ aeiu=2, a2 ¼ ae�iu=2, u ¼ wþ mt0 and elimi-
nating second and higher order terms of e from Eq. (9), we obtain
the first approximate solution of Eq. (24) as

xðtÞ ¼ a cosðmt0 þ wÞ þ eu1; ð35Þ
where u1 is given in Eq. (A.9).

Results and discussions

Nonlinear oscillations problems are important in the physical
science, mechanical structures and other kind of mathematical
sciences. Most of real systems are modeled by nonlinear differen-
tial equations which are important issues in mechanical structures,
mathematical physics and engineering. The Duffing oscillator with
damping effect in presence of an external force is a common model
for nonlinear phenomena in science and engineering. The interest
in this system lies in the variety of physical phenomena that it
models, such as the rolling motion of a ship, and the fact that it
is isomorphic with other systems of importance in physics and
engineering (e.g. Josephson junction oscillator and Foucault pendu-
lum). Particularly interesting is the response of the Duffing oscilla-
tor to a harmonic excitation in the presence of viscous damping,
which has been found to exhibit, among other features, hysteretic
and chaotic behaviors. On the other hand, Balthazar Van der Pol
(1889–1959) was a Dutch electrical engineer who initiated modern
experimental dynamics in the laboratory during the 1920s and
1930s. He, first, introduced his (now famous) equation in order
to describe triode oscillations in electrical circuits [23,24]. The
mathematical model for the system, a well known second order
ordinary differential equation with cubic nonlinearity, is the Van
der Pol equation. The Van der Pol oscillator is a classical example



Fig. 1a. Comparison of frequency response curves of Eq. (8) obtained by the present
method (represented by circles) and MSLP method (represented by dashes line)
when e ¼ 0:1; k ¼ 0:2, E ¼ 1; x0 ¼ 1. Corresponding numerical simulations have
been presented (denoted by solid line) to compare with present and MSLP methods.
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of self-oscillatory system and is now considered as very useful
mathematical model that can be used in much more complicated
and modified systems.

In this paper, a simple analytical technique (based on the mod-
ified multiple time scale method) has been presented to obtain the
approximate solutions of such nonlinear damped forced systems.
The method is valid for the all the cases: weak nonlinearities with
small damping effect, weak nonlinearities with strong damping
effect, and strong nonlinearities with strong damping effect.
Fig. 1b. Comparison of frequency response curves of Eq. (8) obtained by the present me
e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1. Corresponding numerical results have been presented (

Fig. 2a. Comparison of frequency response curves of Eq. (24) obtained by the present me
numerical results have been presented (denoted by solid line) to compare with present
Recently, forced vibration of Duffing equation with small damping
effect has been investigated in MSLP method [14]. For the very
both small nonlinearities and small damping effects, the results
of present method, the classical MS method and MSLP method
are almost identical. It has been already mentioned that the pertur-
bation methods [1–10] are valid only for small nonlinearities. The
MSLP method [14] does not provide desire result with the numer-
ical solution when the small nonlinearities with strong damping
effect act. On the other hand, MSLP method is invalid to investigate
the Van der Pol equation in presence of an external force. In this
situation, the present method has been successfully applied to
such equation (Van der Pol equation) and the limitation of [14]
has been removed.

Frequency response relations as well as solutions of Eq. (8) are
obtained by present method and MSLP [14] method and have been
compared with help of numerical results (considered to be exact).
In our solution, damping term is involved in the zeroth-order
solution; but the perturbed equations of MSLP method include
damping effect. Thus the solution of MSLP method deviates swiftly
from the numerical solution increasing with damping effect.

First of all, we have been determined the frequency response
curves of the damped forced Duffing oscillator (by Eq. (8)) obtained
by present and MSLP methods when e ¼ 0:1; k ¼ 0:2,
E ¼ 1; x0 ¼ 1; e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1 and respectively
presented in Fig. 1(a) and 1(b). In a similar way, we have been
determined the frequency response curves of the Van der Pol
thod (represented by circles) and MSLP method (represented by dashes line) when
denoted by solid line) to compare with present and MSLP methods.

thod (represented by circles) when e ¼ 0:5; k ¼ 0:35, E ¼ 0:1; x0 ¼ 2. Corresponding
method.



Fig. 2b. Comparison of frequency response curves of Eq. (24) obtained by the present method (represented by circles) when e ¼ 1; k ¼ 0:8, E ¼ 0:20; x0 ¼ 3. Corresponding
numerical results have been presented (denoted by solid line) to compare with present method.
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Fig. 3a. MSLP Method solution of Eq. (8) has been presented (denoting by dashes line) when e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1; m ¼ 0:8 with initial conditions
½xð0Þ ¼ 0:0385131; _xð0Þ ¼ 0:0458238�. Corresponding numerical solution has been presented (denoted by solid line) to compare with MSLP method.

