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A B S T R A C T

This paper deals with three-dimensional (3D) flow of a Carreau fluid by utilizing the impact of heterogeneous-
homogeneous reactions towards the bidirectional stretched surface. The heat transfer mechanism is carried out
in apparition of improved heat conduction relation. This occurrence is documented upon the notion of gen-
eralized Fourier’s law that contributes by the thermal relaxation. Additionally, temperature dependent thermal
conductivity and heat sink/source are accounted. On utilization of a suitable conversions a system of nonlinear
ordinary differential equation (ODEs) is attained and then inferred numerically via bvp4c approach. The deli-
neations of velocities, temperature and concentration fields corresponding to the numerous somatic parameters
are scrutinized explicitly. The impact of local Weissenberg number We1 on ′f η( ) and We2 on ′g η( ) are same for
(n=0.5 and 1.5). Furthermore, our inspection spectacles that the concentration of the Carreau liquid decays as
the heterogeneous-homogeneous reaction k k( , )2 1 parameters boost up. It is also remarkable that for shear thin-
ning <n( 1) fluid the influence of local Weissenberg numbers We We( , )1 2 are absolutely contradictory as asso-
ciated with the case of shear thickening >n( 1) fluid. For authentication of numerical outcomes a comparison
table is prepared via benchmarking with formerly itemized limiting cases and we pledge a marvelous commu-
nication with these results. Additionally, graphically assessment is presented between numerically (bvp4c) and
analytically (HAM) techniques with tremendous settlement.

Introduction

Recently, combining energetic liquids with heat transfer has been
unique, worthwhile subject owing to its countless methodological and
systematic solicitations. With the intention to attain the superiority of
the product it is documented that the amount of cooling is noteworthy.
For instance, cut-glass foodstuffs, gemstone developing, polymer dis-
pensation, crust of cords, purify- caution of liquefied metals and canvas
material, etc. The heat transport mechanism transpires when the tem-
perature of the body or different quantities of body is changed. This
procedure has enormous solicitations in power cohort, heat conduction
in nerves, nuclear synthesis and countless industrial arenas. The fea-
tures of heat transfer around 200 eons former, was first wished-for
Fourier [1], which is the best heat conduction model to contribute an
information to understand the mechanism of heated conversation in
numerous circumstances. But, Fourier’s law is insufficient owing to the
circumstance of the initial disruption that can be controlled straight-
away all over the system. Afterwards, Cattaneo [2] established an

amendment of Fourier’s law for heat transfer in an obstinate form. By
insertion of thermal relaxation time aspect to present the thermal in-
ertia, which is recognized as Maxwell–Cattaneo law he reformed the
Fourier’s law. By observance this in a vision, by interchanging time
derivative with Oldroyd upper convected derivative this notion is ad-
ditionally improved by Christov [3] and entitled it as Cattaneo–Christov
heat flux model. For the scrutiny of convective heat transport this
model is precise worthwhile. In outlook of these heat transfer proper-
ties, numerous investigators formerly have scrutinized diverse rheolo-
gical problems with numerous method and physical facets (Refs. [4–9]).
These research determined that intensifying the thermal relaxation time
heightens the heat transfer amount by bearing in mind the theory of
Cattaneo–Christov heat flux. For instance, Mustafa et al. [10] scruti-
nized the theory of upgraded heat flux relation on Maxwell liquids with
the impact of variable thermal conductivity in rotating frame analyti-
cally. They point out that owing to the insertion of elastic properties the
hydrodynamic boundary layer turn out to be thinner. Furthermore, Ali
and Sandeep [11] reported numerically, the impact of the improved
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heat flux theory for radiative flow of magnetite Casson-ferrofluid. These
upshots specified that thermal relaxation parameter efficiently aug-
ments the local Nusselt number and the heat transfer enactment is ex-
traordinary in the case of flow towards a wedge when related to flow
towards plate/cone. Dogonchi and Ganji [12] investigated the com-
bined features of thermal radiation and MHD on nanofluid between
parallel plates by utilizing the theory of Cattaneo–Christov heat flux.
They stated that the Nusselt number has revers impact for thermal re-
laxation and heat source parameters.

