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The present manuscript studies the effect of the initial stress in micropolar magneto-thermoelasticity
with microtemperatures heated by a laser pulse. The modified Ohm'’s law illustrates the temperature gra-
dient and the charge density effects in the governing equations of the studied problem. The used analyt-
ical method was the normal modes. The physical quantities are established numerically and represented
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Introduction

The response of the material to the external stimuli depends
heavily on the motions of its inner structures. The classical elastic-
ity does not contain this effect, where only translational degrees of
freedom of the material point of the body are considered. The
micropolar continuum is defined as the collection of the intercon-
nected particles in the form of small rigid bodies undergoing both
translational and rotational motions. The granular materials and
multimolecular bodies, whose microstructure act as an evident
part in their macroscopic responses are typical examples of the
micropolar materials such as the composites with rigid chopped
fibers, elastic solids with rigid granular inclusion and other indus-
trial materials such as liquid crystal. Micropolar theory of elasticity
introduced by Eringen [1,2] insures the local deformation and rota-
tion of the material points of a body. This theory provides a model
that can support the body and surfaces couples and display a high
frequency optical branch of the wave spectrum. Some problems of
micropolar thermoelasticity are discussed in [3-5].

The microtemperatures theory is considered as the theory
which deals with the temperature, wave propagation in a rigid
heat conductor and allows for variation of thermal properties at
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a microstructure level. Cryogenic liquids are heavily involved in
space research and such liquids must be stored in stainless steel
vessels known as run-tanks. The nanostructures in solids are also
important, and the large thermal stresses placed in the solid ves-
sels may be associated with thermal microstructure effects and
hence there is certainly a need for a well-structured theory for a
rigid solid which allows for microtemperatures effects. Grot [6]
established the thermodynamic theory of elastic materials with
inner structures contains the microdeformations while the
microelements possess microtemperatures. Riha [7] presented a
study of the heat conduction in materials with inner structures.
[esan and Quintanilla [8] constructed the linear theory of
thermo-elasticity of materials with inner structure. lesan [9] pre-
sented the mathematical model of the theory of micromorphic
elastic solids with microtemperatures since the micro-elements
possess microtemperatures and can stretch and contract indepen-
dently of their translations. Casas and Quintanilla [10] studied the
exponential stability in thermo-elasticity with microtemperatures.
Scalia and Svandze [11] discussed the solutions of the theory of
thermoelasticity with microtemperatures. lesan [12] studied the
thermoelastic bodies with microstructure and microtemperatures.

In geophysics, the initial stress is very important mechanical
effect in solids. Due to the high stresses; the Earth’s surface due
to the gravity has a strong influence on the propagation speed of
the elastic waves. While in the soft biological tissues initial (or
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residual); stresses in artery walls ensure that the circumferential
stress distribution through the thickness of the artery wall is close
to uniform at typical physiological blood pressures. Initial stresses
may arise, for example, from applying loads, as in the case of grav-
ity, processes of growth and development in living tissue or, in the
case of engineering components, from the manufacturing process.
Ames and Straughan [13] checked out the continuous dependence
results for initially pre-stressed thermoelastic bodies. Montanaro
[14] investigated the linear thermoelasticity with hydrostatic ini-
tial stress. The laser beam at a high intensity when interacts with
the solid surface, the absorption takes place. This in turn causes
an internal energy gain of the substrate material and heat release
from the irradiated region. For the ultra-short-pulsed laser heating,
the high-intensity energy flux and ultra-short duration laser beam
have introduced situations where very large thermal gradients or
an ultra-high heating speed may exist on the boundaries as in
Sun et al. [15]. Othman et al. [16] discussed the effect of initial
stress on thermoelastic rotating medium with laser pulse heating.

The interaction between the magnetic field and stress and
strain in the thermoelastic medium is very remarkable due to its
application in geophysics, plasma physics, related topics essen-
tially in the nuclear fields, since the extremely high temperatures
and the temperature gradients, in addition to the magnetic fields
originating inside the nuclear reactors, also for the emissions of
electromagnetic radiations from nuclear devices and for under-
standing the effect of the Earth’s magnetic field on seismic waves.
Othman et al. [17] investigated the effect of magnetic field on a
rotating thermoelastic medium with voids under thermal loading
due to laser pulse with energy dissipation. It was assumed that
the interactions between the magnetic field and the electric field
take place by means of the Lorentz forces appearing in the equa-
tions of the motion and by means of a term entering Ohm’s law
and describing the electric field produced by the velocity of a mate-
rial particle, moving in a magnetic field. Ohm’s law was modified
by the inclusion of the temperature gradient, this modification
for the temperature gradient stated that the strength of the current
at each point is proportional to the gradient of electric potential.
The accuracy of the assumptions that flow proportional to the gra-
dient is more readily tested, using modern measurement methods,
for the electrical case than in the heat case. Othman et al. [18,19]
discussed two problems involve the effect of the magnetic field
in two different cases on micropolar thermoelastic solids with
microtemperatures.

