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We introduce a new family of the 2D integrable mechanical system possessing an additional integral of
the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the
majority of the previous systems with a cubic integral can be reconstructed from it as a special version
for certain values of those parameters. The applications of this system are extended to include the prob-

lem of motion of a particle and rigid body about its fixed point. We announce new integrable problems
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describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also
present a new integrable problem in a rigid body dynamics and this problem generalizes some of the pre-
vious results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.
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Introduction

From about 150 years or so, Bertrand was interested in search-
ing for the structure of forces acting on the motion of a particle in
the Euclidean plane which guarantees the existence of an addi-
tional integral of a certain form. His accomplishment was slightly
in solving this problem for simple forms of the integral such as a
polynomial up to the third degree and a fractional function in
which the numerator and denominator are linear in velocity vari-
ables [1,2]. He was followed by Darboux who studied the construc-
tion of an integrable system having a quadratic integral and solved
the problem completely [3] (also, see [4]). This direction of
research was studied by several authors and it is called in literature
a direct method for obtaining the second invariant. The majority of
integrable mechanical systems describing the motion of a particle
in the plane having a polynomial additional integral in the veloci-
ties with degree ranging up to six were collected in Hietarienta’s
review [5]. Other systems were mainly presented by trials to insert
new arbitrary parameters to the structure of previous knowing
results [6] or by some changes in the methodology [7]. Other types
of integrable systems which have a configuration space involving a
large numbers of arbitrary parameters were introduced and they
were classified and interpreted physically by Gaussian curvature.
For instance, when Gaussian curvature vanishes (equals a negative
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value), the configuration space becomes Euclidean plane (Pseudo-
sphere) (see, e.g.[8]).

The model of a rigid body acts a good example in the integrabil-
ity problems owing to its applications in diverse branches of
science such as astronomy and physics (see, e.g., [9-11]). Inte-
grable problems concerning the rigid body dynamics and their gen-
eralizations to a gyrostat were classified into general and
conditional integrable problems according to their validity on an
arbitrary level of a cyclic integral or on a fixed level (usually
zero-level) of it. The general integrable problems were tabulated
in small tables (see, e.g., [12-14]) and some other problems were
added (see, for example, [15]). The famous integrable problems
bearing the names of Goriachev- Chaplygin [12] are the first exam-
ple of conditional integrable problems and they were followed by
numerous generalizations (see, for example, [16-18]). It is worthly
notice that the first integrable mechanical system that possesses
an additional polynomial integral of a third degree in the velocities
is Goriachev’s case. This case was generalized in several works such
as [23-25]. A part of our interest in current work is to present a
new generalization of this case and its knowing generalizations.

Equations of motion of a rigid body

The general motion of a rigid body rotating around its fixed
point O due to the effect of a potential (velocity-independent)
and gyroscopic (velocity-dependent) forces is described by the
Lagrangian [26,27]
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L:%w-wl+l~w—v, (1)
where o is the angular velocity and I = diag(A, B, C) is the matrix of
principal inertia about the fixed point O. The equations of motion
take the form

. o .
wl+wx(wl+u):yxa—y, y+wxy=0, (2)
where y = (y4,7,,75) is a unite vector that is fixed upward in the
space while u takes the form

0] 7]
=—(1-9y) - (=-Dy.
= 1) = Gy 3)

The Egs. (2) have three integrals of motion which are called in
literatures as classical integrals. They are:

Jacobi-integral : I :%w -l +V =h, (4)
Geometric integral: L =y-y=1, (5)
Area integral : I3 =(wl+1)-y=F, (6)

where h and f are arbitrary parameters characterizing the values of
Jacobi and area integrals, respectively.

Due to Jacobi theorem on a last integrating factor [12], the
equations of motion (2) are completely integrable, or integrable
in short, if it possesses the fourth first integral of motion that is
independent on those (4)-(6). This means, one additional integral
of motion is required to prove the integrability and moreover, it
can be utilized to find the explicit solution of the equations of
motion. In general, the problem of motion of a rigid body has six
degrees of freedom: three of them for transition motion and the
others for the rotational motion. As a result of the body has a fixed
point, it only rotates about a certain axis passing through this
point. So, it has three degrees of freedom. Its position is always
determined by the Eulerian angles 6, ¢ and . Moreover, the vari-
able y is cyclic variable. Therefore, we can utilize the Routh proce-
dure to eliminate this variable and the problem becomes two-
dimensional. Consequently, it is described by the Routhian

2 a2 )
R—l[ V3 2+C(1D /3)9'02} +fC'))3 +AL(1 Va)(p

T21-92 AD
1, (-5’
‘E<V+—fﬁr— : @)

where D = A — (A — C)y3. The new results are usually given by the
two functions V and . This is due to, they are invariant under all
possible gauge transformations. This means, when we add the
gauge term w to the Lagrangian (1), the linear terms in veloc-
ity will be altered while the vector u and the potential V are not
changed. And so, the equations of the motion remain unchanged.
Furthermore, this illustrates the novelty of our results.