In recent times, hydrogen-fueled and hydro-carbon homogeneous/
heterogeneous micro reactors have been the attention of forceful ex-
ertions for an impartially wide-ranging assortment of moveable con-
structions of energy with established energy compactness considerably
sophisticated than those of the advanced Li-ion batteries. The solicita-
tions of micro reactors assortment from catalytic micro reactors re-
cycled for the steam revolutionizing of hydrocarbon fuel in little and
high-temperature energy chambers and to micro-scale heat appara-
tuses, in which a catalytic micro combustor is recycled for straight
chemical-to-thermal energy exchange. In furthermost cases, reinforced
moral metallic catalysts are engaged owing to their extraordinary bio-
chemical bustle and constancy for the catalytic restructuring and oxi-
dation of hydrocarbons and hydrogen.

Studies on the subject of chemical reaction have attained unin-
terrupted thoughtfulness from the modern technologists and engineers.
The intrinsic way of a chemical reaction happens if two or more re-
actants yield a product. These chemical reactions are noteworthy in
numerous processes like atmospheric flows, hydrometallurgical dili-
gence, mutilation of crops, fabrication of polymer and porcelains, fog
materialization and dispersal. At diverse amounts the relation among
these reactions together with consumption and fabrication of reactant
kinds inside liquid and on catalytic surface is reasonably convoluted.
Apart from in the manifestation of a catalyst numerous reactions have
the aptitude to transfer gradually or not at all. The viscous fluid flow
with the impact of features of heterogeneous/homogeneous processes
was scrutinized by Merkin [13] who wished-for an isothermal relation.
Moreover, by seeing both kinds of the equal diffusivities, Chaudhry and
Merkin [14] discussed the properties of heterogeneous/homogeneous
reactions in a viscous liquid. In diverse facets countless studies for flow
with heterogenous/homogeneous reactions are pointed out via (Refs.
[15–19]). For instance, Numerically, reported the impact of chemical
reactions subject to nonlinear radiative flow and variable thicked

surface was examined by Khan et al. [20]. Xu [21] explored the liquid
flow in the stagnation area with the influence of heterogeneous-
homogeneous reaction. He reported multiple solutions numerically via
hysteresis bifurcation approach and showed that Prandtl number and
homogeneous reaction parameter was not the reasons to produce
multiple solutions. By utilizing the facets of homogeneous-hetero-
geneous reactions on 3D radiative flow of magneto nanoliquid was
analyzed by Hayat et al. [22]. They showed that homogeneous and
heterogeneous reaction parameters have conflicted trend on con-
centration field. Khan et al. [23] investigated numerically the aspects of
chemical species on unsteady 3D magnetite Carreau liquid. The prop-
erties of shear thinning/thickening was also reported and these out-
comes specified that the concentration of Carreau liquid decayed for
homogeneous reaction and unsteadiness parameters.

Till date, as a consequence of enormous industrial applications the
notion of non-Newtonian liquids have dragged much thoughtfulness
when equated to Newtonian liquids. Moreover, plenty of experimental
and notional studies have been executed to scrutinize the mechanism of
non-Newtonian transport owing to their extensive applications in nu-
merous genetic and developed progressions, materials and motorized
engineering. Numerous materials, for instance biomedical flows, spla-
shes, bio-fluids in genetic material and polymers are identified as non-
Newtonian liquids. In spite of all such concentrations, countless in-
vestigators are quiet engaged to scrutinize the analysis of non-
Newtonian liquids under diverse prospective. Thus, countless commu-
nications for non-Newtonian constituents have been wished-for (Refs.
[24–32]). Up till now well-designed Carreau fluid [33] is a constitutive
model which was formerly wished-for to pretend the properties of shear
thinning/thickening liquids of non-Newtonian liquids. For instance,
Sulochana et al. [34] numerically via RK with shooting procedure ex-
amined the impact of stagnation point on Carreau nanofluid. They
described that the magnetic parameter has tendency to control the flow
field. Recently, Khan et al. [35] anticipated a new model for 3D flow of
Carreau fluid with nonlinear thermal radiation. Later on, Khan et al.
[36,37] and Irfan et al. [38] scrutinized by extending the notion of 3D
flow of Carreau fluid by taking diverse properties. In these scrutiny they
described that thermal Biot number, Brownian, thermophrosis and
thermal radiation parameters enhanced the temperature field respec-
tively. A revised relation of nanoparticles in radiative magnetite Car-
reau fluid was presented by Waqas et al. [39].

