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A B S T R A C T

Exact analysis is about the natural convection flow of non-Newtonian Jeffrey fluid with the Caputo-Fabrizio
fractional derivative of non-singular kernel has been discussed in this work. The Laplace transform method is
used to obtain the solutions of dimensionless temperature, concentration and velocity fields with non-integer
order derivative. Moreover, in the mathematical modelling of the problem, the additional effects like Soret
effect, MHD, heat sink, radiations, chemical reaction, porous medium and uniform heat flux are also considered.
Our results are reduced to the known solutions in the existing literature for viscous fluid. Finally, we have plotted
some graphical illustration to see the physical insight of the studied problem for different flow parameters and
found that fluid velocity can be enhanced with the Caputo-Fabrizo approach by increasing the value of non-
integer order parameter while skin friction coefficient decreases.

Introduction

The boundary layer flow and the heat and mass transfer on a surface
is stretched over an conventional spectacular concentration due to their
wide applications in industry, engineering, and metallurgy process. The
transfer of heat is important because the rate of cooling can be re-
stricted and final products of desired characteristics might be achieved.
The flow on a flat plate with regular free stream has been examined by
Basius [1].

The study of non-Newtonian fluids has established great attention in
modern technologies such as geothermal engineering, geophysical, as-
trophysical bio-fluid and petroleum industries. Several basic relations of
non- Newtonian fluids have been considered in the literature due to its
resourceful nature. Non-Newtonian fluids have gotten the thought of
specialist due to their modern and designing applications, i.e. passing
on of paper, plastics production, material industry, nourishment
handling, wire and edge covering and development of organic liquids.
Experimentally, it has been observed that blood can be treated as non-
Newtonian fluid at low shear rates in small arteries. Many physiological
systems are modeled for biological tissues as porous layers. There are
several proposed non-Newtonian fluid models to describe the behavior
of these bio fluids. Among them Jeffrey fluid is the generalization of

Newtonian fluid. In the existing literature, several scientists have stu-
died Jeffrey fluid under different mechanical and thermal boundary
conditions [2–8].

Now, metallurgical procedures, such as drawing and retreating of
copper wires which involve cooling strips of continuous filaments, the
MHD effect is to improve the rate of cooling. Mansur and Ishak [9]
studied the MHD boundary layer flow of a nano fluid numerically.
Ahmed et al. [10] applied the linearization method to the study of ra-
diation effects on MHD boundary layer convective heat transfer in a
porous media with low pressure gradient. A number of researchers
discussed the MHD effects on Jeffrey fluid. Hayat et al. [11] found the
chain solutions of MHD Jeffrey fluid in a channel. Das et al. [12] dis-
cussed Jeffrey fluid with MHD and slip condition. Jena et al. [13] found
heat generation effects on MHD Jeffery fluid through a porous medium.
Imtiaz et al. [14] found the effects of heterogeneous and homogenous
reactions on MHD Jeffrey fluid. Ahmad and Ishak [15] studied the ef-
fects of viscous dissipation effects on a Jeffrey fluid with MHD. Dif-
ferent studies on MHD flow on physical situations were considered for
an example in Refs. [16–18].

Fractional calculus is the natural generalization of classical calculus
because it involves the derivatives and integral of non-integer order.
The concept of fractional is odd but recently it attracts the scientists and
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researchers and proved to be a powerful and widely used for controlling
many physical process in different areas of engineering and science
[19–23]. Being non-local operators they are defined using integrals.
Therefore, the fractional derivative in time contains information about
the function at earlier points, thus it possesses a memory effect. More
exactly, such derivatives consider the history and non-local distribution
effects which are necessary for better description and understanding of
complex behavior. In (2015) Caputo-Fabrizio introduced new definition
of fractional derivative without singular kernel [24]. After that re-
searchers have applied this technique to many practical problems for
instance [25–34].

In (2017) Aziz [35] studied the heat and mass transfer of unsteady
hydromagnetic free convection flow through porous medium past a
vertical plate with uniform surface heat flux for Newtonian fluid
without fractional derivative. In the best of our knowledge there is no
study has been carried out the fractional model of [35] with Caputo-
Fabrizio fractional derivative. Therefore, we have extended the pro-
blem to some non-Newtonian fluid namely Jeffrey’s fluid with Caputo-
Fabrizio fractional derivative in the absence of porous media using
numerical inverse Laplace transform technique.