Fig. 3b. Present method solution of Eq. (8) has been presented (denoting by circles) when e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1; m ¼ 0:8 with initial conditions
½xð0Þ ¼ 0:103221; _xð0Þ ¼ 0:103639�. Corresponding numerical solution has been presented (denoted by solid line) to compare with present method.
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equation (by Eq. (24)) obtained by present method when
e ¼ 0:5; k ¼ 0:35, E ¼ 0:1; x0 ¼ 2; e ¼ 1; k ¼ 0:8, E ¼ 0:20; x0 ¼ 3
and presented in Fig. 2(a) and 2(b) respectively.

Next, the approximate solution of Eq. (8) has been determined
by MSLP and present methods when e ¼ 1; k ¼ 0:3, E ¼ 0:10;
x0 ¼ 1; m ¼ 0:8 with initial conditions ½xð0Þ ¼ 0:0385131;
_xð0Þ ¼ 0:0458238�; ½xð0Þ ¼ 0:103221; _xð0Þ ¼ 0:103639� and respec-
tively presented in Fig. 3(a) and 3(b). In a similar way, we have
been determined the approximate solution of Eq. (24) obtained
by present method when e ¼ 0:5; k ¼ 0:35, E ¼ 0:1; x0 ¼ 2; m ¼ 2
with initial conditions ½xð0Þ ¼ �0:120247; _xð0Þ ¼ 0:0534403� and
presented in Fig. 4(a). Furthermore, we have also determined the



Fig. 4a. Present method solution of Eq. (24) has been presented (denoting by circles) when e ¼ 0:5; k ¼ 0:35, E ¼ 0:1; x0 ¼ 2; m ¼ 2 with initial conditions
½xð0Þ ¼ �0:120247; _xð0Þ ¼ 0:0534403�. Corresponding numerical solution has been presented (denoted by solid line) to compare with present method.

Fig. 4b. Present method solution of Eq. (24) has been presented (Denoting by circles) when e ¼ 1; k ¼ 0:8, E ¼ 0:20; x0 ¼ 3; m ¼ 3 with initial conditions
½xð0Þ ¼ �0:108026; _xð0Þ ¼ 0:0761716�. Corresponding numerical solution has been presented (denoted by solid line) to compare with present method.

Table 1a
Comparison of the approximate frequencies obtained by present method (Eq. (8))
with the exact external frequency me and other existing frequencies (those are
obtained by MSLP method) when e ¼ 0:1, k ¼ 0:2, E ¼ 1; x0 ¼ 1.

A me MSLP
Erð%Þ

Present study
Erð%Þ

0.0 0.099900 0.049020
50.93

0.099966
0.07

0.1 0.100821 0.054220
46.22

0.100889
0.07

0.2 0.103680 0.060616
41.54

0.10376
0.08

0.3 0.108800 0.068652
36.90

0.108887
0.08

0.4 0.116900 0.079011
32.41

0.116861
0.03

0.6 0.146000 0.111647
23.53

0.146091
0.06

0.8 0.206600 0.17605
14.79

0.206985
0.19

1.0 0.250000 0.24942
0.24

0.25086
0.34

1.2 0.153900 0.177089
15.07

0.153969
0.05

1.4 0.090000 0.11185
24.28

0.090034
0.038

1.5 0.072100 0.092869
28.81

0.072147
0.07

Table 1b
Comparison of the approximate frequencies obtained by present method (Eq. (8))
with the exact frequency me and other existing frequencies (those are obtained by
MSLP method) when e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1.

A me MSLP
Erð%Þ

Present study
Erð%Þ

0.0 0.099029 0.047813 0.099695
51.72 0.67

0.1 0.099810 0.052596 0.100488
47.30 0.68

0.2 0.102200 0.058354 0.102971
42.90 0.76

0.3 0.106700 0.065421 0.107323
38.69 0.58

0.4 0.113500 0.074178 0.113854
34.65 0.31

0.6 0.134300 0.099051 0.135109
26.25 0.60

0.8 0.163500 0.136247 0.165738
16.67 1.37

1.0 0.166800 0.164898 0.169222
1.15 1.45

1.2 0.119400 0.13921 0.119902
16.69 0.42

1.4 0.078700 0.100228 0.07872
27.36 0.03

1.5 0.065100 0.085862 0.065086
31.89 0.02

Where Erð%Þ denotes the absolute percentage error.
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approximation solutions of Eq. (24) obtained by present method
when e ¼ 1; k ¼ 0:8, E ¼ 0:20; x0 ¼ 3; m ¼ 3 with initial conditions;
½xð0Þ ¼ �0:108026; _xð0Þ ¼ 0:0761716� and presented in Fig. 4(b).
Moreover, to check the accuracy of the present method, we
have calculated the approximate external frequencies of Eq. (8)