Keeping the above literatures in notice, the notable thoughtfulness

Nomenclature

u v w, , velocity components
x y z, , space coordinates
ν kinematic viscosity
Γ material rate constant
n power law index
ρc( )f heat capacity of fluid
T temperature of fluid
K T( ) variable thermal conductivity

∞k thermal conductivity far away from stretched surface
∞T ambient fluid temperature

Q0 heat sink/source coefficient
λ thermal relaxation time coefficient
G, H chemical species
g, h concentration of chemical species
kc, ks rate constants
DG, DH diffusion species coefficients
a, b positive constants
U x( )w , V x( )w stretching velocities
p pressure
μ( 0, ∞μ ) zero and the infinity shear-rate viscosities

γ ̇ shear rate
A1 first Rivlin-Erickson tensor

∗S Cauchy stress tensor
η dimensionless variable
We1, We2 local Weissenberg numbers
β thermal relaxation time parameter
Pr Prandtl number

heat source parameter
<δ 0 heat sink parameter

Sc Schmidt number
k1 homogeneous reaction parameter
k2 heterogeneous reaction parameter
α ratio of stretching rates parameter
∊ thermal conductivity parameter
λ1 the ratio of diffusion coefficient
τxz, τyz surface shear stresses along x and y directions
Cfx, Cfy skin friction coefficients
Rex local Reynolds number
f , g dimensionless velocities
θ dimensionless temperature
l dimensionless concentration
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here is to explore the features of chemical reactions and improved heat
conduction theory on 3D flow of Carreau fluid. The stimulus of tem-
perature dependent thermal conductivity [40–42] with heat sink/
source [43–48] are also presented. Compatible conversions change the
PDEs into ODEs which is then elucidated numerically via bvp4c ap-
proach. Upshots are deduced for the influential variables which appear
in this analysis. It is wished that current scrutiny will be responsible for
a platform for advance investigation on this subject matter in forth-
coming.

Physical model and mathematical formulation

Rheological models

The present analysis emphases on time independent generalized
Newtonian liquid that follows the rheological structures of the Carreau
fluid model. The Cauchy stress tensor for the Carreau fluid model is
specified by the following expression

= − +τ p μ γI A( ̇) ,1 (1)

with

= + − +∞ ∞
−

μ γ μ μ μ γ( ̇) ( )[1 (Γ ̇) ] ,
n

0
2 1

2 (2)

here, p is the pressure, I the identity tensor, μ( 0, ∞μ ) the zero and the
infinity shear-rate viscosities, respectively, n the power law exponent, Γ
the material time constant, = +A V V( )T

1   the first Rivlin-Erickson
tensor and the shear rate is defined by

=γ tr Ȧ 1
2

( ) .1
2

(3)

In view of the most useful circumstances, ≫ ∞μ μ0 and ∞μ is assumed to
be zero. Hence, in consideration of Eq. (2), Eq. (1) reduces to the fol-
lowing form

= − + +
−

τ p μ γI A[1 (Γ ̇) ] .
n

0
2 1

2 1 (4)

Note that the range of power law index < <n0 1 terms the shear
thinning or pseudoplastic liquid and >n 1 terms the shear thickening or
dilatant liquid in Carreau fluid model.

Governing equations

The constitutive flow equation for 3D steady, incompressible
Carreau fluid in vectorial form can be written as follows:

=Vdiv 0, (5)

= ∗ρ V V S( · ) · ,f   (6)

where V is the velocity vector, ρf the liquid density, ∗S the Cauchy
stress tensor.

For steady 3D flow, we seeks the velocity and Cauchy stress tensor
of the form

= =∗u x y z v x y z w x y z x y zV S S[ ( , , ), ( , , ), ( , , )], ( , , ). (7)

Now substituting Eq. (7) in Eqs. (5)–(6), having in mind Eqs. (3) and
(4), a lengthy but straight forward calculations, yields the following
boundary layer equations for the steady 3D flow of Carreau fluid.
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Problem formulations

Let we consider the steady 3D flow of a Carreau fluid influenced by
a bidirectional stretched surface. The sheet is stretched with velocities

=u v ax by( , ) ( , ) respectively, in which >a b, 0 are positive constants and
flow occupies the domain >z 0 (as portrayed in Fig. 1). The heat
transfer mechanism is occupied in the manifestation heat sink/source,
variable thermal conductivity and an Cattaneo–Christov heat conduc-
tion relation. Moreover, the impact of heterogeneous-homogeneous
chemical reactions are taken into account. Homogeneous reactions for
cubic autocatalysis can be termed as:

+ → =G H H k gh2 3 , rate ,c
2 (11)

whereas, the isothermal reaction of the first-order on the catalyst sur-
face is of the form

→ =G H k g, rate ,s (12)

in which G H( , ) are the chemical species which have the concentration
g h( , ) and rate constants k k( , )c s , respectively. Furthermore, it is assumed
that both the reactions are isothermal and distant from the sheet at the
ambient fluid, for reactant G there is a uniform concentration g0, while
there is no autocatalyst H.