Formulation of the problem

The method for constructing two-dimensional integrable sys-
tems (not necessarily plane) admitting an additional polynomial
integral in the generalized velocities was presented in [28] and it
was developed in later works (see, e.g., [29]). It also was applied
to build various integrable systems with additional integral quad-
ratic (see, e.g., [30,31]), cubic (see, e.g., [23,24]) and quartic (see,
e.g., [8,15-21]). The application of this method is only confined
to the two-dimensional mechanical systems. Numerous examples
are described by this type such as the problem of motion of a par-
ticle on a smooth surface (fixing or rotating) under the action of the

variety of forces or their dimensions are reduced by using a Routh
procedure to a two-dimensional mechanical systems such as the
problem of motion having n degrees of freedom with n — 2 are cyc-
lic. Also, one of the most significant examples is the motion of a
rigid body-gyrostat that rotates about its fixed point under the
action of the results of potential and gyroscopic forces allowing
to a cyclic variable to exist. In general, the two-dimensional
mechanical systems are described by the Lagrangian

L= %(anq}z + 212G, G5 + 02205%) + @Gy + G2y — V, (8)
where a;, a;,1,j = 1,2 and V are six functions in both variables ¢,, q,
and dots denote the derivative with respect to the time t. As a result
of those functions rely on the generalized coordinates q,,q,, the
system (8) accommodates Riemannian two-dimensional manifolds
as possible configuration spaces. And this permits the application
to several problems in the dynamics including the motion of a rigid
body about a fixed point, the motion of a particle on a fixed smooth
curved surface and the motion on pseudo-sphere. From another
point, the linear terms in the velocities characterize the gyroscopic
forces which do not produce work through the motion. This force
appears due to some aspects such as the body carries some charged
components moving in a stationary magnetic field and the utiliza-
tion of Routh procedure to eliminate cyclic coordinates. It is
denoted by the vector (a;,a,) and so, it is named a vector potential
while V refers to the scalar potential. By virtue of Birkhoff's theorem
[32], the system (8) can always be referred to some isometric coor-
dinates ¢, #n(say) and the Lagrangian (8) admits the form

A, . : .
sz(éz+’/’2)+l1(£7'7)é+12(§7’/’)177‘/7 (9)

where A is a function in the two variables ¢, 5. This Lagrangian has a
Jacobi integral

h=0@ i ev=h (10)
where h is an arbitrary constant. The Lagrangian (9) is completely
integrable if it has an additional integral I, that is independent on
the Jacobi-integral (10) and thus, the solution of the equations of
the motion is reduced to a number of quadratures and to the inver-
sion of certain integrals. This is always ensured by Liouville theorem
of the equivalent Hamiltonian systems (see, e.g., [33]). Applying the
time transformation

dt = Adr, (11)
to the Lagrangian (9), we get

] ! i ! /
L:§(52+'72)+115+127I +U, (12)
where U = A(h — V) and dashes refer to differentiation with respect

to 7. The Lagrangian equations corresponding to the Lagrangian (12)
are

2 /_ % " gl %
¢+Qn—857 n Qq—an, (13)
where Q = f,—’,; - ‘;ﬁ Eqgs. (13) have a Jacobi integral
1 U /.
=5 0% -U=0. (14)

Notice that, the Jacobi constant h for the original system (8)
enters linearly as a parameter in the force function U. The addi-
tional integral which requires to ensure the integrability of the
Lagrangian system (12) is assumed to be cubic in the generalized
velocities. Following [28], it takes the form

=&+ Py + Q&N + P& + Qi +R, (15)
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where P;, Q;,i,j = 1,2 and R are functions in both variables ¢ and #.
Differentiating the integral I, with respect to T and using the Jacobi
integral (14) to eliminate the even powers of #’, we obtain

oP, 0Q,

& on (16)
%%ﬁ—l;zfm 0, (17)
%7%+ZQQ2+38—5 0, (18)
8—1:;+66—Q£1—29P2:0, (19)
20|50 00, |+ P G+ Qi =0, (20)
8R+Qz%+2Pzav+28§;U+Q1Q 0, (21)
aRJerc,)é P1Q =0. (22)

The Eqgs. (16)-(22) are seven nonlinear partial differential equa-
tions in seven unknowns. The two Eqs. (16) and (17) imply to
oY oY

Po=k—, Q, :Ka_f’

_Ke2
o Q=3 V¥, (23)

where W is an arbitrary function in the two variables ¢ and # while

K is an arbitrary constant. Inserting the expressions (23) into the
two Egs. (18) and (19), we get

p 0 K2 (0¥ ow?
T3 (811)*87 ’

o’ 2K OV oY
Q=-

1
TR — V2O, (24)

oz on’ ~ 3

where @ is an arbitrary function in the two variables ¢ and #. Taking
all obtained results into the two Egs. (21) and (22), we can write the
function R -up to an additive constant- in the form

R=" / (390, 4 (292 - ¥2) 30,97

x dn +§/ 2, V20, + ¥. V20, + 2, V20

) 2K?
V(@ - 5| dE, (25)
0

where [-], means that the expression in the bracket is computed for
n taking an arbitrary constant value #, (say). Notice, the following
compatibility condition

0 (OR 0 (0OR
ai (32) = 7 (6 20)
must be satisfied. Inserting all obtained results into the two Egs.
(20) and (26), we have
K2 (W2 = W) V20, — 29 W, V2D, + 2(W.yp, — 29, W
— ¥, ¥)V20] + 3[@,, V2D, — D V>D, + 2D, VD] = 0, (27)
and
KCI(W2 = W)V, — 29 ¥nV2Y, + 2V W (W (W
— W) = 2W, W] + 3K WDy — Pecze) + 2W, V2D,
+ (W — 2%e) Oieee + (D + 2Dyy) oy
439, V2D, + 3, pye — B Weo: + 0. V2P, = (28)

Taking all obtained results into our considerations, we can for-
mulate the following.