Mathematical formulation of the problem

Consider electrical conducting incompressible generalized Jeffrey’s
fluid over an infinite vertical plate taken along x -axis in a porous
medium and y -axis is perpendicular on the plate. At the beginning, the
fluid and the plate have same temperature and concentration. After
time >t 0, the plate starts to move with uniform acceleration At in x
-direction against the gravitational acceleration. At the same time, heat
from plate to the fluid is maintained throughout the flow at uniform
rate and concentration raised to the constant level as shown in geo-
metry of the problem. Further assume that magnetic Reynolds number
is very small and Soret and thermal buoyancy effects are also con-
sidered. As the plate is of infinite length so all the physical variables
become the functions of −y space and time variable. Under the above
mentioned assumptions and Boussinesq’s approximation, set of equa-
tions for unsteady Jeffrey fluid [34,35] are as follows:
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Associated initial and boundary conditions:
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in which A is the uniform acceleration of the plate, ∗x and ∗y are the
distances along and perpendicular to the plate, ∗t is the dimensional
time, ∗u is the fluid velocity in the ∗x -direction, ∗T is the temperature of
the fluid, ∞

∗T is the free stream temperature, ∗C is the concentration, ∗Cw
is the surface concentration, ∞

∗C is the free stream concentration, Q1 is
the dimensional heat absorption coefficient, k is the thermal con-
ductivity, ″qw is the constant heat flux per unit area at the plate, βT is the
volumetric coefficient of thermal expansion, βC is the volumetric coef-
ficient of expansion for concentration, ν is the kinematic viscosity, μ is
the fluid viscosity, ρ is the fluid density, cp is the specific heat capacity,
σ is the electrical conductivity of the fluid, Tm is the mean fluid tem-
perature, KT is the thermal-diffusion ratio, ∗Kr is the chemical reaction
constant and D is the mass diffusivity. Now, we define the following
non-dimensional variables
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Putting Eq. (7) in Eqs. (1)(6) and in the resulting momentum
equation using the substitution ̃=u y t GrU y t( , ) ( , ) and then replacing
integer order time derivative with non-integer order derivative of order
α.

̃ ̃ ̃ ̃

̃
=

+
+ ∂

∂
− +

+

D U y t
λ

λD U y t
y

MU y t T y t

λ C y t

( , ) 1
1

(1 ) ( , ) ( , ) ( , )

( , ),

t
α

t
α

1

2

2

3 (8)

̃ ̃ ̃= + ∂
∂

−D T y t R T y t
y

Q T y t( , ) 1
Pr

( , ) ( , ),t
α

H
2

2 (9)

Nomenclature

u Velocity of the fluid [ms−1]
C Concentration of the fluid [kgm−3]
Gm Thermal Grashof number [—]
Cw Concentration level at the plate [kgm−3]
Cp Specific heat at a constant pressure [j kg−1 K−1]

∞T Fluid temperature far away from the plate [K]
Tw Fluid temperature at the plate [K]

∞C Concentration of the fluid Far away from the plate
[kgm−3]

M Magnetic parameter

Greek symbols

α Fractional parameter
ν Kinematic viscosity of the fluid [m2 s−1]

λ Jeffery fluid parameter
βT Volumetric coefficient of mass expansion [K−1]
βC Volumetric coefficient of thermal expansion [m3 kg−1]
g Acceleration due to gravity [m s−2]
Gr Thermal Grashof number [—]
k Fluid thermal conductivity [Wm−2 K−1]
D Mass diffusivity [m2 s−1]
Pr Prandtl number [= μc k/p ]
Sc Schmidt number [= ν D/ ]
T Temperature of the fluid [K]
s Laplace transform parameter
t Time [s]
μ Dynamic viscosity [kgm−1 s−1]
ρ Fluid density [kgm s−3]
λ1 Ratio of relaxation and retardation time
λ2 Retardation time [s]
λ3

Gm
Gr

[——]