The Carreau fluid flow problem with boundary conditions
[20,23,35] under these attentions are written as:
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Fig. 1. Flow configuration.
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→ → → → → → ∞∞u v T T g g h z0, 0, , , 0 as ,0 (20)

where u v w( , , ) represent the velocity components along x-, y- and
z-direction, respectively, Γ the material rate constant, n the power law
index, ν the kinematic viscosity, T the liquid temperature, λ the thermal
relaxation time, Q0 the heat sink/source coefficient and D D( , )G H the
diffusion species coefficients of G and H, respectively and K T( ) the
temperature dependent thermal conductivity of Carreau liquid which is
define as

⎜ ⎟⎜ ⎟= ⎛
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K T k T T

T T
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where ∊∞k( , ) respectively, the ambient liquid thermal conductivity and
small scalar parameter.

Appropriate conversions
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∞
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Overhead conversions yield the equation of continuity satisfy identi-
cally and Eqs. (14) to (20) into following ODEs of Carreau fluid

‴ + ″ + ″ − ′ + ″ + =
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n
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2 2 3
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are the local Weissenberg numbers,
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sink/source parameter, =( )Pr ν
α1

the Prandtl number, =( )α b
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stretching rates parameter, =( )λ D
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H
G

the ratio of diffusion coefficient,

=( )Sc ν
DG

the Schmidt number, and k k( , )2 1 the measures the strength of
heterogenous-homogeneous processes.

In physical circumstances, the diffusion coefficients DG and DH are
taken to be equivalent i.e. =λ 11 , which will provide us

+ =l η m η( ) ( ) 1. (32)

Now subsequently, Eqs. (26) and (27) with boundary conditions (29)
and (31) yields

″ + + ′− − =
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2
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′ = → → ∞l k l l η(0) (0), 1 as .2 (34)

Physical quantities:

The skin friction coefficients

An crucial properties of flow are the local skin friction coefficients
C C( , )fx fy which are defined as
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in the dimensionless forms

= ″ + ″
−

C f We f1
2

Re (0)[1 (0)] ,fx x
n1

2
1
2 2 1

2
(36)

⎜ ⎟
⎛
⎝

⎞
⎠

= ″ + ″
−U

V
C g We g1

2
Re (0)[1 (0)] ,w

w
fy x

n1
2

2
2 2 1

2
(37)

in which = ax νRe /x
2 is local Reynolds number.

Implementation of the method

Numerical scheme

In this breakdown, bvp4c method is betrothed to discretize the flow,
energy and concentration equations for the well-planned problem. To
attain this objective, we revise the Eqs. (23)–(25), (28), (30), (33) and
(34) into first order differential structures are as follows:
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= = ∞ =y y α y(0) 0, (0) , ( ) 0,4 5 5 (48)
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= ∞ =y y(0) 0, ( ) 0,7 7 (49)

= = ∞ =y k y y(0) (0) 0, ( ) 1.10 2 9 9 (50)

Analysis of results

To disclose the enactment of diverse parameters of present problem
this section is systematized. The graphs for velocities, temperature and
concentration fields are prepared. Additionally, graphical comparison
along with assessment tables are also structured and discussed.
Moreover, the significance of numerous somatic variables corre-
sponding to, local Weissenberg number ⩽ ⩽We We(0 3)1 1 , local
Weissenberg number ⩽ ⩽We We(0 9)2 2 , thermal relaxation parameter

⩽ ⩽β β(0 0.3), thermal conductivity parameter ∊ ⩽ ∊ ⩽(0.1 0.7), ratio
of stretching rates parameter ⩽ ⩽α α(0 0.6), Schmidt number

⩽ ⩽Sc Sc(1 2), homogeneous parameter ⩽ ⩽k k(0.1 1.1)1 1 and hetero-
genous parameter ⩽ ⩽k k(0.1 0.7)2 2 on velocity, temperature and con-
centration fields are studies on physical point of assessment.