Theorem 1. The 2D time-irreversible Lagrangian
1 .0
L= P (¢

describes an integrable mechanical system on a zero-level of Jacobi-
integral

1
%)+ K¢ = Waty) —5 V7O, (29)

I 1 é/2+n,2)+%vz®:0. (30)

=5
Its conditional cubic integral is

b =& + k(W& + W) + (@ + 5 (8w
2i?
=[Oy — 5~ ¥ -3 / [—3T5V2®5

+ K7 (P2 - W) — 3<I>ég“]V2‘P] dn
+§ / 2%, V20, + ¥ V70, + 2, V20

9 2K?

+V (D — T‘Pé\l‘n)] dé, (31)
0

where the two functions ¥ and ® satisfy the two nonlinear partial dif-

ferential Egs. (27) and (28).

Notice that, the integrable system involving in Theorem 1 is a
conditionally integrable due to it is only valid on a zero-level of
Jacobi integral. It is worth notice that the problem of construction
2D time- irreversible integrable mechanical system is reduced to
solve the two nonlinear partial differential Eqs. (27) and (28). This
reduction is introduced here for the first time. It is worth notice
that, when « vanishes, the problem under consideration becomes
time-reversible, i.e., it is invariant under a time transformation
T — —7. It is evident that the Theorem 1 is reduced to the results
obtained in [23] and can be summarized in the following.

Theorem 2. A 2D time-reversible mechanical system that is charac-
terized by the Lagrangian

L= (" +n%) - ;vz@, (32)

No| =

is integrable on a zero level of energy-integral

1 v/2 12 2
SJE ) 11V, 33)

and the conditional additional cubic integral has the form

L=¢+ D¢

L=

"= Dy, (34)
where the function ® is a solution of the following partial differential
equation

O, V2D, — O VD, + 20, VD = 0. (35)

A family of 2D-integrable system
A conditional integrable system

Now, we search for a solution of the two Eqs. (27) and (28). This
solution is acceptable if it generates new integrable systems gener-
alizing the previous results and can also be utilized to construct
new integrable model as we see later in the applications. According
to previous results, we can use the two variables p, g instead of ¢, 7,
respectively, through the following point transformation
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/ =

é: 9
Vasp3 + ap? +arp + o

_ V/baq* + bsq® + bag% + b1q + bo
a C3q° + C2q° + €19+ Co

n dg, (36)

where a;, b;, ¢; are arbitrary constants and the two functions ¥ and
® are assumed to have the following forms

Y(p,q) =f1(q) [ah Vasp® + ap? +a;p + ap + dzp]

+3(9)|dsp? + dap/asp® + @xp? + 1p + o]
+f0(q)7
®(p,q) =f5(q) [ah Vasp? + ap? + a;p + ap + dzp]

+f5(9)|dsp? + dap/asp* + @xp? + arp + o]
+fa(q) (37)

where f;(q) are arbitrary functions. In what follows we will use
Maple program to perform the calculations due to their complexity.
Preforming the point transformation (36), inserting the two expres-
sions (37) into the two Eqs. (27), (28 )equating the coefficients of the
variable p to zero, we obtain a system of ordinary differential equa-
tions containing the functions f;(q). Unfortunately, this system can
not be written in a suitable size and its solution after tedious com-
putations gives

12 G§? 3 o G
L=5 {FJFF} - {63\//1F A1y P +AP7) — =
VF
G

x(12e3pF — FF°) + C,F )2+

N [2A,VP

esy/ 1F° 1
AP 4= 25 {3C3 +ZQGF + G(FF”

ueiF?
~12p1e5CoF))][A1/UP + AP'] + 16362
V1P + (A2 — 4R + dcp— 2P
| M+ 440 + AP

[16A,A.P*

(38)

16G>

10 5 I

35439,
y

(@a = 0.001,8 =7

where e;, A;, C;, p are arbitrary constants that are inserted instead of
the original ones for simplicity and the following two functions are
introduced owing to the appropriateness,

F(q) = p(esq® + e1q + eo) + exq*, P(p) = —up* + bp +c. (39)

Moreover, we denote by circle ()o and asterisk ()" differentiation
with respect g and p, respectively. We introduce the notation
G = — u[3e2q* + 6eie3q* + 12epe3q — e2] — 4ea(e3q® + eo)
1. 2
=—[F" — 2FF]. 40
i [ ] (40)

The Jacobi integral for this system is

1 {pz +ch} VP

h=5F WP T[2A4\/13+A5P]

2

esy/ 1F?
4 lesy/ 1P (AP + APy — SV E

2G
x {3@, + é (2C,F° + G(FF° — 12,ue3C2F))}
23
% [Ayy/HP + AsP'] — ’feg; [16A:A;

xP*\/UP + (A — 4A2)(b® + 4cpt — 2P*2)]

 pe3 (A7 + 4R (b + AP’
16G*
The conditional cubic integral is

0, (41)

L =L (p,q,p,4, it b, c,eq,€1,€2,€3,C1Ca, C3,A1, Ay

,A3,Aq,As)
_esp® ey [(AipvP+ Ay /AP (12esF + GFY)
VP 4PG VF
, e3G
—6(Cy(12p1esF — FPF*) — 2C, F°)|p? —
’ ’ ] 16VPF?
14 p —Hes
4, /1P — ay (PGP + VP
[4A2 /PP — ay P’ ]Gp Sczﬁ{ﬁ (1A

