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a b s t r a c t

Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been
addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper
and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order
expressions are changed into first ordinary differential equations and then solved by built-in-Shooting
method in mathematica. The results of velocity, temperature, concentration, skin friction and local
Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate
are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays
for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing
all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium
dioxide when compared with copper and aluminium oxide.
� 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Many industrial liquids have low thermal conductivity which
limits the quality of final product during engineering procedure.
Pioneer concept of nanomaterial with improved thermal conduc-
tivity was given by Choi [1]. Nanotechnology has significance in
atomic reactors, chemical process, energy process, mechanical
cooling, indicative tests, extraction of geothermal force, disease
treatment, heat exchangers and some applications in micro scale
fluidic. Convective transport in nanoliquids subject to ther-
mophoresis and Brownian effects is explored by Boungiorno [2].
Effect of nanomaterials on natural convective flow past a vertical
surface is examined by Kuznetsov and Nield [3]. Later on the same
problem is discussed by Nield and Kuznetsov [4] for a porous
space. MHD natural convection carbon nanotubes flow has been
studied by Ellahi et al. [5]. Nanofluid flow of forced convection with
magnetic field utilizing LBM is explored by Sheikholeslami et al.
[6]. Convective heat transfer characteristics of Al2O3 nanomaterials
submerged in water is studied by Hwang et al. [7]. Kumaresan et al.
[8] discuused convective heat transfer characteristics of secondary
refrigerant based nanoliquids. Flow of nanoliquid in a porous chan-
nel is addressed by Hatami et al. [9]. Farooq et al. [10] analyzed
MHD stagnation point flow of Jeffrey nanomaterial in the presence
of radiation. Mabood et al. [11] addressed mixed convection
unsteady flow of nanofluid with viscous dissipation. Convective
flow of Cu-water nanomaterial by a rotating cone using is studied
by Dinarvand and Pop [12]. Few more recent studies about flows of
nanofluids can be visualized through the attempts [13–18].

Heat transfer in flow over a stretchable surface has widespread
applications. Due to tremendous applications in engineering and
sciences, a large amount of work is focussed at present in this area,
drawing of plastic sheets, fibres glass, paper production, metal
spinning, fibre and wire coating, food stuff processing, continuous
casting, exchangers and chemical processing equipment. All proce-
dures of coating involve a smooth glossy surface to fulfill the
necessities for appearance, transparency, strength and low frac-
tion. Crane [19] initiated flow of viscous liquid by a stretched sur-
face. MHD stagnation point flow of rate type nanofluid with
thermophoresis is investigated by Bai et al. [20]. Heat transfer in
flow of micropolar liquid over a porous stretching surface is exam-
ined by Turkyilmazoglu [21]. Melting heat transfer and homoge-
neous heterogeneous reactions in MHD viscous liquid flow by a
stretchable surface is explored by Hayat et al. [22]. Magnetohydro-
dynamic nanofluid flow past a porous plate with radiation, chem-
ical reaction and rotation is considered by Reddya et al. [23].
Consequences of convective boundary conditions and chemical
reaction on flow due to a plate are considered by Rout et al. [24].
Application of non-Fourier heat flux in flow of Jeffrey liquid with
temperature dependent thermal conductivity is studied by Hayat
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et al. [25]. Hayat et al. [26] also investigated chemically reactive
flow and non-Fourier heat flux in flow by a stretching surface. Vis-
cous dissipation in three dimensional flow of viscous nanoliquid is
reported by Mahanthesh et al. [27]. Numerical simulation is per-
formed in this work. Hayat et al. [28] examined flow of Burgers
nanoliquid in presence of magnetohydrodynamics (MHD) and con-
vective condition. Li et al. [29] discussed characteristics of non-
Fourier heat conduction in MHD nanofluid flow by a stretched sur-
face. Stretched flow of Oldroyd-B fluid with Cattaneo-Chrsitov heat
flux is inspected by Hayat et al. [30].

Prime objective of this analysis is to analyze the impacts of ther-
mal radiation and mixed convection in stagnation point flow of vis-
cous nanofluid by a vertical permeable cylinder. Homogeneous-
heterogeneous reactions are also accounted. Induced electric and
magnetic fields are absent. Computations for strong nonlinear sys-
tems are presented after non-dimensionalization through built-in-
Shooting method [31–35]. Graphical analysis for various influential
variables is addressed in detail.