Behavior of We1 on ′f η( ) and θ η( )

The feature of essential physical consideration of Carreau fluid,
namely the local Weissenberg number We1 on velocity component ′f η( )
and temperature of Carreau liquid θ η( ) for both shear thinning/thick-
ening fluids are plotted in Fig. 2(a,b,c,d). On the basis of these sketches
we noted that the We1 decline the velocity field for shear thinning li-
quid, however it enhances for shear thickening liquid. Instead, totally
conflicting behavior is being observed for temperature of Carreau li-
quid. Physically, the relaxation time of Carreau liquid particles increase

when we enhance We1. Therefore, the struggle is encountered by these
particles which decay the velocity field, whereas conflicting trend is
being established for shear thickening circumstance on velocity field.
Moreover, the behavior of We1 on temperature is quite reverse when
compared with velocity for both instances.

Behavior of We2 on ′g η( ) and θ η( )

Fig. 3(a,b,c,d) are interested to envision the impact of the local
Weissenberg number We2 on velocity component ′g η( ) and temperature
field θ η( ) for higher values of We2 for =n( 0.5 and =n 1.5). These plots
display that augmenting values of We2 reduce the velocity field for

=n( 0.5) and temperature field for =n( 1.5), although the behavior is
noted quite opposite for the velocity component >n( 1) and for tem-
perature field <n( 1). Physically, intensifying values of the We2 causes
intensification in the liquid viscosity. Hence, the flow becomes struggle
more which heighten the liquid temperature for shear thinning and
decline for shear thickening liquid as disclosed in Fig. 3(c,d).

Behavior of β and ∊ on θ η( )

To picture the properties of thermal relaxation parameter β and
thermal conductivity parameter ∊ for both instances <n( 1 and >n 1)
on Carreau liquid temperature field θ η( ) Figs. 4(a,b) and 5(a,b) are
exposed. Fig. 4(a,b) spectacles retreating performance for augmenting
values of β for both cases. When the values of β enhance, then the liquid
material necessities additional time for heat transport to adjacent ele-
ments. Therefore, the temperature gradient of Carreau liquid is high
which decay the temperature field. Instead of this, it is also noticed that

Fig. 2. (a)–(d): Impact of We1 on ′f η( ) and θ η( ).
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in both instances <n( 1 and >n 1) the thermal conductivity parameter
∊ is the enhancing function of the Carreau liquid temperature field. This
happens when ∊ increase then considerable heat transfers from the
sheet to the material which enhance the temperature of Carreau liquid.

Behavior of We1 and We2 on l η( )

The concentration field for essential parameters of Carraeu fluid the
local Weissenberg numbers We1 and We2 for shear thinning/thickening
liquids are designed in Figs. 6(a,b) and 7(a,b). Increasing values of We1

and We2 for =n( 0.5) diminish the concentration field while for
=n( 1.5) these parameters are boosting function of concentration of

Carreau liquid. Hence, at the end, we can declare that the behavior of
We1 and We2 for shear thinning liquid is quite conflicting to shear
thickening liquid on the concentration of Carreau liquid.

Behavior of α and Sc on l η( )

The plots of increasing the value of the ratio of stretching rates
parameter α and Schmidt number Sc for =n( 0.5 and =n 1.5) on the

Fig. 3. (a)–(d): Impact of We2 on ′g η( ) and θ η( ).

Fig. 4. (a,b): Impact of β on θ η( ).
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concentration field l η( ) are presented in Figs. 8(a,b) and 9(a,b). The
analogous trend is being recognized by uplifting the value of α and Sc. It
is also reported the α and Sc are the enhancing function of Carreau
liquid concentration distribution. Physically, the Sc is the quotient of
viscous diffusion amount to the molecular diffusion amount. For that
reason, advanced value of Sc recall the greater viscous diffusion
amount, which is appropriate to strengthen the concentration of Car-
reau liquid revealed in Fig. 9(a,b).

Behavior of k1 and k2 on l η( )

To sightsee the properties of chemical reaction (homogeneous-het-
erogenous) parameters k( 1, k )2 for shear thinning/thickening conditions
on concentration profile Figs. 10(a,b) and 11(a,b) are systematized. The
concentration of a Carreau liquid in response to enlarging values of k1
and k2 is decay. The reactants are disbursed during the homogeneous
reaction k1 which causes the diminishing of the concentration field

Fig. 5. (a,b): Impact of ∊ on θ η( ).

Fig. 6. (a,b): Impact of We1 on l η( ).