+ VAP ) (=3A3F° G — 2C, G + C,(288€2F°
+ 24e3GFF° — G*F*°)) + 6e3 (UG + 2FF)(CoF* + 2C;)?
+ 4e3 VF(uA VP + Ay /1iP" ) (6esFF°

(b)a =0.001,8 =7

Fig. 1. (a) The revolution surface characterized by the two Eqgs. (80). (b) The corresponding Gaussian curvature for the revolution surface given by the two Egs. (80).
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+ GF*)(CoF™ + 2Cy) — e iF (6esF? + GF°)(A2

x (P — b* — Acpt) — 4A2P") + 24es i x (A% + 4A2)
x (b* + 4c)G? + 192e3A,A,F /1UPP* (65 F*

+ GF°)] + 144€2 UFC, x (C,(6esuF — F'F*)

2 o
—2C1F°) — 24e31upyG* + %(2&@%&‘)}

+ {L [4G(2uAsVP — AgP) — e31i(4As\/ P
32VF
~ AP)(Co(12e3 jiF — FF) — 2C1F° — 3A3 4G)]
e3" (VA A (2P — b — 4cpt) — pP v/P(A2
3e "
-4A§)}q + %’0 {des\/[BF (AP + A /iP)
+(Co(UFF™ — 12e52F) + 2C, iF°)}

31l (3A3F° +20y)
96G

Fao 4
96C, [uA; VP + /IP'] }7 o (CZF +26y)° 767(@ +C1>

{FIAT (b +4cp — P*2>

+4A2P7) -

x {—18/1C293FF° +VFF (VAP +uA1\/1—°)} { HE fe, 2 (42)

% (3esFF° + GF”)(A} (P — b’ — dcp) — 4A3P")
GZF F* (A +4A0)(D° +4cp)  2A1A.€3F/1oPP'
48 G
F* f

x [3esFF° + GF*°] — [AsP* +2A4VP|

723C,F°\/ 1BF°
G

¢, - 3CZF°°)}

383A3V FF P + o) +

x [A1\/ UP + Ay P* 3/:\16(3;4

c F(b? + 4cp — P*
><(72F°°+C1)+783 ( +8G§‘u )

x (6EsF2 + GF*)A? + A3G°F*°] — G*A|A¢F°}

es(b® + 4cp)
T

4F°\/ 13F?
T”(AZP* + A1/ 1P)} —

x {e31?[6esF

x (A2 + 4A2) {1 (8ptesCy — 3AsF™)

3e312A AP
1 663
12e3A3\/ PP
64(;3
e§ ,u\/F‘3

320G°

x (4esF? + GF°)(4P” + b* + 4cp) —

x (4esF? + GF°)(7(b? + 4cu) — 4P™) +

. P F
x (desF” +GF) — 640V 2} — g (b + dcp)

X (2/[iA2As + ArAs) + 32(;{ PUSFP' AAy (GF +2C1)

+48e3C2\[FLSF (A P* + Ay /1iP) + C,

x [48UVFF (2A4V/P + AsP") + Ales J2FF*P*’]

— 8Ax/IIFF°P" (2e3A1A3 12 VP + AsP”) — 8FF°P" (1A,
3e2A\/ 3PP
e
Gecé;fz {63 [—A;P*F",uz

x(2A1\/UP + AyP*) + 12Co\/ [i5F” (3A,P* +2,uA1\/_}

x As + 2A2A4\//7)\/l3} - [4C2 — 4C,Cy

x F° + 3C (4espuF° — F )] —
—912F* (de3 iF — F'F*)C2 +18C,C; ,uF"FZ}. (43)

A general integrable system:

The Lagrangian (38) and its two first integrals (41) and (43)
characterize a conditional integrable system owing to it is only
valid on a zero level of Jacobi integral (41). Therefore, we are going
to preform the inverse of time transformation (11) (for a detailed
for the computations of this method, see, e.g., [34]). Introducing
new arbitrary parameters N;, n; by the relations

As :N4+n4h7 As :N5+n5h, Cs :N6+n5h7
As = N; +n7h, Cy = Ng +ngh, (44)

and performing the change of independent variable to the actual
time parametrization by using the relation

dt
dr =" (45)
where
3
A= ‘;f? [ (2n4V/P + n5P*) + 3/Tesn (Ay /1P + Ay P") ] —g[m +ngF”],
(46)
we arrive at the new Lagrangian
AP GE -
=3 {F+F} - {eg UF? (A1 /1P + AyP)
G o o0 o:| p
——(12esuF — F°F*°) + NgF
5 (12esp ) + Nsg NG
1 \/1'—T3 . €34/ ,UF3
+5 {c [2N4VP + NsP’| +—5c—[BNs
1
+ 5 @NsF* + Co(FF™ — 12,ue3C2F))} (A1 /P
" ,Ueg " 2 2\ /1.2
AP+ [16A1A2P VP + (A2 — 4A%)(b
2/ A2 2 2 3
Ay — ZP*Z )] + Hes(A7 + 4A2)(£) +4cp)F +h, (47)
16G
and its unconditional Jacobi integral takes the form
AP G 1 (VP
L=3 {F*F} “A) ¢ NP
€3/ F? 1
i 5 g [3N6 + NsP'] + = (2NsF" + Co(FF™
— 1241e3C,F)))[A1 VP + AsP'] +“e3c {lGA A
P*\/UP + (A? — 4A2)(b*
2 2 2
+4cp—2P")] + | M +4?6)c(l; +AcF } h. 48)

Its unconditional additional cubic integral can be formulated by
replacing (p’,q') — (Ap, Aq) and taking into account (44), we have