This article studies the initially stressed linear, isotropic, homo-
geneous magneto-micropolar thermoelasticity with microtemper-
atures heated by a laser pulse. The normal mode method was used
to get the solution of the physical quantities of the very field. These
quantities are calculated analytically and numerically then repre-
sented graphically.

Basic equations

According to the linear theory of thermodynamics for isotropic
elastic materials with inner structure, and due to Eringen [1], Iesan
[12] and Montanaro [14], the field equations and the constitutive
relations for a stressed, linear, isotropic, homogeneous, micropolar,
magneto-thermoelastic material with microtemperatures, heat
sources and first heat source moment, without body forces, body
couples, can be considered as:

0yi + Fi = pujy, (1)
Myj; + & Oir — My (V X W)i :jp({bi.m (2)

kGW,‘J‘j + (k4 + kS)Wj,ij + Uy (V X (/))l — sz,' — bW,‘.t — kgT‘i = 07 (3)

KT i — pCeT — 7, Tolti; + kiwi; = —pQ, (4)

O = A0y + (Ui + i) + K (uji — &5ry) — 71T — Py + 0y),

my = 0, 05 + fébij + 7y, (6)

q; = kT; + kaw;, (7)

Gy = —kawi 0y — kswij — kew;;, (8)

Qi = (k1 — ka)wi + (k — k3)T, (9)
1

& = (Uij + W), (10)
1/0u; ou

wv=§<5é*52> (11)

Fi= po(J x H);, (12)

where 4, u are the Lamé constants, , f3, y and k™ are the micropolar
constants, y; = (344 2 + k")a, o is the linear thermal expansion
coefficient, p is the density, C, is the specific heat, k is the thermal
conductivity, u; is the displacement vector, T is the absolute tem-
perature, Ty is the reference temperature chosen so that
|(T —To)/To| < 1, ¢; is the microrotation vector, ¢; are the compo-
nents of the stresses, e; are the components of strains, wj are the
rotation of vector, J; is the Kronecker delta, g; is the permutation
symbol, p is the pressure, e is the dilation, mj; is the couple stresses,
j is the micro-inertia, w; is the microtemperatures vector,
My, b, ki (i=1,2,...,6) are the constitutive coefficients, F; is the
Lorentz force, g; is the heat flux moment, g; the first heat flux
moment, Q; is the mean heat flux vector, and Q is the heat source.
In the previous equations a comma denotes the coordinate system
derivatives.

Formulation and solution of the problem

Consider an isotropic, linear, homogeneous, micropolar ther-
moelastic solid with microtemperatures and a half-space (y > 0),
the rectangular Cartesian coordinate system (x,y,z) has originated
on the surface when z = 0. For the 2-D problem then, we would
need to assume the dynamic displacement vector as u = (u, 2,0).
The microrotation vector ¢ will be ¢ = (0,0, ¢;), consequently
the microtemperatures vector w will be w = (wy,w,,0). A mag-
netic field with a constant intensity H; = (0,0,H, + h(x,y,t) acts
on the z axis. All quantities considered will be a function of the
time variable t and of the coordinates x and y. Application of the
initial magnetic field Hy, produces an induced magnetic field h
and an induced electric field E. The simplified linear equations of
electrodynamics of slowly moving medium for a homogenous,
thermally and electrically conducting elastic solid can be written
on the form

Vxh=]J+D, (13)
V x E = -B, (14)
VB=0, V.D=p, (15)

D=¢gE B=,(H+h) (16)

with the modified Ohm'’s law for the media has a finite conductivity
J=00(E+ pyu x H) — ko VT, (17)
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where B is the magnetic induction field vector, J is the current den-
sity vector, D is the electric displacement vector, 1, is the magnetic
permeability, p, is the charge density, & is the electric permittivity,
0y is the electric conductivity and ko is the coefficient connecting
the temperature gradient and the electric current density.