Formulation

We investigate the mixed convection stagnation point flow of
an electrically conducting incompressible viscous nanofluid by a
vertical permeable circular cylinder of radius a. We choose cylin-
drical coordinate system such that x is along the stretching cylin-
der and r normal to x. Here u and w are the velocity components
in x and r directions (see Fig. 1). A magnetic field of strength B0

is exerted along radial direction. We represent Tw as temperature
of cylinder and T1 the ambient temperature. For the formation
of compound 3B the fluid phase reaction is [22,26]:

Aþ 2B ! 3B; rate ¼ kca�b�2
;

Aþ B ! 3B; rate ¼ ksa�b
�2
:

In above expressions A and B denote chemical species, a� and b�

the concentrations and kc and ks the rate constants. Both reaction
processes are isothermal. The subjected problems statements are
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In above equations u andw indicate the velocity components, ue

the free stream velocity, where V�
w < 0 corresponds to suction and

V�
w > 0 for injection, uw the stretching velocity, mnf the kinematic

viscosity, T the temperature, T1 the ambient temperature, qf the
density of nanofluid, g the gravity acceleration, / the nanoparticle
volume friction, b the thermal expansion coefficient, a� and b� the
concentrations, l the characteristics length, B0 the uniform mag-
netic field, r the electrical conductivity, DA and DB the diffusion
species, a0 the positive dimensional constant, ks the heat transfer
coefficient, b the coefficient of thermal expansion and anf thermal
diffusivity. Their definitions are
figuration.
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mnf ¼
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in which / nanoparticle volume fraction, qf and qs density of fluid
and solid particles, lf dynamic viscosity of fluid and kf and knf ther-
mal conductivities of fluid and nanomaterial respectively. Table 1
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the incompressibility constraint is verified trivially while expres-
sions (2)–(6) are reduced to
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Thermal characteristics of continuous phase fluid and nanomaterials [2]:

Continuous phase fluid and nanomaterials Water

Molecular formula H2O
CPðJ=kg KÞ 4179
qðkg=m3Þ 997.1
kðW=mKÞ 0.613

a � 107ðm2=sÞ 1.47

b � 10�5ð1=KÞ 21
neous parameter, Rex ¼ U1 l
m2
f

� �
the local Reynolds number, Pr ¼ m

a

	 

the Prandtl number and d ¼ DB

DA

� �
the diffusion coefficient with ratio

of mass.
Putting d ¼ 1 and gðgÞ þ hðgÞ ¼ 1 then Eqs. (10)–(12) become
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g0 ¼ Ksg at g ! 0; g ! 1 at g ! 1: ð19Þ
Mathematical expression for surface drag force and heat trans-

fer rate are
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Invoking Eq. (21) in Eq. (20) we take the following dimension-
less forms
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Discussion

The differential systems consisting of Eqs. (13), (14), (18) and
(17), (19) have been solved numerically by built-in-Shooting
method in mathematica. Numerical computations are carried out
for several set of variables known as Prandtl number Prð Þ, mixed
convection parameter kð Þ, curvature parameter cð Þ, permeability
parameter Vwð Þ, magnetic parameter ðMÞ, Schmidt number ðScÞ,
nanoparticle volume fraction ð/Þ, homogeneous reaction parame-
ter ðkÞ and heterogeneous reaction parameter ksð Þ. For physical
insights of velocity f 0ðgÞ, temperature hðgÞ and concentration
gðgÞ, the Figs. 2–17 have been displayed.

