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Introduction

The infinite velocity of the thermal wave is used in the classical
theory of thermo-elasticity. This assumption may be useful for
many engineering problems, but practically it is unacceptable
approximation. In some experiments finite speed of the thermal
waves are observed, so to remove this difference generalized
thermo-elastic theories LS and GL was proposed by Lord and Shul-
man [1]. Green and Lindsay [2] developed generalized thermo-
elastic theory involving one thermal relaxation time. Lindsay and
Green [2]| derived a temperature dependent thermo-elasticity
involving two relaxation times without violating the classical Four-
ier law of heat conduction. Because, propagation of wave in
thermo-elastic media plays a vital role in several fields such as
solid dynamics, earth quake engineering, nuclear reactors and
aeronautic etc. Various authors considered the propagation of
wave in thermo-elastic an isotropic medium. Parfitt and Eringen
[3] considered the plane waves reflection from the flat wall of a
micro-polar elastic half space. Ariman [4] studied the propagation
of wave in a micro-polar elastic half space. For some relevant work
of interest, we refer the readers to study the work of Kumar and
Singh [5], Singh [6] and Deswal and Kumar [7]. But some papers
described the influence of reference temperature elastic modulus.
In this reference, Othman and Song [8] viewed the influence of
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temperature dependent elastic moduli on the reflection magneto
thermo-elastic waves with two relaxation times.

Moreover, Abd-Alla et al. [9] considered the refraction and
reflection of SV waves at the solid liquid interface by considering
primary stress and three thermo-elastic theories. Kumar and Saini
[10] illustrated the effect of refraction and reflection of waves at
the interface between two different porous solids. Wei et al. [11]
investigated the refraction and reflection of P waves at thermo-
elastic and porous thermo-elastic medium.

The magneto thermo-elastic theory includes the impact of mag-
netic field on the thermo-elastic waves. This theory has achieved
more importance in various industrial appliances, especially in
nuclear devices. The connection of magnetic field with strain and
thermal field has been discussed by many researchers; these
include Sinha and Elsibai [12], Deresiewicz [13], Tuncay and Corap-
cioglu [14], Achenbach [15] and Z.D. Zhou et al. [16]. In this paper,
we have considered with influence of two relaxation times on the
refraction and reflection of thermo-elastic plane waves at the solid
liquid interface. The refraction and reflection coefficient ratios of
different refracted and reflected waves with the incident angle 6
have been observed by Green Lindsay (GL) theory and dynamical
coupling (CD) theory.

The current article is organized in the following order: Sectio
n “Formulation of the problem” described the formulation of the
problem. Method of solution is explained in Section “Methods of
Solutions”. Detail descriptions of the boundary conditions for the
current scenario are given in Section “Boundary Conditions”. Sect
ion “Expressions for the refraction and reflection coefficients” is
devoted to obtain the expressions for the refraction and reflection
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coefficients. Numerical results and discussion is given in Section “
Numerical Results and Discussions”.

Formulation of the problem

Let us assume an isotropic, linear, homogeneous, perfectly con-
ducting and thermally elastic medium with temperature depen-
dent mechanical characteristics covering at the interface of the
two half-spaces.

We kept constant temperature T, throughout the body with
uniform magnetic field Hy = (0, H, 0), which is applied in the posi-
tive direction of y-axis.

Basic equations

The electromagnetic field is controlled by the following
Maxwell equations.

curlo=J+%7 B = €E, (1)
curl E = fuog—}:, (2)

f_%c9xm> 3)
div o = 0. (4)

Here E is an induced electric field, Hy is initial uniform magnetic
intensity vector, € is electric permeability and J is the current den-
sity vector.

