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The effect of Cattaneo-Christov heat flux model for the hydro-magnetic mixed convective flow of a non-
Newtonian fluid is presented. The flow over a wall having variable thickness is anticipated under the
influence of transverse magnetic field and internal heat generation/absorption effects. Mathematical for-
mulation has been performed by making use of the suitable transformations. Convergence analysis has
been performed and the optimal values are computed by employing optimal homotopy analysis method.
The effects of physical parameters are elaborated in depth via graphical and numerical illustrations.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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Introduction

Combining dynamic fluids with heat transfer is one of the useful
topic due to its various technical and scientific applications.
Recently it is acknowledged that the rate of cooling is significant
in order to obtain the quality of the product. For-example in purifi-
cation of molten metals, crystal growing and polymer processing,
glass products, sheeting stuff (paper, fiber and metallic sheets),
coating of wires etc. the rheology and rate of heat transfer have
great importance. In view of these applications of heat transfer,
several researchers [1-15] in the past have investigated different
rheological problems with various technical and physical aspects
including internally generated/absorbed heat, transfer of wall
mass, hydrodynamics as well as hydro-magnetics, shrinking and
stretching of boundaries, thermal-diffusion and diffusion-thermo
effects etc. In studies [1-15], characteristics of transfer of heat
are analyzed by considering the Fourier’s law of heat conduction.
However, Fourier’s law is inadequate because of the fact of the ini-
tial disturbance that can be handled instantaneously throughout
the system. Cattaneo [16] modified the Fourier's law by
introducing the thermal relaxation time to overcome the observed
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difficulties. The thermal relation time addition permits the trans-
portation of heat by propagating thermal waves with restricted
speed. Christov [17] extended the work of Cattaneo by introducing
the rate of change of Oldroyd’s upper-convected factor for further
investigation. Later on, several researchers and investigators
extended this concept under various flow aspects. For-instance
Tibullo and Zampoli [18] computed better results for the
Cattaneo-Christov heat flux model (C-CHFM) can be applied to
incompressible fluids. A validity analysis for the C-CHFM estab-
lished a fact of a different solution for the problems of initial
boundary values with an application to the incompressible flow
of fluid. Thermal irregularity in Brinkman absorbent media with
C-CHFM has been investigated by Haddad [19]. By employing the
C-CHFM, significant factor for finding the convection instability
threshold. The integrated flow and heat transfer in a viscoelastic
fluid with C-CHFM has been proposed by Han et al. [20], in which
authors have considered the upper-convected Maxwell fluid flow
using slip boundary conditions and employed homotopy analysis
method for computations and provide the comparative studies
for Fourier law and C-CHFM. Hayat et al. [21] presented hydromag-
netic flow of an Oldroyd-B fluid having mixed (similar/dissimilar)
responses for the C-CHFM, and presented analysis through homo-
topy analysis method (HAM). Mustafa [22] presented C-CHFM for
flow rotation with analysis of the heat transfer characteristic for
an upper convected Maxwell (UCM) fluid model by exploiting both
analytical and numerical approaches. In [23], a numerical study of
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C-CHFM is presented with an aim to measure the effect of expo-
nential surface stretch for viscoelastic flow using shooting method.

In this paper, we have extended the theory of C-CHFM. We have
investigated the C-CHFM for the non-Newtonian fluid flow over a
wall with variation in thickness. Influence of mixed convective
phenomenon combined with the effects of magnetic field and
internal heat generation/absorption are analyzed in detail. The best
values of the convergence control parameters are presented in
terms of graphical and numerical illustrations to study the emerg-
ing physical characteristics.

Problem formulation

We consider the hydro-magnetic mixed convective flow of an
UCM fluid over a wall by variable thickness. The analysis of trans-
ferring heat has been investigated by using the C-CHFM and the
internal heat generation/absorption effects are incorporated.
According to the Cartesian system, along horizontal axis (x-axis)
and vertical axis (y-axis) are taken along the stretching sheet and
normal, respectively as shown in Fig. 1, while for the system, the
boundary layer equations based on laws of mass, momentum
and energy conservation is written in terms of PDEs as:

ou ov

L vaz—u—) i-‘rﬂzi-‘rzuv ou
ox ay a2 1 8x2 ox? oxay
aﬁo ou _
; <U+hv ay) T gh(T—To), )
pCpv-AT = —A-q, 3)

where u and v are horizontal and vertical components of velocities,
respectively. Whereas v is stands for kinematic viscosity, T repre-
sents the fluid temperature, p is density of fluid, /; is fluid relax-
ation time, q is heat flux, g is gravitational acceleration, By is
imposed magnetic field, Q, is heat generation absorption coeffi-
cient, T, is ambient fluid temperature, T,, is condition at surface,
o is electric conductivity, f, is volumetric expansion and C, is the
specific heat capacity. Moreover

q+7 <‘;‘§+v AQ—q-Av+(A- z))q) = —K(T)AT, (4)
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Fig. 1. Physical flow model.