From Egs. (11)-(16), one can obtain the Lorentz force compo-
nents in the form

ou oT
Fy = GoptgHo <Ey oHo ) ko (18)
v
Fy = —0otoHo | Ex + MOHOE + ko 8x (19)
F,=0. (20)
Also, we can deduce that
oh ov OE, oT
@_60<EX+MOHOE)+ 05t —koa» (21)
oh ou OE, oT
Mo (Ey ~ ltoHs a) o2 kD (22)
oh OE, OE,
Hode = oy " ox )

The plate surface illuminated by the heat impulse from the laser
beam can be formulated in the form as in Ref. [16]

Ioyt X2t .
Q= i o (—r—z—g) exp(—7'), (24)

where Iy is the absorbed energy, r is the radius of the laser beam, t,
is the characteristic time of the laser pulse or the time duration of
the laser pulse, and 7y* is a constant.

Eqgs. (1)-(4) will be

de ,.0¢y  OT

2
(u+k - )V u+(/1+u+ )8X+I ~Nox
du ar 82u
+00u0H0|:Ey*,u0HOE:| - O@=PW7 (25)
. D de . Ops aT
(u+k _i) v+(z+/x+ >8y Ko~ My
v aT v
7O'oﬂoH0|:E +,u0HO :|+k0 8x_p8t27 (26)

s ov ou ow,  ow N
1905 =200+ (6 =) (50 - 50 ) - (- ) =i
(27)
o (ow; ow Y
ke V2w + (kg +k5)a (8—xl+a_yz) +'u1&ain_k2W‘
ow, | oT
~b5 ks =0, (28)
O (owy owy\ 0 s
kev W2+(k4+k5)ay< ox + ay) 18{ ox szz
ow, - oT
b kg = (29)
szT—pCeaT /1T086+k1(%+%):—p@ (30)

Use the following non-dimensional variables

O , _ PCow; pCs G
X Xi, U= Uj, . Wi=—w;,
i Co i V]TO i ¢3 7, T ‘/)3 60’]‘ i
PO MCo 1
ij _mmlﬁ qy qu T _7T7
/ / 1 / * H
(04, P7) = 2 To (03,p1), U =wit, k= 'uo OkOv
1
Q = Q P W5 - wlcO _
TQCECU’{ ’ ,l,lOH()O'O ’ ! GOHO,U% v
2 *
w;:pcec07 Cé:2+2u+lc o= 1 . (31)
k p Ho&o

where c is the speed of light.
Substituting the non-dimensional relations (31) (dropping the
prime for the simplicity) into Egs. (25)-(30), we get

) de s aT au of _ du
Vu-s—clax-s—cz ay c3a +E, - 8t C58y7C38t2, (32)
2 de  Ops T ov T dv
VU+C18y Cy o Cgay c4Ey C56t+C68X7C38t27
(33)
5 v du owy  owr\ 04y
Vs C7¢3+Cs<8x E)y) Cy <8x 8y> =C10 o (34)
d (ow;  ow, D 0y ow; T
\% W1+C110X< ox ay ) +C 125 ay —C13W1 —Cia ot Ci552 X =0,
(35)
9 [Ow; ow a0 ow, oT
A% W2+C“8y< 1-i-a—yz) —Clza%—waz Cla—— ot Clsdy 0,
(36)
2 oT oe an 8W2 _
VT o Ci7 8t+C18 W+W =-Q, (37)
The same procedure for the Egs. (21)-(23) gives
) 9\ (OE, OE, o (ou Ov
Vih=- (ng“l ar)(ax ay) "o \ox Tay) (38)
0\ (OE  OE;\ _ 2 O [0V Ou
<C29 + & (3[) <W+W) =31 VT — 30 ot (8)( ay), (39)
5, Cag Oh h ¢y 0 (ou v\
V<h o OF 81W o at\ox Ty =0. (40)

Suppose that the potential functions y, (x,y,t), ¥, (X,y.t), q;(x,y.t),
and q,(x,y,t), of the dimensionless form

O (O O Oy 94, , 94,
u76x+6y’ Uf@y ox’ W178x+8y and

_ 94 99,

=% (41)

To obtain the physical quantities of the studied problem, it is
appropriate to assume the solution in the form

[l/fn%vhv¢37Q17QZ7T](",Y7 ) [1/117% h ¢37Q1 q27T*}(y) lax d)
(42)

Where [y7,¥5,h", ¢3.q7,q3,T'](y) are the amplitude of
W1,¥4,h, ¢3,94,45,T], ¢ is the angular frequency, and a is the wave
number.