L =L(p,q,Ap,Aq, 11, b, c, e, e1,e,,e3,Ng + ngh, C;,Ng
+n6h,A17A2,N7+n7h7N4+n4h,N5+n5h). (49)

Indeed the appearance of an arbitrary parameter h in the
Lagrangian (47) is unimportant and can be disregarded. The same
arbitrary constant h is now interpreted as the value of the Jacobi
integral. We should eliminate it from the additional cubic integral
by using the unconditional Jacobi integral (48) and this sometimes
makes a change in the degree of the additional integral. The
Lagrangian system (47)-(49) characterizes a new family of inte-
grable 2D time-irreversible mechanical system or in some times, it
is named a multi-parameters 2D time-irreversible integrable mechan-
ical system. It contains 20 arbitrary parameters. They are

€9, €1,€z,€3, [1,b,c,A1,Az,Co, Ny, g, N5, 115, Ng, 116, N7, 117, Ng, 11g

This system is new. It also generates a large class of 2D inte-
grable systems including all the previous results. For instance,
the 2D time-irreversible integrable system that was introduced
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by Yehia [23] can be obtained as a special case from our results by
setting Ng=ns=ng=~A,A,=e;=c=0,c=—-u=1,p=cosx.
Until now, the full physical interpretation of this system is
unknown. Nevertheless, one of an essential advantage of this sys-
tem is the structure of a configuration manifold including a large
set of free parameters. This structure extends the range of its appli-
cability to numerous problems such as the problem of motion in
the Euclidean plane, the hyperbolic plane and distinct varieties of
curved two-dimensional manifolds (for example, the problem of
rigid body dynamics).

Applications
Applications in the dynamics of a particle:

The presence of extra-parameters in the Lagrangian (47) can be
employed to construct new integrable problems that generalize
and unify previous results. In what follows we will only write
the Lagrangian and the additional integral for each integrable case
owing to the Jacobi integral can be constructed immediately from
the Lagrangian.

Case 1. The first case can be constructed by setting p =0 in the
Lagrangian (47) and its unconditional cubic integral (49), we get
after some manipulations:

X

: ¢ if} €1

e A T
N c? +b1 + baq + b3gx
2(oq® + B)(a1 + a2q + a3qx) a1 + A2q + azqx

1
Ly == (a1 + axq + asgx) {

+h, (50

and its additional cubic integral

3 5
e[ MQX+ 0+ a1\ 3 3ac1q
Iz_aq( o + B )x+(ocq3+ﬁ)

<a3qX+GZQ+al>2~2 G2(a3qX + a>q + 1)
- - x —_
oq® + og® + p

3ac?q*> |. 2b
qu X+ Tg (a3qx
(aq® + B) aq

4c1q by + bsx
aq? + B 2

X Z(bz + b3X) -

+aq+a1)q -

agc?
——— 1 b +2h(asqx+axq +a
Aag 1 p) (asq G+ ap)

as . Q(G3X+‘12){ ~ €1 ”
- X . 51
X{aéqq i | P et a 1)

where ai,a,, as, o, f, b1, by, bs,ap and c¢; are new parameters, intro-
duced instead of the original parameters for convenience. We
should note also the variable x is introduced instead of the variable

p through the expression x —xy = [—2

stant. This system is a new integrable problem. It contains ten arbi-
trary parameters d;,d;,as,a,pB,by,by,b3,a0 and c¢;. It also
generalizes the case obtained by Yehia [23] by adding one free
parameter ¢; = 0 which turns on the irreversible term. In the pre-
sent time, we are not able to give a mechanical interpretation for
the full system. So that, it is more suitable to calculate Gaussian
curvature

,Xo is an arbitrary con-

1 2
I = x 3o pq?(7oq® — 2)(ay + azx)
4(0q> + p’loq(asx + az) + @’
— 3o (02q° — 1308q° + 46%)(az + asx) + 20q° [02(q° + 3apq’

+3%)a + 11a3f] - (aiq° - 2a347)o> — a7 f?]. (52)

The following two special cases may indicate the richness of
this system.

Case 1.a: The first system is obtained from Eq. (50) by setting
a, =a3 =0,a; =1 and q = e, It has the Lagrangian

L= 1 ) X2 C]f(
2 yor ooy + fe-2a0y + oe2aoy 4 fe—doy

+ edoy [bz —+ ng]

2
“

* 2[oe3%y + B]’ (53)
and admits the unconditional second integral
X 3 3¢ e°%Y
Iz = a —2aq, 3
oetoy + fe2ao¥ (oe3a03 + B)
B e200¥ [ 2(by + bsx) B 3oc2 ey X
o | o+ (gedawy 4 )}
cie% | 2(by + bsx oc ey 2bs .
- (b2 +bsx) _ocie™ | 2bs (54)
o oe3wy + f (cie3%) + B) oo

It is worth notice that in this special case when g = 0, the sys-
tem (53) and (54) reduces to

Lot X €U g+ e[y 4 by + 1 (55)
=3 e | T aew 2 BT S yesay
X3 X B 20u(by + bsx)) .
IZ:M+3C]m+e 500y><{3C%76747QOy X
20%bs . 20(by + bsx
e R (56)

Inserting these values of parameters in (52), we found the line
element of the last system has constant negative Gaussian curva-
ture (3 = —1). This system can be interpreted as an integrable case
of motion on the pseudo-sphere.