In Eq. (4) /, represents the thermal relaxation time, K(T) is vari-
able thermal conductivity. Simplifying Egs. (3), (4), we get:
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The boundary conditions in the present problems are:
U= ty(x) = Up(x+ b)", v=0, T=T. aty—Ax+bi-"
V=0, T=T, aty—A@x+b) ="
u—»0 T—->T, asy—oo T—-T,, asy— oo, (6)

where k(T) = k(1 + €0), k., is the ambient thermal conductivity of
the fluid, 6 is the dimensionless temperature and ¢ is the small sca-
lar parameter which shows the influence of temperature on variable
thermal conductivity.

The following similarity transformations are invoked:
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Making use of transformations given in Eq. (7), the Egs. (1), (2)
and (5) are written as:
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where o =A/41% describes the plate surface. We define
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and

f0)=ol1=W

(1+n)’

f(0)=00)=1, f(0) =0, 0(cc)=0, (13)
where hg, M, / and y are the heat source/sink, magnetic, and the
mixed convection parameters, respectively, while, Pr and B is
Prandtl and Deborah number in terms of relaxation time, respec-

tively. These quantities are defined mathematically as follows:
0B Q _ ghi(Tw —T)
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Solution methodology

It is noted that the Eqs. (11) and (12) along with boundary con-
ditions (13) are the two non-linear ordinary differential equations
(ODEs). With the aim of computing the solutions, the HAM is
employed, while the optimal values are determined using optimal
HAM (OHAM). By defining the initial guess for both (f,,6,) and
(L, Ly) as:
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The problems at the zeroth order deformation are
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where the nonlinear operators are given by
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Whereas the mth order problems are
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It is noted that for p=0 and p = 1, we can write:
f ;0 =folm), f ;1) =f(m; 1) = f(m), (28)
0"(1:0) = Oo(17), 0" (1:1) = 0(n), (29)

We take p € [0, 1], from the said variation f"(17;1) and 0"(1;p)
from the initial solution f,(#) and 6o(5) to the final solution f(#)
and 0(#n). By exploiting the Taylor series expansion, we get
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We chose the auxiliary parameter in such a means that the
above expression (30) and (31) transformed at point p=1 as
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Optimal analysis

Since homotopic series results conventionally covers the non-
zero auxiliary factors cé and ¢ that state the convergence-region

of the Homotopy series solutions. To get optimal values of c(f] and
¢4 parameters, the optimal analysis through minimization process
is utilized for average squared residual errors as follows:

2
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where E,, is the sum of both residual errors, while s = 0.5 and
k =20 are taken.

The obtained minimum magnitude of E. for a set of control
global optimal gauges for different approximation orders are pre-
sented in Table 1. Four set of control global optimal gauges at 2,
4, 6 and 8th approximation orders are determined. The values of
E/, and E’, errors are listed in Table 2 and Figs. 2 and 3 at different
order of approximations using 8th order control global optimal
gauge. It is observed that the magnitudes of errors, i.e., E;, and
E decreased with an increase in the order of approximations.

Discussion

The goal of this portion is to present the effects of involved
physical and rheological quantities. Therefore, we have plotted
Figs. 4-13 which present the effects of Deborah number, magnetic
field, mixed convection parameter, index number, thermal relax-
ation parameter and internal heat generation/absorption quanti-
ties. Fig. 4 presents the 3D flow configuration of the considered
analysis. The velocity of the fluid strongly depends upon the initial
velocity of the wall can be noted. Fig. 5 illustrates the effects of
Deborah number # on velocity profile f'. It is noted that Deborah
numbers retards the flow. It is because domain of g presents the
difference between the solid state and liquid state. It is noted that
any material behaves like liquid for small Deborah numbers
whereas for higher values of Deborah number, material show vis-
coelastic nature. This nature is also observed in current analysis.
Fig. 6 elucidates the effects of magnetic field on the fluids’ velocity.
It is observed that with an increase in magnetic field, the velocity
of the fluid and the momentum boundary layer show decreasing
behavior. From this result, we can say that the fluid velocity can
be controlled by applying the magnetic field. The impacts of mixed
convection parameter 2 on the velocity profile f’ are portrayed in
Figs. 7 and 8. It is seen that the effects of increasing values of mixed
convection parameter retards the velocity profile. Physically 2 < 0
represents the internal cooling and 4 > 0 meaning internal heating

Table 1

Best convergence control factors along with magnitude of the residual errors using
BVPH2.0.