Using Egs. (40
lowing system

) and (41) into Eqgs. (32)-(36) produces the fol-
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[D® — N3]yt — Nsh™ —NsT* =0, (43)
[D* = NeJy; + C2py + N, T* =0, (44)
Ng[D? — a?}y; + [D* — NoJh* = 0, (45)
—cg[D? — a®]y; + [D* — Niol¢s + c10[D* — @?]q; = 0, (46)
[D* — Ny1]q; — NyioT" =0, (47)
Ni3¢; + [D? = Nialg; = O, (48)

Nis[D? — @}y + ¢16[D? — @’]q; + [D? — Nyg]T"
= —Niaf (x, 1) exp(=)"y). (49)
All the constants N3 — Nyg, ¢; — €17 are given in the Appendix A,
where D = d/dy.
Eliminate the functions v, ¥3, h", ¢3, q;, q; and T* among Eqs.
(43)-(49), yields to the following differential equation
D™ — 7;D™ + 7,D' — J3D® + /4D°® — /sD* + JsD* — 1]
x (Y1, 95,10, 03,41, 45, T'3HY)
= —Nisli,Ly,L3,La, Ls, Ls, L7f (x, t) €Xp(—}"Y) (30)
where 2,(n=1,2,...,7) and L,(n=1,2,...,7) are constants.
Eq. (50) can be factored as
[(D* = $1)(D* —5;)(D* — 53)(D* — $3)(D” — 55) (D — S)(D* — S7)}y/; ()
=—NisLif(x,t) exp(=)"y), (51
where S2(n =1,2,.
of Eq. (51).

The general solution of the Eq. (51), bounded as y — oo, gives
the solution of the physical quantities in the forms:

,7) are the roots of the characteristic equation

7
U(X,y,t) = > RoBsn eXp(=Sny +i(ax — &t))

n=1

2xL
—A1Q1( LR ) exp(—7'Y). (52)

7
z/(x,y., t) = ZRnBsn exp(—Sny + 1(ax - ét))

n=1

2xL .
s (252 =L ) e, (53)

7
Wi(X,y,t) =Y RoBon eXp(—Spy +i(ax — &t))

2xXL
-1 (B2 7L ) exp( ) (54)

7
Wa(X,y,t) = > RuBion Xp(=Say +i(ax — ét))

n=1

2xL
+A1Q, (ﬂ - V*Ls> exp(—y"y), (55)

7
h(x,y,£) =Y RoBan exp(=Say +i(ax — t))

n=1

+A1Q4Ls exp(=yy), (56)

7
¢3(%,Y,t) =Y RoBsn exp(—Spy +i(ax — &t))

n=1

+A1Q1Ls exp(—y7y), (57)

7
T(X7Y7 t) = ZRnBGn eXp(fsny + i(ax - ét))

+A1Q1L7 exp(—y'y), (58)

w(X,Y,1) ZRann exp(—Sny +i(ax — ét))

+A1Q1A2 exp(=7'y), (39)
Oy (X, ¥, 1) ZR Bion exp(=Sny + i(ax — ét))

+A1Q14;s exp(—y'y), (60)
Oy (X, ¥, 1) ZRnBBn exp(—Sny +i(ax — ét))

+A1Q1A4 exp(—)7y), (61)
Qyy (X, ¥,t) ZR Bi7n eXp(—Syy +i(ax — ét))

+A1Q,14s exp(=7'y), (62)
Gy (%, 1) ZR Bign €xp(—Sny +i(ax — ét))

+A1Q1A9 exp(—=77y), (63)

where R,(n=1,2,...,7) are constants. The other field quantities
are given in Appendix B.

Consider the magnetic and the electric field intensities in a free
space, which are denoted by hy, E19, and Ejg, respectively. These
variables satisfy the field equations:

ohy  OEq

87}/_81 " (64)
oho 9y

=522, (65)
ohy  9Eq 0Ey

ooy ox (66)

Similarly, these variables can be decomposed in terms of nor-
mal modes in the form

[hOvEXOvE}’O](Xzyv t) = [hS»E;o»E;o](J’) exp(i(ax — ¢t)). (67)
Using Eq. (67) into Eqs. (64)-(76) gives
D* — @ + & lhy = 0. (68)

The general solutions of the quantities hy, E,, and E,, which are
bounded as y — oo are

ho(x,y,t) = Ar2 exp(=Ssy +i(ax — &t)), (69)
S8 .