The generalized thermo-elastic differential equations under GL
theory, in the absence of heat source and body force, has the form

1. Equation of motion

o’y

P~ 8t2 = Cijy +f (5)

here f; is the Lorentz force is given as under

£, = Ho(J x Ho), (6)

oh "
—HoH 5, — €oLiaH W
(7)

2. The constitutive law for the generalized thermo-elasticity the-
ory under the GL theory has the form

oh .
flz_,uoHa—‘folléHZU, f2=0, f3=

ou ow oT
o, =208, 40, {J (a + E) n <T To+vo at)} (8)
3. Under GL theory, the heat conduction equation is

ou E)w) ()

) ar d d ow
KV*T = PTe 5 ]+V18t thTog: (o T,

4. Strain-displacement relation
e . =1u e, =u,,

12 7,0

1 (10)
e, = 5 (U, +u,,).
here ], u are lame’s constants, K is thermal conductivity, p is den-
sity, T¢ is specific heat at constant strain, ¢, is components of stress
tensor, u; is components of displacement vector, T is absolute tem-
perature, t is time and vy, v; are two relaxation times.

Where the derivative with respect to time is represented by a
superposed dot and a comma after suffix shows material deriva-
tives /, ; = X,z.

The displacement components in two dimensional forms can be
written as

uy=u(x,z,t), u,=0, u,=wkx,zt). (11)

Where, Helmolz’s representations of the displacement compo-
nents u, and u, in terms of scalar potential functions ® and ¥,
o0 oY (3(1) d‘P

We define temperature dependent parameters as follow:
E=Eof(T), 3=1oEof(T), p= poEof (T), 1 =noEof (T) (13)

The non-dimensional function of temperature is f(T). When the
modulus of elasticity is temperature independent then f(T) =1
and E = E.

Putting, Eqgs. (7), (8), (10) and (13) into Eq. (5) yield

az otu  o*w Oex .
atz = Ef(T ){ (8}(2+8x82> + 2605 ox Mgk (T+VOT)
06y, oh o*u
+ 2E0f(T):u0 oz - lu (9X 'quz 81:2 )
(14)
o*u, u  Pw
Poe =BT )[ (826x+ az2> 20,52 az ’703 (T +vol)
0e,y Oh o*w
+ 2Eof (T) g —= ox - UoH *,uoHZGO P
(15)

Putting, Eq. (12) in Eqgs. (1)-(4), we can obtain
h=—HV?0. (16)

We introduce the different non dimensional variables are
follow:

x*_ X; u*_ u; t* _ t Vi _& P _vi‘l h* _E
¢‘_w1C[7 g_wlctv _wlct, O_w]7 1_6017 _H.‘
o i e _ MoFo(T —To) :1+§ __ 1 _1

e pc PN P T

After non-dimensionalize, the Egs. (8), (9), (14), (15) and (16)
taken the following forms

2
B g = (1 w0 - (T w ). (18)
2
ph o3 = (- 07w, (19)
2 [OT 0T 24,
VT—<8t+v1at>+8V (20)
h=-V®. (21)

where V2 is the Laplace’s operator.
The constitutive equations reduce to

Pro; =1 —a)(u,,+u,,)
ou ow aT
+5,-/-((2(x—1)<6x+5> <T+v0 8t>> (22)
2 o 1o H?
Where, a:%m+%vwizw:g g =, ="
C? = Eo(Jo +214y)/p, ¢ = w1 = K/pCTi.

Mo €’
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Here ry is the amount of magnetic pressure. E, is constant mod-
ulus of elasticity at * = 0, C, is the supposed Alfven speed, € is the

standard thermo-elastic coupling parameters.

Now for the medium M’, we will use prime to describe all the

quantities of basic Egs. (1)-(4). Taking,

o ov o v
T ox o0z’ T oz ox

!

After non-dimensionalize, we obtain
L 0R - . , T
ﬁﬂ]WZ (1 +ﬁ1rH)V2(D - (T +Vo§>7

Y

B —m = (1= VY,

! 27/
1= (G en g s eve
h=-Va,

Biol, = (1= o), +1))
N T -
+b/,/.<(20< 71)<§+ f)z) - (T +V 8t>>

Methods of solutions

(23)

(28)

Plane propagation in the x direction makes an angle 6 with the

z-axis, we introduce

{®,T,h}(x,z,t) = [@1, Ty, 1y ]exp{i&(xsin 0 + z cos 0) — wt},

Y(x,z,t) = Wiexp{il(xsin 0 + zcos 0) — wt},

(29)

(30)

where ¢ and ¢ are the wave numbers and @ is the complex

frequency.