Table 2a
Comparison of the approximate solution of Eq. (8) obtained by MSLP method with the
corresponding numerical solution obtained by fourth-order Runge-Kutta method
when e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1; m ¼ 0:8 with initial conditions
½xð0Þ ¼ 0:0385131; _xð0Þ ¼ 0:0458238�.

t xnu MSLP solution
Erð%Þ

0.0 0.038513 0.0385131
0.00

0.5 0.064158 0.0577838
9.94

1.0 0.088661 0.0679336
23.38

1.5 0.102298 0.0673484
34.16

2.0 0.097908 0.0561213
42.68

2.5 0.072936 0.0360371
50.59

3.0 0.030049 0.010275
65.81

3.5 �0.023622 �0.0171044
27.59

4.0 �0.078108 �0.0417913
46.50

4.5 �0.122647 �0.05989
51.17

5.0 �0.147919 �0.0685347
53.67

5.5 �0.14817 �0.0663478
55.22

6.0 �0.122569 �0.0536785
56.21

Table 2b
Comparison of the approximate solution of Eq. (8) obtained by present method with
the corresponding numerical solution obtained by fourth-order Runge-Kutta method
when e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1; m ¼ 0:8 with initial conditions
½xð0Þ ¼ 0:103221; _xð0Þ ¼ 0:103639�.

t xnu Present solution
Er(%)

0.0 0.103221 0.103221
0.00

0.5 0.145444 0.145604
0.11

1.0 0.164446 0.165061
0.37

1.5 0.15722 0.18338
0.71

2.0 0.125185 0.126469
1.03

2.5 0.07374 0.074645
1.23

3.0 0.011051 0.0111942
1.30

3.5 �0.053263 �0.0539224
1.24

4.0 �0.10932 �0.11061
1.18

4.5 �0.148244 �0.149997
1.18

5.0 �0.163658 �0.165736
1.27

5.5 �0.153048 �0.155172
1.39

6.0 �0.118296 �0.119975
1.42
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by the present method for some particular large values of a and
compared with numerical solution together with other existing
solution (those solution obtained by [14]) when e ¼ 0:1, k ¼ 0:2,
E ¼ 1, x0 ¼ 1; e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1 which have been
presented in Table 1(a) and 1(b) respectively. In addition, we have
determined the approximate solution of the same Eq. (8) by the
present method when e ¼ 1; k ¼ 0:3, E ¼ 0:10; x0 ¼ 1; m ¼ 0:8 with
initial conditions ½xð0Þ ¼ 0:0385131; _xð0Þ ¼ 0:0458238� and all
results with corresponding numerical solutions have been pre-
sented in Table 2(a). Similarly, we have calculated the approximate
solution of the same Eq. (8) by the MSLP method when
e ¼ 1; k ¼ 0:3; E ¼ 0:10; x0 ¼ 1; m ¼ 0:8 with initial conditions
[xð0Þ ¼ 0:103221; _xð0Þ ¼ 0:103639� and all results with corre-
sponding numerical solutions have been presented in Table 2(b).
The errors of each table have been calculated.

From the figures, we observe that the frequency response
curves and approximate solutions of Eq. (8) determined by the
MSLP method deviate from numerical solution (by fourth-order
Runge-Kutta formula) for both weak and strong nonlinearities with
both small and large damping effect. In contrast, the similar results
obtained by the present method are nicely close to the numerical
result. Moreover, from the tables, we see that the absolute relative
error found (first-order approximate external frequency) in this
paper is only 0:07% when e ¼ 0:1; k ¼ 0:2, E ¼ 1; x0 ¼ 1; A ¼ 1:5;
while the relative error obtained by MSLP method is highly
28:81%. Furthermore, the relative error measures in this paper is
only 0:02% for e ¼ 1:0; k ¼ 0:3; E ¼ 0:10; x0 ¼ 1; A ¼ 1:5, whereas
the MSLP method gives 24:18%.

Thus, the present method gives better result than other existing
result for both weak and strong nonlinearities with both small and
large damping effect.