Case 1.b: The second system corresponds to the case
a; =as =0,a; = 1,a0 = 2 and q = y2. The final result for this case
is

A7y, ay? . b
_i[ay6+ﬁx +y}+ocy6+ﬂx+y7+bzx
+L (57)
2y2(oyS + )’
and
12 3 6
I — By 3)-(3_C1y (20 3ﬁ)x2+xy2
(oy® + B) (oy® + )
y° ay?: ., : y
x 4 —byy——2
DR AT N A CA P
x [C2(40y® + B) + 2b1 (oy® + B)’Jx
— O @ayS + ) +2b () + )], (58)
(oy® + )

This system is also new integrable system. The Gaussian curva-
ture (52) of this configuration space becomes

6
= 37/52 (M) (59)
oy? \ oy° + B

The Gaussian curvature (59) vanishes if = 0 and thus, the sys-
tem represents the motion of a particle in the plane xy under the
action of two scaler and vector potential. This system is new. It
generalizes the Holt supper-integrable separable system by insert-
ing the parameter c¢; [35]. In other words, the Holt system remains
integrable in the presence of a gyroscopic force that is determined

by the vector potential ( c1y? 0). But it losses its separability.

oy®+p
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(@) = 50,5 = 1.

(b)a = 50,8 = 1.

Fig. 2. (a) The revolution surface characterized by the two Eqs. (76) and (77). (b) The corresponding Gaussian curvature for the revolution surface given by the two Eqs. (76)

and (77).

Case 2. The second case can be constructed by setting e; = 0 in the
Lagrangian (47) and (49), we get after some computations

1 3
L= |ai(e2q? +e1q + eo) — (€24 + €19 + eo)’

x{as(b —2up) + 2a,\/—up? +bp + c}}
p? e? — 4ege, 5

2 2 q )

—Hp* +bp+c 4ule,q* + e1q + es]

— (as + Veaq? + e1q + eo{as(b — 2up) + 2as
X /—up*+bp +c})/(a1 — Verq> +eiq+ep
x {as(b—2up) — 2a,

ci(er +2e,q)p
+—
V—Hp* +bp+c

Its complementary integral:

I, =((2e,q + e1) {Z(azh + aﬁ)\/m
~(ash + as)(2p — b))p/(4/—p? + bp + ¢

x \Ve2q% +e1q + eg) + (€2 — 4ezep)

x [Z(agh + ag)\/ —Up? + bp + ¢ — (axh + as)

3
2

x(

—Hp? +bp +c})
+h. (60)

x (2up — b)])/(1u(e2q* + e1q + e0)*)q

+ C2€2v/€24° + e1q + eo{2(azh + as)

x\/—,up2+bp+c+(a3h+as)(2up—b)}, (61)

where @; and c; are arbitrary constants, used instead of the original
parameters for suitability. It should be noted that the additional
cubic integral is reduced to a linear integral in velocities. The sys-
tem (60) and (61) characterizes a new integrable problem which
contains fourteen arbitrary parameters. For the special case
b =0,c = u, the Lagrangian (60) and additional integral (61) take
the form

Lil alcos\/ﬁXJrazsin\/ﬁxJr as
2 cosh’ /iy cosh® /Tty
+ ¢q tanh \/ptyx

by cos /lix + by sin \/fix + b3 cosh /[ty
a; €OS \/lIX + a; sin \/[ix 4+ as cosh /11y

2 4+52)

x (%

(62)

where a;,b; (i =1,2,3) and ¢, are arbitrary constants while the two
variables p and g are replaced by the two variables x and y through
the point transformation

1 .
=—— arcsin

Ji

X (p)
1 /e? —4ege, dq
==/ 63
V=2 u /€2q2+€1Q+€0 (63)

Its complementary integral

I — <a1 COS /X + @, Sin /[IX N as >
cosh’ /Tty cosh’ /iy
x [sinh /1y (b; cos \/fix + by sin \/lix)x
— cosh /ity (b; sin \/fix — b, cos \/1ix)|y
G [by cos \/ix + b, sin \/1iX]

cosh /1y
a1 COS \/JIx + d, Sin \/fix as
+ h 3 + 2
cosh’ /[ty cosh” /ity

X {sinh VI (ay cos \/[Ix + a, sin \/fix)x.

— cosh \/fty(a; sin \/ix — az cos /LX)y
_ [a; cos \/[ix + a, sin \/1iX] (64)
cosh /1y '

where h is the numerical value of Jacobi integral and it should be
eliminated by using the Jacobi-integral expression. This makes the
degree of the additional integral turns on a cubic in the generalized
velocities again. This problem is new integrable problem. It includes
eight arbitrary parameters.
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Application in a rigid body dynamic

Identifing the line element corresponding the two Lagrangians
(7) and (47), we find they are identical if A=4C, u=c=1,
b=e;=0,e3=2,e;=-3 e =-1 n; =—2 ng = —4. Inserting
those values in the Lagrangian (47) and using new parameters
instead of the original ones, we get

1 73 1-93 .,
_2<1—V§+ 3y2<p + (k+cy; +dy,

Va0 7.1
+y%(372+1)>4 319~ 4{av1+b/z :

1 — 1
+k(cy; +dy,) +j(572 - dV])z +w

"
V2 ‘1 a2 ‘1+3'\2
Y3+ e +dyy) - T
71 N
7 (I dy, + 2 (372 1))2 (65)
o (ko +dy, + 5 (373 + :
2[4 - 37 V1 V2 7 72

Its Jacobi integrals admits the form

_1( 7 1= > A
I‘_i(lfy+ —37) " alon b i

k
gy 7 4 Y2 KR)