Putting Egs. (28) and (29) into Eqgs. (18)-(21), we get a system of

three homogeneous equations.

(Eay + ppy@?) Dy + pTy = 0,

0’

@l O + (& — @q) Ty

—52(1’1 +h =0,

in whichoy =1+ girg, p=1—-@vy, q=1-@V;.

1)
(32)

(33)

The system of Eqgs. (31)-(33) has non-trivial solutions if and

only if the determinant of factor matric vanishes. So

(Eon + Bpy@?) p 0

wes (&-mq) 0/=0,
& 0 1
This yield,
V4_ﬁﬁ1W—~'X1q—p3 2 Wor _
BBq BBq '

in which v = ¢ is the velocity of reflected P-waves.
From Eqgs. (19), (28) and (29), we get
(1-9

— o—1
7 T

in which W = 2 is the velocity of reflected SV-waves.

w2 +

(34)

(35)

(36)

Similarly for medium M’,

/!

pi@ — ojn — mé' wo

/4_ﬁ/1 ,/1 V/Z_ //]:()7 (37)
Bpin Bpin

wherem=1-w@v, n=1-wv,.

in which v’ = Z is the velocity of refracted P-waves.

\'

(l—a’):O W — o —1
BB ’ BBy

in which W’ = Z is the velocity of refracted SV-waves.

W/Z +

For incident SV-wave

Consider a plane SV wave propagating through a medium M
and is incident at z =0, three waves (SV, P and thermal) are
reflected in the same medium M by making an angles 6, 0; and
0, with z-axis and P-wave, Thermal waves are transmitted into
medium M’ by making an angles 6; and 6,. The displacement
potentials @, ¥ for medium M and @', ¥ for medium M’ will take
the forms:

® = Ajexp{i&;(xsin6; —zcos 6,) — wt}
+ Ayexp{i&,(xsin 0, — zcos 0,) — wt}. (39)

¥ = Biexp{i{(xsin 0 + zcos 0) — wt}
+ Byexp{i¢(xsin 0 — zcos 0) — wt}, (40)

O = Ajexp{iZ, (xsin 0| +zcos 0}) — @t}

+ Asexp{i&, (xsin 0, + zcos 0,) — wt}, (41)
¥ = 0. (42)
z-axis 4
A
Medium M
0 A
0
x-axis
Medium M
1 2 AZ
B 4,
B

Fig. 1. Relation between incident angle of SV-wave, reflect and the refract angles.

z-axis 4
A
Medium M
0 B
[}
x-axis
Medium M
1 2 A2
B; A,
B;

Fig. 2. Relation between incident angle of P-wave, reflect and the refract angles.
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where the angles 0, 6;, 6>, 6, 6, and the corresponding numbers ¢, For incident P-wave
&, &, &, & are joined with the following relation:

A plane P-wave propagating through a medium M and is inci-
&1sinfy = & sinf, = ¢sinf = & sin6; = &, sin 6. (43) dent at z = 0, three waves (P, SV and thermal) are reflected in the
same medium M by making an angles 60, 6; and 6, with z-axis
and P-wave, Thermal waves are transmitted into medium M’ by
sinf; sinf, sind sing; sind, making an angles ¢' and 0]. The displacement potentials ®, ¥ for

On the interface z =0,

Vi Vs c vV, (44) medium M and @', ¥’ for medium M’ will take the forms:
in which D= Blexp{m' (x sml() +zcos0) — wt}
+ Byexp{i&; (xsin0 — zcos 0) — wt}
vlzg,vzzg,c’:g,v’l =9/,V'z=g/ + Ay exp{i&;(xsin 0; — zcos 0;) — wt}, (45)
& C2 ¢ & )
V1, v, are the roots of Eq. (35) and v}, v, are the roots of Eq. (37). ¥ = Azexp{i(xsin 0, —zcos6,) — o}, (46)
15+
= 10f
N
s -
[L}H
0
0 ]
1.0} . q
I ] ]
0.8F \ / |
_ 06F ] ]
N ] :
04F ] ]
02f [ ] ]
6L ] ]
0.0 - L 1 L 1 L 1 i 1 " L L 1 1 " 1 1 : .:
0 20 40 60 80
0 0
15t
§ 10+
5
0 1

