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A B S T R A C T

Thin films of In2O3 and In2O3 doped with Ag+ or Cu2+ were assembled by spray pyrolysis from aqueous solution
at 450 °C. The microstructure analysis and optical properties were investigated using XRD, SEM, EDX and
UV–Vis. spectrophotometer. XRD analysis proved that Ag-doping greatly reduces the crystallites sizes of In2O3

from 96 nm to 59 nm. However, Cu-doping has less pronounced effect on the crystallite sizes than that of Ag
doping. The band gap energy of In2O3 decreases with both Cu2+ and Ag+ doping. The change in lattice para-
meter of cubic In2O3 with Cu and Ag substitutions is compatible with the ionic radius of the substituted ions, i.e.
Ag-substitution increases the lattice parameter and Cu-substitution decreases the lattice parameter. The calcu-
lated direct band gap of bare In2O3 film is 3.59 eV. Doping In2O3 with Cu2+ and Ag+ decreases the band gap to
3.36 eV and 3.27 eV, respectively. Ag+ substitution in place of In3+ ion in In2O3 cubic lattice causes negative
strain value due to the shrinkage of the interplaner spacing of the unit cell. In contrary, replacing In3+ cation
with Cu2+ cation expands interplaner distances of the crystallographic planes of In2O3 lattice and causes positive
strain value. The present work demonstrates the capability to assemble high quality doped – In2O3 thin films by
simple solution based spray pyrolysis.

Introduction

Solution assembled thin-films of metal oxides are promising low-
cost technique for manufacture optoelectronic devices [1,2]. Generally,
spin, spray and inkjet printing coatings are the most famous solution
processing techniques used for deposition of metal oxides thin films
[3–7]. Spray coating technique has many advantages, including; low
cost and easily scalable to industrial scale. In fact, spray coating was
approved in commercial production of transparent semiconductor thin
films.

Indium oxide (In2O3) is wide band gap semiconductor metal oxide
(n-type) with high electron mobility [8,9].Crystalline In2O3 is used
many technological applications like sensors [10], liquid crystal dis-
plays [11] and solar cells [12]. Amorphous In2O3 thin films find wide
applications flexible flat panel displays and thin-film transistors (TFTs),
because of its low processing temperature; below 150 °C [2,6,13,14].

The microstructure and optoelectrical properties of In2O3 thin films
can be tuned with controlling the type and amounts of defects [4,15],
which greatly influenced by processing condition [16] as well as by
foreign cation doping [10,17,18]. Insertion of dopants in In2O3 lattice

can develop desirable optical and electrical properties [4]. Investigators
[8,15,19–21], found that doping In2O3 with metal cations, such as Nb,
Al, Sn, W, Ti, V and Mo changes have great impact on optoelectronic
properties. The change in the electrical conductivity results from sub-
stitution of cations with different charges, radius and mobility. Also,
lattice defect and strain which mainly produced from substitution of
In3+ with cations of different radius, improves the charge separation
[22].The band gap of In2O3 thin films can be tuned by doping [4,15].

The present work demonstrates the capability to assemble high
quality Cu and Ag-doped In2O3 thin films by simple solution based
spray pyrolysis.

Experimental

Spray pyrolysis processing of Ag and Cu doped In2O3 thin films

A home-made spray processing apparatus is used for thin films
growth. The glass substrate was fixed on steel block (15×15×2 cm)
containing heating elements and thermocouple for temperature control.
A computer-controlled spray gun (0.3 mm nozzle diameter) was used
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for thin films processing. Compressed air was used as carrier gas and the
flow rates were fixed at 6.5 L/min. The substrates were microscopic
glass sheets with thickness 1mm. the substrates were cleaned with ul-
trasonic in deionized water and alcohol. The glass substrates were
cleaned in ultrasonic bath using acetone then dried with nitrogen flow.
The temperature of the glass substrate was fixed at 450 °C.