M.A. Imran et al. Results in Physics 10 (2018) 10–17

11



̃ ̃ ̃ ̃= ∂
∂

+ ∂
∂

−D C y t
Sc

C y t
y

S T y t
y

γC y t( , ) 1 ( , ) ( , ) ( , ).t
α

r
2

2

2

2 (10)

The Caputo-Fabrizio time fractional derivative of order ∈α [0,1] is
defined as [24]
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The Laplace transform of Caputo-Fabrizio time derivative is
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with dimensionless initial and boundary conditions
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Temperature filed
By applying Laplace transform to Eq. (9) keeping in mind the initial

condition

̃
̃⎜ ⎟

∂
∂

= ⎛
⎝ − +

+ ⎞
⎠

T
y

Fs
s α α

FQ T
(1 )

,H
2

2 (15)

satisfy the conditions

̃
∂
∂

= − → → ∞T
y s

T as y1 , 0, .
(16)

Solution of Eq. (15) subject to conditions Eq. (16)
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Inverse Laplace transform of the Eq. (17) using convolution the-
orem.
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For the ordinary case when, result is identical to those obtained by
Aziz [35] and presented graphically in Fig. 12 for the validation of our
obtained result.

Concentration field

By applying Laplace transform of Eq. (10) by using the initial con-
dition
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Solution of Eq. (19) subject to conditions (20), we have
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with its inverse Laplace transform of Eq. (21) and using convolution
theorem,
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For the ordinary case when →α 1, result is identical to those ob-
tained by Aziz [35] and presented graphically in Fig. 12 for the vali-
dation of our obtained result.

Velocity field

By applying Laplace transform of Eq. (8) by using the initial con-
dition
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Introducing the expressions of temperature and concentration from
Eqs. (17) and (21) in Eq. (23)
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satisfy the conditions
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Solution of Eq. (24) subject to conditions (25)
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In complex transform domains we can’t find inverse Laplace trans-
form analytically for some practical applications. So, we have used
some numerical techniques to obtained inverse Laplace transform of Eq.
(26). By using Stehfest’s algorithm [36] and Tzou’s [37] for numerical
Laplace method in solving the fractional differential equations.

Results and discussion

Exact analysis of non-Newtonian fluid has been discussed with the
help of Laplace transform method. Now, we have computed the results
for a variety of physical parameters which are represented in the
graphs. The results which we obtained to illustrate the effects of mag-
netic field parameter M , λ3 ration between mass and heat transfer
Grashof numbers, chemical reaction parameter γ , Prandtl number Pr,
heat absorption parameter QH , radiation parameter R, Schmidt number
Sc, Soret number Sr and dimensionless time t on velocity profile only.

The variation of velocity profile with different values of magnetic
parameter M is shown in Fig. 1. MHD principal used as an agent to
control the boundary layer thickness. As expected, by increasing value
of M , reduces the fluid velocity remarkably. Further, it can be seen that
the boundary layer thickness and decreasing in the main free stream
region. This happened physically due to the reason that drag force
acting opposite to the fluid flow and reduced the fluid velocity. The
buoyancy ratio parameter λ3 represents the ratio between mass and
thermal buoyancy forces. When =λ 03 there is no mass transfer and the
buoyancy force is due to the thermal diffusion only. For >λ 03 means
that mass buoyancy force acts in the same direction of thermal buoy-
ancy force. The influence λ3 on velocity profile is shown in Fig. 2. It is

observed from figure that the increasing value of λ3 which increases the
velocity profile. It occurs due to the increase in buoyancy force which
results to increase in the fluid velocity and increases the thickness of
boundary layer. Clearly the velocity is maximum for larger value of λ3

near the plate and for larger y decreases in the free stream region and
then approaches to zero. Fig. 3 presents the increasing values of the
chemical reaction parameter γ on the velocity profiles. It can see that
the increasing values of γ leads to fall in the fluid velocity field. Phy-
sically, the positive chemical reactions are treated as destructive and
negative chemical reactions termed as generative or constructive che-
mical reactions. That’s why the fluid velocity reduced due to increase in
the value of positive chemical reaction parameter. Fig. 4 shows the

Fig. 1. Velocity profile for different values of M when
= = = = =t R Q γ2, 0.1,Pr 0.3, 1, 0.5,H

= = = = = =λ Sr Sc λ λ α1, 1, 0.22, 0.1, 0.9, 0.33 1 .