Fig. 3. Difference of the amplitudes |Z;|(i = 1,2,...,5) making an incident angle of SV waves under different theory, H = 0.4, ¢ = 0.08, * = 0.001.
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@' = B exp{i&|(xsin ¢’ +zcos ') — wt}
+ Ayexp{ic,(xsin 0, + zcos 0;) — wt}, (47)

¥ =0, (48)

where the angles 0, 01, 0, ¢, 0] and the corresponding numbers ¢, &;,
&, &), &, are joined with the following relation:

&rsinf = & sin0y = £sin6, = & sind’ = &, sin 0, (49)
On the interface z =0,
sin@ sin6; sinf, sind sin6

— = 50
2 Vy c A vy (50)

in which

1Z,1

1Zs

w w w
Vi = I

—, VN =—, (= V/,E v’fE
= = 1= 2=
&’ &’ &’ &

v, v, are the roots of Eq. (35) and v}, v, are the roots of Eq. (36).
Boundary conditions

1) At the interface, the continuity of normal displacement i.e.
w=w.
o0 oY 00 oY

oz Tk oz T ox

2) At the interface, the tangential displacement must disappear

,atz=0. (51)

ie.u=0.
ob oY
575_0, atz=0. (52)

Fig. 4. Difference of the amplitudes |Z;|(i = 1,2,...,5) making an incident angle of P-waves for under different theory, H = 0.4, ¢ = 0.08, §* = 0.001.
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3) At the interface, normal force per unit primary area is
continuous i.e. ¢33 = o};.

a2 a2 a2
i [<2a727ﬁlm>vz®+2<1 —3) (d ¢, 0 q’) B8, (g—ﬂ

B 2 T oxoz
82(1)1 82\},/ - 82(1)/
W +—E)xaz) BB | atz=0.
(53)

:Bl_, {(Za’ S22 BV £ 2(1 - o) (
1
4) At the interface, tangential force per unit primary area must
disappear i.e. 513 = 0.
#®+#W_#W
oxoz  ox2 07>

5) At the interface, continuity of temperature i.e. T =T'.

>’D vy o, OO
aﬂ}—pﬁyV%)—ﬁﬁéw},mz—O. (55)

-0, atz=0. (54)

m {ocl V20 — BB,

[Z:]

Aaa a0l aaaadaaaadiaaidaaa ey

V4]

0.0E . . ’ . ]

329
Expressions for the refraction and reflection coefficients
For incident SV-wave

Eq. (39)-(42) reduces after applying the boundary conditions
(51)—(55).

A [/C A (C B, . A(] c ,
B, (W cos@l) +E (E cos 02) - B—l(smé)) +E E cos 6]

A (c A
+B—] (V—,z cos 62> =sin0 (56)
A (C . A (C . B, N
B, <v_1 sin 01) + B, (v_2 sin 02) + B—l(cos 0) =cos0 (57)

14F

15

123

|Z4]

|Zs|

"~
T

Fig. 5. Difference of the amplitudes |Z;|(i=1,2,...,

,5) making an incident angle of SV waves for effect of coupling parameter, H = 0.5, 8 = 0.001.
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A] c? my A2 c? m; Bz (1 —O() . I BB
L N e | D2 2 _ _ _ 2 L)
B, (V% /ﬂ) +Bl (Vz 5, +31 5 sin 20 m _(2+ﬂ1rH 200) + (200 — 2) cos” 01 + é% w?* |,
,'1/1 ﬁﬁ Ay (€2 my [ BB
By \V2 B, "B, V/z ﬁ1 My =|(2 + BTy — 200) + (200 — 2) cos? 0, +é£w2},
_ 0= Gnog (58) - s
By ms = (2 + By — 2¢) + (200 —2)cos? 0 + @
1
B (i sm20) 5 (G smae) + 5 :
— | — sin 20 == — sin20 Cc0s20) = —cos 20 59
B; ') *B 2]+, )= 59) My =|(2 + piry — 20) + (20 — 2) cos? 0, + ﬁﬁ]
L 2
Ar (M A Ay Ay (na) _ ny =mw? (o + pB,V?), Ny = mw? (o + ppV3),n
B, (V%) +Bl< ) By (V’z) B, (V’ZZ) B (60) 1 (o i (o )
S A A B
where, Ny =p@* (o4 + B B1v5), 21 2512223%,23:3%7
5 ] 12}
] 10}
4 ;
I ¢
_— 3 1 &
N 1N 6t
2 4
] 4+
1 1
0 . (1]
0
7] ()
1.0:
0.8f
0.6F
-N; [
~ oaf
0.2f
0.05, : i . -
20 40 60 80
0 0
10F 5
o |
6 N
5 |
i ]
2L N
ok §
0