Indium nitrate; In(NO3)3, silver nitrate; AgNO3 and Copper(II) ni-
trate trihydrate; Cu(NO3)2·3H2O were used to prepare the spraying
solutions in deionized water as the solvent. In case of Cu and Ag-dopped
In2O3, the amount of AgNO3 and Cu(NO3)2 was fixed at M/(M+ In)
atomic ratios of 3. The film thickness was optimized with series of ex-
periments at different spraying time and the thickness was measured by
both weight difference and SEM measurement of cross-section. The
thicknesses of the films nearly fixed in the range 300–350 nm. The
substrate was sprayed for 5 s 3 times with 2min pause time.

The XRD diffraction patterns were collected for the three film
samples using a D8 ADVANCE (Bruker, USA) X-ray diffractometer with
Cu Kα (λ=1.54056 Å) operated at 40 kV and 40mA. The diffracted
intensity was measured using a LYNXEYE detector comprising 191
channels which enables good statistics for measured diffracted in-
tensities even for thin films or minute samples. The scanning speed was
0.2°/min and the scanning angle ranged from 20° to 80° in diffraction
angle. The optical properties of the thin films were investigated using
UV–visible spectrophotometer (JASCO V670).

Results and discussion

XRD analysis and microstructure

Phase identification was performed for the obtained XRD patterns to
define the phases comprising each film sample. The phases were
identified by comparing the characteristic peaks with the JCPDS files.
The cubic phase of In2O3 (JCPDS # 01-088-2160) with the space group
Ia3 was found common and dominating the composition in the three
studied films. Whereas, the film doped with Cu was found to contain
some weak peaks belonging to a cubic phase of Cu2O (JCPDS # 00-034-
1354) with the space group Pn m3 and only the strongest (111) re-
flection of this phase can be seen as shown in Fig. 1, while the other
peaks were very weak to be illustrated in the comparison of the XRD
patterns.

It worth mention that, the films are characterized with a consider-
able degree of preferred orientation which has affected the relative
intensities of the Bragg peaks. This is clearly seen especially for the
(400) and its second order reflection (800) which is relatively strong in
the Ag/In2O3 film. Moreover, the Cu2O phase also shares this behavior
and shows a certain degree of preferential orientation in the (111)
plane which can be responsible for the reduction of the other peaks

intensities. Surely, for such cases of modified relative intensities of X-
ray reflections, performing quantitative analysis becomes irrelevant. In
the further analysis, attention is focused on revealing accurate lattice
parameters through a least square method and on size-stain analysis to
obtain reliable results. The Nelson-Riley extrapolation method [23] is
used to refine accurate lattice parameters through a least-square ana-
lysis by minimizing the errors of systematic and/or random origin. For
cubic crystals, like In2O3, each reflection can be used directly to esti-
mate a value of the cell parameter a, then these value are plotted
against the Nelson-Riley extrapolation function FNR(θ) which can be
calculated using the following relation:

= +F θ cos θ sin θ cos θ θ( ) 1/2[ ( )/ ( ) ( )/ ]NR
2 2

The true value of the cell parameter is then obtained by extrapolation to
FNR(θ)= 0 or for θ= 90° as shown in Fig. 2. In other words this is given
directly by the y-intercept of the above linear equations. The Nelson-
Riley plots for the three thin films are shown together in Fig. 2, where
the fitting lines are represented by the linear equations in Table 1. The
values of the cell parameter a0 are quoted with the estimated error
obtained by the propagation of the instrumental and statistical errors as
well. The estimated cell parameter of bare In2O3 thin film is 10.119 Å,
which with great agreement with literature [24]. Substitution of In ion
with Ag ion increases the lattice parameter to 10.125 Å, because Ag ion
has larger ionic radius than In ion. However, substitution of In ions with
Cu ions decreases the lattice parameter to 10.068 Å, because Cu ion
have smaller ionic radius than that of In ion.