Conclusion

Based on a MST method, a simple analytical technique has been
presented to investigate nonlinear damped forced systems. The
MSLP method is only valid for small damping effect. On the other
hand, the perturbation method is valid only for small nonlineari-
ties. In this article, the limitations of MSLP and perturbation meth-
ods have been eliminated. The method is very powerful for solving
nonlinear forced vibration systems.
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Appendix 1

According to the Eq. (4) and using Eq. (10), Eq. (8) becomes

ðD0 � k2ÞðD1a1Þ þ ðD0 � k1ÞðD1a2Þ þ ðD0 � k1ÞðD0 � k2Þu1

¼ �ða31 þ 3a21a2 þ 3a1a22 þ a32Þ þ E ðeimt0 þ e�imt0Þ=2: ðA:1Þ
By transforming a1 ¼ aeiu=2, a2 ¼ ae�iu=2,
Eq. (17) becomes

_aþ ia _u ¼ ð�kþ ixÞaþ e½3a3ðkþ ixÞ=ð8ðk2 þx2ÞÞ
þ Eðk� iðmþxÞÞðcosw� i sinwÞ=ððk2 þ ðmþxÞ2Þ�; ðA:2Þ

where w ¼ u� mt0.
Substituting the values of k1 ¼ �kþ ix, k2 ¼ �k� ix,

a1 ¼ aeiu=2 and a2 ¼ ae�iu=2 into Eq. (22), we obtain

u1 ¼ �a3 � ðk2 � 2x2Þðe3iu þ e�3iuÞ þ 3ikxðe3iu � e�3iuÞ
32ðk4 þ 5k2x2 þ 4x4Þ

ðA:3Þ

Again, substituting x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � k2
q

and u ¼ wþ mt0 into Eq.

(A.3), we obtain
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u1 ¼ a3 � ð3k2 � 2x2
0Þ cos 3ðwþ mt0Þ � 3kx sin 3ðwþ mt0Þ

16x2
0ð3k2 � 4x2

0Þ
: ðA:4Þ
Appendix 2

Using Eq. (25), the function f ¼ ð1� x2Þ _x can be expanded in the
form

f ¼ ½ð1� a21 � 2a1a2 � a22 þ � � �ÞðD0 þ eD1 þ � � �Þða1 þ a2 þ � � �Þ�
¼ ½ð1� a21 � 2a1a2 � a22 þ � � �Þðk1a1 þ k2a2 þ � � �Þ�
¼ ½ðk1 � ð2k1 þ k2Þa1a2Þa1 þ ðk2 � ð2k2 þ k1Þa1a2Þa2
� ðk1a31 þ k2a32Þ þ � � �� ðA:5Þ
According to the Eq. (4) and using Eq. (A.5), Eq. (24) becomes

ðD0 � k2ÞðD1a1Þ þ ðD0 � k1ÞðD1a2Þ þ ðD0 � k1ÞðD0 � k2Þu1

¼ ðk1 � ð2k1 þ k2Þa1a2Þa1 þ ðk2 � ð2k2 þ k1Þa1a2Þa2
� ðk1a31 þ k2a32Þ þ E ðeimt0 � e�imt0 Þ=ð2iÞ: ðA:6Þ

Transforming a1 ¼ aeiu=2; a2 ¼ ae�iu=2, Eq. (31) becomes

_aþ ia _u ¼ ð�2kxþ exþ ið2x2 þ ekÞa=ð2xÞ � ea3ð3k2

þx2 þ 2ikxÞ=ð8ðk2 þx2ÞÞ � eEððmþxÞ
þ ikÞeiðmt0�uÞ=ðk2 þ ðmþxÞ2Þ ðA:7Þ

Substituting the values of k1 ¼ �kþ ix, k2 ¼ �k� ix,
a1 ¼ aeiu=2 and a2 ¼ ae�iu=2 into Eq. (34), we obtain

u1 ¼ a3 � kðe3iu þ e�3iuÞ þ 2ixðe3iu � e�3iuÞ
32ðk2 þ 4x2Þ

: ðA:8Þ

Again, substituting x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � k2
q

and u ¼ wþ mt0 into Eq.

(A.8), we obtain

u1 ¼ a3 � k cos 3ðwþ mt0Þ � 2x sin 3ðwþ mt0Þ
16ð4x2

0 � 3k2Þ
: ðA:9Þ
References

[1] Krylov NN, Bogoliubov NN. Introduction to nonlinear mechanics. New
Jersey: Princeton University Press; 1947.
[2] Bogoliubov NN, Mitropolskii YuA. Asymptotic methods in the theory of non-
linear oscillations. New York: Gordan and Breach; 1961.

[3] Struble RA. The geometry of the orbits of artificial satellites. Arch Rational
Mech Anal 1961;7(1):87–104.