Fig. 6. Difference of the amplitudes |Z;|(i =

1,2,.

5) making an incident angle of SV waves for effect of magnetic field, ¢ = 0.7, 8* = 0.001.
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A
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where (Z;,i=1,2,...,5) represents the amplitude ratios of
reflected P, T, SV waves and refracted P, T waves.

For incident P-wave

Eqs. (45)-(48) reduces after applying the boundary conditions
(51)-(55).

B, /cos0 Rl A; [cos by Az sin 0, LB B1 cos 6
B] B \'/] B1 c B
A’ cos 0] cos 6
*m(vz ) -2, (61)

B, /sin®\ A; /sin0, Ay (cos0y\  sin0
B]< )+B1< \'] )+Bl( c )_ Vi ’ (62)

Bz A] Az ( 1) B m,
(ﬁ1vz>+ (/3@)* (Blcﬂ S‘“ZGZ) B (ﬁ;\;ﬁ)

Al ( my ) m)
N N L T [ 63
B, 51\7122 ﬁlV% 63)
B, (sin20 Aq [/sin20; Ay (c0s20,\ sin20
g (v ) e () e () = Y
By (m A (m\ By (ms\ A
B1 V% 31 V% B] V'l2 B1 V'22
mww?
===z o+ BAVY). (65)

Fig. 7. Difference of the amplitudes |Z;|(i=1,2,...,

5) making an incident angle of SV waves for temperature dependent modulus effect, H = 0.0, ¢ = 0.7.
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Where,

Bb

m, =m), = | (2 + fyru — 20) + (2a2)c0526+62w2},

1
= (2+ﬂ1rH2a)+(2a2)c05201+ﬁ§]w2},
L 2
=[(2+ By —20) + (20 —2) cos? 0 + ﬂé,’il wz} ,
L 1
={(2+ pyryy — 20) + (20 — 2) cos* 0, +ﬁv—g1w2}.
L 2
B A A B _A'1
_E7ZZ—E7Z3—E7Z4—E al‘leS—E.
14— €=00
Laf|-- =00
—-- €= 018
10
— 08}
N
0.6
04} .
02f
00k . . oy
0 20 40 60 80
6

where (Z;,i=1,2,...,5) represents the amplitude ratios of
reflected P, T, SV waves and refracted P, T waves.

Numerical results and discussions

We have considered the data for solid medium as crust and lig-
uid medium as water following Singh and Chakraborty [17], for the
numerical analysis of previous section.

For solid medium (M crust “Granite”): which in geology is the
uppermost solid shell of a rocky planet or natural satellite, and is
chemically different from the underlying mantle.

1Z,]

|Zal

1Zs]

Fig. 8. Difference of the amplitudes |Z;|(i=1,2,..., 5) making an incident angle of P waves for coupling parameter, H = 0.5, 8 = 0.001.
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J=u=3x10"N-m2, Ty=300K @=75x10"S", Figs. 3 and 4 gives the effects of amplitude ratio with the inci-

_ JETS R _ 3 dent angle for the SV and the P waves under two theories. In the

T =1100] kg 1K ;P =2900 15<g m-, situation of SV wave, |Z1], |Z|, |Z4| and |Zs| commenced from the

K=3W-m'.-K' E=26x10. maximum values and goes to zero at 0 = 90° but for |Z3, it begins

. . - . from unity and ends on as well a unity at 6 = 90°. It also indicates

For fluid medium (M’ “Water”): that GL theory in |Z1], |Z2| and |Z4] have the smaller values than CD

1 =204 x10° N . m2 ' — 41871 ke ' . K / theory, whereas GL theory in |Z5| and |Z5| have smaller values than
T=u X me % J-ke P CD theory after 0 = 65°.