Deviations from perfect crystals which extend infinitely in all di-
rections and/or the perfect periodicity are always encountered in real
samples, especially doped samples. Both the finite crystallite size and
lattice strain are the two main properties which could be extracted from
the peak width analysis. No doubt that, X-ray Line-profile analysis
methods are easy and effective way to estimate the crystallite size and
lattice strain [25]. In spite of the fact that, X-ray profile analysis is an
average method, they still occupy an inescapable place for grain size
determination, apart from imaging techniques like TEM micrographs.
Williamson-Hall analysis is a straightforward and easy method wherein
both the size-induced and strain-induced contributions to peak broad-
ening are deconvoluted by plotting the peak widths versus the

Fig. 1. Diffraction patterns of In2O3, Cu/In2O3 and Ag/In2O3 thin films.

Fig. 2. Nelson-Riley plots for the samples In2O3 (squares), Cu/In2O3 (circles)
and Ag/In2O3 (triangles), the solid lines are the best linear fits for the data.

Table 1
The obtained results of the Nelson-Riley extrapolation of lattice cell parameter.

Thin film Nelson-Riley linear fit a0 (Å)

In2O3 = − ∗y x10.11928 0.00741 10.1193(8)
Cu/In2O3 = − ∗y x10.06813 0.0036 10.0681(7)
Ag/In2O3 = − ∗y x10.1249 0.00173 10.1249(9)
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diffraction angle 2θ for all present reflections [26]. In the present study,
Williamson-Hall analysis is utilized to estimate crystallite size and lat-
tice strain of pure, Cu-doped and Ag-doped In2O3 films. To remove the
instrumental contribution, the line broadening of a standard material
almost free off any sample imperfections such as corundum is firstly
determined and is then considered to represent the instrumental
broadening. The instrument corrected broadening β corresponding to
the diffraction peaks of bare and doped In2O3 films was estimated using
the relation:

= −−β β βsample corundum

Combination of both the Scherrer equation for the crystallite size
=D kλ β cos θ/ ( )D with the lattice strain equation; = β tan θε / ( )S , gives

the equation frequently used in Williamson-Hall analysis:

= +βcos θ Kλ D sin θ( ) ( / ) 4ε ( )

The separation of size and strain contribution is achieved thanks to the
different behaviors of Scherrer-equation which follows a 1/cosθ de-
pendency and the tanθ dependence of the strain broadening. Plots of
β θcos( ) versus sin θ4 ( ) are shown in Fig. 3 and are fitted to lines using a
least square method. The linear fitting results of these plots give the
straight line equations quoted in Table 2 together with the crystallite
size and strain values.

The obtained negative value of the strain in the case of Ag/In2O3

corresponds to the shrinkage of the interplaner spacing of the cubic
lattice of In2O3, this is in accordance with the insertion of Ag+ cations
with larger ionic radius which compresses the crystallographic planes of
the In2O3 cubic lattice and at the same time results in the larger lattice
parameter in this case as well. On the other hand, the case of Cu/In2O3,
it has positive strain value due to the expansion of the interplaner
distances of the crystallographic planes of In2O3 cubic lattice. This is a
direct consequence of the replacement of In3+ cations by the smaller
Cu2+ cations and which is confirmed by the smaller lattice parameter in
this case.

Microstructure (SEM and EDX)

Fig. 4 presents all the scanning electron microscope (SEM) images of
the prepared thin films and their corresponding EDX spectra. All images

show continuous uniform morphologies. The bare In2O3 thin film
(Fig. 4a) shows dense layer with uniformly scattered will defined cubic
crystallites. Both Ag-doped In2O3 (Fig. 4b) and Cu-doped In2O3

(Fig. 4b) thin films show of uniform more compacted layer and Ag-
doped In2O3 has relatively smaller grains than Cu-doped In2O3. EDX
spectra of bare In2O3, Ag-doped In2O3 and Cu-doped In2O3 are shown in
Fig. 4d, e and f, respectively. The spectra support the incorporation of
both Ag and Cu in the sprayed films.