Fig. 7. (a,b): Impact of We2 on l η( ).
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which is planned in 10(a,b). Moreover, sophisticated value of hetero-
geneous parameter k2 for both <n( 1 and >n 1) spectacles analogous
development for concentration field. Hence, the outcomes of k1 and k2
are same on Carreau liquid concentration field.

Validation of numerical scheme

Graphical comparison
The graphical assessment between numerical (bvp4c) and homo-

topy analysis method (HAM) methods for the value of thermal relaxa-
tion and thermal conductivity parameters ∊β( , ) respectively, are stra-
tegized in Fig. 12(a,b). These upshots spectacles a wonderful settlement
between these two schemes.

Fig. 8. (a,b): Impact of α on l η( ).

Fig. 9. (a,b): Impact of Sc on l η( ).

Fig. 10. (a,b): Impact of k1 on l η( ).

M. Irfan et al. Results in Physics 10 (2018) 107–117

114



Tabular comparison
The legitimacy of the numerical significances is also recognized by

assessment with the analytical upshots attained by the HAM as dis-
played in Tables 1–3. Furthermore, these outcomes are compared with

earlier obtainable relevant prose as a remarkable case of the problem
and brilliant settlement is noted. The table of the local Nusselt number
for the different values of Prandtl number is vacant through Table 4. An
assessment between numerical scheme (bvp4c) and analytical

Fig. 11. (a,b): Impact of k2 on l η( ).

Fig. 12. (a,b): A comparison of β and ∊ on θ η( ) for two different techniques.

Table 1
Numerical values of ″f (0) with two different schemes in limiting cases when = =We We 01 2 and =n 3 are fixed.

α ″f (0)

Ref. [49] Ref. [50] Ref. [51] Present (bvp4c) Present (HAM)

0.0 −1 −1 −1 −1 −1
0.25 −1.048813 −1.048813 −1.048818 −1.04880750 −1.0488067
0.50 −1.093097 −1.093096 −1.093098 −1.09309070 −1.0930905
0.75 −1.134485 −1.134486 −1.134487 −1.13448290 −1.13448275
1.0 −1.173720 −1.173721 −1.173721 −1.17372090 −1.17372091

Table 2
Numerical values of ″g (0) with two different schemes in limiting cases when = =We We 01 2 and =n 3 are fixed.

α ″g (0)

Ref. [49] Ref. [50] Ref. [51] Present (bvp4c) Present (HAM)

0.0 0 0 0 0 0
0.25 −0.194564 −0.194565 −0.194567 −0.19456986 −0.19456946
0.50 −0.465205 −0.465206 −0.465207 −0.46521364 −0.46521349
0.75 −0.794622 −0.794619 −0.794619 −0.79461627 −0.79461618
1.0 −1.173720 −1.173721 −1.173721 −1.17372090 −1.17372091
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technique (HAM) with some previous prose is also presented in this
table. Therefore, we are confident that the present results are very
precise.

Key facts

This article explored the properties of generalized Fourier’s law and
chemical reaction on 3D flow of Carreau fluid subject to variable
thermal conductivity and heat sink/source. The following interpreta-
tions are condensed in present analysis.

• The velocity field declined for We1 when <n( 1) and enhanced for
>n( 1) whereas, conflicted behavior is being established for tem-

perature field.

• The thermal relaxation parameter β decayed the temperature field
while for thermal conductivity parametre ∊ the temperature of
Carreau liquid enhanced for both =n( 0.5 and =n 1.5).

• For shear thinning liquid <n( 1) the impact of We1 and We2 were
quite reversed to the shear thickening liquid on concentration field.

• Analogous trend for <n( 1 and >n 1) of homogeneous-hetero-
geneous reaction parameters were detected on concentration field.

References

[1] Fourier JBJ. Theorie analytique De La Chaleur Paris; 1822.
[2] Cattaneo C. Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena Reggio

Emilia 1948;3:83–101.
[3] Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo model of

finite speed heat conduction. Mech Res Commun 2009;36:481–6.
[4] Liu L, Zheng L, Liu F, Zhang X. An improved heat conduction model with Riesz

fractional Cattaneo–Christov flux. Int J Heat Mass Transf 2016;103:1191–7.
[5] Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A. Cattaneo-Christov heat flux

model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq
2016;220:642–8.

[6] Khan M, Ahmad L, Khan WA, Alshomrani AS, Alzahrani AK, Alghamdi MS. A 3D
Sisko fluid flow with Cattaneo-Christov heat flux model and heterogeneous-homo-
geneous reactions: a numerical study. J Mol Liq 2017;238:16–9.