[4] Nayfeh AH. Perturbation methods. New York: John Wiley & Sons; 1973.
[5] Popov IP. A generalization of the Bogoliubov asymptotic method in the theory

of nonlinear oscillation. Dokl Akad Nauk SSSR 1956;111:308–10.
[6] Bojadziev GN. Damped forced non-linear vibrations of systems with delay. J

Sound Vibr 1976;46(1):113–20.
[7] Bojadziev GN. Two variables expansion method applied to the study of

damped nonlinear oscillations. Nonlinear Vibr Prob 1981;21:11–8.
[8] Shamsul Alam M. Damped oscillations modeled by an n-th order time

dependent quasi-linear differential system. Acta Mech 2004;169:111–22.
[9] Shamsul Alam M, Azad MAK, Haque MA. A general Struble’s technique for

solving an n-th order weakly nonlinear differential system with damping. Int. J
Nonlinear Mech 2006;41(8):905–18.

[10] Nagy TK, Balachandran B. The Duffing equation: nonlinear oscillators and their
phenomena. New York: John Wiley & Sons; 2011.

[11] Hassan A. The KBM derivative expansion method is equivalent to the multiple-
time-scales method. J Sound Vibr 1997;200(4):433–40.

[12] Nayfeh AH. Introduction to perturbation techniques. New York: John Wiley &
Sons; 1981.

[13] Azad MAK, Shamsul Alam M, Saifur Rahman M, Sarker BS. A general multiple-
time-scale method for solving an n-th order weakly nonlinear differential
equation with damping. Commun Korean Math Soc 2011;26(4):695–708.

[14] Pakdemirli M, Karahan MMF, Boyaci H. Forced vibrations of strongly nonlinear
systems with Muliple Scales Lindstedt-Poincare method. Math Comput Appl
2011;16(4):879–89.

[15] He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng.
1999;178:257–62.

[16] Li S, Wan Z, Zhang JH. Free vibration of functionally graded beams based on
both classical and first-order shear deformation beam theories. Appl Math
Mech – Engl Ed 2014;35(5):591–606.

[17] Wu BS, Lim CW, He LH. A new method for approximate analytic solutions to
nonlinear oscillations of nonnatural systems. Nonlinear Dyn 2003;32(1):1–13.

[18] Lim CW, Wu BS. A new analytical approach to the Duffing-harmonic oscillator.
Phys Lett A 2003;311:365–73.

[19] Shaban M, Ganji DD, Alipour MM. Nonlinear fluctuation, frequency and
stability analyses in free vibration of circular sector oscillation systems. Curr
Appl Phys 2010;10:1267–85.

[20] Atouei SA, Hosseinzadeh Kh, Hatami M, Ghasemi Seiyed E, Sahebi SAR, Ganji
DD. Heat transfer study on convective-radiative semi-spherical fins with
temperature-dependent properties and heat generation using efficient
computational methods. Appl Ther Eng 2015;89:299–305.

[21] Li X, Zhang WG, Li ZM. Shape analysis and damped oscillatory solutions for a
class of nonlinear wave equation with quintic term. Appl Math Mech Engl Ed
2014;35(1):117–32.

[22] Akbari MR, Nimafar M, Ganji DD, Karimi Chalmiani H. Investigation on non-
linear vibration in arched beam for bridges construction via AGM method.
Appl Math Comput 2017;298:95–110.

[23] Van der Pol B. On relaxation-oscillations. The London, Edinburgh, Dublin Philos
Mag J Sci Ser 7 1926;2:978–92.

[24] Van der Pol B. The nonlinear theory of electric oscillations. Proc Inst Radio Eng
1934;22:1051–86.

http://refhub.elsevier.com/S2211-3797(17)31182-8/h0005
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0005
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0010
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0010
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0015
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0015
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0020
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0025
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0025
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0030
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0030
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0035
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0035
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0040
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0040
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0045
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0045
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0045
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0050
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0050
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0055
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0055
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0060
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0060
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0065
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0065
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0065
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0070
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0070
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0070
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0075
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0075
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0080
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0080
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0080
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0085
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0085
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0090
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0090
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0095
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0095
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0095
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0100
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0100
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0100
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0100
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0105
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0105
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0105
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0110
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0110
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0110
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0115
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0115
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0120
http://refhub.elsevier.com/S2211-3797(17)31182-8/h0120

	Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
	Introduction
	The method
	Examples
	Example 1
	Example 2

	Results and discussions
	Conclusion
	Acknowledgments
	Appendix 1
	Appendix 2
	References