Influence of curvature cð Þ parameter on the fluid velocity field
for positive values of mixed convection kð Þ parameter is shown in
Fig. 2. There is an enhancement of f 0ðgÞ for larger cð Þ. Since for lager
estimation of cð Þ the radius of cylinder decays which reduces the
contact region of cylinder. That is why f 0ðgÞ enhances. Role of
nanoparticle volume fraction ð/Þ on f 0ðgÞ is displayed in Fig. 3.
f 0ðgÞ is noticed an increasing function of ð/Þ. Fig. 4 reports the
salient characteristics of mixed convection parameter kð Þ in Fig. 4.
Here f 0ðgÞ enhances for larger kð Þ. Since k is the combination of
buoyancy forces and viscous forces. In fact higher estimation of
mixed convection kð Þ parameter correspond to decay in viscous
forces and so an augmentation in f 0ðgÞ is distinguished.
Aluminum oxide Titanium dioxide Copper

Al2O3 Tio2 Cu
765 686.2 385
3970 4250 8933
40.0 8.954 400.0
131.1 30.9 1163.1

0.85 0.9 1.67



Fig. 2. c via f 0ðgÞ.

Fig. 3. / via f 0ðgÞ.

Fig. 4. k via f 0ðgÞ.

Fig. 5. Vw via f 0ðgÞ.

Fig. 6. Vw via hðgÞ.

Fig. 7. c via hðgÞ.
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Characteristics of permeability parameter Vwð Þ on f 0ðgÞ is eluci-
dated in Fig. 5. Here velocity distribution enhances for larger Vwð Þ.
However opposite trend is observed for temperature hðgÞ (see
Fig. 6). Effect of curvature parameter cð Þ on hðgÞ is sketched in
Fig. 7. Here hðgÞ decreases via cð Þ. There is a decrease in resistance
for larger cð Þ and so hðgÞ decreases. Fig. 8 demonstrates impact of
nanoparticle volume fraction ð/Þ on hðgÞ. As expected for larger
nanoparticle volume fraction ð/Þ there is an increase in thermal
conductivity of fluid. As a result both hðgÞ and thermal layer thick-
ness are increased. Fig. 9 illustrates decay of temperature and ther-
mal layer thickness for larger mixed convection parameter kð Þ.
Fig. 10 depicts the impact of ðMÞ on hðgÞ . For largerM there is more
resistive type force which slows down the flow. Further hðgÞ
decreases via M. Fig. 11 presents the behavior of Prandtl number
on temperature field. Here temperature is a decreasing function
of varying estimation of Prandtl number. Characteristics of curva-
ture cð Þ on concentration gðgÞ are displayed in Fig. 12. Here concen-
tration field shows decreasing behavior for rising values of cð Þ.



Fig. 8. / via hðgÞ.

Fig. 9. k via hðgÞ.

Fig. 10. M via hðgÞ.

Fig. 11. Pr via hðgÞ.

Fig. 12. c via gðgÞ.

Fig. 13. K via gðgÞ.
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Influence of homogeneous reaction parameter ðKÞ on gðgÞ is
sketched in Fig. 13. Concentration gðgÞ decays while associated
layer thickness enhances for larger ðKÞ. Behavior of heterogeneous
reaction parameter ðKsÞ on gðgÞ is analyzed in Fig. 14. Here gðgÞ
enhances for larger variations of heterogeneous reaction parameter
ðKsÞ. Fig. 15 elucidates the variation of ðScÞ on gðgÞ. As ðScÞ is inver-
sely proportional to coefficient of Brownian diffusion. Higher ðScÞ
corresponds to weaker Brownian diffusion. It give rise to decay in
gðgÞ. Figs. 16 and 17 correspond to results of cð Þ and ðMÞ on surface
drag force and heat transfer rtae. It is worth mentioning that both
graphs in Figs. 16 and 17 have been plotted for copper-water nano-
material. It is observed that surface drag force and heat transfer rate
are enhanced for larger cð Þ and ðMÞ.

Conclusions

Following points are the observations of presented study.

� f 0ðgÞ enhances for higher c; / and k.



Fig. 14. Ks via gðgÞ.

Fig. 15. Sc via gðgÞ.

Fig. 16. Effects of c and M on Cfx .

Fig. 17. Effects of c and M on Nux .
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� Larger nanoparticles volume fraction ð/Þ rises hðgÞ and thermal
layer thickness.

� An increase in curvature cð Þ and homogeneous reaction ðKÞ
parameters lead to reduce concentration gðgÞ.

� Thermal layer thickness is decreased for M and Pr.
� Behavior of Re0:5x Cfx for larger cð Þ and ðMÞ is increasing.

� Re�0:5
x Nux enhances for larger cð Þ and ðMÞ.
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