[7] Liu L, Zheng L, Liu F, Zhang X. Heat conduction with fractional Cattaneo-Christov
upper-convective derivative flux model. Int J Therm Sci 2017;112:421–6.

[8] Waqas M, Khan MI, Hayat T, Alsaedi A, Khan MI. On Cattaneo-Christov double
diffusion impact for temperature-dependent conductivity of Powell-Eyring liquid.

Chin J Phys 2017;55:729–37.
[9] Khan WA, Irfan M, Khan M. An improved heat conduction and mass diffusion

models for rotating flow of an Oldroyd-B fluid. Results Phys 2017;7:3583–9.
[10] Mustafa M, Hayat T, Alsaedi A. Rotating flow of Maxwell fluid with variable

thermal conductivity: an application to non-Fourier heat flux theory. Int J Heat
Mass Transf 2017;106:142–8.

[11] Ali ME, Sandeep. Cattaneo-Christov model for radiative heat transfer of magneto-
hydrodynamic Casson-ferrofluid: a numerical study. Results Phys 2017;7:21–30.

[12] Dogonchi AS, Ganji DD. Impact of Cattaneo-Christov heat flux on MHD nanofluid
flow and heat transfer between parallel plates considering thermal radiation effect.
J Taiwan Inst Chem Eng 2017;80:52–63.

[13] Merkin JH. A model for isothermal homogeneous-heterogeneous reactions in
boundary-layer flow. Math Comput Model 1996;24:125–36.

[14] Chaudhary MA, Merkin JH. A simple isothermal model for homogeneous-hetero-
geneous reactions in boundary-layer flow, I. Equal diffusivities. Fluid Dyn Res
1995;16:311–33.

[15] Chen J, Liu B, Gao X, Yan L, Xu D. Effects of heterogeneous–homogeneous inter-
action on the homogeneous ignition in hydrogen-fueled catalytic microreactors. Int
J Hydrogen Energy 2016;41:11441–54.

[16] Raju CSK, Sandeep N, Saleem S. Effects of induced magnetic field and homo-
geneous–heterogeneous reactions on stagnation flow of a Casson fluid. Eng Sci Tech
Int J 2016;19:875–87.

[17] Hayat T, Rashid M, Imtiaz M, Alsaedi A. Nanofluid flow due to rotating disk with
variable thickness and homogeneous-heterogeneous reactions. Int J Heat Mass
Transf 2017;113:96–105.

[18] Khan WA, Irfan M, Khan M, Alshomrani AS, Alzahrani AK, Alghamdi MS. Impact of
chemical processes on magneto nanoparticle for the generalized Burgers fluid. J
Mol Liq 2017;234:201–8.

[19] Gireesha BJ, Kumar PBS, Mahanthesh B, Shehzad SA, Rauf A. Nonlinear 3D flow of
Casson-Carreau fluids with homogeneous–heterogeneous reactions: a comparative
study. Results Phys 2017;7:2762–70.

[20] Khan MI, Waqas M, Hayat T, Khan MI, Alsaedi A. Numerical simulation of nonlinear
thermal radiation and homogeneous-heterogeneous reactions in convective flow by
a variable thicked surface. J Mol Liq 2017;246:259–67.

[21] Xu H. A homogeneous-heterogeneous reaction model for heat fluid flow in the
stagnation region of a plane surface. Int Commun Heat Mass Transf 2017;87:112–7.

[22] Hayat T, Rashid M, Alsaedi A. Three dimensional radiative flow of magnetite-na-
nofluid with homogeneous-heterogeneous reactions. Results Phys 2018;8:268–75.

[23] Khan M, Irfan M, Khan WA. Thermophysical properties of unsteady 3D flow of
magneto Carreau fluid in presence of chemical species: a numerical approach. J
Braz Soc Mech Sci Eng 2018. http://dx.doi.org/10.1007/s40430-018-0964-4.

[24] Chamkha AJ. Hydromagnetic natural convection from an isothermal inclined sur-
face adjacent to a thermally stratified porous medium. Int J Eng Sci
1997;35:975–86.

[25] Chamkha AJ. MHD-free convection from a vertical plate embedded in a thermally
stratified porous medium with Hall effects. Appl Math Model 1997;21:603–9.

[26] Takhar HS, Chamkha AJ, Nath G. Unsteady flow and heat transfer on a semi-infinite
flat plate with an aligned magnetic field. Int J Eng Sci 1999;37:1723–36.