Eo(x.y.0) = 2o exp(-Sey +iax— &), (70)

Ero(x.y.0) = 2. Arz exp(=Sey + i(ax — &), (1)

where A;, is a constant and Sg = /a2 — £%¢,.
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Boundary conditions

Consider the following non-dimensional boundary conditions
neglecting the positive exponentials to avoid the unbounded solu-
tions at infinity, the surface at y = 0, satisfies:

(1) The mechanical boundary conditions:
(a) The normal stress is mechanically stressed by a constant

force p, i.e.
Oyy(x,0,t) = —p; exp(i(ax — &) —p, (72)
(b) The shearing stress is traction-free, so that
0,(x,0,t) =0, (73)

(c) The condition of the couple stress (which is constant in
y-direction). Then

my,(x,0,t) =0, (74)
(2) The thermal condition (the half-space is free). This leads to
T(x,0,t) =0, (75)

(3) The transverse components of the electric field intensity are
continuous across the surface of the half-space. This means

E,(x,0,t) = Ey(x,0,1), (76)

(4) The transverse components of the magnetic field intensity
are continuous across the surface of the half-space. This
implies that

h(x707 t) = hO(X707 t)7 (77)
(5) The normal and the tangential heat flux moments are free.
QXx(xs 0, t) = qu(X, 0, t) =0. (78)

Substitute the expressions of the considered physical quantities
into the previous boundary conditions to give the equations satis-
fied by the parameters with the method of the matrix inverse to
the raised system of equations to obtain the values of constants.

-1

Ry Biz1 B2z Bias Biza Bizs Bios By O —p;
R, Bi3i Bi3s2 Biss Biza Biss Biss Bizz O 0
Rs Bi41 Bisr Bias Bias Biss Bias By O 0
Ry | | Bst Bs2 Bss Bsa Bes Bss Ber O 0
Rs | | Biot Bisz Biss Bios Biss Bies Bioy L 0
Rs Byt By Bys By By By By -1 0
Ry Bi71 Bi72 Bi7s Biza Bizs Bizs Bizz O 0
App Big1 Bisz Bigs Bigs Bigs Bigs Bigz 0O 0
(79)

In the present work, we consider the following particular cases:

(i) Absence of the initial stress: by taking p = 0 in the constitu-
tive Eq. (5).
(ii) For the non-connecting temperature and the electric current
density: by taking ko, = 0 in Eq. (17).
(iii) Absence of the micropolar: by taking «, 8,7, k",j = 0 into Eqgs.
(1)-(5).

Numerical results and discussion

According to Eringen [20], the magnesium crystal-like material
was chosen for purposes of numerical calculations. The used
parameters are given in SI units; 2=9.4x10"N/m?, pu=
4x10"N/m2, k=17x10*N/s-K, p =174 x 10® kg/m3, o, =
74033 x107/K, C,=1.04x10*]/kg-K, k" =1x10""N/m2,
p=7779x 108N, j =2 x 102 m2, Ty = 298 K, k; = 0.0035 N/s,
k, = 0.0045 N/s, k3 = 0.0055 N/s K, ks = 0.065 N/s m?,
ks = 0.076 N/s m?, ke = 0.096 N/s m?, 1, = 0.0085 N,
b=015x10°N, p, =05K, a=0.01m, & =10"°/(36m) F/m,
t=0.009s, Iy = 10’6J/m2, E=4rad/s,x=05m,0<y<5m.

The variation of each of the real parts of the displacement u, the
microtemperatures vector wy, the temperature T, the stress o,,, the
microrotation ¢5, the first heat flux moment gq,, and the induced
magnetic field h are represented by the distance y for different
comparisons.

Figs. 1-6 represent the behavior of the physical quantities
against the distance y, when ky=10°m/K, t=0.009s,
I = 107°J/m2, in the case of p = 0, 0.7.