Fig. 2. Velocity profile for different values of λ3 when
= = = = =t R Q γ2, 0.3,Pr 0.0.71, 1, 0.5,H
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effect of Pr on velocity profiles. It is observed that the increasing value
of Prandtl number Pr results in decrease the velocity profile. This is
because of the fact that higher viscosity of fluid with the large amount
of Pr and a small thermal conductivity, which disturb the fluid velocity
and makes a fluid thick. Fig. 5 presents the velocity disturbance along
the boundary layer by the influence of heat absorption parameter QH . It
is observed from the figure that the increasing values of QH which de-
creases the distributions of the fluid velocity. This is because of the
presence of heat in the layers of boundary absorb some amount of en-
ergy and due to this fact decreases the temperature of fluid and hence
fluid velocity. Fig. 6 shows the influence of radiation parameter R on
the velocity profiles. It is observed from the figure that the increasing

value of R also increases the velocity profile. This is due to the fact that
the large values of R which increases the control of conduction over
radiation by increasing the buoyancy force and finally increased the
fluid velocity. The effect of Schmidt number Sc on the velocity profiles
are shown in Fig. 7. It is observed that the increasing value of Schmidt
number which decreases the velocity profile due to the decrease in the
molecular diffusivity, which also decreases the concentration and
thickness along the boundary layers. Fig. 8 presents the effect of Soret
number Sr on the velocity profiles. It is observed that increasing value
of Soret number Sr increases the velocity profile due to the increase in
the molecular diffusivity. Fig. 9 shows the variation of different values
for time t with the velocity profiles. It is observed that the increasing

Fig. 3. V. elocity profile for different values of γ when
= = = = =t R Q M2, 0.1,Pr 0.1, 10, 0.2,H

= = = = = =λ Sr Sc λ λ α1, 1, 0.22, 0.1, 0.9, 0.33 1 .

Fig. 6. Velocity profile for different values of R when
= = = = =t Q γ M2, 15, 0.5,Pr 0.1, 1,H

= = = = = =λ Sr Sc λ λ α1, 1, 0.22, 0.1, 0.9, 0.33 1 .

Fig. 4. Velocity profile for different values of Pr when
= = = = =t R γ Q M2, 0.1, 0.5, 0.5, 1,H

= = = = = =λ Sr Sc λ λ α1, 1, 0.22, 0.1, 0.9, 0.33 1 .

Fig. 5. Velocity profile for different values of QH when
= = = = =t R γ M2, 1, 0.5,Pr 0.1, 1,

= = = = = =λ Sr Sc λ λ α1, 1, 0.22, 0.1, 0.9, 0.33 1 .
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values of time t which increase the rate of velocity too. Furthermore,
the velocity takes the values of time t at the plate =y( 0) and tends to 0
for the larger values of y that justifies the natural boundary condition.
Fig. 10 shows the variation of velocity profile against y for the variation
of α by fixing other flow parameters. It is observed that the increasing
values of α increases the velocity. Physically, using the time fractional
derivative of non-singular kernel fluid velocity can be enhanced. Fig. 11
represents the variation of parameter λ against the velocity profile and
found that fluid velocity is an increasing function of parameter λ.
Figs. 12–14 are plotted for the validation of our obtained results for
temperature, concentration and velocity fields and observed that they

are in good agreement with [35] when the fractional parameter →α 1
for temperature and concentration respectively. Since we have solved
the problem of non-Newtonian fluid for velocity field and taking

→ → →α λ λ1, 0, 01 in the obtained solution we recovered the results
obtained by those [35] with = 0K

1 and presented in Fig. 14. For nu-
merical Laplace transform of temperature, concentration and velocity
fields table 1 is presented. Table 2 explains the influence of fractional
parameter on skin friction and found that skin friction remarkably re-
duced by increasing the values of fractional parameter α.

Fig. 8. Velocity profile for different values of Sr when
= = = = =t Q γ R2, 7, 0.5,Pr 0.1, 0.1,H

Fig. 9. Velocity profile for different values of t when
= = = = =Q γ R M0.2, 0.5,Pr 0.71, 0.1, 1,H

= = = = = =λ Sc Sr λ λ α1, 0.22, 1, 0.1, 0.9, 0.33 1 .