[27] Takhar HS, Chamkha AJ, Nath G. Unsteady three-dimensional MHD-boundary-layer
flow due to the impulsive motion of a stretching surface. Acta Mech
2001;146:59–71.

[28] Haq RU, Noor NFM, Khan ZH. Numerical simulation of water based magnetite
nanoparticles between two parallel disks. Adv Powder Technol 2016;27:1568–75.

[29] Khan M, Irfan M, Khan WA. Impact of nonlinear thermal radiation and gyrotactic
microorganisms on the Magneto-Burgers nanofluid. Int J Mech Sci
2017;130:375–82.

[30] Anwar MS, Rasheed A. A microscopic study of MHD fractional inertial flow through
Forchheimer medium. Chin J Phys 2017;55:1690–703.

[31] Khan M, Irfan M, Khan WA, Ahmad L. Modeling and simulation for 3D magneto
Eyring-Powell nanomaterial subject to nonlinear thermal radiation and convective
heating. Results Phys 2017;7:1899–906.

[32] Hayat T, Rafique K, Muhammad T, Alsaedi A, Ayub M. Carbon nanotubes sig-
nificance in Darcy-Forchheimer flow. Results Phys 2018;8:26–33.

[33] Carreau PJ. Rheological equations from molecular network theories. Trans Soc
Rheol 1972;116:99–127.

[34] Sulochana C, Ashwinkumar GP, Sandeep N. Transpiration effect on stagnation-point
flow of a Carreau nanofluid in the presence of thermophoresis and Brownian mo-
tion. Alex Eng J 2016;55:1151–7.

[35] Khan M, Irfan M, Khan WA, Alshomrani AS. A new modeling for 3D Carreau fluid
flow considering nonlinear thermal radiation. Results Phys 2017;7:2692–704.

[36] Khan M, Irfan M, Khan WA. Numerical assessment of solar energy aspects on 3D
magneto-Carreau nanofluid: a revised proposed relation. Int J Hydrogen Energy
2017;42:22054–65.

[37] Khan M, Irfan M, Khan WA. Impact of forced convective radiative heat and mass
transfer mechanisms on 3D Carreau nanofluid: a numerical study. Eur Phys J Plus
2017. http://dx.doi.org/10.1140/epjp/i2017-11803-3.

[38] Irfan M, Khan M, Khan WA. Numerical analysis of unsteady 3D flow of Carreau
nanofluid with variable thermal conductivity and heat source/sink. Results Phys
2017;7:3315–24.

[39] Waqas M, Khan MI, Hayat T, Alsaedi A. Numerical simulation for magneto Carreau
nanofluid model with thermal radiation: a revised model. Comput Methods Appl
Mech Eng 2017;324:640–53.

[40] Umavathi JC, Sheremet MA. Influence of temperature dependent conductivity of a
nanofluid in a vertical rectangular duct. Int J Non-Linear Mech 2016;78:17–28.

[41] Umavathi JC, Sheremet MA, Mohiuddin S. Combined effect of variable viscosity and
thermal conductivity on mixed convection flow of a viscous fluid in a vertical

Table 3
Numerical values of − ′θ (0) with two different schemes in limiting cases when

= = = = ∊ =We We β δ 01 2 , =Pr 1 and =n 3 are fixed.

α − ′θ (0)

Ref. [50] Ref. [51] Present (bvp4c) Present (HAM)

0.25 0.665933 0.665939 0.66593318 0.66593302
0.50 0.735334 0.735336 0.73533293 0.73533278
0.75 0.796472 0.796472 0.79647181 0.79647179

Table 4
Numerical values of two different schemes for different values of Prandtl
number when = = = = ∊ =We We β δ 01 2 and =n 3 are fixed.

Pr − ′θ (0)

Ref. [52] Ref. [53] Ref. [54] Present (bvp4c) Present (HAM)

0.70 0.4539 0.4539 0.4539 0.45445767 0.4539331
1.0 0.58201280 0.5819772
1.3 0.69302203 0.6930220
1.6 0.79227119 0.7922980
1.8 0.85344101 0.8534274
2.0 0.9113 0.9114 0.9114 0.91134742 0.9113362
5.0 1.56806380
7.0 1.8954 1.8954 1.8954 1.89542450
10.0 2.30801360
20.0 3.3539 3.3539 3.3539 3.35396200
70.0 6.4621 6.4622 6.4622 6.46238930
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