Fig. 1 shows that the variation of the displacement component u
decreases with the increase of initial stress for 0 <y < 5. Fig. 2
clarifies that the microtemperatures vector w; decreases in the
range 0 <y < 0.8, then increases in the range 0.8 <y < 5, with
the increase of initial stress. That is clear that the initial stress an
important effect in displacement and stresses as its importance
in the variation of the temperature from Fig. 3 that the tempera-
ture T decreases with the increase of initial stress in the range
0 <y <2, however it increases in the range 2 <y < 5. Fig. 4
depicts that the normal stress a,, decreases with the increase of
initial stress in the range 0 <y < 2, then it increases in the range
2 < y < 5.Fig. 5 explains that the microrotation vector ¢; increases
with the increase of initial stress in the range 0 <y < 1.5, then it
decreases in the range 1.5 < y < 5. Fig. 6 shows that the first heat
flux moment q,, increases with the increase of initial stress in the
range 0 < y < 1, then it decreases in the range 1 < y < 5. The initial
stress is an effective mechanical operator in the problem. Figs. 7-
11 represent the behavior of the physical quantities against the
distance y, when ko =10°m/K, p=0.7N/m I, =10"°]J/m?, in
the case of t = 0.009, 0.

Fig. 7 shows that the variation of the displacement u increases
in the range 0<y<04, then it decreased in the range

- =

e
o=

Fig. 1. Variation of the displacement component u against y.
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Fig. 2. Variation of microtemperatures vector w; against y.
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Fig. 5. Variation of the microrotation vector ¢; against y.

0.4 <y < 5, with the increase of the time. Fig. 8 clarifies that the
microtemperatures vector w; decreases in the range 0 <y < 0.8,
then increases in the range 0.8 < y < 5, with the increase of the
time. It is clear from Fig. 9 that the temperature T decreases with
the increase of the time in the range 0 <y < 1.5, however it

increases in the range 1.5 <y < 5. It can have deduced that the
time is important factor in the problem. Fig. 10 depicts that the
normal stress gy, increases with the increase of the time in the
range 0 <y < 1.4, then it increases in the range 1.4 <y <5.
Fig. 11 explains that the microrotation vector ¢; decreases with
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Fig. 12. Variation of the displacement component u against y.
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the increase of the time in the range 0 < y < 0.4, then it increases
in the range 0.4 <y < 5. The time plays an important role in the
variation of previous physical quantities. Figs. 12-16 represent
the behavior of the physical quantities against the distance y when
p=07N/m, t=0.009s, Iy=10"°]/m?, in the case of
ko =10°, 0 m/K.

Fig. 12 shows that the variation of the displacement component
u decreases in the range 0 < y < 2.5, then it increased in the range
2.5 <y <5, with the increase of ko. Fig. 13 clarifies that the
microtemperatures vector w; decreases in the ranges 0 <y < 0.7,
and 2 < y < 5, however, it increases in the range 0.7 < y < 2, with
the increase of kp. It is clear from Fig. 14 that the temperature T
increases with the increase of kq in the range 0 < y < 2.7, however
it decreases in the range 2.7 <y < 5. Fig. 15 depicts that the nor-
mal stress component decreases in the range 0 < y < 2.5, while it
increases in the range 2.5 < y < 5 with the increase of kq. The tem-
perature gradient coefficient ko plays an important role in the vari-
ation of previous physical quantities. Figs. 16-18 represent the
behavior of the physical quantities against the distance y, in the
presence and absence of micropolar. Fig. 16 shows that the varia-
tion of the displacement component u decreases for y > 0, with
the increase of micropolar. Fig. 17 clarifies that the microtempera-
tures vector w; decreases in the range 0 <y < 0.7, and increases in
the range 0.7 < y < 5, with the increase of micropolar. It is clear
from Fig. 18 that the temperature T decreases with the increase
of micropolar in the range 0 <y < 1.8, however it increases in
the range 1.8 <y < 5. It deduced that all functions are continuous
and all the curves converge to zero.

Concluding remarks

1. The effect of the coefficient of modified Ohm’s law is observed
from the behavior of the physical quantities also within the
used mechanical and thermal loadings.

2. The micropolarity is an important property in the variation of
the functions and useful in factoring material such as polymers
and foundations materials in civil engineering.

3. The microtemperatures configuration a great importance for
the continuous medium mechanics, earthquake engineering
and seismologist for mining tremors and drilling into the earth’s
crust.

4. All functions are continuous and all the curves converge to zero
with the increase of the value of the physical operators and also
with the increase of the distance y, that mean; all physical
quantities propagate as wave function in the plane with the
time.
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