m o ¢ E, CPU TIME [S]
2.0 —-1.58 -1.37 432 x107° 2.93

4.0 —~1.45 ~-1.31 171 x10°° 55.12

6.0 —~1.41 -1.27 294 x 1077 3120.98

8.0 -1.38 -1.23 0.52 x 1077 5141.54

M. Awais et al./Results in Physics 8 (2018) 621-627

Table 2
Magnitudes of error with optimal parameter m = 8 from Table 1.

m E/ E CPU TIME [S]
40 8.12 x 10°° 9.68 x 107 10.81

8.0 595 x 108 361 x 10°° 105.89

12.0 8.170 x 1010 941 x 101 298.54

5 Residual errorat 7 = 0in [
3. x107 p~ r

| T T T

2.x107°} |
1.x107°} |

0
-1.x10~° }
-2.x107%} \

_3.X10—9 i i i i l
-1.2 =11 =10 =09

A

Fig. 2. Magnitude of error for f.

i Residual error at 7 = 0in &
6. x 107" pr T

4. x10-%L '
2 x107%} \

0 "--,,,__

—2.x107%}
—4. x10-%} |

_6.X10—3 — a a 2 s l
-13 -12 -11 -10 -0.9 -0.8

¥4

—0.7

Fig. 3. Magnitude of error for 0.

whereas A = 0 means absence of free convection current. The effect
of decreasing value of mixed convection parameter 4 < 0 on veloc-
ity profile results into a decrease in the fluids’ velocity whereas for
2> 0, the fluid velocity increases. Therefore, we can conclude the
mixed convection has opposite behavior for internal cooling and
internal heating processes. Effects of power index number n on
velocity profile are described in Fig. 9. It is noted that higher the
value of power index number n result is increase in velocity profile.
Since the wall motion is strongly dependent on power index n and
an increase in n corresponds to an increase in the wall motion
which induced the flow. Therefore, we conclude that by increase
the value of power index n, one can enhance the fluids velocity.
The behavior of thermal relaxation parameter y on the tempera-
ture is showed in Fig. 10. It is noted that the higher value of
thermal relaxation parameter 7y results in reduction in tempera-
ture. In others words we can say that if increase the value of ther-
mal relaxation parameter ), then it shows a non-conducting
behavior. It is also noted that the temperature distribution can
be increased only for y = 0, otherwise for the higher value of 7,
the reduction in temperature is noted. Figs. 11 and 12 illustrate
the effects of heat source parameter (hs > 0) and heat sink
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Fig. 4. 3D flow configuration.
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Fig. 6. Effects of M on f'.

parameter (hs < 0) on temperature profile 0. We have observed
that the temperature of the fluid show increasing behavior for lar-
ger positive values of heat source whereas the temperature
decreases with an increase in heat sink quantity. Moreover, the
change in temperature for the case of heat source is significant

A=00,-03,-0.7,-10, =02, n=13

L e e e e e e e B L N S s S B B S S
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Fig. 7. Effects of 2 < 0 on f'.
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o
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n
Fig. 8. Effects of 2> 0 on f'.
n=00,031017 =02 n=13
] L S s SO
’ o
|
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o
|
I:E
3 :

Pr=10 =02=

Fig. 9. Effects of n on f'.

when compared with the case when heat sink. The effects of mixed
convection parameter / on the temperature profile is presented in
Fig. 13. It is noted that temperature decreases with an increase in
the mixed convection parameter.

Complexity comparison of the numerical solvers is also con-
ducted for the system model on the similar procedure as adopted
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in [24-30] and result are given in terms of time consumed, number
of step performed and number of function evaluated in Table 3. It is
found that Adam numerical procedure will take the least time,

1=00,03,07.10, n=13
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Fig. 13. Effects of /1 on 6.
Table 3
Computation complexity of the solvers.

Method Timing Steps Evaluations
Automatic 0.15625 36 75
Adams 0.1250 36 75
BDF 453,125 54 69
Explicit Runge Kutta 0.3125 11 179
Implicit Runge Kutta 1.296875 23 327
Extrapolation 0.59375 12 246

while Explicit Runge Kutta have performed with minimum steps
and least function evaluations are consumed by BDF method.

Final outcomes
Following are some main outcomes of the considered analysis:

o Higher value of g, i.e., Deborah number, resultantly we observe
the reduction in the velocity and momentum boundary layer
thickness.

o Effect of mixed convection parameter has dual effects on the
momentum and thermal boundary layers.

e Hydro-dynamics can be utilized in order to control the fluid
flow and internal molecular movement.

e Increase in thermal relaxation time results into decrease in
temperature.

Presence of heat sink decreases the temperature whereas heat
source enhances the fluid temperature.
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