=1000kg-m>, K =06W.-m'.K"', Ey =22 x 10°. In the case of P wave, |Z;| begins from zero and reaches to unity

at 0 = 90° |Z,| and |Zs| begins from its extreme values and reaches

Considering vo = v, = 0.8, vi = v; = 0.9 and € = & = 0.2. (See to zero at 0 = 90°. Whereas for |Z,| =0 at 0 =90° |Z3| =0 when

Figs. 1,2).

1.4 '_ — H=003
-- H=0.06
--- H=0.09

1.0f
0.8F

1Z1]
V43

0.6F

e
”n

0.2
00 . . oy 0.0

T

(IR S B AT SN R A AN S SO B S S S S A B AT S A

o
o

1Z5]
1Z]

0.1

0.0

IR I R SR NN S N 1

I S TR SR TR SN TR S 1

Fig. 9. Difference of the amplitudes |Zi|(i=1,2,..., 5) making an incident angle of P waves for effect of magnetic field, ¢ = 0.7, " = 0.001.
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0=0° and 0 =90°. |Z4| gets its highest value after 6 = 50° and
gradually it goes to zero at 0 = 90°.

Figs. 5-7 depicts the effect of amplitudes with incident angle of
SV wave under the variation of two relaxation times to GL theory.
Fig. 5 exhibits the variation of incident angle of SV wave with the
amplitude ratio under various values of ¢ The amplitude ratio
|Z1), |Z2| and |Z4| increases with increase of ¢ whereas amplitude
ratio |Z;| and |Zs| initially decreases by increasing ¢ and after
0 = 60°, the amplitude ratio increases by increasing &.

Fig. 6 gives the difference of magnetic field on the amplitude
ratio of SV wave. It is seem that |Z;| and |Z,| increases with an
increase of H, but |Zs|, |Z4] and |Zs| decreases by increasing H. |Z4]
has maximum value at 6 = 45°.

Fig. 7 shows the influence of reference temperature modulus on
amplitude ratio. We can see that the amplitude ratio |Z;| and |Z4|

3.0 T T T T T 3

—  B'=0.001
2.5 --  p°=0.002 ]
2.0 --——-  p°=0.003

121

|Z3]

1Z4]
e
N

rises with rising * after 0 = 20°, |Z3| starts from unity and end on
unity as well with increasing g* and all the curve mix with each
other after 6 = 45°. While |Z,| and |Zs| decreases with increasing
f* before 0 = 45° and 0 = 45° it has opposite effect.

Figs. 8 and 9 gives the difference of amplitude with the
incident angle of P wave under the influence of two relaxation
times to GL-theory. Fig. 8 shows the effect of € on the amplitude
ratio. |Z1], |Z2| and |Zs| decreases before 6 = 30° and after 0 = 45°
increases by increasing €, while |Z3| and |Z4] decreases before
0 =50° and after 6 = 50° it start increasing and moves toward
zero at 6 =90°.

We observed from Fig. 9 that |Z;| to |Zs| decreases as H
increases. For |Z;| it moves towards unity at 0 = 90° where as in
|Z>], |Z3|, 1Z4| and |Zs| it moves toward zero at 0 = 90°. Fig. 10
exhibits the difference of reference temperature modulus on the

|Z,]
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1

0 20

Fig. 10. Difference of the amplitudes |Z;|(i = 1,2,...,5) making an incident angle of P waves for temperature dependent modulus effect, H=0.0, ¢ = 0.7.
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amplitude ratio. We see that |Z;| to |Zs| have increasing and
decreasing behavior for all values of .

Conclusion

In this paper, we discussed the effect of temperature dependent
elastic moduli, coupling parameter and magnetic field on the
refraction and reflection at the interface. For SV and P waves inci-
dent at the solid liquid interface, the effect of variation of temper-
ature dependent modulus is more prominent than that of coupling
parameter and magnetic field on the amplitude ratios of refracted
and reflected P and thermal waves.
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