1
+k(cy; +dy,) + 5 (€, —

7
v v2(1 —92)(1 4 392
—22 Br1+ 73 +dpy) ,w
71 M
B (kiey +d 3241) | =h 66
+W<+/1+sz(/z+)> .=h (66)
The cubic additional integral can be written in form
401 - 3)° 1-93)°
= (3("/2 Vi; (B(yz ))3)3 [(csin ¢ + d cos @)
3 37
2y34/1 - 3
4 2
(3y3 — 695 +4) — 2k\/1 — 3 “T3,-4

x [dsin ¢ — ccos @@y, + 37 4 [4(375 — 673 +2)

x [(c® = d*) cos 2¢p — 2cd sin2¢] —

- 32)/3l + 40"/% -16) + b(3y§ —
+ (ke(9y5 —

1 —3[(dk(95
2)(373 —4)") cos ¢

3293 + 40y§ —16) +a(3y3 -2)

x (373 —4)’(sing + 5 ( 75 — 3373 + 4073 — 16)
2) +4) + k*93(373

832 200 - AE

1-93 2, 2 2
s + ) EHEE -

—d*)sin2¢

+2cdcos2¢) +

73 (((ck+3c)y% — 2ke
V1-7%

((dk + 3b)y2 — 2kd — 4b) sin ¢)
1-92)°(574 - 1093 + 4
(1—75)" (573 ] 73+ ))[d(ECZde)
(373 -4)
e (1-7)(313-2)
3d7)sin3¢] + 3% 4

k2 —y3)(1-73)
(373-4)
— d*)cos2¢ — 2cd sin 2¢]

—4a(cos @) —

x €0s 3¢ + c(c?

[(ca — bd)cos2¢ — (cd — bd) sin 2¢] —

x (9y35 — 22732 + 12)[(c?

6ky/1-73
-
x [csin ¢ + cos @]
% [h(73 — 1)(373 — ) + (315 + 4873 — 2394 - 32)K*
+4(3 - 1)(375 - 395 - 1003 +12)(? + )]

(asing +bcos @) +
2(3p; —4)°

“/%—2 4 2 2 2
— B2 8k(7y4 — 182 + 12)( + d
8(/574)3[ (773 73 )( )
+2(37% — 4)[4(ca + bd) + kh]). (67)

It is worth noting that the two constants v and /4 appearing in
the Lagrangian (65) do not exist in the additional cubic integral
(67). They can be inserted into the additional integral (67) b
replacing the Jacobi-constant h by its expression (66). This is a
new integrable problem in a rigid body dynamic. It is more conve-
nient to address it in terms of the traditional Euler-Poisson vari-
ables to clarify that is new and to make the comparisons with
previous results easier. This is summarized in the following.

Theorem 3. If a rigid body with principal inertia matrix
I = diag(4C,4C, C) rotates about its fixed point under the influence
of potential and gyroscopic forces taking the form

) 1
V= C{a% + by, + yiz +k(eyy +dyy) +5(c7; — dp,)?
3

LY@y —ky) V(1 -93)(1+399)

A
-G+ ey, +dy,) -

b b 27 ’
(68)
2vy5(1+3 6v
H= (U, Wy, Us) = C(CV3 —M dy; + V2/3 k4 ¢y,
1
3
sy, + XL m) (69)
%
Or, equivalently,
1=, L. L) = C<0,0,1<+ oy +dy, +y12(3y§ + 1))7 (70)
1

where a,b,c,d, k, . and v are free parameters. Then the Euler-Poisson
Egs. (2) with the two expressions (68) and (69) are integrable on a
zero-level of a cyclic integral

13:4(pv1+qyz)+<r+k+cv1+dvz 72 (1 +3/2)>V3:
1

(71)
Its complementary cubic integral is
N 2
I=(r+cy; +dy, +3v - k){(p+c/3> + <q+%>
4 /3 }
+V|==+=(p* +
2/ } {2)’1 A (p @)
d Vi3 .
- vg{a(p +573) + b(q+—/3)} 2 3R +7)
2 ZV 2
x (71 =275 = 73) + 2 (03 = 29D (k —cyy —dy,)
1+ J; e+ d2>v3 + 4(cp +dq)ys + 2((cy, + dpy)’
—2(cy, +dy,)k+ K = 2(ay, + by,) — ). (72)

This case is a conditional integrable problem owing to it is only
correct on a zero level of cyclic integral. To avoid the inscrutability,
the comparison with previous results are tabulated in the Table 1.
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Table 1 Table 2
Comparison with previous results. Conditions lead to a Riemannian configuration space for the mechanical system (53).
Case 1 Conditions Author-Reference Year Case Regions Conditions Type
1. v=/.=0 Sokolov and Tsiganov [36] 2002 1. Whole the xy-plane o«>0,8>0 Riemannian
2. c=d=v=0 Yehia [23] 2002 2. In the region o >0,8<0 Riemannian
3. i=c=d=0 Stretensky [25] 1963 (x 1 _b
,Y) € Rx]3In ,00[
4, k=c=d=0 Goriachev [37] 1915 5 1{ the rei ’ ( “) } 04-0 Ri .
5. k=i—c—=d=0 Goriachev [22] 1900 : N the region f %<0,f> lemannian
{(x,y) € Rx] - c0,1In (—’5)[}
4. Whole the xy-plane x<0,8<0 Pseudo-
. . Riemannian
Discussion 5. In the region o>0,<0 Pseudo-
. - . {(x,y) € Rx] — 00%1“ (72)[} Riemannian
. It is well knpwn that the two famllu?s .Of 2D 1nt.egrable .nllechan— 6. In the region %<0,§>0 Pseudo-
ical systems with complementary cubic integral in velocities that Riemannian