Optical characterization

The optical properties of the prepared bare In2O3, Cu and Ag doped
In2O3 thin films have been investigated using UV–visible spectro-
photometer. Fig. 5 shows the transmittance (T) and reflectance (R)
spectra of the prepared films in the wavelength range from 300 nm to
2000 nm. It is clearly seen that transmittance (T) of bare In2O3 is more
than 70% in the visible spectrum region, while it is more than 60% in
the same region for Cu and Ag doped In2O3 thin films. These novel
results emphasize the proper use of these films in many related appli-
cations especially in photovoltaic applications. Moreover, at any wa-
velength the bare In2O3 film transmittance spectrum is more than that
of doped ones. Also, a clear red shifts in the transmittance spectra in the
doped In2O3 films with respect to the bare In2O3 film. These results are
mainly attributed to the increase in the absorption spectra as will be
shown later of the doped films relative to that of the bare one.

The optical energy band gap (Eg) of the prepared bare In2O3, Cu and
Ag doped In2O3 thin films were deduced from the transmittance (T)
spectra measurements using the Tauc equation [27–30]:

= −αhν A hν E( )g
n

where =α lnd T
1 1 is the optical absorption coefficient [29], T is the

transmittance measurements, d is film’s thickness, ν is the frequency of
the incident spectrum, h is Planck’s constant, A in a constant, n value
depends on the type of optical transition which takes values: 1/2, 3/2, 2
or 3 for direct allowed, direct forbidden, indirect allowed and indirect
forbidden transitions, respectively. Since In2O3 is a direct band gap
semiconductor, “n” value in Tauc equation equals 1/2. The values of Eg
of the prepared films are estimated by plotting (αhν)2 as a function of
the incident spectrum hν and extrapolating the linear region of these
curves to (αhν)2= 0 as shown in Fig. 6. The deduced Eg values of bare
In2O3, Cu and Ag doped In2O3 thin films are listed in Table 3. It is
clearly seen that the estimated Eg of bare In2O3 film equals 3.59 eV,
which is in good agreement with the published data using different
preparation techniques [31,32]. This Eg value made In2O3 plays the role
of an efficient candidate as an n-type window for solar cells applica-
tions. While when In2O3 is doped with Cu and Ag, a clear decrease in Eg
is achieved to be 3.36 eV and 3.27 eV respectively. This Eg decrease is
mainly attributed to the participation of Cu and Ag through efficient
substitution of Indium (In) atoms, since the Eg of Cu2O and Ag2O are
2.2 eV and 1.2 eV respectively [33,34]. The substitution of In atoms
with Cu and Ag atoms lowers the conduction band of the host material
(In2O3) to more negative values. This behavior was concluded by other
authors. Fan Ye et al. [34] concluded that adding fluorine to cuprous
oxide leads to narrowing the energy band gap of the doped material.
Our results of narrowing the energy band gap of In2O3 by doping it with
metals as Cu and Ag will be sounded in many applications.

Fig. 3. Williamson-Hall plot of pure In2O3, Cu-doped and Ag-doped In2O3 thin
films.

Table 2
Williamson-Hall analysis of bare In2O3, Cu-doped and Ag-doped In2O3 thin
films.

Thin film Williamson-Hall linear fit D (nm) Ɛ

In2O3 = + − ∗y E x0.0016 1.31551 4 96(5) 0.0002(1)
Cu/In2O3 = + − ∗y E x0.00259 8.66124 4 59(3) 0.0009(7)
Ag/In2O3 = − − ∗y E x0.00171 3.5255 4 90(5) −0.0004(2)
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Moreover, the refractive index (n) of the prepared bare In2O3, Cu
and Ag doped In2O3 thin films as a function of the incident wavelength
is also studied. The refractive index of the prepared films were also
deduced from the extinction coefficient (K) data and the reflectance (R)
spectra measurements the wavelength range from 300 nm to 2000 nm
using Fresnel formula as given [35,36]:

= ⎛
⎝

+
−

⎞
⎠

+ ⎡
⎣⎢ −

− ⎤
⎦⎥

n R
R

R
R

K1
1

4
(1 )2

2
1/2

where K (=αλ/4π) [30,37] is the extinction coefficient of the film, α is
the optical absorption coefficient, R is the reflectance and λ is the in-
cident wavelength. The refractive index (n) of the prepared bare In2O3,

Cu and Ag doped In2O3 films in the wavelength range from 300 nm to
2000 nm are shown in Fig. 7. It is noticed that the refractive index (n) of
any prepared film depends on the incident wavelength λ. Moreover, at
almost of the wavelength range of our study (300 nm to 2000 nm), the
refractive index of bare In2O3 film is larger than that of both Cu and Ag
doped In2O3 films. Our results are consistent with previous studies
[38,39].

Furthermore, the real (εr) and imaginary (εi) parts (called loss part)
of the optical dielectric constant are also calculated using the following
equations [35,38]:

= −ε n kr
2 2

(a) (d)

(c)

(b) (e)

(f)

Fig. 4. SEM and EDX of different thin films; (a) and (d) In2O3, (b) and (e) Ag-doped In2O3 and (c) and (f) Cu-doped In2O3.
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=ε nk2i

where n and K are the refractive index and the extinction coefficient
respectively. Fig. 8(a) and (b) illustrates the real and imaginary parts of
the optical dielectric constant of the prepared bare In2O3, Cu and Ag
doped In2O3 films in the wavelength range from 300 nm to 2000 nm.
The behavior of these parameters is directly related to the energy
density of states within the optical band gap of the films [38,40]. It is
clearly seen that the behavior of the real part of the optical dielectric
constant follows the trend of the refractive index (n). While the varia-
tion of the imaginary part follows the trend of the extinction coefficient
(k), which is directly related to the optical absorption coefficient (α) as
discussed before.

Conclusion

In the current report, thin films of indium oxide and Cu and Ag
doped indium oxide have been processed by spray pyrolysis (450 °C).
XRD analysis proved that Ag doping greatly reduces the crystallites
sizes of In2O3 from 96 nm to 59 nm. However, Cu-doping has less
pronounced effect on the crystallite sizes than that of Ag-doping. The
calculated direct band gap of bare In2O3 film equals 3.59 eV, which
makes it to play the role of an efficient candidate as an n-type window
for solar cells applications. Doping In2O3 with Cu2+ and Ag+ decreases
the band gap to 3.36 eV and 3.27 eV, respectively. Ag+ substitution in
place of In3+ ion in In2O3 cubic lattice causes negative strain value due
to the shrinkage of the interplaner spacing of the unit cell. In contrary,
replacing In3+ cation with Cu2+ cation expands interplaner distances

Fig. 5. The transmittance (T) and reflectance (R) spectra of bare In2O3, Cu and
Ag doped In2O3 thin films.

Fig. 6. (αhν)2 vs. hν of (a) bare In2O3, (b) Cu-doped (c) Ag-doped In2O3 films
respectively.

Table 3
Energy band gap of bare In2O3, Cu and Ag doped In2O3

thin films.

Thin film Energy band gap (eV)

In2O3 3.59
Cu/In2O3 3.36
Ag/In2O3 3.27

Fig. 7. The refractive index (n) of bare In2O3, Cu and Ag-doped In2O3 films
versus the incident wavelength.

Fig. 8. (a) The real and (b) imaginary parts of the optical dielectric constant of
the prepared bare In2O3, Cu and Ag-doped In2O3 films versus incident wave-
length.
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of the crystallographic planes of In2O3 lattice and causes positive strain
value. Defects and stain in semiconductor lattice slows the rate of
charge recombination in the electron transfer process [41,42]. Slow
rate charge recombination is an important property needed for semi-
conductors used in optoelectronic devices, such as solar cells.
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