Fig. 10. Velocity profile for different values of α when
= = = = =t Q γ R2, 3, 0.5,Pr 0.1, 0.1,H

= = = = = =λ M Sc Sr λ λ1, 1, 0.22, 1, 0.1, 0.93 1 .

Fig. 7. Velocity profile for different values of Sc when
= = = = =t Q γ R2, 0.1, 0.5,Pr 0.31, 0.1,H

= = = = = =λ Sr M λ λ α1, 1, 1, 0.1, 0.9, 0.33 1 .
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Conclusion

Finally, from the exact analysis of Jeffrey’s fractional fluid some
concluding remarks are given as

• Fluid velocity is a decreasing function of the following parameters
M γ Q Sc, , Pr, , .H

• By increasing the values of λ R Sr t, ,3 fluid velocity increases.

• By increasing the value of Jeffrey parameter λ and fractional

parameter α fluid flow can also be enhanced.

• Skin friction decreases by increasing the value of fractional para-
meter.

• Our solutions for Jeffrey’s fluid reduced to viscous fluid as a limiting
case and they are in good agreement.

Fig. 12. Temperature profile for comparison of our result when
→ = = =α Q R1, 13, Pr 0.1, 0.1H .

Fig. 13. Concentration profile for comparison of our result when
→ = = =α Q R1, 5, Pr 7, 0.5,H = = =Sc Sr γ0.22, 0.5, 0.2.

Fig. 14. Velocity profile for comparison of our result when
→ → → = = = = = =

= = =

λ λ α Q R Sr λ M Sc

γ

0, 0, 1, 0.5, Pr 0.31, 2, 2, 2, 0.2,

0.22, 0.5, 0
H

K

1 3
1

.

Fig. 11. Velocity profile for different values of λ when
= = = = =t Q γ R2, 1, 0.5,Pr 0.3, 0.1H .
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Table 1
Inverse Laplace transform by Stehfest’s and Tzou’s formula.

y T y t( , ) [Stehfest’s] T y t( , ) [Tzou’s] C y t( , ) [Stehfest’s] C y t( , ) [Tzou’s] U y t( , )[Stehfest’s] U y t( , ) [Tzou’s]

1 0.505 0.505 0.279 0.279 0.173 0.173
2 0.283 0.283 0.155 0.155 0.117 0.117
3 0.159 0.159 0.006 0.006 0.067 0.067
4 0.089 0.089 0.047 0.047 0.037 0.037
5 0.05 0.05 0.026 0.026 0.02 0.02
6 0.028 0.028 0.014 0.014 0.011 0.011
7 0.016 0.016 7.269× 10−3 7.269× 10−3 6.109× 10−3 6.109× 10−3

8 8.801× 10−3 8.801×10−3 3.781× 10−3 3.781× 10−3 3.336× 10−3 3.336× 10−3

Table 2
Effects of fractional parameter on Skin friction.

Cf Cf Cf Cf Cf Cf

=α 0 =α 0.2 =α 0.4 =α 0.6 =α 0.8 =α 0.99

1.161 1.055 0.938 0.809 0.665 0.511
1.114 1.009 0.894 0.767 0.625 0.474
1.076 0.972 0.858 0.732 0.593 0.444
1.043 0.941 0.828 0.704 0.567 0.42
1.016 0.915 0.804 0.682 0.546 0.401
0.994 0.894 0.784 0.663 0.528 0.385
0.976 0.876 0.767 0.647 0.514 0.373
0.96 0.862 0.754 0.635 0.503 0.363
0.947 0.85 0.743 0.625 0.494 0.355
0.937 0.84 0.733 0.616 0.486 0.348
0.928 0.831 0.726 0.609 0.48 0.343
0.921 0.825 0.719 0.604 0.475 0.339
0.915 0.819 0.714 0.599 0.471 0.335
0.91 0.814 0.71 0.595 0.468 0.332
0.905 0.81 0.707 0.592 0.465 0.33
0.902 0.807 0.704 0.59 0.463 0.329
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