were introduced by Yehia in [23] and Yehia and Elmandouh in
[24] were only known until this time. These studies assumed that
the potential and gyroscopic forces admit certain formulas that
were inserted in the Egs. (13)—(22) to find the coefficients of the
additional integral. In the present study, we do not postulate any
structure for these forces and solve the problem by reducing the
Egs. (13)-(22) to two nonlinear partial differential Egs. (27), (28)
which contain two unknown functions instead of seven unknown
functions. Therefore our results contain these previous results as
special cases due to it contains extra parameters that extend the
range of applications to diverse problems as we see above in the
applications. Although we are not able to interpret our system
physically, some applications including the dynamics of a particle
and a rigid body are studied to illustrate its richness with physical
applications. Now we are going to study the physical interpretation
for the obtained results in the dynamics of a particle. As we know
the Gaussian curvatures play an important rule in classification
and the interpretation of such problems. If the Gaussian curvature
is zero, positive value and negative value, the problem will
describe motion of a particle in the Euclidean plane, standard
sphere and Pseudosphere, respectively. In some times the Gaussian
curvature is variable, i.e., depends on the generalized coordinates
and so the surface on which the motion takes place is not know.
Now we are going to find the conditions on the parameters making
the configuration space corresponding to such problems to be
Riemannian.

Now, we consider the case 1.a. The metric corresponding the
Lagrangian (53) takes the form

1

2 _ g2, 1 40
s’ = dy” + 5, (73)

where f(y) is given by
fy) = oe® + pe=20¥., (74)

The metric (73) is Riemannian if f(y) >0 and Pseudo-

Riemannian if f(y) < 0 while the coefficient of dx* is infinite if
f(y) =0 and we drop this case from our consideration since it
requires further investigation. It is clear that the sign of f(y) does
not rely on the parameter ao and so, we can put ap = 1. Thus the
conditions on the two parameters o and B for which the metric
(73) to be Riemannian or Pseudo Riemannian are collected and
summarized in Table 2 Thus for the first three cases in Table 2,
we can find the Riemannian metric corresponding to the last sys-
tem on a certain surface of revolution. If we postulate
(r(y),0,z(y)) is a point on this surface in cylindrical coordinates,
we get

1

2 2 142 2 4.2
dr® +r°do” +dz° = dy + ety 1 pe=2aty T ey

dx*. (75)

Identifying x by 0 and comparing the both sides of Eq. (75), we
obtain

{(x,y) € Rx]3In (—g),oo[}

1
= \/ ety - pe-2a0y” (76)

and thus, we can evaluate z from the following first order differen-
tial equation

6) - @)

thus, we get

y 2 apy —2agy 2
. / 4 Goler = 2 F),, (77)
2 Jo (o(eﬂoy + /}e*2ﬂo)/)

The surface of revolution is described by the two Egs. (76) and
(77). This surface is dependent on the parameters ay, o, f and it is
presented in Fig. 2 for certain values of these parameters. Thus
the integrable mechanical system describing by (53) and (54) can
be physically interpreted as the motion of a particle with a unit
mass on a surface of revolution with the parametric Egs. (76)
and (77).

For the case 1.b, the metric of the configuration space of the
mechanical system describing by the Lagrangian (57) admits the
form

6
ds® = dy? +g%dx27 (78)
where
gy) =y’ +B. (79)

Thus the configuration space associated the Lagrangian (57) is
Riemannian or Pseudo-Riemannian depending on the sign of the
function g(y). These conditions are collected in Table 3. The cases
for which the metric of a configuration space is Riemannian, we
can find the equation of the surface on which the motion occurs.
In an analogy way to the above procedures, we can find the family
of the surface of the revolution on which the motion of the particle
takes place. Now we write down the equations describing it as

y3

Vot + B’
1o

y . 9y4
Z= _
/0 oys + VoS + B

It relies on the two parameters o and B. It is appeared in Fig. 1
for certain values of these values. Thus, the integrable system (57)
and (58) characterize physically the motion of a particle with a unit

dy. (80)
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zca):ldeit?ons lead to Riemannian configuration space for the mechanical system (57).
Case Regions Conditions Type
1. Whole the xy-plane o«>0,>0 Riemannian
2. In the region {(x,y) c Rx]{/jg, \s/g[} 2 <0,8>0 Riemannian
3. In the region o«>0,<0 Riemannian

{(x,y) € Rx] - oo, —H[u]\a/é,oo[}

4. Whole the xy-plane «#0,=0 Plane

5. Whole the xy-plane o« <0,8<0 Pseudo-
Riemannian
6. In the region «<0,8>0 Pseudo-
Riemannian
{ten emcry- =L i}
7. In the region o>0,<0 Pseudo-
Riemannian

{oen emo - o/~L ¢/}

mass on a surface with parametric Eq. (80) under the action of
potential and gyroscopic forces. Notice the other cases can be
investigated in analogy method.

Finally, we obtain a new interesting rare integrable problem in a
rigid body dynamic which generalizes all previous cases in this
field. This case is interpreted physically as the motion of a heavy
magnetized gyrostat carrying electric charges in an axially sym-
metric combination of the three classical fields (for more details
about such interpretation see, e.g., [13]).
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